KR20220082655A - 양면 냉각 파워 모듈 및 이의 제조방법 - Google Patents

양면 냉각 파워 모듈 및 이의 제조방법 Download PDF

Info

Publication number
KR20220082655A
KR20220082655A KR1020200172748A KR20200172748A KR20220082655A KR 20220082655 A KR20220082655 A KR 20220082655A KR 1020200172748 A KR1020200172748 A KR 1020200172748A KR 20200172748 A KR20200172748 A KR 20200172748A KR 20220082655 A KR20220082655 A KR 20220082655A
Authority
KR
South Korea
Prior art keywords
substrate
power
double
device chip
dbc substrate
Prior art date
Application number
KR1020200172748A
Other languages
English (en)
Other versions
KR102464477B1 (ko
Inventor
조한신
Original Assignee
현대모비스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대모비스 주식회사 filed Critical 현대모비스 주식회사
Priority to KR1020200172748A priority Critical patent/KR102464477B1/ko
Publication of KR20220082655A publication Critical patent/KR20220082655A/ko
Application granted granted Critical
Publication of KR102464477B1 publication Critical patent/KR102464477B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

본 발명의 일 관점에 따르면, 양면 냉각 파워 모듈을 제공한다. 상기 양면 냉각 파워 모듈은 하부 DBC 기판; 상기 하부 DBC 기판 상에 형성된 전력소자 칩; 상기 전력소자 칩 상에 형성된 스페이서; 및 상기 스페이서 상에 형성된 상부 DBC 기판;을 포함하고, 상기 전력소자 칩은 TSV(Through Silicon Via) 기판 상에 복수개의 전력소자가 병렬로 접합된 구조를 포함할 수 있다.

Description

양면 냉각 파워 모듈 및 이의 제조방법{Dual side cooling power module and manufacturing method of the same}
본 발명은 양면 냉각 파워 모듈 및 이의 제조방법에 관한 것으로서, 더 상세하게는 냉각 효율 향상 및 신뢰성 향상을 위한 양면 냉각 파워 모듈 및 이의 제조방법에 관한 것이다.
전력반도체(Power Semiconductor)는 전력용 파워 스위칭 소자(Power Switching Device)와 제어 IC로 구성되어 전자기기에 들어오는 전력을 변환하고, 분해 및 관리하는 역할을 하는 반도체이다. 전력반도체는 일반 반도체에 비해 고내압화, 고신뢰성 등이 요구되어 진다. 특히, 하이브리드 자동차, 전기 자동차 등의 개발로 그 수요가 증가 추세에 있다. 이러한 하이브리드 자동차 및 전기 자동차에 사용되는 전력 변환 모듈은 DC를 AC로, 혹은 AC를 DC로 변환하는데 이용되는 전력 반도체 소자(Power semiconductor device)들로 구성된다. 전력 모듈은 전력반도체 소자 및 패키징 소재의 모듈 집적화 설계 기술, 제조공정기술, 특성시험 및 신뢰성 평가 기술등의 주요 기술을 통해 구현된다. 특히, 친환경 자동차인 하이브리드 자동차 및 전기 자동차에 적용되는 전력 모듈은 고온 및 진동 등의 열악한 환경에서 동작하기 때문에 높은 신뢰성이 요구된다.
이러한 전력 모듈은 전력소자와 소자 또는 소자와 기판사이를 전기적으로 연결하기 위해서, 복수개의 Al 와이어를 접합하여 사용해 왔다. 그러나, Al 와이어를 통해 전류와 열이 이동하게 될 경우, Al 와이어의 길이가 길어지고 그 수가 많을수록 전력 모듈이 갖게 되는 기생 인덕턴스가 증가하게 된다. 상기 기생 인덕턴스는 반도체 오버슈트 전압(Overshot)과 스위칭 손실이 발생하는 주된 원인이 되는 문제점이 있다.
또한, 종래 전력 모듈에서는 내부소자의 시그널 단자부의 연결이 와이어 본딩으로 이어지기 때문에 와이어의 단락을 예방하기 위해 Al 와이어 사이 공간을 띄어 주어야 한다. 이때, 이 공간이 커지게 되면 열저항이 커지는 문제점이 발생한다. 일반적으로, 열저항이 낮을수록 시스템에서 운용하는 냉각부하가 낮아지기 때문에 효율의 향상이 가능하기 때문에 모듈의 두께 증가로 인한 방열성능 저하 문제는 매우 중요하다.
한편, SiC 소자의 동일정격 IGBT 대비 칩 사이즈가 작아지기 때문에 대전류 전송면적이 상대적으로 작아지게 된다. 이로 인해서 칩의 모서리 부위에서 칩에 응력이 집중된다. 이는 장시간 지속되면 칩 크랙과 같은 파손을 일으킬 수 있다는 문제점이 있다.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 효율적인 양면 냉각이 이루어지도록 냉각효율 및 신뢰성을 향상시킬 수 있는 양면 냉각 파워 모듈 및 이의 제조방법을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 일 관점에 따르면, 양면 냉각 파워 모듈을 제공한다. 상기 양면 냉각 파워 모듈은 하부 DBC 기판; 상기 하부 DBC 기판 상에 형성된 전력소자 칩; 상기 전력소자 칩 상에 형성된 스페이서; 및 상기 스페이서 상에 형성된 상부 DBC 기판;을 포함하고, 상기 전력소자 칩은 TSV(Through Silicon Via) 기판 상에 복수개의 전력소자가 병렬로 접합된 구조를 포함할 수 있다.
상기 양면 냉각 파워 모듈에 있어서, 상기 복수개의 전력소자의 전극부는 상기 TSV 기판 상에 접합층을 이용하여 접합될 수 있다.
상기 양면 냉각 파워 모듈에 있어서, 상기 복수개의 전력소자 및 상기 TSV 기판 사이에 존재하는 간극은 충진제로 충진될 수 있다.
상기 양면 냉각 파워 모듈에 있어서, 상기 하부 DBC 기판의 적어도 어느 일단과 타단에는 시그널 단자 및 파워 단자가 각각 형성될 수 있다.
상기 양면 냉각 파워 모듈에 있어서, 상기 시그널 단자 및 파워 단자는 상기 하부 DBC 기판 상에 접합층을 이용하여 접합될 수 있다.
상기 양면 냉각 파워 모듈에 있어서, 상기 스페이서는 상기 복수개의 전력소자 상에 단층으로 형성될 수 있다.
상기 양면 냉각 파워 모듈에 있어서, 상기 하부 DBC 기판 및 상기 상부 DBC 기판의 외주면을 감싸도록 형성된 몰딩부;를 포함하고, 상기 시그널 단자 및 파워 단자의 적어도 어느 일부는 상기 몰딩부의 외부로 돌출될 수 있다.
상기 양면 냉각 파워 모듈에 있어서, 상기 전력소자 칩 및 상기 스페이서는 상기 몰딩부에 의해 매립될 수 있다.
본 발명의 다른 관점에 따르면, 양면 냉각 파워 모듈의 제조방법을 제공한다. 상기 양면 냉각 파워 모듈의 제조방법은 하부 DBC 기판 및 상부 DBC 기판을 준비하는 단계; TSV(Through Silicon Via) 기판 상에 복수개의 전력소자를 병렬로 접합하여 전력소자 칩을 형성하는 단계; 상기 전력소자 칩을 하부 DBC 기판 상에 형성하는 단계; 상기 상부 DBC 기판의 어느 일면 상에 스페이서를 형성하는 단계; 및 상기 전력소자 칩 상에 상기 스페이서가 맞닿도록 상기 상부 DBC 기판을 상기 전력소자 칩 상에 형성하는 단계;를 포함할 수 있다.
상기 양면 냉각 파워 모듈의 제조방법에 있어서, 상기 전력소자 칩을 형성하는 단계는, 상기 복수개의 전력소자의 전극부가 상기 TSV 기판과 전기적으로 연결되도록, 상기 복수개의 전력소자의 전극부가 접합층을 이용하여 상기 TSV 기판 상에 접합되는 단계를 포함할 수 있다.
상기 양면 냉각 파워 모듈의 제조방법에 있어서, 상기 전력소자 칩을 형성하는 단계는, 상기 복수개의 전력소자 및 상기 TSV 기판 사이에 존재하는 간극에 충진제를 충진하는 단계를 포함할 수 있다.
상기 양면 냉각 파워 모듈의 제조방법에 있어서, 상기 전력소자 칩을 하부 DBC 기판 상에 형성하는 단계 이전 혹은 이후에 상기 하부 DBC 기판의 적어도 어느 일단과 타단에 시그널 단자 및 파워 단자를 각각 형성하는 단계를 포함할 수 있다.
상기 양면 냉각 파워 모듈의 제조방법에 있어서, 상기 상부 DBC 기판을 상기 전력소자 칩 상에 형성하는 단계 이후에, 상기 시그널 단자 및 파워 단자의 적어도 어느 일부가 몰딩부의 외부로 돌출되도록, 상기 하부 DBC 기판 및 상기 상부 DBC 기판의 외주면을 감싸도록 상기 몰딩부를 형성하는 단계를 포함할 수 있다.
상기 양면 냉각 파워 모듈의 제조방법에 있어서, 상기 몰딩부에 의해서 상기 전력소자 칩 및 상기 스페이서가 매립될 수 있다.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 대면적 스페이서 구조 변화를 통해 방열성능을 향상시켜 보다 높은 신뢰성을 만족시킬 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 양면 냉각 파워 모듈을 보여주는 개략적으로 도해하는 평면도이다.
도 3 및 도 4는 본 발명의 비교예에 따른 양면 냉각 파워 모듈을 보여주는 개략적으로 도해하는 평면도 및 단면도이다.
도 5 내지 도 12는 본 발명의 일 실시예에 따른 양면 냉각 파워의 제조방법을 공정순서에 맞게 개략적으로 도해하는 도면들이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.
다르게 정의되지 않는 한, 여기에 사용된 모든 용어들은 해당기술 분야에서 통상의 지식을 가진 자에 의해서 통상적으로 이해되는 것과 같은 의미로 사용된다. 도면에서, 층 및 영역의 크기는 설명을 위해 과장되었고, 따라서 본 발명의 일반적인 구조들을 설명하기 위해 제공된다. 동일한 참조 부호들은 동일한 구성 요소를 나타낸다. 층, 영역, 또는 기판과 같은 한 구성이 다른 구성 상(on)에 있다고 지칭할 때, 그것은 다른 구성의 바로 상부에 있거나 또는 그 사이에 다른 개재된 구성이 또한 존재할 수 있는 것으로 이해될 것이다. 반면에, 한 구성이 다른 구성의 "바로 위에(directly on)" 있다라고 지칭할 때는 중간 개재 구성들이 존재하지 않는다고 이해된다.
이하에서는 양면 냉각 파워 모듈의 구조에 따른 문제점 및 그에 따른 해결수단에 대해서 도면을 참조하여 후술한다.
도 3 및 도 4는 본 발명의 비교예에 따른 양면 냉각 파워 모듈을 보여주는 개략적으로 도해하는 평면도 및 단면도이다.
먼저, 도 4를 참조하면, 본 발명의 비교예에 따른 양면 냉각 파워 모듈(2000)은 하나의 모듈에 대해서 개별적으로 부품을 쌓아 올리는 방식으로 제조한다. 도 4에 도시된 구조도는 도 3에 도시된 평면도에서 CC를 기준으로 절단한 단면을 의미한다. 도 3에서 Al 와이어(150) 및 전력소자 칩(200)의 배치여부를 설명하기 위해서 상부 DBC 기판(500)은 생략되었으나, 도 4의 구조도에서는 적층 구조를 설명하기 위해서 상부 DBC 기판(500)을 적층한 형태로 구성하였다.
복수개의 전력소자 칩(200)을 Al 와이어(150)를 이용하여 단자(400)들과 연결한다. 이 때문에 Al 와이어 본딩의 높이 제한으로 인해 전력 모듈의 두께를 낮게 제어하기가 매우 어렵다. 또, 동일한 정격의 IGBT 대비 SiC 전력소자 칩(200)은 축소된 칩 면적으로 인해 열이 분산되지 못하고 국부적인 부분에 집중된다. 이에 따라 칩의 불량 발생률이 증가하게 되고, 생산성의 저하를 가져오는 문제점을 갖고 있다.
이를 해결하기 위해서, 본 발명에서는 Al 와이어를 이용하지 않고, 전력소자 칩을 실장함으로써, 냉각 효율은 증가시키고, 생산성을 향상시킬 수 있는 양면 냉각 파워 모듈의 제조방법을 제공하고자 한다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 양면 냉각 파워 모듈을 보여주는 개략적으로 도해하는 평면도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 양면 냉각 파워 모듈(1000)은 하부 DBC 기판(100), 전력소자 칩(200), 스페이서(300) 및 상부 DBC 기판(500)이 순차적으로 적층된 형태의 구조를 포함할 수 있다. 구체적으로, 도 1은 하부 DBC 기판(100) 상에 전력소자 칩(200)까지 형성된 양면 냉각 파워 모듈의 하부 구조체(1000A)를 의미하고, 도 2는 스페이서(300) 및 상부 DBC 기판(500)이 형성된 양면 냉각 파워 모듈의 상부 구조체(1000B)를 의미한다.
하부 구조체(1000A)를 먼저 살펴보면, 하부 DBC 기판(100) 상에 전력소자 칩(200)이 배치된다. 전력소자 칩(200)은 TSV(Through Silicon Via) 기판(212)에 형성된 금속 배선(미도시)에 복수개의 전력소자(220)가 병렬로 접합된 구조를 포함한다. 여기서, 하부 DBC(direct bonder copper) 기판(100)이라는 용어는 AMC(active metal brazed copper) 기판을 의미하기도 한다. 하부 DBC 기판(100)은 구리(Cu)와 같은 전도성이 좋은 금속층(102, 106)이 세라믹 기판(104)의 상부면 및 하부면 상에 형성된 것으로서, 적어도 하나 이상의 층이 적층된 형태로 형성될 수 있다.
하부 DBC 기판(100)은 제 1 하부 금속층(102), 제 1 세라믹층(104) 및 제 1 상부 금속층(106)을 포함할 수 있다. 제 1 세라믹 기판(104)의 하부면과 상부면 각각에 제 1 하부 금속층(102)과 제 1 상부 금속층(106)이 형성될 수 있다. 여기서, 제 1 하부 금속층(102)과 제 1 상부 금속층(106)은 금속회로패턴으로 이해될 수 있다.
또한, 하부 DBC 기판(100)의 일단 및 타단에는 리드프레임으로 구성된 여러 단자(400)들이 형성된다. 예를 들어, 하부 DBC 기판(100)의 일단에 형성된 단자(400)는 시그널 단자를 의미하고, 타단에 형성된 단자(400)는 파워 단자를 의미한다.
전력소자 칩(200)이 형성되지 않은 영역에는 상부 DBC 기판(500)을 형성할 때, 빈 공간으로 형성되기 때문에 스페이서(300)가 형성되어 안정적인 구조체가 형성되도록 단자(400)들만 형성된다.
한편, 상부 구조체(1000B)는 하부 구조체(1000A)의 상면에 적층되는 형태로서, 동일한 크기의 상부 DBC 기판(500)이 배치된다. 상부 DBC 기판(500)은 하부 DBC 기판(100)과 동일한 것을 사용한다. 또, 전력소자 칩(200)이 배치된 영역에 걸쳐서 단층 형태의 스페이서(300)가 상부 구조체(1000B)의 하부면에 접합될 수 있다. 상부 DBC 기판(500)의 금속 패턴은 하부 구조체(1000A)에 배치된 전력소자 칩(200)의 전기적 연결을 고려하여 설계된다.
이하에서, 도 5 내지 도 12를 참조하여 양면 냉각 파워 모듈의 제조방법에 대해서 구체적으로 설명하면서, 각 구성요소들의 유기적 결합 관계에 대해서 상세하게 후술하고자 한다.
도 5 내지 도 12는 본 발명의 일 실시예에 따른 양면 냉각 파워의 제조방법을 공정순서에 맞게 개략적으로 도해하는 도면들이다. 도 5 내지 도 12에 도시된 도면은 도 1에 도시된 도면에서 일점 쇄선으로 구분된 영역(CC)을 기준으로 절단한 단면도이다.
도 5 내지 도 7을 참조하면, 먼저, TSV 기판(210)을 준비할 수 있다. TSV(Through Silicon Via) 기판(210)은 비아(via)를 구비하는 기판(212)의 일부에 금속 배선(214)을 형성한 것을 포함한다.
기판(212)은 예를 들어, Si 기판을 이용하며, Si 기판을 수직관통하는 비아(via)에 배선 공정을 이용하여 금속 배선(214)이 매립된 형태로 형성된 TSV 기판(210)을 형성한다. TSV 기판(210)은 이미 공지된 기술이므로 이에 대한 상세한 설명은 생략한다. TSV 기판(210)의 일면과 타면에는 각각 금속 배선(214)이 형성되어 전력소자 칩(200)으로부터 소스 신호와 게이트 신호를 받아 기판(212)을 관통하는 비아를 통해 하부로 전달할 수 있게 된다. 여기서, Si 기판을 예로 들어서 설명하였으나, Si 기판 대신 Glass와 같은 무기질 계열의 재료를 기판으로 사용할 수도 있다.
준비된 TSV 기판(210) 상에 복수개의 전력소자(220)들을 형성한다. 이때, 복수개의 전력소자(220)들은 플립칩의 형태로 형성된다. 예를 들어, 솔더(230)를 이용하여 TSV 기판(210)에 구비된 금속 배선(214)에 전기적으로 접속되어 복수개의 전력소자(220)가 TSV 기판(210) 상에 병렬로 접합된다. 여기서, 솔더(230)는 접합층으로 존재하게 된다. 솔더(230)는 복수개의 전력소자(220)의 전극부, 즉, 게이트 전극부 및 소스 전극부에 형성되어 TSV 기판(210)과 전기적으로 연결된다.
이후에, 복수개의 전력소자(220) 및 TSV 기판(210) 사이에 존재하는 간극에 충진제(240)를 충진한 후 이를 경화시켜 전력소자(220)를 TSV 기판(210) 상에 고정할 수 있다. 여기서, 전력소자(220)는 예를 들어, SiC 칩을 의미하며, 이외에도 소형의 칩(chip)들을 접합할 수도 있다. 이렇게 본 발명에서는 Si 기판에 비아를 가공한 후 금속층으로 충진된 기판 위에 복수개의 SiC 칩들을 하나의 패키지 구조로 제조하여 인덕턴스 값을 낮게 제어할 수 있다.
도 8을 참조하면, 준비된 하부 DBC 기판(100) 상에 제조된 전력소자 칩(200)을 형성할 수 있다. 하부 DBC 기판(100)은 제 1 하부 금속층(102), 제 1 세라믹층(104) 및 제 1 상부 금속층(106)으로 구성된다. 여기서, 전력소자 칩(200)이 실장될 수 있도록 제 1 상부 금속층(106)은 금속회로패턴이 형성된다. 제 1 상부 금속층(106)과 전력소자 칩(200) 사이에는 솔더(232)를 개재하여 솔더링함으로써 하부 DBC 기판(100) 상에 도 7에 도시된 전력소자 칩(200)을 접합할 수 있다. 여기서, 솔더(232)를 이용하여 설명하였으나, 하부 DBC 기판(100) 상에 소결 접합용 페이스트 또는 필름을 도포한 후 SiC 소자가 접합된 Si 기판을 접합할 수도 있다.
도 9를 참조하면, 하부 DBC 기판(100)의 일단과 타단에 시그널 단자(400) 및 파워 단자(400)를 각각 형성할 수 있다. 도면에는 하부 DBC 기판(100) 상에 전력소자 칩(200)을 형성한 이후에 단자들을 형성한 것으로 도시하였으나, 공정의 편의상 전력소자 칩(200)과 동시에 형성할 수도 있고, 혹은 그 이전에 단자들을 형성할 수도 있다.
단자(400)는 리드프레임을 이용하여 형성하며, 하부 DBC 기판(100)과 일체형으로 가공하여 몰딩한 후 후공정을 통해서 리드 단자를 형성할 수 있다. 또는 도면에 도시된 바와 같이, 솔더(234)를 이용하여 하부 DBC 기판(100)의 양단에 각각 형성할 수 있다. 리드프레임 단자를 가공하는 공정은 이미 기공지된 것으로서, 이에 대한 상세한 설명은 생략한다.
도 10을 참조하면, 준비된 상부 DBC 기판(500)의 일면 상에 스페이서(300)를 형성할 수 있다. 상부 DBC 기판(500)은 하부 DBC 기판(100)과 동일하게 제 2 하부 금속층(502), 제 2 세라믹층(504) 및 제 2 상부 금속층(506)으로 구성된다.
스페이서(300)는 상부 DBC 기판(500)의 제 2 하부 금속층(502)이 형성된 일면 상에 형성될 수 있다. 스페이서(300)는 열팽창계수(CTE)가 낮은 재료를 사용할 수 있다. 예를 들어, 스페이서(300)는 전력소자 칩(200)의 상부 또는 하부로 전기적 신호 및 방열을 수행하고, 예를 들어, 구리(Cu)와 같은 전도성이 우수한 금속을 블럭으로 사용할 수 있다.
스페이서(300)는 전력소자 칩(200)의 형성방법과 동일하게, 스페이서(300)와 상부 DBC 기판(500) 사이에 솔더(236)를 개재하여 솔더링한다. 스페이서(300)도 전력소자 칩(200)과 접합될 영역에 소결 접합용 페이스트 또는 필름을 도포한 후 소결접합 할 수 있다.
도 11을 참조하면, 도 10에 도시된 스페이서(300)가 접합된 상부 DBC 기판(500)을 전력소자 칩(200) 상에 형성할 수 있다. 이때, 전력소자 칩(200) 상에 스페이서(300)가 맞닿도록 상부 DBC 기판(500)을 뒤집어서 전력소자 칩(200)과 접합한다. 여기서, 전력소자 칩(200)과 스페이서(300) 사이에 솔더(238)를 개재하여 솔더링한다.
도 12를 참조하면, 상부 DBC 기판(500)이 전력소자 칩(200) 상에 형성된 이후에 하부 DBC 기판(100) 및 상부 DBC 기판(500)의 외주면을 감싸도록 몰딩부(600)를 형성한다. 몰딩부(600)는 내부에 포함된 구성요소들을 보호하는 기능을 수행하며, 리드프레임으로 제조된 단자(400)의 적어도 어느 일부는 몰딩부(600)의 외부로 돌출된다. 몰딩부(600)는 예를 들어, 에폭시몰딩컴파운드(EMC) 또는 폴리이미드(poly imide) 계열의 재료와 같이, 절연성 및 보호성이 우수한 폴리머 재질을 사용할 수 있다. 몰딩부(600)에 의해서 전력소자 칩(200) 및 스페이서(300)는 모두 매립된다.
상술한 바와 같이, 병렬로 복수개의 전력소자 칩이 와이어 본딩 방식이 아닌, 대면적의 메탈 패턴(스페이서)에 의해 전류가 이동하는 구조로서 인덕턴스의 값을 낮춰줄 수 있다. 전력소자 칩으로부터 방열판까지의 거리 및 접합층을 줄여주기 때문에 열저항이 감소될 수 있다. 또, 모듈의 상부에서 열이 빠져나갈 수 있는 구조를 가지기 때문에 양면으로 방열이 가능하다.
한편, 칩에서 발생되는 열을 절연 기판으로 보내기 전에 열팽창계수(CTE)가 유사한 층을 추가하여 열 전달면적을 확대시켜 주어 열변형에서 오는 스트레스를 중간의 Si 기판 및 메탈 블록이 감소시켜 칩의 내구성 및 신뢰성을 향상시켜줄 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
100: 하부 DBC 기판
102: 제 1 하부 금속층
104: 제 1 세라믹층
106: 제 1 상부 금속층
150: 와이어
130, 140, 160, 230, 232, 234, 236, 238: 솔더
200: 전력소자 칩
210: TSV 기판
212: 기판
214: 금속 배선
220: 전력소자
240: 충진제
300: 스페이서
400: 단자
500: 상부 DBC 기판
502: 제 2 하부 금속층
504: 제 2 세라믹층
506: 제 2 상부 금속층
600: 몰딩부
1000, 2000: 양면 냉각 파워 모듈

Claims (14)

  1. 하부 DBC 기판;
    상기 하부 DBC 기판 상에 형성된 전력소자 칩;
    상기 전력소자 칩 상에 형성된 스페이서; 및
    상기 스페이서 상에 형성된 상부 DBC 기판;을 포함하고,
    상기 전력소자 칩은 TSV(Through Silicon Via) 기판 상에 복수개의 전력소자가 병렬로 접합된 구조를 포함하는,
    양면 냉각 파워 모듈.
  2. 제 1 항에 있어서,
    상기 복수개의 전력소자의 전극부는 상기 TSV 기판 상에 접합층을 이용하여 접합된,
    양면 냉각 파워 모듈.
  3. 제 1 항에 있어서,
    상기 복수개의 전력소자 및 상기 TSV 기판 사이에 존재하는 간극은 충진제로 충진된,
    양면 냉각 파워 모듈.
  4. 제 1 항에 있어서,
    상기 하부 DBC 기판의 적어도 어느 일단과 타단에는 시그널 단자 및 파워 단자가 각각 형성된,
    양면 냉각 파워 모듈.
  5. 제 4 항에 있어서,
    상기 시그널 단자 및 파워 단자는 상기 하부 DBC 기판 상에 접합층을 이용하여 접합된,
    양면 냉각 파워 모듈.
  6. 제 1 항에 있어서,
    상기 스페이서는 상기 복수개의 전력소자 상에 단층으로 형성된,
    양면 냉각 파워 모듈.
  7. 제 4 항에 있어서,
    상기 하부 DBC 기판 및 상기 상부 DBC 기판의 외주면을 감싸도록 형성된 몰딩부;를 포함하고, 상기 시그널 단자 및 파워 단자의 적어도 어느 일부는 상기 몰딩부의 외부로 돌출된,
    양면 냉각 파워 모듈.
  8. 제 7 항에 있어서,
    상기 전력소자 칩 및 상기 스페이서는 상기 몰딩부에 의해 매립된,
    양면 냉각 파워 모듈.
  9. 하부 DBC 기판 및 상부 DBC 기판을 준비하는 단계;
    TSV(Through Silicon Via) 기판 상에 복수개의 전력소자를 병렬로 접합하여 전력소자 칩을 형성하는 단계;
    상기 전력소자 칩을 하부 DBC 기판 상에 형성하는 단계;
    상기 상부 DBC 기판의 어느 일면 상에 스페이서를 형성하는 단계; 및
    상기 전력소자 칩 상에 상기 스페이서가 맞닿도록 상기 상부 DBC 기판을 상기 전력소자 칩 상에 형성하는 단계;를 포함하는,
    양면 냉각 파워 모듈의 제조방법.
  10. 제 9 항에 있어서,
    상기 전력소자 칩을 형성하는 단계는,
    상기 복수개의 전력소자의 전극부가 상기 TSV 기판과 전기적으로 연결되도록, 상기 복수개의 전력소자의 전극부가 접합층을 이용하여 상기 TSV 기판 상에 접합되는 단계를 포함하는,
    양면 냉각 파워 모듈의 제조방법.
  11. 제 9 항에 있어서,
    상기 전력소자 칩을 형성하는 단계는,
    상기 복수개의 전력소자 및 상기 TSV 기판 사이에 존재하는 간극에 충진제를 충진하는 단계를 포함하는,
    양면 냉각 파워 모듈의 제조방법.
  12. 제 9 항에 있어서,
    상기 전력소자 칩을 하부 DBC 기판 상에 형성하는 단계 이전 혹은 이후에,
    상기 하부 DBC 기판의 적어도 어느 일단과 타단에 시그널 단자 및 파워 단자를 각각 형성하는 단계를 포함하는,
    양면 냉각 파워 모듈의 제조방법.
  13. 제 9 항에 있어서,
    상기 상부 DBC 기판을 상기 전력소자 칩 상에 형성하는 단계 이후에,
    상기 시그널 단자 및 파워 단자의 적어도 어느 일부가 몰딩부의 외부로 돌출되도록, 상기 하부 DBC 기판 및 상기 상부 DBC 기판의 외주면을 감싸도록 상기 몰딩부를 형성하는 단계를 포함하는,
    양면 냉각 파워 모듈의 제조방법.
  14. 제 13 항에 있어서,
    상기 몰딩부에 의해서 상기 전력소자 칩 및 상기 스페이서가 매립되는,
    양면 냉각 파워 모듈의 제조방법.
KR1020200172748A 2020-12-10 2020-12-10 양면 냉각 파워 모듈 및 이의 제조방법 KR102464477B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200172748A KR102464477B1 (ko) 2020-12-10 2020-12-10 양면 냉각 파워 모듈 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200172748A KR102464477B1 (ko) 2020-12-10 2020-12-10 양면 냉각 파워 모듈 및 이의 제조방법

Publications (2)

Publication Number Publication Date
KR20220082655A true KR20220082655A (ko) 2022-06-17
KR102464477B1 KR102464477B1 (ko) 2022-11-09

Family

ID=82269081

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200172748A KR102464477B1 (ko) 2020-12-10 2020-12-10 양면 냉각 파워 모듈 및 이의 제조방법

Country Status (1)

Country Link
KR (1) KR102464477B1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060017711A (ko) * 2004-08-21 2006-02-27 페어차일드코리아반도체 주식회사 높은 열 방출 능력을 구비한 전력용 모듈 패키지 및 그제조방법
KR20160050282A (ko) * 2014-10-29 2016-05-11 현대자동차주식회사 양면 냉각 파워 모듈 및 이의 제조 방법
KR20180138466A (ko) * 2017-06-21 2018-12-31 현대오트론 주식회사 전력반도체 모듈의 제조방법
KR20200071596A (ko) * 2018-12-11 2020-06-19 현대자동차주식회사 양면 냉각 파워모듈의 높이 제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060017711A (ko) * 2004-08-21 2006-02-27 페어차일드코리아반도체 주식회사 높은 열 방출 능력을 구비한 전력용 모듈 패키지 및 그제조방법
KR20160050282A (ko) * 2014-10-29 2016-05-11 현대자동차주식회사 양면 냉각 파워 모듈 및 이의 제조 방법
KR101755769B1 (ko) * 2014-10-29 2017-07-07 현대자동차주식회사 양면 냉각 파워 모듈 및 이의 제조 방법
KR20180138466A (ko) * 2017-06-21 2018-12-31 현대오트론 주식회사 전력반도체 모듈의 제조방법
KR20200071596A (ko) * 2018-12-11 2020-06-19 현대자동차주식회사 양면 냉각 파워모듈의 높이 제어방법

Also Published As

Publication number Publication date
KR102464477B1 (ko) 2022-11-09

Similar Documents

Publication Publication Date Title
JP6300978B2 (ja) 電力用半導体モジュール
US9171773B2 (en) Semiconductor device
US20060056213A1 (en) Power module package having excellent heat sink emission capability and method for manufacturing the same
US20100134979A1 (en) Power semiconductor apparatus
CN108735689B (zh) 具有空间限制的导热安装体的芯片模块
US20170345735A1 (en) Plug-in type power module and subsystem thereof
JP6149932B2 (ja) 半導体装置
WO2013171946A1 (ja) 半導体装置の製造方法および半導体装置
KR102163662B1 (ko) 양면 냉각 파워 모듈 및 이의 제조방법
US20150270201A1 (en) Semiconductor module package and method of manufacturing the same
US20180040562A1 (en) Elektronisches modul und verfahren zu seiner herstellung
KR102490612B1 (ko) 전력용 반도체 모듈
KR20200044635A (ko) 반도체 서브 어셈블리 및 반도체 파워 모듈
KR102464477B1 (ko) 양면 냉각 파워 모듈 및 이의 제조방법
WO2022056679A1 (zh) 功率模组及其制造方法、转换器和电子设备
US20220352137A1 (en) High power density 3d semiconductor module packaging
JP2004048084A (ja) 半導体パワーモジュール
KR102683179B1 (ko) 양면 냉각 전력 모듈 및 그 제조방법
CN115380373B (zh) 具有改进的热性能的功率模块装置
KR20240109845A (ko) 양면 냉각 파워 모듈 및 이의 제조방법
EP4340017A1 (en) Packaging device, packaging module, and electronic device
JP7520273B1 (ja) パワーモジュール
KR102277800B1 (ko) 방열판 일체형 파워 모듈 및 이의 제조방법
CN113764357B (zh) 导电模块的封装结构
JP2004039700A (ja) 半導体パワーモジュール

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right