KR20210152785A - Manufacturing Method for Refractory Insulation Material for Spill Tray of Single Crystal Silicon Ingot Growth - Google Patents

Manufacturing Method for Refractory Insulation Material for Spill Tray of Single Crystal Silicon Ingot Growth Download PDF

Info

Publication number
KR20210152785A
KR20210152785A KR1020200069702A KR20200069702A KR20210152785A KR 20210152785 A KR20210152785 A KR 20210152785A KR 1020200069702 A KR1020200069702 A KR 1020200069702A KR 20200069702 A KR20200069702 A KR 20200069702A KR 20210152785 A KR20210152785 A KR 20210152785A
Authority
KR
South Korea
Prior art keywords
impregnating
silicon ingot
ingot growth
manufacturing
felt
Prior art date
Application number
KR1020200069702A
Other languages
Korean (ko)
Other versions
KR102368375B1 (en
Inventor
전종원
전호연
Original Assignee
(주) 건일산업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 건일산업 filed Critical (주) 건일산업
Priority to KR1020200069702A priority Critical patent/KR102368375B1/en
Publication of KR20210152785A publication Critical patent/KR20210152785A/en
Application granted granted Critical
Publication of KR102368375B1 publication Critical patent/KR102368375B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6224Fibres based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4584Coating or impregnating of particulate or fibrous ceramic material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Abstract

The present invention relates to a method for manufacturing an insulating refractory material for a spill tray of a silicon ingot growth furnace, and more specifically, to a method for manufacturing an insulating refractory material for a spill tray of a silicon ingot growth furnace, which is configured to shield heat so that heat generated by a heater inside a silicon ingot growth furnace is not discharged to a lower part of a chamber. The method for manufacturing an insulating refractory material for a spill tray of a silicon ingot growth furnace, according to the present invention, comprises: a fiber pretreatment step (S100) of immersing silica fibers in a first impregnating binder to carbonize sized silica fibers so as to obtain pretreated fibers; a felting step (S200) of making the pre-treated fibers felt; a preform forming step (S300) of immersing the manufactured felt in a second impregnating binder and then thermo-pressing the felt to form preform; and a hardening step (S400) of carbonizing and hardening the prepared preform.

Description

실리콘 잉곳 성장로 Spill Tray용 내화단열재의 제조방법 {Manufacturing Method for Refractory Insulation Material for Spill Tray of Single Crystal Silicon Ingot Growth}Manufacturing Method for Refractory Insulation Material for Spill Tray of Single Crystal Silicon Ingot Growth

본 발명은 실리콘 잉곳 성장로 Spill Tray용 내화단열재의 제조방법에 관한 것으로서, 보다 상세하게는, 실리콘 잉곳 성장로 내부 히터에서 발생된 열이 챔버 하부로 방출되지 않도록 열을 차폐하기 위한 Spill Tray용 내화단열재의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a fireproof insulating material for a silicon ingot growth furnace, and more particularly, a fireproof for a spill tray for shielding heat so that the heat generated from the heater inside the silicon ingot growth furnace is not emitted to the lower part of the chamber It relates to a method for manufacturing an insulating material.

실리콘 잉곳 성장로는 태양전지 및 반도체 제조공정에 사용되는 핵심원료인폴리실리콘(Poly Silicon)을 단결정 잉곳(Ingot)으로 성장시키기 위한 장비로, 단결정성장의 방법은 크게 도가니(Crucible)에서 실리콘 덩어리를 녹이는 CZ(Czochralski)법과 폴리실리콘 잉곳을 유도가열법으로 부분 용융시키는 FZ(Float Zone)법으로 구분된다. The silicon ingot growth furnace is an equipment for growing polysilicon, a key raw material used in solar cell and semiconductor manufacturing processes, into single crystal ingots. It is divided into the melting CZ (Czochralski) method and the FZ (Float Zone) method, which partially melts the polysilicon ingot by induction heating.

그 중, 초크랄스키(Czochralski, CZ) 공법은 고순도가 요구되는 반도체용 단결정 실리콘 제조에 널리 이용되고 있는 공법으로, 공정의 안정성이 확보되어 있고 효율이 높아 태양전지용 단결정 실리콘의 제조에도 널리 적용 되고 있다.Among them, the Czochralski (CZ) method is widely used in the production of single crystal silicon for semiconductors that require high purity. have.

초크랄스키 방법에 따르면, 석영 도가니에 다결정 실리콘을 장입하고, 이를 흑연 발열체에 의해 가열하여 용융시킨 후, 용융 결과 형성된 실리콘 용융액에 종자결정을 담그고 계면에서 결정화가 일어날 때 종자결정을 회전하면서 인상시킴으로써 단결정의 실리콘 잉곳을 성장시키는데, 단결정 실리콘 잉곳 성장 시 약 1,600℃ 이상의 고온에서 장시간 가열하여 제조되므로 성장로 내부에 진공, 불활성분위기 조건에서 고온에 안정한 고가의 흑연소재로 된 구성부품이 전량 사용되어지고 있다. According to the Czochralski method, polycrystalline silicon is charged into a quartz crucible, it is heated by a graphite heating element to melt it, then the seed crystal is immersed in the silicon melt formed as a result of melting, and the seed crystal is rotated and raised when crystallization occurs at the interface. Single-crystal silicon ingots are grown. When single-crystal silicon ingots are grown, they are manufactured by heating at a high temperature of about 1,600°C or higher for a long time, so all components made of expensive graphite materials that are stable at high temperatures in vacuum and inert atmospheres are used inside the growth furnace. have.

도 1은 실리콘 잉곳 성장로의 내부 구성을 보여주는 단면도로, 실리콘 잉곳 성장로는 흑연 도가니, 도가니 지지대, 히터, 열차단재, 단열재 등을 포함하며, 통상적으로 흑연소재로 이루어져 있다.1 is a cross-sectional view showing the internal configuration of a silicon ingot growth furnace, and the silicon ingot growth furnace includes a graphite crucible, a crucible support, a heater, a thermal insulation material, a heat insulating material, and the like, and is usually made of a graphite material.

도 2에 따르면, 성장로 내부에서 상부구역(A)는 발열히터와 보조도가니, 도가니 커버 등이 위치하고 핵심구역으로 사용온도가 약 1,600℃ 이상으로 기계적, 전기적 특성이 우수하고, 최고사용온도 약 3000℃의 고사양의 흑연 부품을 사용하고 있다. According to FIG. 2, in the upper section (A) inside the growth furnace, a heating heater, auxiliary crucible, crucible cover, etc. are located, and the operating temperature is about 1,600 ° C. ℃ high specification graphite parts are used.

한편, 성장로 내부의 하부구역(B)는 Spill Tray 단열재, 슬리브, 전극보호커버 등이 위치하고 있는 구역으로 사용온도가 1,000℃ 미만임에도 불구하고 상부구역(A)과 동일하게 고사양의 흑연 제품이 사용되어지고 있는 실정이다. On the other hand, the lower section (B) inside the growth furnace is a section where the spill tray insulation, sleeve, and electrode protection cover are located. Even though the operating temperature is less than 1,000℃, the same high-spec graphite products are used as in the upper section (A). It is being done.

종래 고온로 및 성장로의 단열재와 관련하여, 국내공개특허 제10-2015-0062278호에서는 챔버의 내부의 단열소재로 그라파이트 및 초내열성 몰리브덴 합금 재질의 단열재를 사용한 사파이어 초고온 단결정 성장로 단열구조체를 개시하고 있다. In relation to the heat insulator of the conventional high temperature furnace and the growth furnace, Korean Patent Laid-Open No. 10-2015-0062278 discloses a sapphire ultra-high temperature single crystal growth furnace insulation structure using an insulation material made of graphite and super heat-resistant molybdenum alloy as an insulation material inside the chamber. are doing

또한, 국내등록특허 제10-1213658호에서는 배소 무연탄, 가소 코크스, 천연 흑연 또는 인조 흑연 중에서 1종 또는 2종 이상 이루어지는 탄소질 원료, 내화성 금속산화물, 금속 규소 및 카본 블랙을 포함하는 내화 원료에 유기 바인더를 가하고 혼련한 후에 성형하고, 비산화성 분위기에서 소성한 탄소질 내화물을 개시하고 있다. In addition, in Korean Patent Registration No. 10-1213658, a carbonaceous raw material made of one or two or more kinds of roasted anthracite, calcined coke, natural graphite, or artificial graphite, a refractory metal oxide, metal silicon, and a refractory raw material containing carbon black organic A carbonaceous refractory material which is molded after adding a binder and kneaded and fired in a non-oxidizing atmosphere is disclosed.

또한, 국내등록특허 제10-1610094호에서는 일정 형태로 가공된 그라파이트 단열재에 대하여 그라파이트 코팅 및 건조, 탈지, 소결, 고순화처리를 실시함으로써 고품질의 그라파이트 단열재를 개시하고 있다. In addition, Korean Patent Registration No. 10-1610094 discloses a high-quality graphite insulation material by performing graphite coating, drying, degreasing, sintering, and high-purification treatment on the graphite insulation material processed in a certain shape.

이처럼 고온로 및 성장로에는 열적 및 기계적 특성이 우수한 탄소소재를 원료로 구성되는 단열재가 사용되고 있으며, 현재 실리콘 잉곳 성장로 챔버의 단열재는 대부분 탄소 단열재로 대부분 수입하여 사용하고 있다. 상술된 바와 같이 실리콘 잉곳 성장 시 챔버 내부의 온도 구배가 상부구역과 하부구역으로 구분되어지지만 동일한 고가의 탄소단열재를 사용하고 있는 실정이며, 약 5~6개월 일정한 주기로 교체되는 소모성 자재이기 때문에 단결정 실리콘 잉곳 성장을 위한 공정비용을 상승시키는 요인이 되고 있다.As such, insulators made of carbon materials with excellent thermal and mechanical properties are used in high-temperature furnaces and growth furnaces. Currently, most of the insulation materials for silicon ingot growth furnace chambers are imported and used as carbon insulation materials. As described above, when the silicon ingot is grown, the temperature gradient inside the chamber is divided into an upper section and a lower section, but the same expensive carbon insulation material is used. It is a factor that increases the process cost for ingot growth.

이에, 본 발명자는 실리콘 잉곳 성장로의 고가 소모성 자재인 흑연 단열재를 대체할 수 있는 Spill Tray용 단열재를 개발하기 위한 연구의 일환으로, 사이징/탄화처리된 실리카 섬유를 펠트화한 후 바인더에 함침시켜 열가압성형하여 프리폼을 형성하고, 상기 프리폼을 탄화 및 경화시켜 내화단열재를 제조하였으며, 이로부터 열적?기계적 강도가 우수하며 1000℃ 이상에서도 열변형없이 사용가능함을 확인하여 본 발명에 이르게 되었다. Accordingly, the present inventors, as part of a study to develop an insulating material for a spill tray that can replace graphite insulating material, which is an expensive and consumable material of a silicon ingot growth furnace, felt sized/carbonized silica fiber and then impregnated it with a binder. A preform was formed by thermo-press molding, and a fire-resistance insulation material was manufactured by carbonizing and curing the preform.

국내공개특허 제10-2015-0062278호(사파이어 초고온 단결정 성장로 단열 구조)Domestic Patent Publication No. 10-2015-0062278 (Sapphire ultra-high temperature single crystal growth furnace insulation structure) 국내등록특허 제10-1213658호(탄소질 내화물 및 그 제조 방법 및 고로의 노 바닥 또는 측벽)Domestic Registered Patent No. 10-1213658 (Carbon refractory material and its manufacturing method and furnace floor or sidewall of blast furnace) 국내등록특허 제10-1610094호(그라파이트 단열재 제조방법)Domestic Registered Patent No. 10-1610094 (Manufacturing method of graphite insulation)

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 실리콘 잉곳 성장로 내부 히터에서 발생된 열이 챔버 하부로 방출되지 않도록 열을 차폐하기 위한 Spill Tray용 내화단열재의 제조방법을 제공하는 것이다.An object of the present invention for solving the above problems is to provide a method of manufacturing a fire-resisting insulating material for a spill tray for shielding heat so that the heat generated from the heater inside the silicon ingot growth furnace is not emitted to the lower part of the chamber.

상기 과제를 해결하기 위한 본 발명의 실리콘 잉곳 성장로 Spill Tray용 내화단열재의 제조방법은 제 1함침용 바인더에 실리카 섬유를 함침시켜 사이징된 실리카 섬유를 탄화처리하여 전처리된 섬유를 수득하는 섬유전처리단계(S100);와 전처리된 섬유를 펠트화하는 펠트화단계(S200);와 제조된 펠트를 제 2함침용 바인더에 함침시킨 후 열가압성형하여 프리폼을 형성하는 프리폼형성단계(S300);와 제조된 프리폼을 탄화 및 경화시키는 경화단계(S400);를 포함한다.The manufacturing method of the fire-resistance insulation material for the silicon ingot growth furnace Spill Tray of the present invention for solving the above problems is a fiber pretreatment step of impregnating silica fibers in the first impregnation binder to carbonize the sized silica fibers to obtain pretreated fibers (S100); and a felting step (S200) of forming the pre-treated fibers into a felt; and a preform forming step (S300) of forming a preform by impregnating the prepared felt in a second impregnating binder and then thermoforming the preform (S300); and manufacturing and a curing step (S400) of carbonizing and curing the preform.

상기 섬유전처리단계(S100)는 제 1함침용 바인더에 실리카 섬유를 함침시키는 섬유 사이징단계(S110);와 사이징된 실리카 섬유를 400 내지 600℃, 불활성 가스 분위기 하에서 1 내지 5시간 탄화처리하는 탄화단계(S120);를 포함한다.The fiber pretreatment step (S100) is a fiber sizing step (S110) of impregnating silica fibers in the first impregnating binder; and carbonizing the sized silica fibers at 400 to 600° C., under an inert gas atmosphere for 1 to 5 hours. (S120); includes.

상기 펠트화단계(S200)는 전처리된 섬유를 니들펀칭공법을 이용하여 펠트화한다.In the felting step (S200), the pre-treated fiber is made into felt using a needle punching method.

상기 프리폼형성단계(S300)는 제조된 펠트를 제 2함침용 바인더에 함침시키는 함침단계(S310);와 함침된 펠트를 건조하는 건조단계(S320);와 건조된 펠트를 열가압하는 열가압단계(S330);를 포함한다.The preform forming step (S300) is an impregnation step (S310) of impregnating the manufactured felt with a second impregnating binder; and a drying step (S320) of drying the impregnated felt; and a hot pressing step of thermally pressing the dried felt. (S330); includes.

상기 경화단계(S400)는 제조된 프리폼을 탄화 전 체적 대비 60 내지 80%를 갖도록 탄화시키는 것을 특징으로 한다.The curing step (S400) is characterized in that the prepared preform is carbonized to have 60 to 80% of the total volume of carbonization.

상술한 바와 같이, 본 발명에 따른 실리콘 잉곳 성장로 Spill Tray용 내화단열재의 제조방법에 의하면, 열적 안정성과 내구성이 우수하여 1000 ℃ 이상의 고온에서 열변형없이 사용가능하며, 종래 카본 파이버 펠트 내화단열재 대비 경제적인 효과가 있다. As described above, according to the manufacturing method of the fire-resistance insulation material for the silicon ingot growth furnace spill tray according to the present invention, it can be used without thermal deformation at a high temperature of 1000 ° C or higher due to excellent thermal stability and durability, compared to the conventional carbon fiber felt fire insulation material There is an economic effect.

도 1은 실리콘 단결정 잉곳 성장로 내부 구조를 보여주는 단면도.
도 2는 실리콘 단결정 잉곳 성장로 내부의 사용온도영역 및 영역에 따른 단열재의 구성을 보여주는 사진.
도 3은 본 발명에 따른 실리콘 잉곳 성장로 Spill Tray용 내화단열재의 제조방법을 보여주는 순서도.
도 4는 본 발명에 따른 실리콘 잉곳 성장로 Spill Tray용 내화단열재 제조방법의 섬유전처리단계(S100)의 순서를 보여주는 개념도.
도 5의 (A)실리카 섬유의 전처리 전과 (B)실시예 1에 따라 전처리 후 탄화된 실리카 섬유의 평균직경을 보여주는 사진.
도 6은 본 발명에 따른 실리콘 잉곳 성장로 Spill Tray용 내화단열재의 제조방법에 의해 제조된 (A)내화단열재(실시예 1)와 (B)시판내화단열재(비교예)의 고온가열 후 외관을 비교한 사진.
1 is a cross-sectional view showing the internal structure of a silicon single crystal ingot growth furnace.
Figure 2 is a photograph showing the configuration of the insulating material according to the operating temperature region and region inside the silicon single crystal ingot growth furnace.
Figure 3 is a flow chart showing a method of manufacturing a fire-resistant insulating material for the silicon ingot growth furnace Spill Tray according to the present invention.
Figure 4 is a conceptual diagram showing the sequence of the fiber pre-treatment step (S100) of the method for manufacturing a fire-resistance insulation material for a Spill Tray in a silicon ingot growth furnace according to the present invention.
Figure 5 (A) a photograph showing the average diameter of the carbonized silica fibers before the pretreatment of the silica fibers and (B) after the pretreatment according to Example 1.
6 is a view showing the appearance after high-temperature heating of (A) a fire-resistance insulation material (Example 1) and (B) a commercially available fire-resistance insulation material (Comparative Example) manufactured by the method for manufacturing a fire-resistance insulation material for a spill tray in a silicon ingot growth furnace according to the present invention; Comparison photos.

본 발명의 구체적 특징 및 이점들은 이하에서 첨부도면을 참조하여 상세히 설명한다. 이에 앞서 본 발명에 관련된 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 구체적인 설명을 생략하기로 한다.Specific features and advantages of the present invention will be described in detail below with reference to the accompanying drawings. Prior to this, when it is determined that a detailed description of a function and a configuration related to the present invention may unnecessarily obscure the gist of the present invention, a detailed description thereof will be omitted.

본 발명은 실리콘 잉곳 성장로 Spill Tray용 내화단열재의 제조방법에 관한 것으로서, 보다 상세하게는, 실리콘 잉곳 성장로 내부 히터에서 발생된 열이 챔버 하부로 방출되지 않도록 열을 차폐하기 위한 Spill Tray용 내화단열재의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a fireproof insulating material for a silicon ingot growth furnace, and more particularly, a fireproof for a spill tray for shielding heat so that the heat generated from the heater inside the silicon ingot growth furnace is not emitted to the lower part of the chamber It relates to a method for manufacturing an insulating material.

도 3은 본 발명에 따른 실리콘 잉곳 성장로 Spill Tray용 내화단열재의 제조방법을 보여주는 순서도이다.3 is a flowchart showing a method of manufacturing a fire-resistance insulation material for a silicon ingot growth furnace Spill Tray according to the present invention.

본 발명에 따른 실리콘 잉곳 성장로 Spill Tray용 내화단열재의 제조방법은 제 1함침용 바인더에 실리카 섬유를 함침시켜 사이징된 실리카 섬유를 탄화처리하여 전처리된 섬유를 수득하는 섬유전처리단계(S100)와 전처리된 섬유를 펠트화하는 펠트화단계(S200)와 제조된 펠트를 제 2함침용 바인더에 함침시킨 후 열가압성형하여 프리폼을 형성하는 프리폼형성단계(S300)와 제조된 프리폼을 탄화 및 경화시키는 경화단계(S400)를 포함한다.The method for manufacturing a fire-resistance insulation material for a spill tray in a silicon ingot growth furnace according to the present invention is a fiber pretreatment step (S100) and pretreatment of impregnating silica fibers in the first impregnation binder to carbonize the sized silica fibers to obtain pretreated fibers The felting step (S200) of forming the felt fiber into a felt, the preform forming step (S300) of forming a preform by thermo-pressing after impregnating the manufactured felt with the second impregnation binder, and curing of carbonizing and curing the prepared preform Step S400 is included.

상기 섬유전처리단계(S100)는 제 1함침용 바인더에 실리카 섬유를 함침시켜 사이징된 실리카 섬유를 탄화처리하여 전처리된 섬유를 수득하는 단계로, 제 1함침용 바인더에 실리카 섬유를 함침시키는 섬유 사이징단계(S110)와 사이징된 실리카 섬유를 400 내지 600℃, 불활성 가스 분위기 하에서 1 내지 5시간 탄화처리하는 탄화단계(S120)를 포함한다. The fiber pretreatment step (S100) is a step of impregnating silica fibers in the first impregnating binder to carbonize the sized silica fibers to obtain pretreated fibers, fiber sizing step of impregnating silica fibers in the first impregnating binder (S110) and a carbonization step (S120) of carbonizing the sized silica fiber at 400 to 600° C. for 1 to 5 hours under an inert gas atmosphere.

도 4는 본 발명에 따른 실리콘 잉곳 성장로 Spill Tray용 내화단열재 제조방법의 섬유전처리단계(S100)의 순서를 보여주는 개념도이다. 4 is a conceptual diagram showing the sequence of the fiber pretreatment step (S100) of the method for manufacturing a fire-resistance insulation material for a spill tray in a silicon ingot growth furnace according to the present invention.

섬유 사이징단계(S110)에서는 제 1함침용 바인더에 실리카 섬유를 함침시켜 기질인 실리카 섬유를 사이징함으로써 실리카 섬유의 기공 및 표면에 제1함침용 바인더 조성물로 채워 밀도를 더욱 향상시키고, 추후 탄화공정시 크랙의 발생 및 성장을 방지할 수 있다.In the fiber sizing step (S110), the first impregnating binder is impregnated with silica fibers to size the silica fibers, thereby filling the pores and surfaces of the silica fibers with the first impregnating binder composition to further improve the density, and later in the carbonization process The occurrence and growth of cracks can be prevented.

상기 제 1함침용 바인더는 열경화성 수지 30 내지 50 wt% 와 유기용매 50 내지 70wt% 를 혼합한 것으로서, 상기 열경화성 수지는 페놀수지를 사용할 수 있으며, 상기 유기용매는 C1 내지 C4의 저급 알콜, 아세톤, 에틸아세테이트 및 이들의 조합 중 어느 하나를 사용할 수 있으며, 바람직하게는, 상기 유기용매는 에탄올, 메탄올, 아세톤 및 이들의 조합 중 어느 하나를 사용할 수 있다.The first impregnating binder is a mixture of 30 to 50 wt% of a thermosetting resin and 50 to 70 wt% of an organic solvent, and the thermosetting resin may use a phenol resin, and the organic solvent is a C 1 to C 4 lower alcohol, Any one of acetone, ethyl acetate, and combinations thereof may be used, and preferably, the organic solvent may be any one of ethanol, methanol, acetone, and combinations thereof.

바람직하게는, 상기 제 1함침용 바인더로 분말상의 페놀수지와 유기용매를 혼합 및 교반하여 용해시킨 레졸형의 페놀수지를 사용할 수 있다.Preferably, as the first impregnating binder, a resol-type phenolic resin obtained by dissolving a powdery phenolic resin and an organic solvent by mixing and stirring may be used.

상기 실리카 섬유는 SiO2 함량 90 내지 99wt%인 것을 사용할 수 있으며, 바람직하게는, 95 내지 99wt%를 갖는 것을 사용할 수 있다. 또한, 실리카 섬유의 직경은 5 내지 30 ㎛, 바람직하게는, 10 내지 20 ㎛, 더욱 바람직하게는 10 내지 15 ㎛를 갖는 것을 사용할 수 있다. The silica fiber may use a SiO 2 content of 90 to 99 wt%, preferably, 95 to 99 wt%. In addition, the silica fiber may have a diameter of 5 to 30 μm, preferably 10 to 20 μm, more preferably 10 to 15 μm.

또한, 실리카 섬유는 비중은 2 내지 2.7, 길이는 1 내지 10mm, 인장강도는 150 내지 200kg/㎟, 용융온도 1400 내지 2000 ℃을 갖는 것을 사용할 수 있다. In addition, silica fibers having a specific gravity of 2 to 2.7, a length of 1 to 10 mm, a tensile strength of 150 to 200 kg/mm 2 , and a melting temperature of 1400 to 2000 °C may be used.

또한, 상기 실리카 섬유는 실란 커플링제로 개질처리된 것을 사용할 수 있는데, 개질처리를 통해 열경화성수지와의 계면 결합 특성을 향상시키고 분산성 및 물성을 더욱 향상시킬 수 있다. In addition, the silica fiber is modified with a silane coupling agent. It can be used, and through the modification treatment, the interfacial bonding properties with the thermosetting resin can be improved, and the dispersibility and physical properties can be further improved.

실란커플링제를 이용한 개질처리는 용매에 실란커플링제를 5 내지 25 (w/v)% 첨가 후 150 내지 300rpm에서 5 내지 15분간 교반된 개질처리액에 실리카 섬유를 15분 내지 45분간 침지처리함으로써 수행된다. Reforming treatment using a silane coupling agent is performed by immersing silica fibers in a reforming solution stirred at 150 to 300 rpm for 5 to 15 minutes at 150 to 300 rpm for 15 to 45 minutes after adding 5 to 25 (w/v)% of a silane coupling agent to the solvent. is carried out

이때, 용매는 C1 내지 C4의 저급 알콜을 사용하며, 바람직하게는, 에탄올, 메탄올 및 이들의 조합 중 어느 하나를 사용할 수 있으며, 더욱 바람직하게는, 60 내지 90 (v/v)%의 에탄올수용액 또는 메탄올수용액을 사용할 수 있다.At this time, the solvent uses a C 1 to C 4 lower alcohol, preferably, any one of ethanol, methanol, and a combination thereof may be used, and more preferably, 60 to 90 (v/v)% of An aqueous ethanol solution or an aqueous methanol solution can be used.

상기 실란 커플링제는 비닐실란커플링제, 알콕시실란커플링제, 아미노실란커플링제, 에폭시실란커플링제, 메타아크릴옥시실란커플링제, 아크릴옥시실란커플링제, 우레이드실란커플링제, 메르캅토실란커플링제 및 이들의 조합으로 선택되는 그룹 중 어느 하나가 사용될 수 있다.The silane coupling agent is a vinylsilane coupling agent, an alkoxysilane coupling agent, an aminosilane coupling agent, an epoxysilane coupling agent, a methacryloxysilane coupling agent, an acryloxysilane coupling agent, a urea silane coupling agent, a mercaptosilane coupling agent, and Any one of the groups selected as a combination thereof may be used.

보다 상세하게는, 비닐트리에톡시실란, 3-글리시독시 프로필트리메톡시실란, 3-글리시독시 프로필트리에톡시실란, 3-메타크릴옥시프로필 트리메톡시실란, 3-메타크릴옥시프로필 트리에톡시실란, 3-아크릴록시프로필 트리메톡시실란, N-2-(아미노에틸)-3-아미노프로필트리메톡시실란, N-2-(아미노에틸)-3-아미노프로필트리에톡시실란, 3-아미노프로필트리메톡시실란, 3-아미노프로필트리에톡시실란, 3-우레이드 프로필트리에톡시실란, 3-클로로 프로필트리에톡시실란, 3-메르캅토 프로필 트리메톡시실란, 3-이소시아네이트 프로필트리에톡시실란 및 이들의 조합 중 어느 하나가 사용될 수 있으나, 이에 한정하는 것은 아니다. More specifically, vinyltriethoxysilane, 3-glycidoxy propyltrimethoxysilane, 3-glycidoxy propyltriethoxysilane, 3-methacryloxypropyl trimethoxysilane, 3-methacryloxypropyl Triethoxysilane, 3-acryloxypropyl trimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropyltriethoxysilane , 3-Aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-urea propyltriethoxysilane, 3-chloropropyltriethoxysilane, 3-mercaptopropyl trimethoxysilane, 3- Any one of isocyanate propyltriethoxysilane and combinations thereof may be used, but is not limited thereto.

바람직하게는, 실란커플링제를 이용한 개질처리는 용매에 실란커플링제를 5 내지 25 (w/v)% 첨가 후 150 내지 300rpm에서 5 내지 15분간 교반된 개질처리액에 실리카 섬유를 15분 내지 45분간 침치처리시, 25 내지 35 kHz 세기의 초음파를 동시에 가함으로써 실리카 섬유에 대한 실란커플링제의 도입특성을 더욱 향상시킬 수 있다.Preferably, in the reforming treatment using a silane coupling agent, 5 to 25 (w/v)% of the silane coupling agent is added to the solvent, and then silica fibers are added to the reforming solution stirred at 150 to 300 rpm for 5 to 15 minutes for 15 to 45 minutes. During the immersion treatment for minutes, the introduction characteristics of the silane coupling agent to the silica fiber can be further improved by simultaneously applying ultrasonic waves of 25 to 35 kHz intensity.

상기 제 1함침용 바인더의 점도는 30 내지 60 cps, pH는 9 내지 12로 제어될 수 있으며, 상기 조건 하에서 실리카 섬유에 대한 함침 특성이 우수하다. The viscosity of the first impregnating binder may be controlled to 30 to 60 cps, and the pH to be controlled to 9 to 12, and the impregnation properties for silica fibers are excellent under the above conditions.

상기 섬유 사이징단계(S110)에서는 상기 제 1함침용 바인더에 실리카 섬유를 2 내지 6시간 함침처리할 수 있으며, 바람직하게는, 상기 실리카 섬유 표면에 존재하는 기포를 제거하고 제 1함침용 바인더의 함침특성을 향상시키기 위하여 1차로 10-2내지 1 torr에서 1 내지 3시간 감압하여 실리카 섬유 표면의 기포를 제거하고, 2차로 불활성 기체 분위기하에서 10 내지 20 bar 에서 가압하면서 1 내지 3시간 함침시켜 제 1함침용 바인더의 침투특성을 향상시킬 수 있다. In the fiber sizing step (S110), the silica fiber may be impregnated with the first impregnating binder for 2 to 6 hours, and preferably, air bubbles present on the surface of the silica fiber are removed and the first impregnating binder is impregnated. In order to improve the properties, the first step is to remove air bubbles on the surface of the silica fiber by reducing the pressure at 10 -2 to 1 torr for 1 to 3 hours, and secondly by impregnating it for 1 to 3 hours while pressing at 10 to 20 bar under an inert gas atmosphere. It is possible to improve the penetration characteristics of the impregnating binder.

탄화단계(S120)에서는 사이징된 실리카 섬유를 400 내지 600℃, 불활성 가스(N2, Ar 등) 분위기 하에서 1 내지 5시간 탄화처리하게 되는데, 실리카 섬유는 제1함침용 바인더를 이용한 사이징 처리 및 도포된 제1함침용 바인더의 탄화를 통해 팽창하여 다공막을 형성하게 되면서 직경이 증가하게 된다. In the carbonization step (S120), the sized silica fiber is carbonized at 400 to 600° C. under an inert gas (N 2 , Ar, etc.) atmosphere for 1 to 5 hours. As the first impregnated binder expands through carbonization to form a porous film, the diameter increases.

탄화단계(S120)에서는 탄화된 실리카 섬유의 직경이 사이징 전 실리카 섬유 직경의 160 내지 180%를 갖도록 탄화시키게 되며, 탄화처리를 통해 화학적, 열적 특성을 안정화할 수 있으며, 높은 인성, 강도 및 비취성 파괴 등의 이점을 갖게 된다. In the carbonization step (S120), the carbonized silica fiber is carbonized so that the diameter of the carbonized silica fiber has 160 to 180% of the silica fiber diameter before sizing, and chemical and thermal properties can be stabilized through carbonization treatment, and high toughness, strength and non-brittleness destruction and the like.

상기 펠트화단계(S200)에서는 전처리된 섬유를 펠트화하게 되며, 니들펀칭, 열융착본드, 스펀레이스, 스티치본드, 초음파 및 이들의 조합 중 어느 하나의 방법을 이용할 수 있으며, 바람직하게는, 니들펀칭(needle punching)공법을 이용하여 펠트화할 수 있다.In the felting step (S200), the pre-treated fibers are made into felt, and any one method of needle punching, thermal fusion bonding, spunlace, stitch bonding, ultrasonic waves, and combinations thereof may be used, and preferably, needle It can be made into felt using a needle punching method.

이때, 상기 펠트화단계(S200)에서는 중량 100 내지 200 g/㎥, 바람직하게는, 중량 110 내지 150 g/㎥ 를 갖도록 펠트화할 수 있으며, 펠트의 두께는 함침성을 고려하여 5 내지 20mm를 갖도록 제어될 수 있다. At this time, in the felting step (S200), it can be made into felt to have a weight of 100 to 200 g/m3, preferably, a weight of 110 to 150 g/m3, and the thickness of the felt is 5 to 20 mm in consideration of impregnation property. can be controlled.

상기 프리폼형성단계(S300)는 제조된 펠트를 제 2함침용 바인더에 함침시킨 후 열가압성형하여 프리폼을 형성하게 되며, 제조된 펠트를 제 2함침용 바인더에 함침시키는 함침단계(S310)와 함침된 펠트를 건조하는 건조단계(S320)와 건조된 펠트를 열가압하는 열가압단계(S330)를 포함한다.In the preform forming step (S300), the prepared felt is impregnated with the second impregnating binder and then thermo-pressed to form a preform, and the impregnated with the impregnated step (S310) of impregnating the manufactured felt with the second impregnating binder. It includes a drying step (S320) of drying the felt and a thermal pressing step (S330) of thermally pressing the dried felt.

함침단계(S310)에서는 제조된 펠트를 제 2함침용 바인더에 함침시켜 펠트 내 섬유간의 결합특성 및 밀도를 향상시킬 수 있다. In the impregnation step (S310), the prepared felt is impregnated with the second impregnating binder to improve bonding properties and density between fibers in the felt.

상기 제 2함침용 바인더는 열경화성 수지 10 내지 50 wt%, 유기용매 30 내지 80wt%, 첨가제 10 내지 20 wt% 를 혼합한 것으로서, 상기 열경화성 수지는 페놀수지를 사용할 수 있으며, 상기 유기용매는 C1 내지 C4의 저급 알콜, 아세톤, 에틸아세테이트 및 이들의 조합 중 어느 하나를 사용할 수 있으며, 바람직하게는, 상기 유기용매는 에탄올, 메탄올, 아세톤 및 이들의 조합 중 어느 하나를 사용할 수 있다.The second impregnating binder is a mixture of 10 to 50 wt% of a thermosetting resin, 30 to 80 wt% of an organic solvent, and 10 to 20 wt% of an additive, and the thermosetting resin may use a phenolic resin, and the organic solvent is C 1 To C 4 Any one of lower alcohol, acetone, ethyl acetate, and combinations thereof may be used, and preferably, the organic solvent may be any one of ethanol, methanol, acetone, and combinations thereof.

상기 첨가제는 우수한 물리적 강도 및 화학적 내성을 부여함과 동시에 열적으로 안정한 것이라면 한정하지 않으나, 바람직하게는, 실리카 섬유와 상용성이 우수함과 동시에 물리 ·화학적 특성이 우수하고, 내열성이 우수한 PVDF(Poly(vinylidene fluoride))를 첨가할 수 있으며, 상기 첨가제는 분산성 향상 및 점도조절을 위한 분산매를 포함할 수 있으며, 상기 분산매는 NMP(N-methyl pyrrolidone), NEP(N-ethyl-pyrrolidone) 및 이들의 조합 중 어느 하나를 포함할 수 있다.The additive is not limited as long as it imparts excellent physical strength and chemical resistance and is thermally stable at the same time, but preferably PVDF (Poly (Poly (Poly) vinylidene fluoride)), and the additive may include a dispersion medium for improving dispersibility and controlling viscosity, and the dispersion medium is NMP (N-methyl pyrrolidone), NEP (N-ethyl-pyrrolidone) and their It may include any one of the combinations.

바람직하게는, 상기 제 2함침용 바인더는 열경화성 수지 10 내지 50 wt%, 유기용매 30 내지 80wt%, PVDF 5 내지 15wt%, 분산매 5 내지 15wt%를 혼합한 것을 사용할 수 있다. Preferably, the second impregnating binder may be a mixture of 10 to 50 wt% of a thermosetting resin, 30 to 80 wt% of an organic solvent, 5 to 15 wt% of PVDF, and 5 to 15 wt% of a dispersion medium.

상기 제 2함침용 바인더의 점도는 20 내지 50 cps, pH는 9 내지 12로 제어될 수 있으며, 상기 조건 하에서 펠트에 대한 함침 특성이 우수하다. The viscosity of the second impregnating binder may be 20 to 50 cps, and the pH may be controlled to 9 to 12, and the impregnation properties for the felt are excellent under the above conditions.

상기 함침단계(S310)에서는 상기 제 2함침용 바인더에 제조된 펠트를 넣어 2 내지 6시간 함침처리할 수 있으며, 바람직하게는, 상기 펠트 표면의 기포를 제거하고 제 2함침용 바인더의 함침특성을 향상시키기 위하여 1차로 10-2내지 1 torr에서 1 내지 3시간 감압하여 펠트 표면의 기포를 제거하고, 2차로 불활성 기체 분위기하(Ar, N2)에서 10 내지 20 bar 에서 가압하면서 1 내지 3시간 및 함침시켜 제 2함침용 바인더의 침투특성을 향상시킬 수 있다. In the impregnation step (S310), the second impregnation binder can be impregnated for 2 to 6 hours by putting the prepared felt. In order to improve it, the pressure was first reduced at 10 -2 to 1 torr for 1 to 3 hours to remove air bubbles on the felt surface, and secondly, under an inert gas atmosphere (Ar, N 2 ) while pressurizing at 10 to 20 bar, 1 to 3 hours and impregnation to improve the penetrating properties of the second impregnating binder.

건조단계(S320)에서는 함침된 펠트를 15 내지 25℃에서 24 내지 48시간 건조하여 수분을 서서히 증발시키게 되며, 열가압단계(S330)는 건조된 펠트를 150 내지 200℃, 10 내지 30 bar에서 10 내지 15분간 열가압하여 표면을 균일화한다.In the drying step (S320), the impregnated felt is dried at 15 to 25 ° C. for 24 to 48 hours to evaporate moisture slowly, and the hot pressing step (S330) is the dried felt at 150 to 200 ° C., 10 to 30 bar. The surface is homogenized by heat-pressing for 15 minutes.

상기 경화단계(S400)에서는 제조된 프리폼을 탄화 및 경화시켜 결합강도 및 물성을 더욱 향상시키게 되며, 제조된 프리폼을 탄화(Carbonzing)전용전기로를 이용하여 불활성가스(Ar, N2 등) 분위기 하에서 탄화시키게된다. In the curing step (S400), the prepared preform is carbonized and cured to further improve bonding strength and physical properties, and the manufactured preform is carbonized under an inert gas (Ar, N 2, etc.) atmosphere using an electric furnace dedicated to carbonizing. will make it

이때, 탄화 전 체적대비 60 내지 80%를 갖도록 탄화시키게 되는데, 탄화 전 체적대비 60% 미만이면 크랙 및 부서짐이 발생될 수 있으며, 탄화 후 체적대비 80% 초과할 경우 제 1함침용 바인더 및 제 2함침용 바인더가 실리카 섬유와 상호결합하지 못하고 수분이 잔여하게 되어 물리적인 특성이 우수하지 못하기 때문에 상기 체적범위를 벗어나지 않는 것이 바람직하다.At this time, it is carbonized to have 60 to 80% of the volume before carbonization. If it is less than 60% of the total volume after carbonization, cracks and breakage may occur. If it exceeds 80% of the volume after carbonization, the first impregnation binder and the second It is preferable not to deviate from the above volume range because the impregnating binder does not mutually bond with the silica fibers and moisture remains, so that the physical properties are not excellent.

바람직하게는, 상기 경화단계(S400)에서는 제조된 프리폼 내부의 잔여수분의 급격한 증발로 인한 휨 및 열변형 등이 발생되는 것을 방지하기 위하여, 단계적으로 탄화 온도 및 시간을 달리하여 탄화시킬 수 있으며, 상기 경화단계(S400)는 700 내지 900℃에서 1 내지 2시간 탄화시키는 1차 탄화단계(S410)와 1000 내지 1200℃에서 2 내지 3시간 탄화시키는 2차 탄화단계(S420)을 포함한다.Preferably, in the curing step (S400), in order to prevent warping and thermal deformation due to rapid evaporation of the residual moisture inside the manufactured preform from occurring, the carbonization can be carried out by varying the carbonization temperature and time step by step, The curing step (S400) includes a primary carbonization step (S410) of carbonizing at 700 to 900° C. for 1 to 2 hours and a secondary carbonization step (S420) of carbonizing at 1000 to 1200° C. for 2 to 3 hours.

이하, 본 발명을 바람직한 일 실시예를 참조하여 다음에서 구체적으로 상세하게 설명한다. 단, 다음의 실시예는 본 발명을 구체적으로 예시하기 위한 것이며, 이것만으로 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail below with reference to a preferred embodiment. However, the following examples are intended to specifically illustrate the present invention, and are not limited thereto.

섬유의 전처리Textile pretreatment

제1함침용 바인더로는 분말형태의 MP(Melting Point) 55~75℃의 페놀수지 300g 과 에탄올 300g을 150~200rpm에서 60분간 교반하여 레졸형태의 페놀수지를 수득하였으며, 점도는 25℃에서 47cps로 측정되었고, pH는 10으로 확인되었다. As the first impregnating binder, 300 g of a powdered MP (melting point) of 55 to 75 ° C and 300 g of ethanol were stirred at 150 to 200 rpm for 60 minutes to obtain a resol-type phenol resin, and the viscosity was 47 cps at 25 ° C. was measured, and the pH was confirmed to be 10.

실리카 섬유로는 평균직경 약 9.5 ~11.5㎛, 용융온도 1600 ℃ 이상을 갖는 것을 사용하였으며, 하기의 표 1은 실리카 섬유의 성분 및 성분비를 보여준다.As the silica fibers, those having an average diameter of about 9.5 to 11.5 μm and a melting temperature of 1600° C. or higher were used, and Table 1 below shows the components and component ratios of the silica fibers.

성분ingredient 함량(%)content(%) 성분ingredient 함량(%)content(%) SiO2 SiO 2 9696 Al2O3 Al 2 O 3 0.44~3.50.44~3.5 CaOCaO 0.070.07 Na2ONa 2 O 0.020.02 Fe2O3 Fe 2 O 3 0.010.01 MgOMgO 0.010.01 K2OK 2 O 0.010.01 TiO2 TiO 2 0.360.36

실리카 섬유의 전처리 유무와 사이징 방법에 따른 열적 및 기계적 강도특성을 확인하기 위하여 하기의 표 2와 같이 실험설계하고, 프리폼 형성 후 열적 및 기계적 강도특성을 확인하였다. In order to confirm the thermal and mechanical strength characteristics according to the presence or absence of pretreatment of silica fibers and the sizing method, experimental designs were designed as shown in Table 2 below, and thermal and mechanical strength characteristics were confirmed after preform formation.

구분 division 실리카 섬유의 전처리 유무Pre-treatment of silica fiber 사이징 방법Sizing method 실시예1Example 1 미처리unprocessed 함침impregnation 실시예1-1Example 1-1 감압 + 가압 함침Pressure reduction + pressure impregnation 실시예2Example 2 실란커플링제 처리Silane coupling agent treatment 함침impregnation 실시예2-1Example 2-1 감압 + 가압 함침Pressure reduction + pressure impregnation 실시예3Example 3 실란커플링제 처리 + 초음파처리Silane coupling agent treatment + sonication treatment 함침impregnation 실시예3-1Example 3-1 감압 + 가압 함침Pressure reduction + pressure impregnation

실시예 1Example 1

미처리 실리카 섬유를 제 1함침용 바인더에 4시간 함침하였다.The untreated silica fibers were impregnated in the first impregnating binder for 4 hours.

실시예 1-1 Example 1-1

미처리 실리카 섬유를 제 1함침용 바인더에 침지하고, 1차로 10-1 torr에서 90분간 감압처리하여 실리카 섬유 표면의 기포를 제거하고, 2차로 N2 분위기 하에서 10bar로 가압하면서 2시간 함침처리하였다. The untreated silica fiber was immersed in the first impregnation binder, and firstly treated under reduced pressure at 10 -1 torr for 90 minutes to remove air bubbles on the surface of the silica fiber, and secondly, it was impregnated for 2 hours while pressurized at 10 bar under N 2 atmosphere.

실시예 2Example 2

80(v/v)%의 에탄올수용액 100g당 3-아미노프로필트리메톡시실란을 20g 첨가하여 200rpm에서 10분간 교반한 후 실리카 섬유를 30분간 침지처리하고, 제 1함침용 바인더에 4시간 함침하였다.After adding 20 g of 3-aminopropyltrimethoxysilane per 100 g of 80 (v/v)% ethanol aqueous solution and stirring at 200 rpm for 10 minutes, the silica fiber was immersed for 30 minutes, and the first impregnation binder was impregnated for 4 hours. .

실시예 2-2 Example 2-2

80(v/v)%의 에탄올수용액 100g당 3-아미노프로필트리메톡시실란을 20g 첨가하여 200rpm에서 10분간 교반한 후 실리카 섬유를 30분간 침지처리하였다. 이후 전처리된 실리카 섬유를 제 1함침용 바인더에 투입하여 1차로 10-1 torr에서 90분간 감압처리하여 실리카 섬유 표면의 기포를 제거하고, 2차로 N2 분위기 하에서 10bar로 가압하면서 2시간 함침처리하였다. 20 g of 3-aminopropyltrimethoxysilane was added per 100 g of an 80 (v/v)% aqueous ethanol solution, stirred at 200 rpm for 10 minutes, and then the silica fibers were immersed for 30 minutes. After that, the pretreated silica fiber was put into the first impregnating binder, and firstly treated under reduced pressure at 10 −1 torr for 90 minutes to remove air bubbles on the surface of the silica fiber, and secondly, it was impregnated for 2 hours while pressurized at 10 bar under N 2 atmosphere. .

실시예 3 Example 3

80(v/v)%의 에탄올수용액 100g당 3-아미노프로필트리메톡시실란을 20g 첨가하여 200rpm에서 10분간 교반한 후 실리카 섬유를 30분간 침지처리하되, 30kHz의 초음파를 동시에 가하였다. 이후 전처리된 실리카 섬유를 제 1함침용 바인더에 4시간 함침하였다.20 g of 3-aminopropyltrimethoxysilane was added per 100 g of an 80 (v/v)% aqueous ethanol solution, stirred at 200 rpm for 10 minutes, and the silica fibers were immersed for 30 minutes, but ultrasonic waves of 30 kHz were simultaneously applied. Thereafter, the pretreated silica fibers were impregnated with the first impregnation binder for 4 hours.

실시예 3-1Example 3-1

80(v/v)%의 에탄올수용액 100g당 3-아미노프로필트리메톡시실란을 20g 첨가하여 200rpm에서 10분간 교반한 후 실리카 섬유를 30분간 침지처리하되, 30kHz의 초음파를 동시에 가하였다. 이후 전처리된 실리카 섬유를 제 1함침용 바인더에 투입하여 1차로 10-1 torr에서 90분간 감압처리하여 실리카 섬유 표면의 기포를 제거하고, 2차로 N2 분위기 하에서 10bar로 가압하면서 2시간 함침처리하였다. 20 g of 3-aminopropyltrimethoxysilane was added per 100 g of an 80 (v/v)% aqueous ethanol solution, stirred at 200 rpm for 10 minutes, and the silica fibers were immersed for 30 minutes, but ultrasonic waves at 30 kHz were simultaneously applied. After that, the pretreated silica fiber was put into the first impregnating binder, and firstly treated under reduced pressure at 10 −1 torr for 90 minutes to remove air bubbles on the surface of the silica fiber, and secondly, it was impregnated for 2 hours while pressurized at 10 bar under N 2 atmosphere. .

사이징 후 탄화는 500℃, N2 분위기 하에서 3시간 탄화처리하였으며, 실시예 1, 실시예 1-1, 실시예 2, 실시예 2-1, 실시예 3 및 실시예 3-1 모두 동일한 조건 하에서 탄화처리하였다. After sizing, carbonization was carried out for 3 hours at 500° C. under N 2 atmosphere, and Example 1, Example 1-1, Example 2, Example 2-1, Example 3, and Example 3-1 were all under the same conditions. It was carbonized.

도 5의 (A)와 (B)는 각각 실리카 섬유의 전처리 전과 실시예 1에 따라 처리된 후 탄화된 실리카 섬유의 평균직경을 보여주는 것으로, 탄화처리 후 실리카 섬유의 직경이 약 16.6 ~16.9㎛를 가져 실리카 섬유 전처리 전 직경 대비 160~170% 증가됨을 확인할 수 있었다. 5 (A) and (B) show the average diameter of the carbonized silica fibers before the pretreatment of the silica fibers and after the treatment according to Example 1, respectively, and the diameter of the silica fibers after carbonization is about 16.6 to 16.9 μm. It was confirmed that the diameter increased by 160-170% compared to the diameter before silica fiber pretreatment.

펠트화 및 프리폼 형성Felting and preform forming

실시예 1 내지 실시예 3-1에 의해 제조된 전처리 섬유를 니들펀칭공정으로 펠트화하여 두께 약 10mm, 130 ± 5 g/㎥ 를 갖도록 펠트화하였다. The pre-treated fibers prepared in Examples 1 to 3-1 were felted by a needle punching process to have a thickness of about 10 mm and 130 ± 5 g/m 3 .

제 2함침용 바인더는 분말형태의 MP(Melting Point) 55~75℃의 페놀수지 500g 과 에탄올 600g을 150~200rpm에서 60분간 교반하여 레졸형태의 페놀수지를 수득하고, 상기 혼합물에 PVdF (Polyvinylidene fluoride) 50g 과 NMP(N-methyl pyrrolidone)50g을 혼합하여 200~250rpm에서 30분간 교반하였으며, 점도는 25℃에서 35cps로 측정되었고, pH는 9로 확인되었다. The second impregnation binder is a resol-type phenolic resin by stirring 500 g of a powdered MP (melting point) phenol resin at 55-75° C. and 600 g of ethanol at 150-200 rpm for 60 minutes, and PVdF (Polyvinylidene fluoride) in the mixture. ) 50 g and NMP (N-methyl pyrrolidone) 50 g were mixed and stirred at 200 to 250 rpm for 30 minutes, the viscosity was measured at 25 ℃ at 35 cps, and the pH was confirmed to be 9.

제 2함침용 바인더에 제조된 펠트를 23~25 ℃에서 36시간 건조한 후 표면 균일화를 위해 핫프레스기를 이용하여 180℃, 15bar에서 15분간 열가압하였다.The felt prepared in the second impregnation binder was dried at 23-25 ° C. for 36 hours, and then heat-pressed at 180 ° C. and 15 bar for 15 minutes using a hot press machine for surface uniformity.

제조된 프리폼의 열적 및 기계적 강도특성을 확인하였으며, 하기의 표 3은 제조된 프리폼의 불연성, 열전도율, 압축강도를 보여준다. The thermal and mechanical strength characteristics of the prepared preform were confirmed, and Table 3 below shows the nonflammability, thermal conductivity, and compressive strength of the prepared preform.

불연성은 KS F ISO 1182 : 2016, KS F 2271 : 2016에 의거하여 측정하였으며, 고온열전도율은 ASTM C177에 의거하여 국내 GHP 열전도율 측정가능 최대온도는 550℃까지의 열전도율을 측정하였고, 압축강도는 KS L 3115에 의거하여 측정하였다. Incombustibility was measured in accordance with KS F ISO 1182: 2016, KS F 2271: 2016, and high-temperature thermal conductivity was measured according to ASTM C177. It was measured according to 3115.

구분 division 불연성nonflammable 열전도율
W/mk
thermal conductivity
w/mk
압축강도
Mpa
compressive strength
Mpa
실시예1 프리폼Example 1 Preform 불연non-combustible 0.2630.263 0.310.31 실시예1-1 프리폼Example 1-1 Preform 불연non-combustible 0.2590.259 0.320.32 실시예2 프리폼Example 2 Preform 불연non-combustible 0.2530.253 0.340.34 실시예2-1 프리폼Example 2-1 Preform 불연non-combustible 0.2490.249 0.360.36 실시예3 프리폼Example 3 Preform 불연non-combustible 0.2450.245 0.370.37 실시예3-1 프리폼Example 3-1 Preform 불연non-combustible 0.2390.239 0.390.39

그 결과, 실란커플링제 처리시 초음파 처리를 동시에 수행하고, 사이징시 감압처리 후 가압함침한 실시예 3-1 의 열전도율 및 압축강도가 가장 우수하게 측정되었으며, 이로부터 실리카 섬유의 전처리 및 사이징 방법에 따라 열적 및 기계적 강도에 영향을 줌을 확인할 수 있었다. As a result, the thermal conductivity and compressive strength of Example 3-1, which was simultaneously subjected to ultrasonic treatment during treatment with the silane coupling agent and pressure impregnated after reduced pressure treatment during sizing, were measured the best, and from this, the pretreatment and sizing method of silica fibers It was confirmed that the thermal and mechanical strength were affected.

경화Hardening

탄화(Carbonzing)전용 전기로를 이용하여 Ar 분위기하에서 4시간 탄화를 진행하였다. 탄화온도 및 시간에 따른 내구성을 확인하기 위하여 실시예 1의 프리폼을 이용하여 고온에서 연속적으로 탄화를 진행(1100℃, 4시간)한 후와 단계적으로 탄화를 진행(800℃에서 2시간, 1100℃에서 2시간)한 후 외관을 확인하였다. 그 결과, 고온에서 연속적으로 탄화시킨 그룹에서 미세 크랙과 휨현상이 관찰되었으며, 이는 고온에서 연속적인 탄화공정이 급격한 수분의 증발 및 물성의 저하를 발생시킨 것에 기인한 것으로 판단하였다. 상기 결과를 토대로 이후 탄화공정시에는 상술된 바와 동일한 방법으로 단계적 탄화를 진행하였으며, 실시예 1과 실시예 3-1의 탄화처리 후 탄화전 체적 대비 각각 약 67%, 약 71% 로 확인되었다.Carbonization was carried out for 4 hours in an Ar atmosphere using an electric furnace dedicated to carbonization. In order to check the durability according to the carbonization temperature and time, carbonization was continuously performed at high temperature using the preform of Example 1 (1100° C., 4 hours) and carbonization was carried out in stages (800° C. for 2 hours, 1100° C.) After 2 hours), the appearance was confirmed. As a result, microcracks and warpage were observed in the group continuously carbonized at high temperature, and it was determined that the continuous carbonization process at high temperature caused rapid moisture evaporation and deterioration of physical properties. Based on the above results, in the subsequent carbonization process, step-by-step carbonization was performed in the same manner as described above, and it was confirmed that after carbonization in Example 1 and Example 3-1, about 67% and about 71% of the total volume before carbonization, respectively.

하기의 표 4는 실시예 1과 실시예 3-1의 프리폼을 이용하여 제조된 내화단열재의 열적 및 기계적 특성을 보여준다. Table 4 below shows the thermal and mechanical properties of the fire insulation materials prepared using the preforms of Examples 1 and 3-1.

불연성은 KS F ISO 1182 : 2016, KS F 2271 : 2016에 의거하여 측정하였으며, 고온열전도율은 ASTM C177에 의거하여 국내 GHP 열전도율 측정가능 최대온도는 550℃까지의 열전도율을 측정하였고, 압축강도는 KS L 3115에 의거하여 측정하였으며, 열간수축온도는 KS L 9102 : 2014에 의거하여 측정하였고, 굽힘강도는 KS L 3503에 의거하여 측정하였으며, 강열감량은 850℃에서 4시간 가열하여 가열 전/후 중량감소율을 확인하였다. Incombustibility was measured in accordance with KS F ISO 1182: 2016, KS F 2271: 2016, and high-temperature thermal conductivity was measured according to ASTM C177. 3115, the hot shrinkage temperature was measured in accordance with KS L 9102: 2014, the bending strength was measured in accordance with KS L 3503, and the loss on ignition was measured by heating at 850 ° C for 4 hours, and the rate of weight loss before and after heating. was confirmed.

비교예로 전기로, 소둔로, 열처리로 등 로내 각 부위의 Lining 재료 및 팽창대의 충진재로 사용되는 시판 고온로용 세라믹계 내화보드를 준비하였다. 상기 시판 고온로용 세라믹계 내화보드는 통상적으로 Al2O3 40~45%, SiO2 54~59% 및 기타성분을 포함하며, 진공성형방식으로 제조된다.As a comparative example, a commercially available ceramic-based refractory board for a high-temperature furnace used as a lining material for each part of the furnace, such as an electric furnace, an annealing furnace, and a heat treatment furnace, and a filler for the expansion zone was prepared. The commercial ceramic-based fireproof board for a high-temperature furnace typically contains 40 to 45% Al 2 O 3 , 54 to 59% SiO 2 and other components, and is manufactured by vacuum forming.

주요 성능지표Key performance indicators 단위unit 개발목표development goals 실시예1Example 1 실시예 3-1Example 3-1 비교예 comparative example 불연성nonflammable -- 불연소재non-combustible material 불연소재non-combustible material 불연소재non-combustible material 불연소재non-combustible material 고온열전도율
(GHP)
high temperature thermal conductivity
(GHP)
W/mk
(~550℃ 기준)
w/mk
(Based on ~550℃)
0.25 이하0.25 or less 0.22340.2234 0.21470.2147 0.31520.3152
열간수축온도hot shrink temperature 900℃이상900℃ or higher 1000 ℃이상1000 ℃ or higher 1000 ℃ 이상over 1000℃ 900℃미만less than 900℃ 압축강도compressive strength MpaMpa 0.4 이상0.4 or more 0.430.43 0.460.46 0.190.19 굴곡강도flexural strength MpaMpa 4 이상4 or more 4.134.13 4.744.74 1.841.84 강열감량loss on ignition %% 3% 미만less than 3% 2.19%2.19% 2.13%2.13% 3.75%3.75%

그 결과, 실시예 1과 실시예 3-1 모두 개발목표를 만족하였으며, 비교예에 비하여 열적 및 기계적 특성을 우수함을 확인할 수 있었다. 특히, 실시예 3-1의 경우 실시예 1 보다 더욱 열적 및 기계적 특성이 우수하게 측정되었는데, 이는 실란커플링제 및 초음파를 이용한 실리카 섬유의 전처리와 감압 및 가압을 이용한 함침처리가 분산성 및 결합 특성을 향상시킨 것에 기인한 것으로 판단하였다. As a result, both Example 1 and Example 3-1 satisfied the development goals, and it was confirmed that the thermal and mechanical properties were superior to those of the comparative example. In particular, in the case of Example 3-1, more excellent thermal and mechanical properties were measured than in Example 1, which is that the pretreatment of silica fibers using a silane coupling agent and ultrasonic waves and impregnation treatment using reduced pressure and pressure resulted in dispersibility and bonding properties. It was judged to be due to the improvement of

도 6은 본 발명에 따른 실리콘 잉곳 성장로 Spill Tray용 내화단열재의 제조방법에 의해 제조된 (A)내화단열재(실시예 1)와 (B)시판내화단열재(비교예)의 외관을 비교한 사진으로, 비교예의 경우 1000℃ 미만에서 수축변형 및 크랙이 발생하여 실리콘 잉곳 성장로 Spill Tray용으로 적절한 열적, 기계적 강도를 보여주지 못한 반면, 실시예 1의 경우 1000℃까지 수축변형 및 크랙 등이 확인되지 않아 실리콘 잉곳 성장로 Spill Tray용으로 적절함을 확인할 수 있었다. 6 is a photograph comparing the appearance of (A) a fire-resisting insulation material (Example 1) and (B) a commercially available fire-resistance insulation material (Comparative Example) manufactured by the method for manufacturing a fire-resistance insulation material for a spill tray in a silicon ingot growth furnace according to the present invention; As a result, in the case of Comparative Example, shrinkage deformation and cracks occurred at less than 1000 ° C., which did not show adequate thermal and mechanical strength for the silicon ingot growth furnace Spill Tray, whereas in the case of Example 1, shrinkage deformation and cracks were confirmed up to 1000 ° C. As a result, it was confirmed that the silicon ingot growth furnace is suitable for the spill tray.

이상과 같이 본 발명은 첨부된 도면을 참조하여 바람직한 실시예를 중심으로 설명하였지만 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 특허청구범위에 기재된 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다. 따라서 본 발명의 범주는 이러한 많은 변형의 예들을 포함하도록 기술된 청구범위에 의해서 해석되어야 한다.As described above, the present invention has been mainly described with reference to the accompanying drawings, but those of ordinary skill in the art to which the present invention pertains within the scope not departing from the technical spirit and scope described in the claims of the present invention Various modifications or variations of the present invention can be practiced. Accordingly, the scope of the present invention should be construed by the appended claims to include examples of many such modifications.

Claims (5)

제 1함침용 바인더에 실리카 섬유를 함침시켜 사이징된 실리카 섬유를 탄화처리하여 전처리된 섬유를 수득하는 섬유전처리단계(S100);와
전처리된 섬유를 펠트화하는 펠트화단계(S200);와
제조된 펠트를 제 2함침용 바인더에 함침시킨 후 열가압성형하여 프리폼을 형성하는 프리폼형성단계(S300);와
제조된 프리폼을 탄화 및 경화시키는 경화단계(S400);를 포함하는 것을 특징으로 하는
실리콘 잉곳 성장로 Spill Tray용 내화단열재의 제조방법.
A fiber pretreatment step (S100) of impregnating silica fibers in the first impregnating binder to carbonize the sized silica fibers to obtain pretreated fibers (S100); and
A felting step (S200) of felting the pre-treated fiber; and
A preform forming step (S300) of impregnating the manufactured felt in a second impregnating binder and then thermo-pressing to form a preform (S300); And
A curing step (S400) of carbonizing and curing the prepared preform;
Manufacturing method of fire-resisting insulation material for Spill Tray in silicon ingot growth furnace.
제 1항에 있어서,
상기 섬유전처리단계(S100)는
제 1함침용 바인더에 실리카 섬유를 함침시키는 섬유 사이징단계(S110);와
사이징된 실리카 섬유를 400 내지 600℃, 불활성 가스 분위기 하에서 1 내지 5시간 탄화처리하는 탄화단계(S120);를 포함하는 것을 특징으로 하는
실리콘 잉곳 성장로 Spill Tray용 내화단열재의 제조방법.
The method of claim 1,
The fiber pretreatment step (S100) is
A fiber sizing step (S110) of impregnating silica fibers in the first impregnating binder; and
A carbonization step (S120) of carbonizing the sized silica fiber at 400 to 600° C. for 1 to 5 hours under an inert gas atmosphere; characterized in that it comprises
Manufacturing method of fire-resisting insulation material for Spill Tray in silicon ingot growth furnace.
제 1항에 있어서,
상기 펠트화단계(S200)는
전처리된 섬유를 니들펀칭공법을 이용하여 펠트화하는 것을 특징으로 하는
실리콘 잉곳 성장로 Spill Tray용 내화단열재의 제조방법.
The method of claim 1,
The felting step (S200) is
Characterized in that the pretreated fiber is made into felt using a needle punching method.
Manufacturing method of fire-resisting insulation material for Spill Tray in silicon ingot growth furnace.
제 1항에 있어서,
상기 프리폼형성단계(S300)는
제조된 펠트를 제 2함침용 바인더에 함침시키는 함침단계(S310);와
함침된 펠트를 건조하는 건조단계(S320);와
건조된 펠트를 열가압하는 열가압단계(S330);를 포함하는 것을 특징으로 하는
실리콘 잉곳 성장로 Spill Tray용 내화단열재의 제조방법.
The method of claim 1,
The preform forming step (S300) is
An impregnating step (S310) of impregnating the manufactured felt with the second impregnating binder; and
Drying step of drying the impregnated felt (S320); And
A thermal pressing step of thermally pressing the dried felt (S330); characterized in that it comprises
Manufacturing method of fire-resisting insulation material for Spill Tray in silicon ingot growth furnace.
제 1항에 있어서,
상기 경화단계(S400)는
제조된 프리폼을 탄화 전 체적 대비 60 내지 80%를 갖도록 탄화시키는 것을 특징으로 하는
실리콘 잉곳 성장로 Spill Tray용 내화단열재의 제조방법.

The method of claim 1,
The curing step (S400) is
Characterized in that the prepared preform is carbonized to have 60 to 80% of the total volume before carbonization
Manufacturing method of fire-resisting insulation material for Spill Tray in silicon ingot growth furnace.

KR1020200069702A 2020-06-09 2020-06-09 Manufacturing Method for Refractory Insulation Material for Spill Tray of Single Crystal Silicon Ingot Growth KR102368375B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200069702A KR102368375B1 (en) 2020-06-09 2020-06-09 Manufacturing Method for Refractory Insulation Material for Spill Tray of Single Crystal Silicon Ingot Growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200069702A KR102368375B1 (en) 2020-06-09 2020-06-09 Manufacturing Method for Refractory Insulation Material for Spill Tray of Single Crystal Silicon Ingot Growth

Publications (2)

Publication Number Publication Date
KR20210152785A true KR20210152785A (en) 2021-12-16
KR102368375B1 KR102368375B1 (en) 2022-02-28

Family

ID=79033284

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200069702A KR102368375B1 (en) 2020-06-09 2020-06-09 Manufacturing Method for Refractory Insulation Material for Spill Tray of Single Crystal Silicon Ingot Growth

Country Status (1)

Country Link
KR (1) KR102368375B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219369A (en) * 1990-12-18 1992-08-10 Hitachi Chem Co Ltd Ceramic fiber-reinforced carbon material and its production
JPH11314980A (en) * 1998-02-18 1999-11-16 Ibiden Co Ltd Production of refractory composite building material
KR101213658B1 (en) 2009-02-17 2012-12-18 니폰 덴꾜꾸 가부시끼가이샤 Carbonaceous refractory material, process for producing same, and furnace bottom or side wall of blast furnace
KR20150062278A (en) 2013-11-29 2015-06-08 현빈테크 주식회사 The insulation structure for a sapphire single crystal growth
KR101610094B1 (en) 2015-03-03 2016-04-07 목포대학교산학협력단 Graphite insulator manufacturing method
KR20180071790A (en) * 2016-12-20 2018-06-28 인하대학교 산학협력단 Epoxy composites containing pitch coated glass fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219369A (en) * 1990-12-18 1992-08-10 Hitachi Chem Co Ltd Ceramic fiber-reinforced carbon material and its production
JPH11314980A (en) * 1998-02-18 1999-11-16 Ibiden Co Ltd Production of refractory composite building material
KR101213658B1 (en) 2009-02-17 2012-12-18 니폰 덴꾜꾸 가부시끼가이샤 Carbonaceous refractory material, process for producing same, and furnace bottom or side wall of blast furnace
KR20150062278A (en) 2013-11-29 2015-06-08 현빈테크 주식회사 The insulation structure for a sapphire single crystal growth
KR101610094B1 (en) 2015-03-03 2016-04-07 목포대학교산학협력단 Graphite insulator manufacturing method
KR20180071790A (en) * 2016-12-20 2018-06-28 인하대학교 산학협력단 Epoxy composites containing pitch coated glass fiber

Also Published As

Publication number Publication date
KR102368375B1 (en) 2022-02-28

Similar Documents

Publication Publication Date Title
CN107814591B (en) Preparation method of boride modified silicon-based antioxidant coating on surface of carbon material
CN1189430C (en) Composite carbonaceous heat insualtor and its prepn.
US5707471A (en) Method for making ceramic matrix composites
DE69728060T2 (en) SILICON CARBIDE REINFORCED COMPOSITE
CN110423119B (en) Preparation method of ablation-resistant C/SiC ceramic matrix composite
CN112679233B (en) Preparation method of silicon carbide coating for carbon-carbon composite material
KR101810238B1 (en) A method for coating oxidation protective layer for carbon/carbon composite, a carbon heater, and cooker
CN108191447A (en) A kind of preparation method of the anti-oxidant C/C-ZrC of resistance to ablation carbon ceramic composite material
CN102976710A (en) Nano miroporous heat-insulating material
CN107141005A (en) Silicon nitride fiber strengthens silica and boron nitride ceramics based composites and its preparation method and application
CN105951301A (en) Preparation method of antioxidant carbon fiber heat insulation felt
CN106116626A (en) A kind of preparation method of oxidation resistant carbon carbon composite heat-insulated material
CN113563113A (en) High-temperature oxidation-resistant coating on surface of carbon-based composite material and preparation method thereof
JPH05254965A (en) Ceramic matrix composite and production thereof
KR102368375B1 (en) Manufacturing Method for Refractory Insulation Material for Spill Tray of Single Crystal Silicon Ingot Growth
KR102368368B1 (en) Refractory Insulation Material for Spill Tray of Single Crystal Silicon Ingot Growth
CN109402786A (en) Preparation method of near-stoichiometric SiC fibers
CN104844246B (en) Automobile brake disc Cf/SiC composites and preparation method thereof
CN113881230A (en) Ceramic silicone rubber for heat insulation of power battery and preparation method thereof
CN106431452A (en) Preparation method for dispersively distributed self-healing phase B12(C,Si,B)3 modified SiC/SiC compound material
CN112063117A (en) Ablation-resistant organic silicon modified epoxy resin-based carbon fiber composite material and preparation method thereof
CN109650895B (en) Preparation method of high-crystallinity SiC fibers
CN110105070A (en) Continuous silicon carbide fiber with controllable electrical property and wide range and preparation method thereof
CN113831145A (en) Oxidation-resistant fiber-reinforced silicon-boron-nitrogen composite material and preparation method and application thereof
KR101990464B1 (en) Inorganic binder for high temperature insulating materials, superhigh temperature insulating materials containing the same and Manufacturing method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant