KR20220052251A - Method for manufacturing metal-carbon composite using coffee waste - Google Patents

Method for manufacturing metal-carbon composite using coffee waste Download PDF

Info

Publication number
KR20220052251A
KR20220052251A KR1020210028845A KR20210028845A KR20220052251A KR 20220052251 A KR20220052251 A KR 20220052251A KR 1020210028845 A KR1020210028845 A KR 1020210028845A KR 20210028845 A KR20210028845 A KR 20210028845A KR 20220052251 A KR20220052251 A KR 20220052251A
Authority
KR
South Korea
Prior art keywords
metal
coffee
composite
metal oxide
carbon composite
Prior art date
Application number
KR1020210028845A
Other languages
Korean (ko)
Other versions
KR102523157B1 (en
Inventor
박경원
신재훈
박덕혜
최진혁
문상현
이우준
김지환
김성범
이학주
이슬기
장재성
Original Assignee
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교산학협력단 filed Critical 숭실대학교산학협력단
Publication of KR20220052251A publication Critical patent/KR20220052251A/en
Application granted granted Critical
Publication of KR102523157B1 publication Critical patent/KR102523157B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to a method of manufacturing a metal-carbon composite using coffee waste as a carbon source or reducing agent. The method of manufacturing a metal-carbon composite using coffee waste comprises: mixing metal oxide with dried coffee waste to manufacture a meal oxide-coffee waste composite; and heat-treating, carbonizing, and reducing the manufactured meal oxide-coffee waste composite. The method of manufacturing a metal-carbon composite using coffee waste recycles abandoned coffee waste to be eco-friendly. Since a carbonization process of the coffee and a reducing process of metal oxide are simultaneously performed in a single process, a manufacturing time may be reduced to be economical.

Description

커피박을 이용한 금속-탄소 복합체 제조방법{METHOD FOR MANUFACTURING METAL-CARBON COMPOSITE USING COFFEE WASTE}Metal-carbon composite manufacturing method using coffee foil {METHOD FOR MANUFACTURING METAL-CARBON COMPOSITE USING COFFEE WASTE}

본 발명은 커피박을 탄소원이자 환원제로 이용한 금속-탄소 복합체의 제조방법 및 이에 따라 제조된 복합체를 포함하는 이차전지용 음극활물질에 관한 것이다.The present invention relates to a method for manufacturing a metal-carbon composite using coffee foil as a carbon source and a reducing agent, and to a negative active material for a secondary battery including the composite prepared according to the method.

전 세계적으로 커피소비량이 점차 늘어나면서 매년 600만 톤 이상의 커피찌꺼기, 일명 '커피박(coffee waste 또는 coffee ground)'이 버려지고 있다. 커피박은 원두에서 커피를 추출한 성분을 제외한 나머지를 일컫는 커피 추출 폐기물로, 아메리카노 한 잔을 만들기 위해 약 15g의 커피 원두가 사용되는데, 이 중 14,7g, 즉 99.8%의 원두는 커피박이 되어 버려지고 있다. 우리나라의 2017년 기준 연간 커피소비량은 1인 평균 512잔으로, 해마다 20% 증가하고 있어, 이에 따른 커피박이 코끼리 4만 3천 마리의 무게와 맞먹는 약 129,500톤이 배출되고 있다.As coffee consumption is increasing worldwide, more than 6 million tons of coffee grounds, so-called 'coffee waste or coffee ground', are thrown away every year. Coffee beans are coffee extraction waste that refers to the rest of the coffee grounds except for the components extracted from coffee beans. About 15 g of coffee beans are used to make one cup of Americano, of which 14,7 g, or 99.8% of coffee beans, are discarded as coffee grounds. there is. As of 2017, the average annual coffee consumption in Korea is 512 cups per person, and it is increasing by 20% every year.

커피박은 현재 폐기물 쓰레기로 배출되어 대부분 매립 또는 소각 처리되고 있으나, 커피박을 땅에 매립할 경우 온실가스인 메탄(CH4)이 배출되는데, 이 메탄의 지구온난화 지수(이산화탄소 1kg과 비교해 특정 기체 1kg이 지구온난화에 얼마나 영향을 미치는지 비교한 지표)가 34로, 이산화탄소보다 34배의 온실효과를 일으키는 것과 비슷한 영향을 미칠 수 있다.Coffee gourd is currently discharged as waste and most of it is landfilled or incinerated. However, when coffee beans are buried in the ground, methane (CH 4 ), a greenhouse gas, is emitted, and the global warming potential of this methane (1 kg of specific gas compared to 1 kg of carbon dioxide) The index comparing how much it affects global warming) is 34, which can have a similar effect to causing a greenhouse effect 34 times greater than carbon dioxide.

한편, 커피박은 탄소, 유기물과 풍부한 섬유소를 포함하고 있는, 재활용 가치가 높은 유기성 자원으로, 최근 탈취제나 비료뿐만 아니라 점토나 비누 등 다각적으로 커피박을 재활용하는 방안에 대한 관심이 높아지고 이에 대한 기술 개발이 시도되고 있다. 국·내외를 살펴보면, 에너지, 바이오-식품, 흡착제, 건축, 농업 분야 등 다양한 분야에서 커피박 재활용 방안이 활발히 연구되고 있다. 이러한 커피박의 재활용은 쓰레기를 줄이면서 고부가가치 산업에 이용될 수 있다는 점에서 친환경적이고 경제적인 측면에서 큰 이점이 있다. On the other hand, coffee gourd is an organic resource with high recycling value, containing carbon, organic matter and abundant cellulose. this is being tried At home and abroad, methods for recycling coffee beans are being actively studied in various fields such as energy, bio-food, adsorbent, construction, and agriculture. The recycling of coffee beans has great advantages in terms of eco-friendliness and economy in that it can be used in high value-added industries while reducing waste.

하지만, 커피박을 재활용하기 위한 종래 기술들은 커피박를 이용하여 결정성과 단일상의 순도 높은 탄소를 추출 및 정제하는 기술로 공정이 까다롭다는 문제가 있어, 보다 간단한 제조 공정을 통해 커피박을 재활용할 수 있는 기술이 필요한 실정이다.However, the prior art for recycling coffee grounds has a problem that the process is difficult as a technology for extracting and refining carbon with high crystallinity and single phase purity using coffee grounds, so that the coffee grounds can be recycled through a simpler manufacturing process. There is a need for technology that exists.

대한민국 등록특허 제10-1493617호 (2015.02.16. 공고)Republic of Korea Patent Registration No. 10-1493617 (2015.02.16. Announcement)

본 발명의 목적은 커피박을 탄소원이자 환원제로 이용하는 금속-탄소 복합체의 제조방법을 제공하는 데에 있다.An object of the present invention is to provide a method for producing a metal-carbon composite using coffee grounds as a carbon source and a reducing agent.

본 발명의 다른 목적은 상기 제조방법에 따라 제조된 금속-탄소 복합체를 포함하는 이차전지 음극활물질을 제공하는 데에 있다.Another object of the present invention is to provide a secondary battery anode active material comprising a metal-carbon composite prepared according to the above manufacturing method.

상기와 같은 목적을 달성하기 위하여, 본 발명은 금속산화물 및 건조된 커피박을 혼합하여 금속산화물-커피박 복합체를 제조하는 단계; 및 상기 제조된 금속화물-커피박 복합체를 열처리하여 탄화 및 환원시키는 단계;를 포함하는 금속-탄소 복합체 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of preparing a metal oxide-coffee foil composite by mixing a metal oxide and dried coffee foil; and heat-treating the prepared metallization-coffee foil composite to carbonize and reduce the metal-carbon composite comprising a method.

본 발명은 상기의 제조방법에 따라 제조된 금속-탄소 복합체를 포함하는 이차전지용 음극활물질을 제공한다.The present invention provides an anode active material for a secondary battery comprising a metal-carbon composite prepared according to the above manufacturing method.

또한, 본 발명은 상기의 이차전지용 음극활물질을 포함하는 리튬이차전지를 제공한다.In addition, the present invention provides a lithium secondary battery comprising the anode active material for a secondary battery.

본 발명에 따른 금속-탄소 복합체 제조방법은 커피박의 탄화 공정과 금속산화물의 환원 공정을 단일 공정으로 동시에 진행함으로써, 공정이 보다 간단해져 상기 복합체의 제조 시간을 단축시킬 수 있어 경제적인 장점이 있다.The metal-carbon composite manufacturing method according to the present invention has an economical advantage by simultaneously performing the carbonization process of coffee leaf and the reduction process of metal oxide in a single process, making the process simpler and shortening the manufacturing time of the composite. .

또한, 본 발명은 탄소원이자 금속산화물의 환원제로, 버려지는 커피박을 재활용하여 이차전지용 음극활물질로 사용할 수 있는 금속-탄소 복합체를 제조할 수 있어, 친환경적인 장점이 있다.In addition, the present invention, as a carbon source and a reducing agent for metal oxides, can manufacture a metal-carbon composite that can be used as an anode active material for a secondary battery by recycling discarded coffee leaves, which has an environmentally friendly advantage.

도 1은 금속산화물인 이산화게르마늄(germanium dioxide, GeO2)만을 600℃로 열처리하여 X선 회절 분석(XRD)을 진행한 결과이다.
도 2는 본 발명의 실시예 1에 따라 제조된 금속산화물(GeO2)/커피박 복합체를 600℃로 열처리한 후 XRD로 분석한 결과이다.
도 3은 본 발명의 실시예 1에 따라 제조된 GeO2/커피박 복합체를 500℃로 열처리한 후 XRD로 분석한 결과이다.
도 4는 본 발명의 실시예 1에 따라 제조된 GeO2/커피박 복합체를 700℃로 열처리한 결과 이미지이다.
도 5는 GeO2만을 600℃로 열처리한 후 라만분광분석법(Raman spectroscopy analysis)으로 분석한 결과이다.
도 6은 GeO2/커피박 복합체를 600℃로 열처리한 후 라만분광분석법으로 분석한 결과이다.
도 7은 본 발명의 실시예 2에 따라 금속(Ge)/탄소(C) 복합체를 전자주사현미경(Scanning electron microscope, SEM)으로 관찰한 이미지이다.
도 8은 도 7의 Ge/C 복합체를 에너지분산형분광분석(Elecron dispersive X-ray spectroscopy, EDS)를 통해 성분 분석한 이미지이다.
도 9는 커피박 유무에 따른 열처리 이후의 샘플의 사이클 특성을 나타낸 것이다.
FIG. 1 is a result of X-ray diffraction analysis (XRD) by heat-treating only germanium dioxide, GeO 2 , which is a metal oxide, at 600° C. FIG.
Figure 2 is a result of XRD analysis after heat treatment of the metal oxide (GeO 2 ) / coffee foil composite prepared according to Example 1 of the present invention at 600 ℃.
3 is a result of XRD analysis after heat treatment of the GeO 2 / coffee foil composite prepared according to Example 1 of the present invention at 500 ℃.
4 is an image of the result of heat treatment of the GeO 2 / coffee foil composite prepared according to Example 1 of the present invention at 700 ℃.
5 is a result of analysis by Raman spectroscopy analysis after only GeO 2 heat treatment at 600 ℃.
6 is a result of analysis by Raman spectroscopy after heat treatment of the GeO 2 /coffee foil composite at 600 °C.
7 is an image of a metal (Ge)/carbon (C) composite observed with a scanning electron microscope (SEM) according to Example 2 of the present invention.
FIG. 8 is an image of component analysis of the Ge/C composite of FIG. 7 through electron dispersive X-ray spectroscopy (EDS).
Figure 9 shows the cycle characteristics of the sample after heat treatment according to the presence or absence of coffee leaves.

이하, 본 발명을 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in detail.

본 발명은 커피박을 이용한 금속-탄소 복합체 제조방법을 제공한다.The present invention provides a method for manufacturing a metal-carbon composite using coffee foil.

본 명세서에서, "복합체"란, 각 성분이 결합하고 있는 입자로 구성되어 있는 것으로, 각 성분의 입자가 단순히 집합하여 구성되어 있는 "혼합체"와는 상이한 개념이다.As used herein, the term "composite" is composed of particles to which each component is bound, and is a concept different from a "mixture" in which the particles of each component are simply aggregated.

본 발명에 따른 금속-탄소 복합체 제조방법은 금속산화물 및 건조된 커피박을 혼합하여 금속산화물-커피박 복합체를 제조하는 단계; 및 상기 제조된 금속화물-커피박 복합체를 열처리하여 탄화 및 환원시키는 단계;를 포함할 수 있다.Metal-carbon composite manufacturing method according to the present invention comprises the steps of mixing a metal oxide and dried coffee foil to prepare a metal oxide-coffee foil composite; and heat-treating the prepared metallization-coffee foil composite to carbonize and reduce it.

상기 제조방법에 있어서, 상기 금속산화물-커피박 복합체를 제조하는 단계는 상기 혼합된 금속산화물 및 건조된 커피박에 분산매를 추가하여 30분 내지 2시간 교반한 후, 1 내지 3시간 동안 초음파 처리하여 수행될 수 있다.In the above manufacturing method, the step of preparing the metal oxide-coffee foil composite is performed by adding a dispersion medium to the mixed metal oxide and the dried coffee foil, stirring for 30 minutes to 2 hours, and then sonicating for 1 to 3 hours. can be performed.

상기 금속산화물은 금속이 산소와 결합된 화합물로, 상기 금속은 게르마늄(Ge), 주석(Sn), 망간(Mn), 인듐(In), 철(Fe), 니켈(Ni) 및 코발트(Co)로 이루어진 군에서 선택되는 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.The metal oxide is a compound in which a metal is combined with oxygen, and the metal is germanium (Ge), tin (Sn), manganese (Mn), indium (In), iron (Fe), nickel (Ni) and cobalt (Co). It may be one or more selected from the group consisting of, but is not limited thereto.

상기 분산매는 에탄올, 메탄올, 아이소프로필 알코올(isopropyl alcohol), 아세트산에틸(ethyl acetate), 디메틸포름아미드(Dimethylformamide), NMP(N-methylpyrrolidone), 에틸렌글리콜(Etyhlene glycol)과 같은 유기용매, 증류수 또는 이들의 혼합 용액에서 선택될 수 있고, 바람직하게는 에탄올일 수 있으나, 이에 제한되지 않고 당업계에 공지된 분산매를 모두 포함할 수 있으며, 상기 금속산화물의 종류에 따라 선택적으로 사용될 수 있다.The dispersion medium is an organic solvent such as ethanol, methanol, isopropyl alcohol, ethyl acetate, dimethylformamide, N-methylpyrrolidone (NMP), ethylene glycol, distilled water, or these may be selected from a mixed solution of , and may preferably be ethanol, but is not limited thereto, and may include any dispersion medium known in the art, and may be selectively used according to the type of the metal oxide.

상기 제조방법에 있어서, 상기 탄화 및 환원시키는 단계는 상기 제조된 금속산화물-커피박 복합체를 비산화성 분위기에서 500 내지 700℃ 온도로, 2 내지 4시간 동안 열처리하여 수행될 수 있다.In the manufacturing method, the carbonizing and reducing step may be performed by heat-treating the prepared metal oxide-coffee foil composite at a temperature of 500 to 700° C. in a non-oxidizing atmosphere for 2 to 4 hours.

상기 비산화성 분위기는, 질소, 수소, 헬륨, 네온 또는 이들의 혼합가스에서 선택되는 분위기일 수 있고, 바람직하게는, 상기 질소 및 수소가 9 : 1의 부피비로 혼합된 분위기에서 600℃ 온도로, 3시간 동안 열처리함으로써 수행될 수 있다.The non-oxidizing atmosphere may be an atmosphere selected from nitrogen, hydrogen, helium, neon, or a mixed gas thereof, and preferably, the nitrogen and hydrogen are mixed in a volume ratio of 9: 1 at a temperature of 600 ° C. It can be carried out by heat treatment for 3 hours.

상기 탄화 및 환원시키는 단계는, 상기의 조건에서 열처리함으로써 상기 커피박의 탄화 과정 및 상기 금속산화물의 환원 과정이 동시에 이루어질 수 있다.In the carbonization and reduction, the carbonization process of the coffee leaf and the reduction process of the metal oxide may be simultaneously performed by heat treatment under the above conditions.

본 발명의 일 실험예에 따르면, 커피박 없이 금속산화물만을 열처리하거나, 상기 온도 범위 이하 또는 이상으로 열처리한 경우, 상기 금속산화물이 금속으로 온전하게 환원되지 못함을 확인할 수 있는 바, 상기 온도 범위에서 열처리하는 것이 바람직하다.According to an experimental example of the present invention, when only the metal oxide is heat-treated without coffee foil, or when the heat treatment is performed below or above the temperature range, it can be confirmed that the metal oxide cannot be completely reduced to the metal, in the above temperature range. Heat treatment is preferred.

또한, 상기 열처리 시간이 지나치게 짧을 경우, 충분히 탄화 및 환원 과정이 일어나지 않아 전기 전도성이 떨어질 수 있고, 상기 열처리 시간이 지나치게 길면 경제적으로 바람직하지 않은 바, 상기 시간 범위에서 열처리하는 것이 바람직하다.In addition, when the heat treatment time is too short, the carbonization and reduction process does not occur sufficiently, the electrical conductivity may be lowered, and if the heat treatment time is too long, it is economically undesirable, so it is preferable to heat treatment within the above time range.

본 발명의 다른 실험예에 따르면, 커피박을 이용하여 금속산화물이 완전히 환원된 경우는 커피박 없이 금속산화물을 환원시킨 경우와 사이클 특성을 비교하였을 때, 비용량(specific capacity)이 현저히 증가함을 확인할 수 있었다.According to another experimental example of the present invention, when the metal oxide was completely reduced using coffee foil, when the cycle characteristics were compared with the case where the metal oxide was reduced without coffee foil, the specific capacity was significantly increased. could check

본 발명은 상기 제조방법에 따라 제조된 금속-탄소 복합체를 포함하는 이차전지용 음극활물질(anode material)을 제공한다.The present invention provides an anode material for a secondary battery comprising a metal-carbon composite prepared according to the manufacturing method.

상기 제조방법에 따라 제조된 금속-탄소 복합체는 사이클 특성이 보다 향상된 바, 재충전이 가능한 이차전지용 음극활물질로 유용하게 사용될 수 있다.The metal-carbon composite prepared according to the manufacturing method has improved cycle characteristics, and thus can be usefully used as a rechargeable negative electrode active material for a secondary battery.

상기 이차전지용 음극은 상기 음극활물질 외에 필요에 따라 도전성을 부여하기 위한 도전재, 결착성을 부여하기 위한 바인더(binder)를 더 포함할 수 있다.The negative electrode for the secondary battery may further include a conductive material for imparting conductivity and a binder for imparting binding property, if necessary, in addition to the negative electrode active material.

상기 도전재로는 당업계에서 통상 사용되고 있는 모든 것을 포함할 수 있고, 탄소 재료를 포함하는 경우에는 탄소 재료의 종류는 특별히 한정되지 않는다. 예를 들어, 카본블랙(carbon black)을 포함할 수 있고, 상기 카본블랙은 아세틸렌 블랙(AB), 케첸블랙(KB), 카본 파이버(VGCF), 카본 나노튜브(CNT), 흑연, 소프트 카본, 하드 카본, 메소포러스 카본, 그라펜, 기상 성장 탄소 등에서 하나 또는 둘 이상 선택될 수 있다.The conductive material may include all materials commonly used in the art, and in the case of including a carbon material, the type of the carbon material is not particularly limited. For example, it may include carbon black, wherein the carbon black is acetylene black (AB), Ketjen black (KB), carbon fiber (VGCF), carbon nanotube (CNT), graphite, soft carbon, One or two or more may be selected from hard carbon, mesoporous carbon, graphene, vapor-grown carbon, and the like.

상기 바인더도 당업계에서 통상 사용되고 있는 모든 것을 포함할 수 있고, 예를 들면, 폴리아크릴산(polyacrylic acid), 폴리플루오르화 비닐리덴(PVdF), 폴리테트라플루오로에틸렌(PTFE), 폴리이미드(PI), 폴리아미드, 폴리아미드이미드, 스티렌 부타디엔 고무(SBR), 스티렌-에틸렌-부틸렌-스티렌 공중합체(SEBS), 카복시메틸 셀룰로스(CMC), 폴리비닐알콜(PVA), 폴리비닐부티럴(PVB), 에틸렌-비닐 아세테이트(EVA) 등에서 하나 또는 둘 이상 선택될 수 있다.The binder may also include all those commonly used in the art, for example, polyacrylic acid, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyimide (PI) , polyamide, polyamideimide, styrene butadiene rubber (SBR), styrene-ethylene-butylene-styrene copolymer (SEBS), carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB) , ethylene-vinyl acetate (EVA), and the like may be selected from one or two or more.

또한, 본 발명은 상기 이차전지용 음극활물질을 포함하는 리튬이차전지를 제공한다.In addition, the present invention provides a lithium secondary battery comprising the anode active material for a secondary battery.

상기 리튬이차전지는 사용하는 세퍼레이터와 전해질의 종류에 따라 리튬이온전지, 리튬이온 폴리머전지 및 리튬 폴리머 전지로 분류될 수 있다. 또한, 그 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다.The lithium secondary battery may be classified into a lithium ion battery, a lithium ion polymer battery, and a lithium polymer battery according to the type of separator and electrolyte used. In addition, according to the shape, it can be classified into a cylindrical shape, a square shape, a coin type, a pouch type, and the like, and can be divided into a bulk type and a thin film type according to the size.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, to help the understanding of the present invention, examples will be described in detail. However, the following examples are merely illustrative of the content of the present invention, and the scope of the present invention is not limited to the following examples. The embodiments of the present invention are provided to more completely explain the present invention to those of ordinary skill in the art.

<실시예 1> 금속산화물(metal oxide)/커피박(coffee ground) 복합체 제조<Example 1> Preparation of metal oxide/coffee ground composite

커피박을 온전히 건조를 시킨 뒤, 금속산화물(ex. 이산화게르마늄(germanium dioxide, GeO2))과 건조된 커피박을 막자사발로 고체-상태-믹싱(solid-state-mixing)을 통해 7:3의 중량비로 혼합시켰다. 고르게 분산시키기 위해 에탄올 50mL을 추가 혼합하여 1시간 동안 교반한 후, 울트라-소니케이션(ultra-sonication)을 2시간 진행한 다음, 에탄올을 이용하여 세척하고 50℃ 오븐에서 건조하여 금속산화물/커피박 복합체(metal oxide/coffee composite)를 제조하였다.After the coffee grounds are completely dried, metal oxide (ex. germanium dioxide (GeO 2 )) and the dried coffee grounds are mixed with a mortar by solid-state-mixing 7:3 was mixed in a weight ratio of To evenly disperse, 50 mL of ethanol was added and stirred for 1 hour, followed by ultra-sonication for 2 hours, washed with ethanol and dried in an oven at 50 ° C. A composite (metal oxide/coffee composite) was prepared.

<실시예 2> 금속/탄소 (metal/C) 복합체 제조<Example 2> Preparation of metal/carbon (metal/C) composite

상기 실시예 1에 따라 제조된 금속산화물/커피박 복합체를 600℃ 퍼니스(furnace)에서 질소 90%, 수소 10% 분위기에서 3시간 동안 열처리를 진행하여 금속/탄소 복합체(metal/C composite)를 제조하였다.The metal oxide/coffee foil composite prepared according to Example 1 was heat-treated in a 600° C. furnace in an atmosphere of 90% nitrogen and 10% hydrogen for 3 hours to prepare a metal/carbon composite (metal/C composite) did.

<실험예 1> 구조 분석<Experimental Example 1> Structural analysis

금속산화물인 이산화게르마늄(germanium dioxide, GeO2)을 이용하여 상기 실시예 1 및 2에 따라 복합체를 제조하여 X선 회절 분석(X-ray diffraction, XRD)을 진행하였다.Composites were prepared according to Examples 1 and 2 using germanium dioxide (GeO 2 ), which is a metal oxide, and X-ray diffraction analysis (XRD) was performed.

도 1은 GeO2만을 600℃로 열처리한 후 XRD로 분석한 것으로, 이를 참조하면, 온전히 환원되지 못하고 육방정(hexagonal)과 정방정(tetragonal) 구조를 이루는 GeO2가 남아 있음을 확인할 수 있다.FIG. 1 shows that only GeO 2 was heat-treated at 600° C. and then analyzed by XRD. Referring to this, it can be seen that GeO 2 that is not completely reduced and forms a hexagonal and tetragonal structure remains.

도 2는 상기 실시예 1에 따라 제조된 금속산화물/커피박 복합체, 즉 GeO2/커피박 복합체를 600℃로 열처리한 후 XRD로 분석한 것으로, 이를 참조하면, 완전히 단일상의 게르마늄(Ge)으로 환원되었음을 확인할 수 있다.2 is an XRD analysis of the metal oxide/coffee foil composite prepared according to Example 1, that is, the GeO 2 /coffee foil composite after heat treatment at 600 ° C. It can be confirmed that it has been returned.

도 3은 상기 실시예 1에 따라 제조된 GeO2/커피박 복합체를 500℃로 열처리한 후 XRD로 분석한 결과로, 이 때는 게르마늄(Ge)의 단일상을 이루지 못하였고, 도 4는 상기 실시예 1에 따라 제조된 GeO2/커피박 복합체를 700℃로 열처리한 결과 이미지로, 상기 온도로 열처리한 결과 반응중에 있는 GeO가 승화하여 실리카 관에 실리카 관에 코팅되어 손실이 생김을 확인할 수 있는 바, 열처리 온도는 600℃가 적절하다.3 is a result of XRD analysis of the GeO 2 /coffee foil composite prepared according to Example 1 after heat treatment at 500 ° C. In this case, a single phase of germanium (Ge) was not achieved, and FIG. As an image of the result of heat treatment of the GeO 2 /coffee foil composite prepared according to Example 1 at 700 ° C., as a result of heat treatment at the above temperature, GeO in the reaction sublimated and coated on the silica tube to the silica tube, which can confirm that loss occurs Bar, the heat treatment temperature is suitable 600 ℃.

탄화작용을 거친 커피박은 비결정성 탄소로 이루어져 XRD 분석 결과로 확인이 불가능한 바, 이를 라만분광분석법(Raman spectroscopy analysis)으로 확인하였다.The coffee beans that have undergone carbonization are made of amorphous carbon and cannot be confirmed by XRD analysis. This was confirmed by Raman spectroscopy analysis.

도 5는 GeO2만을 600℃로 열처리한 후 라만분광분석법으로 분석한 결과로, 상기 그래프에서 탄소를 확인할 수 있는 D band (1350cm-1)와 G band (1600cm-1) 근처의 Raman shift가 관찰되지 않았다. 5 is a result of analysis by Raman spectroscopy after only GeO 2 was heat-treated at 600 ° C. In the graph, a Raman shift near the D band (1350cm -1 ) and the G band (1600cm -1 ) where carbon can be identified is observed. It didn't happen.

도 6은 GeO2/커피박 복합체를 600℃로 열처리한 후 라만분광분석법으로 분석한 결과로, D band와 G band의 피크가 관찰되었고 결정성을 알 수 있는 intensity ratio가 0.93임을 확인하여, 비결정성임을 확인할 수 있다.6 is a result of analysis by Raman spectroscopy after heat-treating the GeO 2 /coffee foil composite at 600° C., the peaks of the D band and G band were observed, and it was confirmed that the intensity ratio for determining the crystallinity was 0.93, the secret You can confirm that it is honest.

도 7은 본 발명의 실시예 2에 따라 금속/탄소 복합체, 즉 Ge/C 복합체를 전자주사현미경(Scanning electron microscope, SEM)으로 관찰한 이미지로, 수십 마이크로미터 크기의 탄소 위에 Ge가 잘 분포되어 있음을 확인할 수 있다. 7 is an image of a metal/carbon composite, that is, a Ge/C composite observed with a scanning electron microscope (SEM) according to Example 2 of the present invention, in which Ge is well distributed on carbon having a size of several tens of micrometers; It can be confirmed that there is

도 8은 도 6의 Ge/C 복합체를 에너지분산형분광분석(Elecron dispersive X-ray spectroscopy, EDS)를 통해 성분 분석한 이미지로, 이를 통해 Ge/C 복합체 형태를 확인할 수 있다.8 is an image obtained by analyzing the components of the Ge/C composite of FIG. 6 through electron dispersive X-ray spectroscopy (EDS), through which the shape of the Ge/C composite can be confirmed.

<실험예 2> 전기화학분석<Experimental Example 2> Electrochemical analysis

전기화학분석을 위해 페이스트 믹서(paste mixer)를 이용하여 활물질, 도전재(케첸블랙), 바인더(PVdF)를 8:1:1의 중량비로 D.I Wster 용매에 넣어 점도를 조절하였다. 슬러리를 동박(Cu foil) 위에 코팅한 후 오븐에 말려 전극을 제조하였다. 반대전극으로 리튬 금속(lithium metal), 분리막으로 폴리에틸렌(polyethylene), 전해질로 에틸렌 카보네이트(Ethylene carbonate) 및 디에틸 카보네이트(Diethyl carbonate)가 1:1의 부피비로 섞인 혼합 용액에 1.1M LiPF6를 리튬염으로 사용하였다.For the electrochemical analysis, the active material, the conductive material (Ketjen Black), and the binder (PVdF) were put in a DI Wster solvent in a weight ratio of 8:1:1 using a paste mixer to adjust the viscosity. The slurry was coated on a copper foil (Cu foil) and dried in an oven to prepare an electrode. 1.1M LiPF 6 was added to a mixed solution of lithium metal as a counter electrode, polyethylene as a separator, and ethylene carbonate and diethyl carbonate as an electrolyte in a 1:1 volume ratio. used as a salt.

도 9는 커피박 유무에 따른 열처리 이후의 샘플의 사이클 특성을 나타낸 것으로, 0.1 C의 속도에서 커피박을 넣지 않은 샘플은 약 40mAh g-1의 용량을 나타내었으나, 커피박을 이용하여 완전한 환원을 이룬 Ge/C 샘플은 약 5배 증가한 200 mAh g-1의 용량을 나타내었다.Figure 9 shows the cycle characteristics of the sample after heat treatment according to the presence or absence of coffee foil, the sample without coffee foil at a rate of 0.1 C showed a capacity of about 40 mAh g -1 , but complete reduction using coffee foil The achieved Ge/C sample exhibited a capacity of 200 mAh g -1 , which was increased by about 5-fold.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 즉, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다.As the specific parts of the present invention have been described in detail above, for those of ordinary skill in the art, it is clear that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. Do. That is, the substantial scope of the present invention is defined by the appended claims and their equivalents.

Claims (7)

금속산화물 및 건조된 커피박을 혼합하여 금속산화물-커피박 복합체를 제조하는 단계; 및
상기 제조된 금속화물-커피박 복합체를 열처리하여 탄화 및 환원시키는 단계;를 포함하는 금속-탄소 복합체 제조방법.
preparing a metal oxide-coffee foil composite by mixing a metal oxide and dried coffee foil; and
A metal-carbon composite manufacturing method comprising; carbonizing and reducing the prepared metallization-coffee foil composite by heat treatment.
제 1 항에 있어서,
상기 탄화 및 환원시키는 단계는,
상기 제조된 금속산화물-커피박 복합체를 질소, 수소 및 이들의 혼합가스에서 이루어지는 군으로부터 선택되는 분위기에서 500 내지 700℃ 온도로, 2 내지 4시간 동안 열처리하여 수행되는 것을 특징으로 하는 금속-탄소 복합체 제조방법.
The method of claim 1,
The carbonization and reduction step is,
Metal-carbon composite, characterized in that the prepared metal oxide-coffee foil composite is heat-treated for 2 to 4 hours at a temperature of 500 to 700° C. in an atmosphere selected from the group consisting of nitrogen, hydrogen, and a mixed gas thereof. manufacturing method.
제 1 항에 있어서,
상기 탄화 및 환원시키는 단계는,
상기 열처리에 의해 상기 커피박의 탄화 과정 및 상기 금속산화물의 환원 과정이 동시에 이루어지는 것을 특징으로 하는 금속-탄소 복합체 제조방법.
The method of claim 1,
The carbonization and reduction step is,
Metal-carbon composite manufacturing method, characterized in that the carbonization process of the coffee foil and the reduction process of the metal oxide are simultaneously performed by the heat treatment.
제 1 항에 있어서,
상기 금속산화물-커피박 복합체를 제조하는 단계는,
상기 혼합된 금속산화물 및 건조된 커피박에 분산매를 추가하여 30분 내지 2시간 교반한 후, 1 내지 3시간 동안 초음파 처리하여 수행되는 것을 특징으로 하는 금속-탄소 복합체 제조방법.
The method of claim 1,
The step of preparing the metal oxide-coffee foil composite,
A method for producing a metal-carbon composite, characterized in that by adding a dispersion medium to the mixed metal oxide and the dried coffee foil, stirring for 30 minutes to 2 hours, and then performing ultrasonic treatment for 1 to 3 hours.
제 1 항에 있어서,
상기 금속은,
게르마늄(Ge), 주석(Sn), 망간(Mn), 인듐(In), 철(Fe), 니켈(Ni) 및 코발트(Co)로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 금속-탄소 복합체 제조방법.
The method of claim 1,
The metal is
Metal-carbon composite, characterized in that at least one selected from the group consisting of germanium (Ge), tin (Sn), manganese (Mn), indium (In), iron (Fe), nickel (Ni), and cobalt (Co) manufacturing method.
제 1 항 내지 제 5 항 중 어느 한 항에 따라 제조된 금속-탄소 복합체를 포함하는 이차전지용 음극활물질.A negative active material for a secondary battery comprising a metal-carbon composite prepared according to any one of claims 1 to 5. 제 6 항에 따른 이차전지용 음극활물질을 포함하는 리튬이차전지.A lithium secondary battery comprising the anode active material for a secondary battery according to claim 6 .
KR1020210028845A 2020-10-20 2021-03-04 Method for manufacturing metal-carbon composite using coffee waste KR102523157B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200135679 2020-10-20
KR20200135679 2020-10-20

Publications (2)

Publication Number Publication Date
KR20220052251A true KR20220052251A (en) 2022-04-27
KR102523157B1 KR102523157B1 (en) 2023-04-18

Family

ID=81390894

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210028845A KR102523157B1 (en) 2020-10-20 2021-03-04 Method for manufacturing metal-carbon composite using coffee waste

Country Status (1)

Country Link
KR (1) KR102523157B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102574545B1 (en) 2023-01-17 2023-09-08 (주) 매그나텍 Coffee foil composition and negative electrode material for secondary battery comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493617B1 (en) 2013-11-29 2015-02-16 한양대학교 에리카산학협력단 Carbon-metal composite and method of fabricating the same
KR101721493B1 (en) * 2015-11-24 2017-03-31 한국기계연구원 Activated carbon, and method for manufacture thereof
KR20180024922A (en) * 2016-08-31 2018-03-08 부산대학교 산학협력단 A secondary battery anode utilizing exhausted coffee-powder and Si complex and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493617B1 (en) 2013-11-29 2015-02-16 한양대학교 에리카산학협력단 Carbon-metal composite and method of fabricating the same
KR101721493B1 (en) * 2015-11-24 2017-03-31 한국기계연구원 Activated carbon, and method for manufacture thereof
KR20180024922A (en) * 2016-08-31 2018-03-08 부산대학교 산학협력단 A secondary battery anode utilizing exhausted coffee-powder and Si complex and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H.-S. choe et al., "Synthesis of Ge/C composites as anodes using glucose as a reductant and carbon source for lithium-ion batteries", RSC Adv., 2016, 6, 72926-72932* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102574545B1 (en) 2023-01-17 2023-09-08 (주) 매그나텍 Coffee foil composition and negative electrode material for secondary battery comprising same

Also Published As

Publication number Publication date
KR102523157B1 (en) 2023-04-18

Similar Documents

Publication Publication Date Title
Izanzar et al. Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries
Li et al. Hard carbon microtubes made from renewable cotton as high‐performance anode material for sodium‐ion batteries
Sun et al. Reconstruction of conformal nanoscale MnO on graphene as a high‐capacity and long‐life anode material for lithium ion batteries
US20180287162A1 (en) High surface area porous carbon materials as electrodes
KR101552089B1 (en) Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries and method for producing same
JP6241480B2 (en) Highly dispersible graphene composition and method for producing the same, and electrode for lithium ion secondary battery including highly dispersible graphene composition
CN102593436A (en) Self-supporting flexible carbon nano-tube paper composite electrode material for lithium ion battery
Kanakaraj et al. Candle soot carbon nanoparticles as high-performance universal anode for M-ion (M= Li+, Na+ and K+) batteries
Rao et al. Polyacrylonitrile hard carbon as anode of high rate capability for lithium ion batteries
Tiwari et al. Layered P2-type novel Na0. 7Ni0. 3Mn0. 59Co0. 1Cu0. 01O2 cathode material for high-capacity & stable rechargeable sodium ion battery
JP2021066629A (en) Biological material-derived hard carbon, negative electrode material, negative electrode, and alkali ion battery
Palmieri et al. High performance bi-metallic manganese cobalt oxide/carbon nanotube Li-ion battery anodes
Yang et al. Deep Insight into Electrochemical Kinetics of Cowpea‐Like Li3VO4@ C Nanowires as High‐Rate Anode Materials for Lithium‐Ion Batteries
CN111799098A (en) Porous carbon/metal oxide composite material and preparation method and application thereof
Mujib et al. Cassava-and bamboo-derived carbons with higher degree of graphitization for energy storage
KR102523157B1 (en) Method for manufacturing metal-carbon composite using coffee waste
CN113410459B (en) Embedded MoS x Three-dimensional ordered macroporous graphene carbon material of nanosheet, preparation and application
KR101790699B1 (en) Method for synthesis of anode material using active carbon and pitch prepared by chemical activation
CN112201785A (en) Lithium-philic and sulfur-philic co-doped two-dimensional layered graphitized porous carbon material and preparation method and application thereof
KR20060115267A (en) Sulfur electrode using multiwalled carbon nanotubes and graphitic nanofibes for lithium/sulfur battery
CN115784223A (en) High-sulfur Jiao Ji quick-charging graphite active material, preparation thereof and application thereof in lithium ion battery
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2015230794A (en) Conductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2001006670A (en) Bulk mesophase and manufacture thereof
Zhong et al. One-step spray pyrolysis synthesized CuO-carbon composite combined with carboxymethyl cellulose binder as anode for lithium-ion batteries

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant