KR20210102852A - 전지 진단 장치 및 차량 - Google Patents

전지 진단 장치 및 차량 Download PDF

Info

Publication number
KR20210102852A
KR20210102852A KR1020210016471A KR20210016471A KR20210102852A KR 20210102852 A KR20210102852 A KR 20210102852A KR 1020210016471 A KR1020210016471 A KR 1020210016471A KR 20210016471 A KR20210016471 A KR 20210016471A KR 20210102852 A KR20210102852 A KR 20210102852A
Authority
KR
South Korea
Prior art keywords
soc
diagnosis
δsoc
battery
unit
Prior art date
Application number
KR1020210016471A
Other languages
English (en)
Inventor
히로타카 이토
히로시 요시다
요시히로 우치다
데츠야 와타나베
Original Assignee
도요타지도샤가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도요타지도샤가부시키가이샤 filed Critical 도요타지도샤가부시키가이샤
Publication of KR20210102852A publication Critical patent/KR20210102852A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

전지 진단 장치(500)가, SOC 연산부(510)와, ΔSOC 취득부(520)와, 최대 블록 특정부(530)와, 진단부(560)를 포함한다. SOC 연산부는, 조전지(300)의 상태를 검출하는 전지 센서(IB, TB, VB)의 출력을 사용하여, 조전지에 포함되는 병렬 셀 블록(100)마다의 SOC를 구한다. ΔSOC 취득부는, 조전지의 충전 또는 방전을 행할 때에, ΔSOC를, 병렬 셀 블록마다 취득한다. 최대 블록 특정부는, 진단 단위의 최대 블록을 특정한다. 진단부는, 최대 블록의 ΔSOC와 ΔSOC 기준값의 괴리 정도가 소정의 수준을 초과하는 경우에, 진단 단위의 최대 블록에 이상이 발생하고 있다고 판단한다.

Description

전지 진단 장치 및 차량{BATTERY DIAGNOSIS APPARATUS AND VEHICLE}
본 개시는, 전지 진단 장치 및 차량에 관한 것이다.
일본 특허 공개 제2009-216448호 공보에는, 복수의 병렬 셀 블록을 포함하는 조전지가 개시되어 있다. 병렬 셀 블록은, 병렬 접속된 복수의 셀을 포함한다. 셀은, 조전지를 구성하는 이차 전지이다. 조전지에 포함되는 복수의 병렬 셀 블록은 서로 직렬로 접속되어 있다. 또한, 일본 특허 공개 제2009-216448호 공보는, 병렬 셀 블록의 병렬 접속체의 단부와, 이것에 인접하는 병렬 셀 블록의 병렬 접속체의 단부 사이의 전압(즉, 병렬 셀 블록 간의 전압)을 측정함으로써, 각 셀을 접속하는 병렬 접속체의 단선 및 단열을 검지하는 기술을 개시하고 있다.
일본 특허 공개 제2009-216448호 공보에 개시되는 기술에서는, 병렬 접속체의 단선에 의해 방전에 사용되는 셀의 전압 변화는 역치 γ보다도 커지고, 병렬 접속체의 단선에 의해 방전에 사용되지 않게 된 셀의 전압 변화는 역치 β보다도 작아지는 것을 이용하여, 인접하는 2개의 병렬 셀 블록의 어느 쪽에 단선이 발생했는지를 판정한다. 그러나, 조전지의 용량, 축전 상태, 또는 충방전의 상황에 따라서는, 병렬 셀 블록에 단선이 발생한 때의 전압 변동이 작아지는 경우가 있다. 이러한 경우에는, 일본 특허 공개 제2009-216448호 공보에 기재되는 방법에 의해 병렬 셀 블록의 이상을 높은 정밀도로 검지하는 것이 어려워진다.
본 개시는 상기 과제를 해결하기 위하여 이루어진 것이고, 그 목적은, 조전지를 구성하는 병렬 셀 블록의 이상을 적확하게 검지하는 것이다.
본 개시에 관한 전지 진단 장치는, 복수의 병렬 셀 블록을 포함하는 조전지를 진단하는 전지 진단 장치이며, SOC 연산부와, ΔSOC 취득부와, 최대 블록 특정부와, 진단부를 포함한다. 진단되는 조전지에 있어서, 복수의 병렬 셀 블록의 각각은, 병렬 접속된 복수의 셀을 포함한다. 진단되는 조전지에 있어서, 복수의 병렬 셀 블록은, 서로 직렬로 접속되어 있다.
상기의 SOC 연산부는, 조전지의 상태를 검출하는 전지 센서의 출력을 사용하여, 조전지에 포함되는 병렬 셀 블록마다의 SOC를 구하도록 구성된다. 상기의 ΔSOC 취득부는, 조전지의 충전 또는 방전을 행할 때에, 그 충전 또는 방전을 개시할 때의 SOC인 제1 SOC와, 그 충전 또는 방전을 종료한 후의 SOC인 제2 SOC의 괴리의 정도를 나타내는 ΔSOC를, 조전지에 포함되는 병렬 셀 블록마다 취득하도록 구성된다. 상기의 최대 블록 특정부는, 조전지의 일부 또는 전부에 설정된 진단 단위 중에서 ΔSOC가 가장 큰 병렬 셀 블록인 최대 블록을 특정하도록 구성된다. 상기의 진단부는, 최대 블록의 ΔSOC와 ΔSOC 기준값의 괴리 정도를 사용하여 진단 단위의 진단을 행하고, 이 진단에 있어서는, 괴리 정도가 소정의 수준을 초과하는 경우에, 진단 단위의 최대 블록에 이상이 발생하고 있다고 판단하도록 구성된다.
예를 들어, 단선(퓨즈의 용단을 포함한다) 또는 체결부의 느슨함에 의해, 병렬 셀 블록의 일부에 있어서 전기적인 접속이 끊어져, 병렬 셀 블록으로부터 셀이 이탈하는 경우가 있다. 이러한 셀의 이탈이 발생하면, 병렬 셀 블록에 포함되는 셀의 수와 함께 병렬 셀 블록의 용량이 줄어들고, 병렬 셀 블록의 ΔSOC(즉, 조전지의 충전 또는 방전에 의한 병렬 셀 블록의 SOC 변화량)가 커진다. 또한, SOC(State Of Charge)는 축전 잔량을 나타내고, 예를 들어 전지 용량(즉, 만충전 상태의 축전량)에 대한 현재의 축전량의 비율을 0 내지 100%로 나타낸 것이다.
상기 전지 진단 장치에서는, SOC 연산부가, 전지 센서의 출력을 사용하여 병렬 셀 블록마다의 SOC를 구한다. 그리고, ΔSOC 취득부는, 이러한 SOC를 사용하여, 병렬 셀 블록마다의 ΔSOC를 취득한다. 또한, 최대 블록 특정부는, 최대 블록(즉, 소정의 진단 단위 중에서 ΔSOC가 가장 큰 병렬 셀 블록)을 특정한다. 상술한 셀의 이탈이 발생한 경우에는, 병렬 셀 블록의 ΔSOC가 커지기 때문에, 최대 블록에 있어서 셀의 이탈이 발생하고 있을 가능성이 높다. 상기 전지 진단 장치에서는, 진단부가, 최대 블록의 ΔSOC와 ΔSOC 기준값을 대비함으로써, 진단 단위의 진단을 행한다.
상술한 셀의 이탈이 발생하면, 최대 블록의 ΔSOC와 ΔSOC 기준값의 괴리 정도가 커진다. 이하, 최대 블록의 ΔSOC와 ΔSOC 기준값의 괴리 정도를, 「ΔSOC 괴리도」라고도 칭한다. 상기 전지 진단 장치의 진단부는, ΔSOC 괴리도가 소정의 수준을 초과하는 경우에, 진단 단위의 최대 블록에 이상이 발생하고 있다고 판단한다. 이러한 전지 진단 장치에 의하면, 조전지를 구성하는 병렬 셀 블록의 이상을 적확하게 검지하는 것이 가능해진다.
상기의 진단부는, 소정의 진단 실행 조건이 성립하는 경우에 한하여, 전술한 진단(즉, 최대 블록에 이상이 발생하고 있는지의 여부의 판단)을 실행하도록 구성되어도 된다. 상기의 진단부는, 최대 블록의 제1 SOC가 제1 역치 이상인 경우와, 최대 블록의 제2 SOC가 제2 역치 이하인 경우와, 최대 블록의 ΔSOC가 제3 역치 이하인 경우에는, 전술한 진단을 행하지 않도록 구성되어도 된다.
최대 블록의 제1 SOC가 과잉으로 높은 경우와, 최대 블록의 제2 SOC가 과잉으로 낮은 경우와, 최대 블록의 ΔSOC가 과잉으로 작은 경우에 있어서는, 진단부에 의한 진단의 정밀도가 저하되기 쉬워진다. 그래서, 상기 구성에서는, 이들 경우에는 진단을 행하지 않는다. 이러한 구성에 의하면, 진단부에 의한 진단(즉, 최대 블록에 이상이 발생하고 있는지의 여부의 진단)의 정밀도를 향상시키는 것이 가능해진다.
상기의 진단부는, 조전지에 있어서 분극이 발생하고 있는지의 여부를 판단하고, 분극이 발생하고 있지 않을 때에 SOC 연산부가 구한 SOC를 사용하여, 상술한 진단을 행하도록 구성되어도 된다.
조전지에 있어서 분극이 발생하고 있는 경우에는, SOC의 추정 정밀도가 낮아지기 쉽고, 진단부에 의한 전술한 진단의 정밀도가 저하되기 쉬워진다. 그래서, 상기 구성에서는, 조전지에 있어서 분극이 발생하고 있지 않을 때에 SOC 연산부가 구한 SOC를 사용하여, 진단부가 전술한 진단을 행한다. 이러한 구성에 의하면, 진단부에 의한 진단(즉, 최대 블록에 이상이 발생하고 있는지의 여부의 진단)의 정밀도를 향상시키는 것이 가능해진다. 상기의 진단부는, 분극이 발생하고 있다고 판단되는 경우에는, 전술한 진단을 행하지 않도록 구성되어도 된다.
상술한 전지 진단 장치에 있어서, ΔSOC는, 조전지의 충전 또는 방전을 행할 때의 제1 SOC(개시 시의 SOC)와 제2 SOC(종료 후의 SOC)의 괴리의 정도를 나타내는 파라미터이다. 또한, ΔSOC 괴리도는, 최대 블록의 ΔSOC와 ΔSOC 기준값의 어긋남의 크기(괴리의 정도)를 나타내는 파라미터이다. 괴리의 정도를 나타내는 파라미터로서는, 예를 들어 차 또는 비율을 채용할 수 있다. 양자의 차(절댓값)가 클수록 양자의 괴리 정도는 크게 된다. 또한, 양자의 비율이 1에 가까울수록 양자의 괴리 정도는 작게 된다.
ΔSOC는, 제1 SOC와 제2 SOC의 차여도 된다. 진단부는, 최대 블록의 ΔSOC와 ΔSOC 기준값의 비율을 사용하여, ΔSOC 괴리도가 소정의 수준을 초과하였는지의 여부를 판단하도록 구성되어도 된다.
상기 구성에 의하면, 대용량의 조전지에 포함되는 어느 하나의 병렬 셀 블록에 있어서 전술한 셀의 이탈이 발생한 때에, 어느 병렬 셀 블록에서 셀의 이탈이 발생했는지를 높은 정밀도로 특정할 수 있다. 조전지의 용량은 100Ah 이상이어도 된다.
상술한 전지 진단 장치에 있어서의 ΔSOC 기준값은, 정상적인 병렬 셀 블록의 ΔSOC를 나타내는 지표이다. ΔSOC 기준값은, 미리 실험 또는 시뮬레이션으로 구해진 정상 값(예를 들어, 고정 값 또는 맵 값)이어도 되고, 소정의 병렬 셀 블록(더 특정적으로는, 최대 블록 이외의 병렬 셀 블록)의 ΔSOC여도 되고, 최대 블록 이외의 병렬 셀 블록의 평균 ΔSOC여도 된다.
상술한 어느 하나의 전지 진단 장치는, 제2 블록 특정부를 더 포함해도 된다. 제2 블록 특정부는, 제2 블록을 특정하도록 구성된다. 제2 블록은, 진단 단위 중에서 ΔSOC가 2번째로 큰 병렬 셀 블록이다. ΔSOC 기준값은, 제2 블록의 ΔSOC여도 된다.
상기 구성에서는, ΔSOC 기준값으로서 제2 블록의 ΔSOC를 채용한다. 최대 블록의 ΔSOC와 제2 블록의 ΔSOC의 괴리 정도는, 최대 블록에 이상(즉, 셀의 이탈)이 발생하고 있을 때에는 커지고, 최대 블록이 정상적일 때에는 0에 가까워지는 경향이 있다. 이러한 구성에 의하면, 높은 정밀도로 최대 블록의 이상을 검지하기 쉬워진다. 또한, 2개 이상의 병렬 셀 블록(예를 들어, 최대 블록 및 제2 블록)에 동시에 이상이 발생하면, 조전지의 온도가 크게 상승하는 경향이 있다. 상기의 전지 진단 장치는, 조전지의 온도를 사용하여 2개 이상의 병렬 셀 블록에 동시에 이상이 발생하고 있는지의 여부를 판단해도 된다. 전지 진단 장치는, 2개 이상의 병렬 셀 블록에 동시에 이상이 발생하고 있는 경우에는, 진단부에 의한 진단을 행하지 않도록 구성되어도 된다.
상술한 어느 하나의 전지 진단 장치에 있어서의 진단 단위는, 조전지 전체여도 되고, 조전지를 구성하는 일부의 병렬 셀 블록(더 특정적으로는, 복수의 병렬 셀 블록)이어도 된다. 50개 이상의 병렬 셀 블록을 포함하는 조전지에 있어서, 5개 이상의 병렬 셀 블록을 포함하는 진단 단위를 설정해도 된다. 이러한 구성에 의하면, 조전지의 진단을 효율적으로 행할 수 있다.
본 개시에 관한 차량은, 상술한 어느 하나의 전지 진단 장치와, 상기의 조전지와, 상기의 전지 센서를 구비한다.
상기 차량에 의하면, 차량에 탑재된 조전지를 구성하는 병렬 셀 블록의 이상을, 상술한 어느 하나의 전지 진단 장치에 의해 적확하게 검지하는 것이 가능해진다.
상기 전지 진단 장치의 ΔSOC 취득부는, 조전지의 외부 충전을 행할 때에, 조전지에 포함되는 병렬 셀 블록마다의 ΔSOC를 취득하도록 구성되어도 된다. 제1 SOC는 외부 충전을 개시할 때의 SOC여도 된다. 제2 SOC는 외부 충전을 종료한 후의 SOC여도 된다.
상기 차량에서는, 외부 충전을 행할 때에 조전지의 진단을 행할 수 있다. 외부 충전은, 차량의 외부로부터 공급되는 전력에 의해 행하여지는 조전지의 충전이다.
상기 전지 진단 장치의 ΔSOC 취득부는, 조전지의 전력을 사용한 외부 급전을 행할 때에, 조전지에 포함되는 병렬 셀 블록마다의 ΔSOC를 취득하도록 구성되어도 된다. 제1 SOC는 외부 급전을 개시할 때의 SOC여도 된다. 제2 SOC는 외부 급전을 종료한 후의 SOC여도 된다.
상기 차량에서는, 외부 급전을 행할 때에 조전지의 진단을 행할 수 있다. 외부 급전은, 조전지에 축적된 전력을 당해 차량의 외부에 공급하는 조전지의 방전이다.
상기 전지 진단 장치의 진단부는, 차량의 기동 스위치가 온으로 된 타이밍에서 소정의 진단 실행 조건이 성립하는 경우에, 전술한 진단을 행하도록 구성되어도 된다. 상기의 진단부는, 제1 시간이 제4 역치 이하인 경우와, 제2 시간이 제5 역치 이하인 경우에는, 전술한 진단을 행하지 않도록 구성되어도 된다. 제1 시간은, 기동 스위치가 오프로 되고 나서 진단에 관한 충전 또는 방전이 개시될 때까지의 시간이다. 제2 시간은, 진단에 관한 충전 또는 방전이 종료되고 나서 기동 스위치가 온으로 될 때까지의 시간이다.
차량의 기동 스위치가 오프로 된 시점에서는, 조전지에 있어서 분극이 발생하고 있는 경우가 있다. 또한, 조전지의 충전 또는 방전이 행하여지면, 조전지에 있어서 분극이 발생하는 경우가 있다. 조전지에 있어서 분극이 발생하고 나서, 조전지의 충전 및 방전이 행해지고 있지 않은 상태에서 충분한 시간이 경과하면, 조전지에 있어서의 분극은 해소된다. 상기 구성에서는, 차량의 기동 스위치가 온으로 된 타이밍에서 소정의 진단 실행 조건이 성립하는 경우에, 진단부에 의한 진단이 행하여진다. 단, 차량의 기동 스위치가 오프로 되고 나서 충분한 시간이 경과하지 않은 경우에는, 상기 진단은 행하여지지 않는다. 또한, 조전지의 충전 및 방전이 종료되고 나서 충분한 시간이 경과하지 않은 경우에도, 상기 진단은 행하여지지 않는다. 이러한 구성에 의하면, 분극에 의한 SOC의 추정 정밀도의 저하에 기인한 진단 정밀도의 저하가 억제된다.
상기 차량에 탑재되는 전지 진단 장치는, 당해 차량의 주차 중에는, 전술한 진단부에 의해 조전지의 진단을 행하고, 당해 차량의 주행 중에는, 전술한 진단부와는 다른 방법으로 조전지의 진단을 행하도록 구성되어도 된다.
상기의 전지 센서는, 진단 단위에 포함되는 모든 병렬 셀 블록에 각각 마련된 복수의 전압 센서를 포함해도 된다. 이들 전압 센서의 각각의 출력 신호는, 공통의 신호 처리 회로를 거쳐, 전지 진단 장치에 입력되어도 된다. 전지 진단 장치의 SOC 연산부는, 상기 공통의 신호 처리 회로에 의해 처리된 복수의 전압 센서의 각각의 출력 신호를 사용하여, 조전지에 포함되는 병렬 셀 블록마다의 SOC를 구하도록 구성되어도 된다.
신호 처리 회로에 의한 처리 시에 SOC의 검출 오차가 발생하는 경우가 있다. 상기 구성에서는, 진단 단위에 포함되는 모든 병렬 셀 블록의 전압 신호가 동일한 신호 처리 회로(즉, 공통의 신호 처리 회로)에 의해 처리된다. 이 때문에, SOC 연산부에 의해 구해지는 각 병렬 셀 블록의 SOC는, 동일한 오차를 포함하게 된다. 이러한 오차는, ΔSOC 또는 ΔSOC 괴리도를 산출할 때에 상쇄되어서 작아진다.
상술한 어느 하나의 차량은, 상기 조전지에 축적된 전력을 사용하여 주행하도록 구성되어도 된다. 상술한 어느 하나의 차량은, EV(전기 자동차)여도 되고, PHV(플러그인 하이브리드 차량)여도 된다.
본 발명의 상기 및 다른 목적, 특징, 국면 및 이점은, 첨부의 도면과 관련하여 이해되는 본 발명에 관한 다음의 상세한 설명으로부터 명확해질 것이다.
도 1은, 본 개시의 실시 형태에 관한 차량의 개략 구성을 도시하는 도면이다.
도 2는, 도 1에 도시한 배터리에 포함되는 조전지와 감시 모듈의 각각의 구성을 도시하는 도면이다.
도 3은, 도 2에 도시한 셀 스택 및 전압 검출 회로의 각각의 구성을 도시하는 도면이다.
도 4는, 병렬 셀 블록의 SOC 및 OCV의 관계의 일례를 도시하는 도면이다.
도 5는, 본 개시의 실시 형태에 관한 전지 진단 장치의 상세 구성을 도시하는 도면이다.
도 6은, 도 5에 도시한 전지 진단 장치에 의해 조전지의 진단이 실행되는 타이밍의 일례에 대하여 설명하기 위한 도면이다.
도 7은, 본 개시의 실시 형태에 관한 전지 진단 방법을 나타내는 흐름도이다.
도 8은, 최대 블록 및 제2 블록에 대하여 설명하기 위한 도면이다.
도 9는, 도 7에 도시한 진단 처리의 상세를 나타내는 흐름도이다.
도 10은, 도 9에 도시한 진단 처리에 있어서 사용되는 역치가 가변 설정되는 제1 예에 대하여 설명하기 위한 도면이다.
도 11은, 도 9에 도시한 진단 처리에 있어서 사용되는 역치가 가변 설정되는 제2 예에 대하여 설명하기 위한 도면이다.
도 12는, 본 개시의 실시예를 설명하기 위한 도면이다.
도 13은, 진단이 실행되는 타이밍의 변형예에 대하여 설명하기 위한 도면이다.
도 14는, 도 7에 도시한 전지 진단 방법의 변형예를 나타내는 흐름도이다.
본 개시의 실시 형태에 대해서, 도면을 참조하면서 상세하게 설명한다. 도면 중, 동일하거나 또는 상당 부분에는 동일 부호를 붙여서 그 설명은 반복하지 않는다. 이하에서는, 전자 제어 유닛(Electronic Control Unit)을 「ECU」라고 표기하는 경우가 있다. 또한, 차량용 급전 설비(Electric Vehicle Supply Equipment)를 「EVSE」라고 표기하는 경우가 있다.
도 1은, 이 실시 형태에 관한 차량의 개략 구성을 도시하는 도면이다. 도 1을 참조하여, 차량(1)은, 주행용의 전력을 축전하는 배터리(130)를 구비한다. 차량(1)은, 배터리(130)에 축적된 전력만을 사용하여 주행 가능한 전기 자동차(EV)여도 되고, 배터리(130)에 축적된 전력과 엔진(도시하지 않음)의 출력의 양쪽을 사용하여 주행 가능한 플러그인 하이브리드 차(PHV)여도 된다.
이 실시 형태에서는, 배터리(130)가 조전지를 포함한다. 조전지는, 복수의 이차 전지(즉, 셀)가 서로 전기적으로 접속되어서 구성된다. 셀로서는, 임의의 이차 전지를 채용 가능하다. 이 실시 형태에서는, 셀로서 리튬 이온 전지를 채용한다. 단, 셀은 리튬 이온 전지 이외의 이차 전지(예를 들어, 니켈 수소 전지)여도 된다. 셀은, 액계 이차 전지여도 되고, 전고체 이차 전지여도 된다. 배터리(130)에 포함되는 조전지의 구체적인 구성에 대해서는 후술한다(도 2 및 도 3 참조).
차량(1)은, ECU(500)를 구비한다. ECU(500)는, 배터리(130)의 충전 제어 및 방전 제어를 행하도록 구성된다. 또한, ECU(500)는, 차량(1)의 외부와의 통신을 제어하도록 구성된다. 차량(1)은, 배터리(130)의 상태를 감시하는 감시 모듈(140)을 더 구비한다. 감시 모듈(140)은, 배터리(130)에 포함되는 조전지의 상태를 검출하는 전지 센서와, 전지 센서의 출력 신호를 처리하는 신호 처리 회로를 포함하고, 신호 처리 회로에 의해 처리된 센서 신호를 ECU(500)에 출력한다. 이 실시 형태에서는, 조전지의 전압, 전류 및 온도를 검출하는 전압 센서, 전류 센서 및 온도 센서를, 상기 전지 센서로서 채용한다. 신호 처리 회로로서는, 예를 들어 범용의 IC(집적 회로)를 채용할 수 있다. ECU(500)는, 감시 모듈(140)의 출력에 기초하여 조전지의 상태(예를 들어, 온도, 전류, 전압, SOC(State Of Charge) 및 내부 저항)를 취득할 수 있다. 감시 모듈(140)의 구체적인 구성에 대해서는 후술한다(도 2 및 도 3 참조).
차량(1)은, EVSE(40)의 급전 방식에 대응하는 인렛(110) 및 충방전기(120)를 구비한다. 인렛(110)은, 차량(1)의 외부로부터 공급되는 전력을 수전하도록 구성된다. 또한, 인렛(110)은, 충방전기(120)로부터 공급되는 전력을 차량(1)의 외부에 출력하도록 구성된다. 또한, 도 1에는, 인렛(110) 및 충방전기(120)만을 도시하고 있지만, 차량(1)은, 복수종의 급전 방식(예를 들어, AC 방식 및 DC 방식)에 대응할 수 있도록, 급전 방식마다의 복수의 인렛 및 충방전기를 구비해도 된다.
EVSE(40)에는, 충전 케이블(42)이 접속된다. 충전 케이블(42)은, 항상 EVSE(40)에 접속되어 있어도 되고, EVSE(40)에 대하여 탈착 가능해도 된다. 충전 케이블(42)은, 선단에 커넥터(43)를 갖고, 내부에 전력선을 포함한다. 인렛(110)은, 충전 케이블(42)의 커넥터(43)가 접속 가능하게 구성된다. EVSE(40)에 연결된 충전 케이블(42)의 커넥터(43)가 차량(1)의 인렛(110)에 접속됨으로써, EVSE(40)와 차량(1)이 전기적으로 접속된다. 이에 의해, EVSE(40)로부터 충전 케이블(42)을 통하여 차량(1)에 전력을 공급하는 것이 가능해진다.
충방전기(120)는, 인렛(110)과 배터리(130) 사이에 위치한다. 충방전기(120)는, 인렛(110)으로부터 배터리(130)까지의 전력 경로의 접속/차단을 전환하는 릴레이와, 전력 변환 회로(예를 들어, 쌍방향 컨버터)와 (모두 도시하지 않음)을 포함하여 구성된다. 충방전기(120)에 포함되는 릴레이 및 전력 변환 회로의 각각은, ECU(500)에 의해 제어된다. 차량(1)은, 충방전기(120)의 상태를 감시하는 감시 모듈(121)을 더 구비한다. 감시 모듈(121)은, 충방전기(120)의 상태(예를 들어, 전압, 전류 및 온도)를 검출하는 각종 센서를 포함하고, 검출 결과를 ECU(500)에 출력한다. 이 실시 형태에서는, 감시 모듈(121)이, 상기 전력 변환 회로에 입력되는 전압 및 전류와, 상기 전력 변환 회로로부터 출력되는 전압 및 전류를 검출하도록 구성된다.
차량(1)의 외측에 위치하는 EVSE(40)와 차량(1)의 인렛(110)이 충전 케이블(42)을 통해 접속됨으로써, EVSE(40)와 차량(1) 사이에서 전력의 수수를 행하는 것이 가능해진다. 이 때문에, 차량(1)에 의한 외부 충전(즉, 차량(1)의 외부에서 전력의 공급을 받아서 차량(1)의 배터리(130)를 충전하는 것)이 가능해진다. 외부 충전을 위한 전력은, 예를 들어 EVSE(40)로부터 충전 케이블(42)을 통하여 인렛(110)에 공급된다. 충방전기(120)는, 인렛(110)이 수전한 전력을 배터리(130)의 충전에 적합한 전력으로 변환하고, 변환된 전력을 배터리(130)에 출력하도록 구성된다. 또한, EVSE(40)와 인렛(110)이 충전 케이블(42)을 통해 접속됨으로써, 차량(1)에 의한 외부 급전(즉, 차량(1)으로부터 충전 케이블(42)을 통하여 EVSE(40)에 급전을 행하는 것)이 가능해진다. 외부 급전을 위한 전력은, 배터리(130)로부터 충방전기(120)에 공급된다. 충방전기(120)는, 배터리(130)로부터 공급되는 전력을 외부 급전에 적합한 전력으로 변환하고, 변환된 전력을 인렛(110)에 출력하도록 구성된다. 외부 충전 및 외부 급전의 어느 하나를 실행할 때에는 충방전기(120)의 릴레이가 폐쇄 상태(접속 상태)가 되고, 외부 충전 및 외부 급전의 모두 실행하지 않을 때에는 충방전기(120)의 릴레이가 개방 상태(차단 상태)가 된다.
또한, 충방전기(120)의 구성은 상기에 한정되지 않고 적절히 변경 가능하다. 충방전기(120)는, 예를 들어 정류 회로, PFC(Power Factor Correction) 회로, 절연 회로(예를 들어, 절연 트랜스), 인버터 및 필터 회로의 적어도 하나를 포함해도 된다. 차량(1)이 AC 방식의 EVSE에 대하여 외부 급전을 행하는 경우에는, 배터리(130)로부터 방전된 전력에 충방전기(120)가 DC/AC 변환을 행하고, 변환 후의 교류 전력이 차량(1)으로부터 EVSE에 공급되어도 된다. 차량(1)이 DC 방식의 EVSE에 대하여 외부 급전을 행하는 경우에는, 차량(1)으로부터 EVSE에 직류 전력이 공급되고, EVSE에 내장되는 인버터에 의해 DC/AC 변환이 행하여지게 해도 된다.
ECU(500)는, 프로세서(501), RAM(Random Access Memory)(502), 기억 장치(503) 및 타이머(504)를 포함하여 구성된다. 프로세서(501)로서는, 예를 들어 CPU(Central Processing Unit)를 채용할 수 있다. RAM(502)은, 프로세서(501)에 의해 처리되는 데이터를 일시적으로 기억하는 작업용 메모리로서 기능한다. 기억 장치(503)는, 저장된 정보를 보존 가능하게 구성된다. 기억 장치(503)는, 예를 들어 ROM(Read Only Memory) 및 재기입 가능한 불휘발성 메모리를 포함한다. 기억 장치(503)에는, 프로그램 이외에, 프로그램에서 사용되는 정보(예를 들어, 맵, 수식 및 각종 파라미터)가 기억되어 있다. 이 실시 형태에서는, 기억 장치(503)에 기억되어 있는 프로그램을 프로세서(501)가 실행함으로써, ECU(500)에 있어서의 각종 제어가 실행된다. 단, ECU(500)에 있어서의 각종 제어는, 소프트웨어에 의한 실행에 한정되지 않고, 전용의 하드웨어(전자 회로)에서 실행하는 것도 가능하다. 또한, ECU(500)가 구비하는 프로세서의 수는 임의이고, 소정의 제어마다 프로세서가 준비되어도 된다.
타이머(504)는, 설정 시각의 도래를 프로세서(501)에 알리도록 구성된다. 타이머(504)에 설정된 시각이 되면, 타이머(504)로부터 프로세서(501)에 그 취지를 알리는 신호가 송신된다. 이 실시 형태에서는, 타이머(504)로서 타이머 회로를 채용한다. 단, 타이머(504)는, 하드웨어(타이머 회로)가 아닌, 소프트웨어에 의해 실현해도 된다. 또한, ECU(500)는, ECU(500)에 내장되는 리얼타임 클록(RTC) 회로(도시하지 않음)를 이용하여 현재 시각을 취득할 수 있다.
차량(1)은, 주행 구동부(150)와, 입력 장치(160)와, 알림 장치(170)와, 통신기기(180)와, 구동륜 W를 더 구비한다. 또한, 차량(1)의 구동 방식은, 도 1에 도시되는 전륜 구동에 한정되지 않고, 후륜 구동 또는 4륜 구동이어도 된다.
주행 구동부(150)는, 도시하지 않은 PCU(Power Control Unit)와 MG(Motor Generator)를 포함하고, 배터리(130)에 축적된 전력을 사용하여 차량(1)을 주행 시키도록 구성된다. PCU는, 예를 들어 프로세서를 포함하여 구성되는 제어 장치와, 인버터와, 컨버터와, 릴레이(이하, 「SMR(System Main Relay)」이라고 칭한다)와 (모두 도시하지 않음)을 포함하여 구성된다. PCU의 제어 장치는, ECU(500)로부터의 지시(제어 신호)를 수신하고, 그 지시에 따라서 PCU의 인버터, 컨버터 및 SMR을 제어하도록 구성된다. MG는, 예를 들어 삼상 교류 모터 제너레이터이다. MG는, PCU에 의해 구동되고, 구동륜 W를 회전시키도록 구성된다. 또한, MG는, 회생 발전을 행하여, 발전한 전력을 배터리(130)에 공급하도록 구성된다. SMR은, 배터리(130)로부터 PCU까지의 전력 경로의 접속/차단을 전환하도록 구성된다. SMR은, 차량(1)의 주행 시에 폐쇄 상태(접속 상태)가 된다.
입력 장치(160)는, 유저로부터의 입력을 접수하는 장치이다. 입력 장치(160)는, 유저에 의해 조작되고, 유저의 조작에 대응하는 신호를 ECU(500)에 출력한다. 통신 방식은 유선이어도 무선이어도 된다. 입력 장치(160)의 예로서는, 각종 스위치, 각종 포인팅 디바이스, 키보드, 터치 패널을 들 수 있다. 입력 장치(160)는, 차 내비게이션 시스템의 조작부여도 된다. 입력 장치(160)는, 음성 입력을 접수하는 스마트 스피커여도 된다.
알림 장치(170)는, ECU(500)로부터 요구가 있었을 때에, 유저(예를 들어, 차량(1)의 탑승인)에 소정의 알림 처리를 행하도록 구성된다. 알림 장치(170)는, 표시 장치(예를 들어, 터치 패널 디스플레이), 스피커 및 램프(예를 들어, MIL(고장 경고 등))의 적어도 하나를 포함해도 된다. 알림 장치(170)는, 미터 패널, 헤드업 디스플레이, 또는 차 내비게이션 시스템이어도 된다.
통신기기(180)는, 각종 통신 I/F(인터페이스)를 포함하여 구성된다. 통신기기(180)는, DCM(Data Communication Module)을 포함해도 된다. ECU(500)는, 통신기기(180)를 통하여 차량(1)의 외부의 통신 장치와 무선 통신을 행하도록 구성된다.
도 2는, 배터리(130)에 포함되는 조전지와 감시 모듈(140)의 각각의 구성을 도시하는 도면이다. 도 1과 함께 도 2를 참조하여, 배터리(130)는, 조전지(300)를 포함한다. 조전지(300)는, N개의 셀 스택(즉, 셀 스택(200-1 내지 200-N))을 포함한다. N은, 5 이상이어도 되고, 30 이상이어도 된다. 이 실시 형태에서는, N을 10으로 한다. 감시 모듈(140)은, N개의 전압 검출 회로(즉, 전압 검출 회로(141-1 내지 141-N))와, 1개의 전류 검출 회로(142)와, 1개의 온도 검출 회로(143)를 포함한다. 전류 검출 회로(142)에는, 셀 스택(200-1 내지 200-N)에 흐르는 전류를 검출하는 전류 센서 IB가 탑재되어 있다. 전류 검출 회로(142)는, 전류 센서 IB의 출력 신호를 처리하도록 구성된다. 온도 검출 회로(143)에는, 조전지(300)의 온도를 검출하는 온도 센서 TB가 탑재되어 있다. 온도 검출 회로(143)는, 온도 센서 TB의 출력 신호를 처리하도록 구성된다. 이 실시 형태에서는, 감시 모듈(140)에 포함되는 전류 센서 IB 및 온도 센서 TB의 각각의 수가 1개이다. 단 이것에 한정되지 않고, 전류 센서 IB 및 온도 센서 TB의 수는 적절히 변경 가능하다. 예를 들어, 셀 스택마다 또는 병렬 셀 블록마다 또는 셀마다 온도 센서 TB를 마련해도 된다.
전압 검출 회로(141-1 내지 141-N)는, 각각 셀 스택(200-1 내지 200-N)에 마련되어 있다. 이하, 구별하여 설명하는 경우를 제외하고, 셀 스택(200-1 내지 200-N)의 각각을 「셀 스택(200)」이라고 기재하고, 전압 검출 회로(141-1 내지 141-N)의 각각을 「전압 검출 회로(141)」라고 기재한다. 도 3은, 셀 스택(200) 및 전압 검출 회로(141)의 각각의 구성을 도시하는 도면이다.
도 3을 참조하여, 셀 스택(200)은, M개의 병렬 셀 블록(즉, 병렬 셀 블록(100-1 내지 100-M))을 포함한다. 1개의 전압 검출 회로(141)에 M개의 전압 센서(즉, 전압 센서 VB-1 내지 VB-M)가 탑재되어 있다. 전압 센서 VB-1 내지 VB-M은, 각각 병렬 셀 블록(100-1 내지 100-M)의 단자 간 전압을 검출하도록 구성된다. M은, 5 이상이어도 되고, 30 이상이어도 된다. 이 실시 형태에서는, M을 10으로 한다. 이하, 구별하여 설명하는 경우를 제외하고, 병렬 셀 블록(100-1 내지 100-M)의 각각을 「병렬 셀 블록(100)」이라고 기재한다.
병렬 셀 블록(100-1 내지 100-M)은, 전력선 PL(13)을 통해 직렬로 접속되어 있다. 각 전력선 PL(13)은, 셀 스택(200)의 내부에 있어서 인접하는 병렬 셀 블록(100)끼리를 직렬로 접속하고 있다. 전력선 PL(11), PL(12)은, 셀 스택(200)과 외부를 접속하기 위한 전력선이다. 이 실시 형태에서는, 전력선 PL(11)이 셀 스택(200)의 정극측의 전력선이고, 전력선 PL(12)이 셀 스택(200)의 부극측의 전력선이다.
각 병렬 셀 블록(100)은, 병렬 접속된 복수의 셀(10)(이 실시 형태에서는, 리튬 이온 전지)을 포함한다. 각 병렬 셀 블록(100)에 포함되는 셀(10)의 수는 임의이지만, 이 실시 형태에서는 3개로 한다. 각 병렬 셀 블록(100)에 있어서, 3개의 셀(10)은, 전력선 PLA(1), PLA(2), PLB(1), PLB(2)에 의해 병렬로 접속되어 있다. 전력선 PLA(1), PLA(2), PLB(1), PLB(2)의 각각은, 와이어여도 되고, 금속판(예를 들어, 버스 바)이어도 된다. 병렬 셀 블록(100)에 포함되는 각 PLB(1) 또는 각 PLB(2)에 퓨즈(도시하지 않음)가 마련되어도 된다.
전력선 PLA(1), PLA(2)는 병렬 방향의 전력선이고, 전력선 PLB(1), PLB(2)는 직렬 방향의 전력선이다. 병렬 셀 블록(100-1)에 있어서는, 전력선 PLA(1)가 직렬 방향의 전력선 PL(11)과 접속되어 있다. 병렬 셀 블록(100-2 내지 100-M)의 각각에 있어서는, 전력선 PLA(1)가, 직렬 방향의 전력선 PL(13)을 통해, 인접하는 병렬 셀 블록(100)의 전력선 PLA(2)와 접속되어 있다. 각 전력선 PLB(1)는, 각 셀(10)의 정극 단자와 전력선 PLA(1)를 전기적으로 접속하고 있다. 각 전력선 PLB(2)는, 각 셀(10)의 부극 단자와 전력선 PLA(2)를 전기적으로 접속하고 있다. 병렬 셀 블록(100-M)에 있어서는, 전력선 PLA(2)가 직렬 방향의 전력선 PL(12)과 접속되어 있다. 다른 병렬 셀 블록(100)(즉, 병렬 셀 블록(100-1 내지 100-M-1))의 각각에 있어서는, 전력선 PLA(2)가, 직렬 방향의 전력선 PL(13)을 통해, 인접하는 병렬 셀 블록(100)의 전력선 PLA(1)와 접속되어 있다.
상기한 바와 같이, 이 실시 형태에서는, 셀 스택(200-1 내지 200-N)이 동일한 구성(즉, 도 3에 도시한 구성)을 갖는다. 셀 스택(200-1 내지 200-N)의 각각은, M개(이 실시 형태에서는, 10개)의 병렬 셀 블록(100)으로 구성된다. 각 셀 스택(200)을 구성하는 M개의 병렬 셀 블록(100)의 각각은, 3개의 셀(10)이 병렬 접속되어 구성된다. 단 이것에 한정되지 않고, 셀 스택(200-1 내지 200-N)은 다른 구성을 가져도 된다. 1개의 병렬 셀 블록에 포함되는 셀의 수는 3개에 한정되지 않고 임의이다. 예를 들어, 각 병렬 셀 블록이 5개 이상의 셀을 포함해도 된다. 또한, 병렬 셀 블록마다 셀의 수가 달라도 된다.
다시 도 2를 참조하여, 셀 스택(200-1 내지 200-N)은, 직렬로 접속됨으로써, 조전지(300)를 구성하고 있다. 조전지(300)는, N×M개의 병렬 셀 블록(100)을 포함한다. 조전지(300)에 포함되는 병렬 셀 블록의 수는, 50개 이상이어도 되고, 100개 이상이어도 된다. 이 실시 형태에서는, 조전지(300)에 포함되는 병렬 셀 블록의 수가 100개이다. 조전지(300)의 용량은, 30Ah 이상이어도 되고, 100Ah 이상이어도 된다. 이 실시 형태에서는, 조전지(300)의 용량이 150Ah이다. 전력선 PL(1), PL(2)는, 조전지(300)와 외부를 접속하기 위한 전력선이다. 이 실시 형태에서는, 전력선 PL(1)이 조전지(300)의 정극측의 전력선이고, 전력선 PL(2)이 조전지(300)의 부극측의 전력선이다. 전력선 PL(1)은, 셀 스택(200-N)의 전력선 PL(11)(도 3)에 상당한다. 전력선 PL(2)은, 셀 스택(200-1)의 전력선 PL(12)(도 3)에 상당한다. 이 실시 형태에서는, 전류 센서 IB가 전력선 PL(2)에 배치된다. 단 이것에 한정되지 않고, 전류 센서 IB는 전력선 PL(1)에 배치되어도 된다. 전류 센서 IB는, 각 병렬 셀 블록(100)을 구성하는 모든 셀(10)에 흐르는 총 전류를 검출한다.
그런데, 도 3에 도시한 병렬 셀 블록(100)에 있어서 전력선 PLB(1) 또는 PLB(2)에 단선(퓨즈의 용단을 포함한다) 또는 체결부의 느슨함이 발생하면, 병렬 셀 블록(100)으로부터 셀(10)이 이탈하고, 병렬 셀 블록(100)에 있어서 적절하게 접속되어 있는 셀(10)의 수가 줄어들게 된다. 병렬 셀 블록(100)으로부터 셀(10)이 이탈하면, 병렬 셀 블록(100)의 충전 또는 방전에 의해 병렬 셀 블록(100)의 SOC가 변화하기 쉬워진다.
예를 들어, 병렬 셀 블록(100)에 있어서 1개의 전력선 PLB(1)가 단선하면, 병렬 셀 블록(100)의 충전 시 또는 방전 시에, 1개의 셀(10)에는 전류가 흐르지 않게 되고, 나머지의 2개의 셀(10)만에 전류가 흐르게 된다. 이에 의해, 충전 시 또는 방전 시에 셀 1개당에 흘러드는 전류의 크기는, 정상 시(즉, 셀의 이탈이 발생하고 있지 않을 때)의 약 1.5배가 된다. 또한, 병렬 셀 블록(100)으로부터 1개의 셀(10)이 이탈하면, 병렬 셀 블록(100)의 용량(즉, 만충전 상태의 축전량)이 정상 시의 약 3분의 2가 되기 때문에, 병렬 셀 블록(100)의 충전 또는 방전에 의해 병렬 셀 블록(100)의 SOC가 변화하기 쉬워진다.
상기한 바와 같이, 셀의 이탈이 발생하면, 병렬 셀 블록(100)의 충전 또는 방전에 의한 SOC의 변동량이 커진다. 또한, 병렬 셀 블록(100)의 SOC가 증가할수록 병렬 셀 블록(100)의 OCV(Open Circuit Voltage)는 높아지는 경향이 있다. 단, 조전지(300)의 용량, 축전 상태, 또는 충방전의 상황에 따라서는, 셀의 이탈이 발생해도, 병렬 셀 블록(100)의 OCV가 거의 변동하지 않는 경우가 있다.
도 4는, 병렬 셀 블록의 SOC 및 OCV의 관계의 일례를 도시하는 도면이다. 도 4를 참조하여, 병렬 셀 블록(100)의 SOC 및 OCV는, 선 L1로 나타내는 것과 같은 관계를 갖는다. 예를 들어, 병렬 셀 블록(100)이 정상적일 때에, 병렬 셀 블록(100)의 SOC를 10%에서 30%로 하기 위한 충전을 행하면, 병렬 셀 블록(100)의 SOC 및 OCV가 점 P1로 표시되는 값으로부터 점 P2로 표시되는 값으로 상승한다. 한편, 동일한 충전이 행하여질 때에 병렬 셀 블록(100)에 있어서 이상(즉, 셀의 이탈)이 발생하고 있으면, 병렬 셀 블록(100)의 SOC 및 OCV가 점 P1로 표시되는 값으로부터 점 P3으로 표시되는 값으로 상승한다.
도 4에 도시하는 예에 있어서, 점 P2로 표시되는 OCV와 점 P3으로 표시되는 OCV는 큰 차이가 없다. 이 때문에, 충전 개시 시의 OCV인 제1 OCV와, 충전 종료 후의 OCV인 제2 OCV의 차(즉, ΔOCV)는, 병렬 셀 블록(100)에 있어서 이상(즉, 셀의 이탈)이 발생해도, 거의 변동하지 않는다. 이에 비해, 충전 개시 시의 SOC인 제1 SOC와, 충전 종료 후의 SOC인 제2 SOC의 차(즉, ΔSOC)는, 정상 시에는 20%(=30%-10%)이고, 이상 시에는 60%(=70%-10%)이다. ΔSOC는 정상 시와 이상 시로 크게 다르다. 이상 시에는, 병렬 셀 블록(100)의 ΔSOC(즉, 조전지(300)의 충전에 의한 병렬 셀 블록(100)의 SOC 변화량)가 정상 시보다도 커진다. 이 실시 형태에 관한 ECU(500)는, ΔSOC를 사용함으로써, 조전지(300)를 구성하는 각 병렬 셀 블록(100)의 이상을 높은 정밀도로 검지한다.
도 5는, ECU(500)의 상세 구성을 도시하는 도면이다. ECU(500)는, 본 개시에 관한 「전지 진단 장치」의 일례에 상당한다. 도 1 내지 도 3과 함께 도 5를 참조하여, ECU(500)는, SOC 연산부(510)와, ΔSOC 취득부(520)와, 최대 블록 특정부(530)와, 제2 블록 특정부(540)와, ΔSOC 비율 취득부(550)와, 진단부(560)를 포함한다. 이 실시 형태에서는, 도 1에 도시한 프로세서(501)와, 프로세서(501)에 의해 실행되는 프로그램에 의해, 이들 각 부가 구현화된다. 단 이것에 한정되지 않고, 이들 각 부는, 전용의 하드웨어(전자 회로)에 의해 구현화되어도 된다.
SOC 연산부(510)는, 감시 모듈(140)로부터 ECU(500)에 송신되는 정보를 사용하여, 조전지(300)에 포함되는 각 병렬 셀 블록(100)의 SOC를 구하도록 구성된다. 전압 센서 VB-1 내지 VB-M(도 3 참조)의 각각의 출력 신호는, 공통의 전압 검출 회로(141)를 거쳐, SOC 연산부(510)에 입력된다. 즉, 각 전압 검출 회로(141)가 M개의 센서 신호를 처리하여 SOC 연산부(510)에 출력한다. 이 실시 형태에서는, 전압 검출 회로(141)가, 본 개시에 관한 「공통의 신호 처리 회로」의 일례에 상당한다. 전류 센서 IB(도 2 참조)의 출력 신호는 전류 검출 회로(142)를 거쳐 SOC 연산부(510)에 입력된다. 온도 센서 TB(도 2 참조)의 출력 신호는 온도 검출 회로(143)를 거쳐 SOC 연산부(510)에 입력된다. 이 실시 형태에서는, SOC 연산부(510)가, 전압 검출 회로(141)에 의해 처리된 전압 센서 VB-1 내지 VB-M의 각 출력 신호와, 전류 검출 회로(142)에 의해 처리된 전류 센서 IB의 출력 신호와, 온도 검출 회로(143)에 의해 처리된 온도 센서 TB의 출력 신호를 사용하여, 조전지(300)(도 2)에 포함되는 병렬 셀 블록(100)마다의 SOC를 구하도록 구성된다.
SOC 연산부(510)가 SOC를 구하는 로직은 임의이다. 예를 들어, SOC 연산 정보가 미리 기억 장치(503)에 기억되어 있어도 된다. SOC 연산 정보는, 병렬 셀 블록(100)의 OCV와 조전지(300)의 전류와 조전지(300)의 온도와 병렬 셀 블록(100)의 SOC의 관계를 나타내는 정보이다. SOC 연산부(510)는, SOC 연산 정보를 참조하여, 병렬 셀 블록(100)의 OCV와 조전지(300)의 전류와 조전지(300)의 온도로부터, 병렬 셀 블록(100)의 SOC를 구해도 된다.
ΔSOC 취득부(520)는, 조전지(300)의 외부 충전(즉, 차량(1)의 외부로부터 공급되는 전력에 의해 행하여지는 조전지(300)의 충전)을 행할 때에, 조전지(300)에 포함되는 병렬 셀 블록(100)마다의 ΔSOC를 취득하도록 구성된다. 이 실시 형태에서는, ΔSOC로서, 제1 SOC와 제2 SOC의 차(=제2 SOC-제 1SOC)를 채용한다. 제1 SOC는 외부 충전을 개시할 때의 SOC이다. 제2 SOC는 외부 충전을 종료한 후의 SOC이다. ΔSOC 취득부(520)는, SOC 연산부(510)로부터 병렬 셀 블록(100)마다의 제1 SOC 및 제2 SOC를 취득하고, 얻어진 정보를 사용하여, 병렬 셀 블록(100)마다의 ΔSOC를 산출한다.
이 실시 형태에서는, 진단 단위(즉, 셀 스택(200))에 포함되는 모든 병렬 셀 블록(즉, 병렬 셀 블록(100-1 내지 100-M))에 전압 센서(즉, 전압 센서 VB-1 내지 VB-M)가 마련되어 있다(도 3 참조). 전압 센서 VB-1 내지 VB-M의 각각의 출력 신호는, 공통의 신호 처리 회로(전압 검출 회로(141))를 거쳐, ECU(500)에 입력된다. SOC 연산부(510)는, 공통의 신호 처리 회로에 의해 처리된 각 전압 센서의 출력 신호를 사용하여, 진단 단위에 포함되는 각 병렬 셀 블록(100)의 SOC를 구한다. 이 때문에, SOC 연산부(510)에 의해 구해지는 각 병렬 셀 블록의 SOC는, 동일한 오차를 포함하게 된다. 이러한 오차는, ΔSOC 취득부(520)가 ΔSOC를 산출할 때에 상쇄된다. 또한, ΔSOC 비율 취득부(550)가, 후술하는 ΔSOC 비율을 산출할 때에도, 상기 오차는 상쇄된다.
최대 블록 특정부(530)는, ΔSOC 취득부(520)로부터 취득되는 정보(각 병렬 셀 블록(100)의 ΔSOC를 포함한다)를 사용하여, 최대 블록을 특정하도록 구성된다. 최대 블록은, 조전지(300)의 일부 또는 전부에 설정된 진단 단위 중에서 ΔSOC가 가장 큰 병렬 셀 블록(100)이다. 이 실시 형태에서는, 각 셀 스택(200)을 진단 단위로 한다. 최대 블록 특정부(530)는, 셀 스택(200)마다 최대 블록을 특정한다. 조전지(300)(도 2 참조)는 N개(이 실시 형태에서는, 10개)의 셀 스택(200)을 포함하기 때문에, 최대 블록 특정부(530)에 의해 N개의 최대 블록이 특정된다.
제2 블록 특정부(540)는, ΔSOC 취득부(520)로부터 취득되는 정보(각 병렬 셀 블록(100)의 ΔSOC를 포함한다)를 사용하여, 제2 블록을 특정하도록 구성된다. 제2 블록은, 전술한 진단 단위(셀 스택(200)) 중에서 ΔSOC가 2번째로 큰 병렬 셀 블록(100)이다. 제2 블록 특정부(540)는, 셀 스택(200)마다 제2 블록을 특정한다. 제2 블록 특정부(540)에 의해 N개의 제2 블록이 특정된다.
ΔSOC 비율 취득부(550)는, ΔSOC 취득부(520), 최대 블록 특정부(530) 및 제2 블록 특정부(540)로부터 취득되는 정보(각 병렬 셀 블록(100)의 ΔSOC, 그리고 각 셀 스택(200)의 최대 블록 및 제2 블록을 포함한다)를 사용하여, 진단 단위(셀 스택(200))마다의 ΔSOC 비율을 산출하도록 구성된다. ΔSOC 비율은, 최대 블록의 ΔSOC를 제2 블록의 ΔSOC로 제산한 값(=최대 블록의 ΔSOC/제2 블록의 ΔSOC)이다. 이 실시 형태에서는, 제2 블록의 ΔSOC가, 본 개시에 관한 「ΔSOC 기준값」의 일례에 상당한다. 또한, ΔSOC 비율은, 「ΔSOC 괴리도」의 일례에 상당한다.
진단부(560)는, ΔSOC 비율 취득부(550)로부터 취득되는 정보(각 셀 스택(200)의 ΔSOC 비율을 포함한다)를 사용하여 조전지(300)의 진단을 행하도록 구성된다. 진단부(560)는, 진단 단위(셀 스택(200))마다 이상의 유무를 판단한다. 진단부(560)는, 진단 단위의 ΔSOC 비율이 소정값 이상인 경우에, 당해 진단 단위의 최대 블록에 이상이 발생하고 있다고 판단한다. 이 실시 형태에서는, 소정의 진단 실행 조건이 성립하는 경우에 한하여, 진단부(560)가 상기의 진단(즉, 각 진단 단위의 최대 블록에 이상이 발생하고 있는지의 여부의 판단)을 실행한다. 진단 실행 조건의 상세에 대해서는 후술한다(도 7 참조).
도 6은, ECU(500)에 의해 조전지(300)의 진단이 실행되는 타이밍의 일례에 대하여 설명하기 위한 도면이다.
도 1 및 도 5와 함께 도 6을 참조하여, 도 1에 도시한 입력 장치(160)는, 차량(1)의 기동 스위치를 포함한다. 기동 스위치는, 차량 시스템을 기동시키기 위한 스위치이다. 기동 스위치가 온 됨으로써 차량 시스템이 기동한다. 일반적으로, 기동 스위치는 「파워 스위치」 또는 「이그니션 스위치」라고 칭해진다. 이하에 설명하는 바와 같이, 유저는, 기동 스위치를 조작함으로써, 차량 시스템의 작동 상태(Ready-ON 상태)/정지 상태(Ready-OFF 상태)를 전환할 수 있다.
기동 스위치는, 예를 들어 차량(1)의 운전을 개시 또는 종료할 때에 조작된다. 차량(1)의 주행 중에는, 차량 시스템이 작동 상태(Ready-ON 상태)로 되어 있다. 도 6에 도시하는 예에서는, 유저가, 차량(1)의 주행을 종료할 때에, 차량(1)을 정차시켜, 파킹 브레이크(도시하지 않음)를 걸어서 시프트 레인지를 P 레인지로 한 후, 타이밍 t11에서 기동 스위치를 누름으로써, 차량 시스템을 Ready-OFF 상태로 한다. 차량 시스템이 Ready-ON 상태로부터 Ready-OFF 상태로 전환될 때에, ECU(500)에 의해 SMR이 개방 상태가 되어, 조전지(300)로부터 PCU까지의 전력 경로가 차단된다. 또한, Ready-OFF 상태에서는, ECU(500)가 정지 상태(예를 들어, 슬립 상태)가 된다. 또한, 상기의 타이밍 t11 및 후술하는 타이밍 t12 내지 t14는, 기억 장치(503)에 기록된다.
그 후, 외부 충전의 준비(예를 들어, 인렛(110)에 대한 충전 케이블(42)의 접속)이 행하여져, 타이밍 t12에서 외부 충전이 개시된다. 이하, 타이밍 t11로부터 타이밍 t12까지의 기간을, 「제1 OFF 기간」이라고도 칭한다. 제1 OFF 기간의 길이는, 기동 스위치가 오프로 되고 나서 외부 충전이 개시될 때까지의 시간에 상당한다.
SOC 연산부(510)는, 외부 충전이 개시되기 직전에, 전지 센서(더 특정적으로는, 전압 센서 VB-1 내지 VB-M, 전류 센서 IB 및 온도 센서 TB)의 출력을 사용하여, 각 병렬 셀 블록(100)의 SOC를 구한다. 각 센서의 출력 신호는, 신호 처리 회로(더 특정적으로는, 전압 검출 회로(141-1 내지 141-N), 전류 검출 회로(142) 및 온도 검출 회로(143))를 거쳐, SOC 연산부(510)에 입력된다. SOC 연산부(510)는, 전압 검출 회로(141-1 내지 141-N)의 각각의 출력에 기초하여, 각 병렬 셀 블록(100)의 OCV를 취득한다. SOC 연산부(510)는, 전류 검출 회로(142) 및 온도 검출 회로(143)의 각각의 출력에 기초하여, 조전지(300)의 전류 및 온도를 취득한다. SOC 연산부(510)는, 예를 들어 SOC 연산 정보를 참조하여, 각 병렬 셀 블록(100)의 OCV와 조전지(300)의 전류와 조전지(300)의 온도로부터, 각 병렬 셀 블록(100)의 SOC를 구한다. 여기에서 얻어지는 SOC는, 제1 SOC에 상당한다. 각 병렬 셀 블록(100)의 제1 SOC는, 기억 장치(503)에 보존된다.
타이밍 t12에서 개시된 외부 충전은, 타이밍 t13에서 종료한다. 또한, 차량에 있어서 대용량(예를 들어, 100Ah 이상)의 조전지가 사용되는 경우에는, 1회의 충전으로 조전지가 만충전이 되는 경우는 적다. 외부 충전의 실행 중(즉, 타이밍 t12로부터 타이밍 t13까지의 기간)에 있어서는, 감시 모듈(140)에 의해 조전지(300)의 상태가 실시간으로 축차 검출되어도 된다. 검출 결과는 기억 장치(503)에 기록되어도 된다. ECU(500)는, 취득되는 정보에 기초하여, 조전지(300)의 이상 유무를 판단해도 된다. 예를 들어, ECU(500)는, 온도 센서 TB에 의해 검출되는 조전지(300)의 온도를 사용하여, 조전지(300)의 이상 유무를 판단해도 된다. ECU(500)는, 조전지(300)의 온도가 소정값 이상인 경우(즉, 조전지(300)가 과잉으로 발열하고 있는 경우)에, 조전지(300)에 이상이 발생하고 있다고 판단해도 된다. 이상이 검지된 경우에는, ECU(500)가 이상의 알림 및/또는 기록을 행해도 된다.
그 후, 타이밍 t14에서, 유저가 브레이크 페달(도시하지 않음)을 밟으면서 기동 스위치를 누르면, 차량 시스템(나아가서는, ECU(500))이 기동하고, Ready-ON 상태가 된다. Ready-ON 상태에서는, ECU(500)에 의해 SMR이 폐쇄 상태로 됨으로써 조전지(300)로부터 PCU에 전력이 공급되어, 차량(1)이 주행 가능한 상태가 된다. 이하, 타이밍 t13으로부터 타이밍 t14까지의 기간을, 「제2 OFF 기간」이라고도 칭한다. 제2 OFF 기간의 길이는, 외부 충전이 종료하고 나서 기동 스위치가 온으로 될 때까지의 시간에 상당한다.
SOC 연산부(510)는, 외부 충전이 종료한 후, 예를 들어 타이밍 t14에서, 전지 센서(더 특정적으로는, 전압 센서 VB-1 내지 VB-M, 전류 센서 IB 및 온도 센서 TB)의 출력을 사용하여, 각 병렬 셀 블록(100)의 SOC를 구한다. 여기에서 얻어지는 SOC는, 제2 SOC에 상당한다. 각 병렬 셀 블록(100)의 제2 SOC는, 기억 장치(503)에 보존된다. 제2 SOC를 구하는 방법은, 예를 들어 전술한 제1 SOC와 동일하다.
진단부(560)는, 타이밍 t14(즉, 차량(1)의 기동 스위치가 온으로 된 타이밍)에서 소정의 진단 실행 조건이 성립하는지의 여부를 판단하여, 소정의 진단 실행 조건이 성립하는 경우에는, 전술한 조전지(300)의 진단을 실행한다.
도 7은, 이 실시 형태에 관한 전지 진단 방법을 나타내는 흐름도이다. 이 흐름도에 도시되는 처리는, 조전지(300)의 외부 충전이 종료한 후에 기동 스위치가 온으로 된 타이밍에서 개시된다. 개시 타이밍은, 예를 들어 도 6에 도시한 타이밍 t14여도 된다. 조전지(300)의 진단은, 진단 단위(셀 스택(200))마다 실행된다. 이하에서는, 1개의 진단 단위에 주목하여 그 진단 처리에 대하여 설명하지만, 다른 진단 단위에 대해서도 마찬가지의 진단 처리가 행하여진다.
도 5와 함께 도 7을 참조하여, 진단부(560)는, 스텝(이하, 단순히 「S」라고 표기한다) S11 내지 S17에 있어서, 소정의 진단 실행 조건이 성립하는지의 여부를 판단한다. 진단부(560)는, 소정의 진단 실행 조건이 성립하는 경우에는, 조전지(300)의 진단 처리(S20)를 실행하고, 소정의 진단 실행 조건이 성립하지 않는 경우에는, 조전지(300)의 진단 처리(S20)를 실행하지 않는다.
S11에서는, 제1 OFF 기간(예를 들어, 도 6에 도시한 기간 t11 내지 t12)이 소정의 역치 Y4보다도 긴 것인지의 여부를, 진단부(560)가 판단한다. S12에서는, 제2 OFF 기간(예를 들어, 도 6에 도시한 기간 t13 내지 t14)이 소정의 역치 Y5보다도 긴 것인지의 여부를, 진단부(560)가 판단한다. 역치 Y4 및 Y5의 각각은, 통전 시에 조전지(300)에 발생한 분극이 해소되는 정도의 길이로 설정된다. 이 실시 형태에서는, 제1 OFF 기간의 길이, 역치 Y4가, 각각 본 개시에 관한 「제1 시간」, 「제4 역치」의 일례에 상당한다. 또한, 제2 OFF 기간의 길이, 역치 Y5가, 각각 본 개시에 관한 「제2 시간」, 「제5 역치」의 일례에 상당한다.
S13에서는, 최대 블록 특정부(530)가 최대 블록을 특정한다. 특정된 최대 블록은, 기억 장치(503)에 보존된다. 도 8은, 최대 블록 및 제2 블록에 대하여 설명하기 위한 도면이다. 도 8을 참조하여, 최대 블록은, 진단 단위(셀 스택(200)) 중에서 ΔSOC가 가장 큰 병렬 셀 블록이다. 제2 블록은, 진단 단위(셀 스택(200)) 중에서 ΔSOC가 2번째로 큰 병렬 셀 블록이다. 이하, 최대 블록의 ΔSOC를 「1st_ΔSOC」, 제2 블록의 ΔSOC를 「2nd_ΔSOC」라고 기재하는 경우가 있다.
다시 도 5와 함께 도 7을 참조하여, S14에서는, 최대 블록의 제1 SOC가 소정의 역치 Y1보다도 작은 것인지의 여부를, 진단부(560)가 판단한다. S15에서는, 최대 블록의 제2 SOC가 소정의 역치 Y2보다도 큰 것인지의 여부를, 진단부(560)가 판단한다. S16에서는, 진단부(560)가, 최대 블록의 ΔSOC(1st_ΔSOC)를 취득한다. S17에서는, 1st_ΔSOC가 소정의 역치 Y3보다도 큰 것인지의 여부를, 진단부(560)가 판단한다.
역치 Y1 내지 Y3은, 외부 충전이 진단에 적합한 SOC 범위에서 행해졌는지의 여부를 판단하기 위한 역치이다. 역치 Y1은, 예를 들어 20% 내지 65%의 범위에서 선택되어도 된다. 역치 Y2는, 예를 들어 35% 내지 80%의 범위에서 선택되어도 된다. 역치 Y3은, 예를 들어 15% 내지 50%의 범위에서 선택되어도 된다. 이 실시 형태에서는, 역치 Y1, Y2, Y3이, 각각 본 개시에 관한 「제1 역치」, 「제2 역치」, 「제3 역치」의 일례에 상당한다.
전술한 진단 실행 조건은, 상기 S11, S12, S14, S15, S17의 모두에서 "예"라고 판단된 경우에 성립한다. 그리고, 진단 실행 조건이 성립하면, 후술하는 진단 처리(S20)가 실행된다.
이 실시 형태에서는, 진단부(560)가, S11 및 S12의 판단 결과에 기초하여 조전지(300)에 있어서 분극이 발생하고 있는지의 여부를 판단하고, 분극이 발생하고 있지 않을 때에 SOC 연산부(510)가 구한 SOC를 사용하여, 진단부(560)가 진단(S20)을 행한다. 또한, 진단부(560)는, 분극이 발생하고 있다고 판단되는 경우에는, 진단(S20)을 행하지 않는다. 상세하게는, 기동 스위치가 오프로 되고 나서 진단에 관한 외부 충전이 개시될 때까지의 시간이 역치 Y4 이하인 경우(S11에서 "아니오")와, 진단에 관한 외부 충전이 종료하고 나서 기동 스위치가 온으로 될 때까지의 시간이 역치 Y5 이하인 경우(S12에서 "아니오")에, 분극이 발생하고 있다고 판단된다. 분극이 발생하고 있지 않을 때에 구해진 SOC를 사용하여 진단이 행하여짐으로써, 진단 정밀도를 향상시키는 것이 가능해진다.
이 실시 형태에서는, 최대 블록의 제1 SOC가 역치 Y1 이상인 경우(S14에서 "아니오")와, 최대 블록의 제2 SOC가 역치 Y2 이하인 경우(S15에서 "아니오")와, 최대 블록의 ΔSOC가 역치 Y3 이하인 경우(S17에서 "아니오")에는, 진단부(560)가 진단(S20)을 행하지 않는다. 이러한 구성에 의하면, 진단부(560)에 의한 진단의 정밀도를 향상시키는 것이 가능해진다.
도 9는, 도 7에 도시한 진단 처리(S20)의 상세를 나타내는 흐름도이다. 도 5와 함께 도 9를 참조하여, S21에서는, 제2 블록 특정부(540)가 제2 블록을 특정한다. S22에서는, ΔSOC 비율 취득부(550)가, 제2 블록의 ΔSOC(2nd_ΔSOC)를 취득한다. S23에서는, ΔSOC 비율 취득부(550)가, 식 F 「ΔSOC 비율=1st_ΔSOC/2nd_ΔSOC」를 따라서 진단 단위의 ΔSOC 비율을 산출한다. S24에서는, 진단부(560)가 역치 Z를 결정한다. 역치 Z는, 진단 단위의 최대 블록에 이상(즉, 셀의 이탈)이 발생하고 있는지의 여부를 판단하기 위한 역치이다. 진단 단위의 최대 블록에 이상이 발생하고 있을 때에는, 진단 단위의 ΔSOC 비율이 역치 Z 이상이 된다. 역치 Z는, 기억 장치(503)에 기억된 고정 값이어도 되고, 가변이어도 된다.
도 10은, 역치 Z가 가변 설정되는 제1 예에 대하여 설명하기 위한 도면이다. 도 10을 참조하여, 이 예에서는, 진단 단위의 제1 SOC(예를 들어, 평균값)와 제2 SOC(예를 들어, 평균값)에 따라서 역치 Z가 가변 설정된다. 예를 들어, 제1 역치 정보가 미리 기억 장치(503)(도 1)에 기억되어 있어도 된다. 제1 역치 정보는, 제1 SOC와 제2 SOC와 역치 Z의 관계를 나타내는 정보이다(예를 들어, 도 10 참조). 진단부(560)는, 도 9의 S24에 있어서, 제1 역치 정보에 기초하여 역치 Z를 결정해도 된다. 진단부(560)는, 제1 SOC가 높을수록 역치 Z를 크게 해도 된다. 진단부(560)는, 제2 SOC가 높을수록 역치 Z를 작게 해도 된다.
도 11은, 역치 Z가 가변 설정되는 제2 예에 대하여 설명하기 위한 도면이다. 도 11을 참조하여, 이 예에서는, 제1 OFF 기간의 길이와 제2 OFF 기간의 길이에 따라서 역치 Z가 가변 설정된다. 예를 들어, 제2 역치 정보가 미리 기억 장치(503)(도 1)에 기억되어 있어도 된다. 제2 역치 정보는, 제1 OFF 기간의 길이와 제2 OFF 기간의 길이와 역치 Z의 관계를 나타내는 정보이다(예를 들어, 도 11 참조). 진단부(560)는, 도 9의 S24에 있어서, 제2 역치 정보에 기초하여 역치 Z를 결정해도 된다. 진단부(560)는, 제1 OFF 기간이 길수록 역치 Z를 작게 해도 된다. 진단부(560)는, 제2 OFF 기간이 길수록 역치 Z를 작게 해도 된다.
다시 도 5와 함께 도 9를 참조하여, S25에서는, S23에서 산출된 진단 단위의 ΔSOC 비율이, S24에서 결정된 역치 Z 이상인지의 여부를, 진단부(560)가 판단한다. 그리고, 진단 단위의 ΔSOC 비율이 역치 Z 이상인 경우(S25에서 "예")에는, 진단부(560)는, 당해 진단 단위의 최대 블록에 이상이 발생하고 있다(이상 있음)고 인정하고, S261의 처리(즉, 이상 있음이라고 판단된 때를 위하여 준비된 제1 처리)를 실행한다. 이 실시 형태에 있어서, 진단 단위의 ΔSOC 비율이 역치 Z 이상인 것은, ΔSOC 괴리도가 소정의 수준을 초과한 것을 의미한다. 한편, 진단 단위의 ΔSOC 비율이 역치 Z 미만인 경우(S25에서 "아니오")에는, 진단부(560)는, 당해 진단 단위의 최대 블록에 이상이 발생하고 있지 않다(이상 없음)고 인정하고, S262의 처리(즉, 이상 없음이라고 판단된 때를 위하여 준비된 제2 처리)를 실행한다.
S261에서는, 진단부(560)가 제1 처리를 실행한다. 제1 처리는, 진단 결과(이상 있음)의 기록을 포함해도 된다. 진단 결과는 기억 장치(503)(도 1)에 기록되어도 된다. 기록된 진단 결과는 OBD(자기 진단)에서 사용되어도 된다. 제1 처리는, 진단 결과의 알림을 포함해도 된다. 진단 결과의 알림은, 알림 장치(170)(도 1)에 의해 행하여져도 된다. 제1 처리는, 진단 결과의 송신을 포함해도 된다. 진단 결과의 송신은, 통신기기(180)(도 1)에 의해 행하여져도 된다. 진단 결과는, 유저가 휴대하는 휴대 단말기(예를 들어, 태블릿 단말기, 스마트폰, 웨어러블 디바이스, 또는 서비스 툴)에 송신되어도 된다.
S262에서는, 진단부(560)가 제2 처리를 실행한다. 제2 처리는, 진단 결과(이상 없음)의 기록을 포함해도 된다. 제2 처리는, 진단 결과의 알림을 포함해도 된다. 제2 처리는, 진단 결과의 송신을 포함해도 된다.
상기 제1 처리 및 제2 처리의 각각에 있어서, 알림의 방법은 임의이고, 표시 장치로의 표시(예를 들어, 문자 또는 화상의 표시)로 유저에 알려도 되고, 스피커에 의해 소리(음성을 포함한다)로 유저에 알려도 되고, 소정의 램프를 점등(점멸을 포함한다)시켜도 된다.
S261, S262의 어느 하나의 처리가 실행됨으로써, 도 9의 일련의 처리는 종료한다. 이에 의해, 도 7의 S20의 처리가 종료하고, 도 7의 일련 처리도 종료한다.
이상 설명한 바와 같이, ECU(500)의 진단부(560)는, 진단 단위의 ΔSOC 비율이 역치 Z 이상인 경우(S25에서 "예")에, 진단 단위의 최대 블록에 이상이 발생하고 있다고 판단한다. 진단 단위에 있어서, 셀의 이탈이 발생하면, 최대 블록의 ΔSOC가 커지고, 진단 단위의 ΔSOC 비율이 높아진다. 이 때문에, ECU(500)는, 상기 구성에 의해, 조전지(300)를 구성하는 병렬 셀 블록(100)의 이상을 적확하게 검지할 수 있다.
이 실시 형태에서는, 진단부(560)가, ΔSOC 비율(즉, 최대 블록의 ΔSOC와 ΔSOC 기준값의 비율)을 사용하여, ΔSOC 괴리도가 소정의 수준을 초과하였는지의 여부를 판단하고 있다. ΔSOC는, 제1 SOC와 제2 SOC의 차이다. 이러한 진단 방법에 의하면, 진단되는 조전지의 용량이 커도, 조전지의 이상을 높은 정밀도로 검지하는 것이 가능해진다.
도 12는, 다른 용량의 2종류의 조전지에 대하여 측정된 데이터를 도시하는 도면이다. 이하에 설명하는 예 1 및 예 2의 각각에 있어서 조전지의 외부 충전을 행하여, 데이터를 취득하였다. 또한, 충전 조건은, 충전 전류 8A, 충전 시간 2시간, 충전량 16Ah였다. 예 1은, 정상 시에 용량이 50.0Ah였던 조전지에 있어서 이상(셀의 이탈)이 발생하여 조전지의 용량이 33.3Ah로 감소한 예이다. 예 2는, 정상 시에 용량이 150Ah였던 조전지에 있어서 이상(셀의 이탈)이 발생하여 조전지의 용량이 100Ah로 감소한 예이다.
도 12를 참조하여, ΔSOC차는, 예 1에 있어서 16.0%, 예 2에 있어서 5.3%였다. ΔSOC차는, 이상 시의 1st_ΔSOC로부터 정상 시의 1st_ΔSOC(ΔSOC 기준값)를 감산함으로써 산출되었다. 또한, ΔOCV 비율 및 ΔOCV 차도, 조전지의 용량이 커질수록 작아졌다. 이와 같이, ΔSOC 차, ΔOCV 비율 및 ΔOCV 차를 사용하는 진단 방법에서는, 대용량의 조전지의 진단을 행하는 경우에 정밀도가 저하된다.
또한, 도 12 중의 1st_ΔV는, 진단 단위 중에서 ΔOCV(즉, 제1 OCV와 제2 OCV의 차)가 가장 큰 병렬 셀 블록의 ΔOCV이다. ΔOCV 비율은, 정상 시의 1st_ΔV에 대한 이상 시의 1st_ΔV의 비율이다. ΔOCV 차는, 이상 시의 1st_ΔV와 정상 시의 1st_ΔV의 차이다.
이에 비해, ΔSOC 비율은, 예 1 및 예 2의 어느 것에 있어서도 1.5였다. ΔSOC 비율은, 이상 시의 1st_ΔSOC를 정상 시의 1st_ΔSOC(ΔSOC 기준값)로 제산함으로써 산출되었다. 이와 같이, ΔSOC 비율을 사용하는 진단 방법에서는, 용량 50Ah의 조전지와 용량 150Ah의 조전지의 어느 것에 대해서도, 높은 정밀도로 진단을 행할 수 있다.
상기 실시 형태에서는, ΔSOC 취득부(520)가, 조전지(300)의 외부 충전을 행할 때에, 조전지(300)에 포함되는 병렬 셀 블록마다의 ΔSOC를 취득한다. 그러나 이것에 한정되지 않고, ΔSOC 취득부(520)는, 조전지(300)의 전력을 사용한 외부 급전을 행할 때에, 조전지(300)에 포함되는 병렬 셀 블록마다의 ΔSOC를 취득하도록 구성되어도 된다.
도 13은, ECU(500)에 의해 조전지(300)의 진단이 실행되는 타이밍의 변형예에 대하여 설명하기 위한 도면이다.
도 1 및 도 5와 함께 도 13을 참조하여, 이 변형예에서는, 차량(1)의 운전을 종료한 유저가, 타이밍 t21에서 기동 스위치를 누름으로써, 차량 시스템을 Ready-OFF 상태로 한다. 또한, 상기의 타이밍 t21 및 후술하는 타이밍 t22 내지 t24는, 기억 장치(503)에 기록된다.
그 후, 외부 급전의 준비가 행하여져, 타이밍 t22에서 외부 급전이 개시된다. 이하, 타이밍 t21로부터 타이밍 t22까지의 기간을, 「제3 OFF 기간」이라고도 칭한다. 제3 OFF 기간의 길이는, 기동 스위치가 오프로 되고 나서 외부 급전이 개시될 때까지의 시간에 상당한다.
SOC 연산부(510)는, 외부 급전이 개시되기 직전에, 전지 센서(더 특정적으로는, 전압 센서 VB-1 내지 VB-M, 전류 센서 IB 및 온도 센서 TB)의 출력을 사용하여, 각 병렬 셀 블록(100)의 SOC를 구한다. 여기에서 얻어지는 SOC는, 제1 SOC에 상당한다. 이 변형예에 관한 제1 SOC는, 외부 급전을 개시할 때의 SOC이다. 각 병렬 셀 블록(100)의 제1 SOC는, 기억 장치(503)에 보존된다.
타이밍 t22에서 개시된 외부 급전은, 타이밍 t23에서 종료한다. 외부 급전의 실행 중(즉, 타이밍 t22로부터 타이밍 t23까지의 기간)에 있어서는, 감시 모듈(140)에 의해 조전지(300)의 상태가 실시간으로 축차 검출되어도 된다. 검출 결과는 기억 장치(503)에 기록되어도 된다. ECU(500)는, 취득되는 정보에 기초하여, 조전지(300)의 이상 유무를 판단해도 된다. ECU(500)는, 이상이 검지된 경우에, 이상의 알림 및/또는 기록을 행해도 된다.
그 후, 타이밍 t24에서, 유저가 브레이크 페달(도시하지 않음)을 밟으면서 기동 스위치를 누르면, 차량 시스템(나아가서는, ECU(500))이 기동하고, Ready-ON 상태가 된다. 이하, 타이밍 t23으로부터 타이밍 t24까지의 기간을, 「제4 OFF 기간」이라고도 칭한다. 제4 OFF 기간의 길이는, 외부 급전이 종료하고 나서 기동 스위치가 온으로 될 때까지의 시간에 상당한다.
SOC 연산부(510)는, 외부 급전이 종료한 후, 예를 들어 타이밍 t24에서, 전지 센서(더 특정적으로는, 전압 센서 VB-1 내지 VB-M, 전류 센서 IB 및 온도 센서 TB)의 출력을 사용하여, 각 병렬 셀 블록(100)의 SOC를 구한다. 여기에서 얻어지는 SOC는, 제2 SOC에 상당한다. 이 변형예에 관한 제2 SOC는, 외부 급전을 종료한 후의 SOC이다. 각 병렬 셀 블록(100)의 제2 SOC는, 기억 장치(503)에 보존된다.
도 14는, 도 7에 도시한 전지 진단 방법의 변형예를 나타내는 흐름도이다. 이 흐름도에 도시되는 처리는, 조전지(300)의 외부 급전이 종료한 후에 기동 스위치가 온으로 된 타이밍(예를 들어, 도 13에 도시한 타이밍 t24)에서 개시된다.
도 14의 S31 내지 S37은, 각각 도 7의 S11 내지 S17에 준하는 스텝이다. 단, 이 변형예에서는, 제1 OFF 기간, 제2 OFF 기간(도 7) 대신에 제3 OFF 기간, 제4 OFF 기간을 채용하고, 역치 Y1 내지 Y5(도 7) 대신에 역치 Y6 내지 Y10을 채용한다. 이 변형예에서는, 제3 OFF 기간의 길이, 역치 Y9가, 각각 본 개시에 관한 「제1 시간」, 「제4 역치」의 일례에 상당한다. 또한, 제4 OFF 기간의 길이, 역치 Y10이, 각각 본 개시에 관한 「제2 시간」, 「제5 역치」의 일례에 상당한다. 또한, 역치 Y6, Y7, Y8이, 각각 본 개시에 관한 「제1 역치」, 「제2 역치」, 「제3 역치」의 일례에 상당한다. 도 14의 S20은, 도 7의 S20과 동일하다. 즉, 도 14의 S20에 있어서도, 도 9에 도시한 처리가 실행된다.
ECU(500)는, 예를 들어 도 6 또는 도 13에 도시된 바와 같은 차량(1)의 주차 중에 있어서는, 진단부(560)에 의해 조전지(300)의 진단을 행하고, 차량(1)의 주행 중에 있어서는, 진단부(560)와는 다른 방법으로 조전지(300)의 진단을 행해도 된다. ECU(500)는, 차량(1)의 주행 중에 있어서는, 각 병렬 셀 블록(100)의 전기 저항 크기(또는, 변동량)에 기초하여, 조전지(300)의 이상 유무를 판단해도 된다.
상기 실시 형태에서는, ΔSOC 괴리도로서, 2nd_ΔSOC에 대한 1st_ΔSOC의 비율(=1st_ΔSOC/2nd_ΔSOC)을 채용하고 있지만, ΔSOC 괴리도는 이것에 한정되지 않는다. 예를 들어, 1st_ΔSOC에 대한 2nd_ΔSOC의 비율(=2nd_ΔSOC/1st_ΔSOC)을 ΔSOC 괴리도로서 채용하고, 진단에 있어서는, 이 비율이 소정값 이하인 경우에 이상 있음이라고 판단되어도 된다. 또한, ΔSOC 비율 대신에 ΔSOC 차(예를 들어, 1st_ΔSOC와 2nd_ΔSOC의 차의 절댓값)를 ΔSOC 괴리도로서 채용하고, 진단에 있어서는 ΔSOC 차가 소정값 이상인 경우에 이상 있음이라고 판단되어도 된다. 또한, ΔSOC로서, SOC차 대신에 SOC 비율을 채용하는 것도 가능하다.
상기 실시 형태에서는, 1개의 셀 스택(200)을 1개의 진단 단위로 하고 있다. 그러나 이것에 한정되지 않고, 진단 단위는 임의로 설정할 수 있다. 예를 들어, 2개 이상의 셀 스택(200)을 1개의 진단 단위로 해도 된다. 또한, 조전지(300)의 전부를 1개의 진단 단위로 해도 된다.
전지 진단 장치에 의해 진단되는 조전지는, 차량에 탑재된 조전지에는 한정되지 않는다. 전지 진단 장치에 의해 진단되는 조전지는, 차량 이외의 탈것(배, 비행기 등)에 탑재된 조전지여도 되고, 사람이 없는 이동체(무인 반송차(AGV), 농업 기계, 이동형 로봇, 드론 등)에 탑재된 조전지여도 되고, 건물(주택, 공장 등)에 있어서 사용되는 조전지여도 된다.
상기의 각종 변형예는 임의로 조합하여 실시되어도 된다. 예를 들어, 전지 진단 장치는, 도 7에 도시한 전지 진단 방법과 도 14에 도시한 전지 진단 방법의 양쪽을 행하도록 구성되어도 된다.
본 발명의 실시 형태에 대하여 설명했지만, 금회 개시된 실시 형태는 모든 점에서 예시이며 제한적인 것이 아니라고 생각되어야 한다. 본 발명의 범위는 청구범위에 의해 나타나고, 청구범위와 균등한 의미 및 범위 내에서의 모든 변경이 포함되는 것이 의도된다.

Claims (12)

  1. 복수의 병렬 셀 블록을 포함하는 조전지를 진단하는 전지 진단 장치이며,
    당해 전지 진단 장치는, SOC 연산부와, ΔSOC 취득부와, 최대 블록 특정부와, 진단부를 포함하고,
    상기 복수의 병렬 셀 블록의 각각은, 병렬 접속된 복수의 셀을 포함하고,
    상기 복수의 병렬 셀 블록은, 서로 직렬로 접속되어 있고,
    상기 SOC 연산부는, 상기 조전지의 상태를 검출하는 전지 센서의 출력을 사용하여, 상기 조전지에 포함되는 상기 병렬 셀 블록마다의 SOC를 구하도록 구성되고,
    상기 ΔSOC 취득부는, 상기 조전지의 충전 또는 방전을 행할 때에, 그 충전 또는 방전을 개시할 때의 상기 SOC인 제1 SOC와, 그 충전 또는 방전을 종료한 후의 상기 SOC인 제2 SOC의 괴리의 정도를 나타내는 ΔSOC를, 상기 조전지에 포함되는 상기 병렬 셀 블록마다 취득하도록 구성되고,
    상기 최대 블록 특정부는, 상기 조전지의 일부 또는 전부에 설정된 진단 단위의 중에서 상기 ΔSOC가 가장 큰 병렬 셀 블록인 최대 블록을 특정하도록 구성되고,
    상기 진단부는, 상기 최대 블록의 상기 ΔSOC와 ΔSOC 기준값의 괴리 정도를 사용하여 상기 진단 단위의 진단을 행하고, 상기 진단에 있어서는, 상기 괴리 정도가 소정의 수준을 초과하는 경우에, 상기 진단 단위의 상기 최대 블록에 이상이 발생하고 있다고 판단하도록 구성되는, 전지 진단 장치.
  2. 제1항에 있어서, 상기 진단부는, 상기 최대 블록의 상기 제1 SOC가 제1 역치 이상인 경우와, 상기 최대 블록의 상기 제2 SOC가 제2 역치 이하인 경우와, 상기 최대 블록의 상기 ΔSOC가 제3 역치 이하인 경우에는, 상기 진단을 행하지 않도록 구성되는, 전지 진단 장치.
  3. 제1항 또는 제2항에 있어서, 상기 진단부는, 상기 조전지에 있어서 분극이 발생하고 있는지의 여부를 판단하여, 분극이 발생하고 있지 않을 때에 상기 SOC 연산부가 구한 SOC를 사용하여, 상기 진단을 행하도록 구성되는, 전지 진단 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 ΔSOC는, 상기 제1 SOC와 상기 제2 SOC의 차이고,
    상기 진단부는, 상기 최대 블록의 상기 ΔSOC와 상기 ΔSOC 기준값의 비율을 사용하여, 상기 괴리 정도가 상기 소정의 수준을 초과하였는지의 여부를 판단하도록 구성되는, 전지 진단 장치.
  5. 제4항에 있어서, 상기 조전지의 용량은 100Ah 이상인, 전지 진단 장치.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 당해 전지 진단 장치는, 제2 블록 특정부를 더 포함하고,
    상기 제2 블록 특정부는, 상기 진단 단위 중에서 상기 ΔSOC가 2번째로 큰 병렬 셀 블록인 제2 블록을 특정하도록 구성되고,
    상기 ΔSOC 기준값은, 상기 제2 블록의 상기 ΔSOC인, 전지 진단 장치.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 조전지는, 50개 이상의 상기 병렬 셀 블록을 포함하고,
    상기 진단 단위는, 5개 이상의 상기 병렬 셀 블록을 포함하는, 전지 진단 장치.
  8. 제1항 내지 제7항 중 어느 한 항에 기재된 전지 진단 장치와,
    상기 조전지와,
    상기 전지 센서를 구비하는, 차량.
  9. 제8항에 있어서, 상기 전지 진단 장치의 상기 ΔSOC 취득부는, 상기 조전지의 외부 충전을 행할 때에, 상기 조전지에 포함되는 상기 병렬 셀 블록마다의 상기 ΔSOC를 취득하도록 구성되고,
    상기 제1 SOC는 상기 외부 충전을 개시할 때의 SOC이고, 상기 제2 SOC는 상기 외부 충전을 종료한 후의 SOC이고,
    상기 외부 충전은, 당해 차량의 외부로부터 공급되는 전력에 의해 행하여지는 상기 조전지의 충전인, 차량.
  10. 제8항에 있어서, 상기 전지 진단 장치의 상기 ΔSOC 취득부는, 상기 조전지의 전력을 사용한 외부 급전을 행할 때에, 상기 조전지에 포함되는 상기 병렬 셀 블록마다의 상기 ΔSOC를 취득하도록 구성되고,
    상기 제1 SOC는 상기 외부 급전을 개시할 때의 SOC이고, 상기 제2 SOC는 상기 외부 급전을 종료한 후의 SOC이고,
    상기 외부 급전은, 상기 조전지에 축적된 전력을 당해 차량의 외부에 공급하는 상기 조전지의 방전인, 차량.
  11. 제8항 내지 제10항 중 어느 한 항에 있어서, 상기 전지 진단 장치의 상기 진단부는, 당해 차량의 기동 스위치가 온으로 된 타이밍에서 소정의 진단 실행 조건이 성립하는 경우에, 상기 진단을 행하도록 구성되고,
    상기 전지 진단 장치의 상기 진단부는, 상기 기동 스위치가 오프로 되고 나서 상기 진단에 관한 상기 충전 또는 상기 방전이 개시될 때까지의 제1 시간이 제4 역치 이하인 경우와, 상기 진단에 관한 상기 충전 또는 상기 방전이 종료되고 나서 상기 기동 스위치가 온으로 될 때까지의 제2 시간이 제5 역치 이하인 경우에는, 상기 진단을 행하지 않도록 구성되는, 차량.
  12. 제8항 내지 제11항 중 어느 한 항에 있어서, 상기 전지 센서는, 상기 진단 단위에 포함되는 모든 병렬 셀 블록에 각각 마련된 복수의 전압 센서를 포함하고,
    상기 복수의 전압 센서의 각각의 출력 신호는, 공통의 신호 처리 회로를 거쳐, 상기 전지 진단 장치에 입력되고,
    상기 전지 진단 장치의 상기 SOC 연산부는, 상기 공통의 신호 처리 회로에 의해 처리된 상기 복수의 전압 센서의 각각의 출력 신호를 사용하여, 상기 조전지에 포함되는 상기 병렬 셀 블록마다의 SOC를 구하도록 구성되는, 차량.
KR1020210016471A 2020-02-12 2021-02-05 전지 진단 장치 및 차량 KR20210102852A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020021716A JP2021128023A (ja) 2020-02-12 2020-02-12 電池診断装置及び車両
JPJP-P-2020-021716 2020-02-12

Publications (1)

Publication Number Publication Date
KR20210102852A true KR20210102852A (ko) 2021-08-20

Family

ID=74236125

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210016471A KR20210102852A (ko) 2020-02-12 2021-02-05 전지 진단 장치 및 차량

Country Status (5)

Country Link
US (1) US11624783B2 (ko)
EP (1) EP3865889A1 (ko)
JP (1) JP2021128023A (ko)
KR (1) KR20210102852A (ko)
CN (1) CN113253136A (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230155893A (ko) * 2022-05-04 2023-11-13 주식회사 엘지에너지솔루션 배터리 진단 방법 및 그 방법을 제공하는 배터리 시스템

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337155A (ja) * 2005-06-01 2006-12-14 Matsushita Electric Ind Co Ltd 電池監視装置
JP5104416B2 (ja) 2008-03-07 2012-12-19 日産自動車株式会社 組電池の異常検出装置
US8749201B2 (en) * 2010-10-05 2014-06-10 GM Global Technology Operations LLC Battery pack capacity learn algorithm
US20150355286A1 (en) * 2013-01-22 2015-12-10 Sanyo Electric Co., Ltd. System for estimating failure in cell module
JP2015187938A (ja) * 2014-03-26 2015-10-29 日産自動車株式会社 容量回復方法および容量回復システム
GB2531509A (en) * 2014-10-15 2016-04-27 Intelligent Energy Ltd Fuel cell assembly
US20160149421A1 (en) * 2014-11-24 2016-05-26 Southwest Electronic Energy Corporation Low voltage charging and balancing of a high voltage, series-connected string of battery modules
US11351887B2 (en) * 2017-12-22 2022-06-07 Sanyo Electric Co., Ltd. Management device and power supply system
JP7020108B2 (ja) * 2017-12-25 2022-02-16 トヨタ自動車株式会社 二次電池システムおよび組電池の異常診断方法
JP7063761B2 (ja) 2018-08-03 2022-05-09 トヨタ自動車株式会社 燃料電池電極用触媒インクの製造方法

Also Published As

Publication number Publication date
EP3865889A1 (en) 2021-08-18
US20210247450A1 (en) 2021-08-12
US11624783B2 (en) 2023-04-11
CN113253136A (zh) 2021-08-13
JP2021128023A (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
US10967753B2 (en) Vehicle, charger, charging system including charger, and abnormality diagnosis method for charger
JP4650532B2 (ja) 蓄電装置の劣化判定装置および蓄電装置の劣化判定方法
US11214169B2 (en) Battery system
JP4745879B2 (ja) ハイブリッド車両制御システム、ハイブリッド車両制御方法及び車両用蓄電池制御システム
JP5469909B2 (ja) 車両用電池制御システム
US20170072811A1 (en) Electric or hybrid vehicle battery pack voltage measurement functional assessment and redundancy
JP5637339B1 (ja) 電動車両を用いた電力供給装置
KR101326508B1 (ko) 고전압 배터리시스템 전류센서의 고장진단방법
CN110549876A (zh) 一种能量输出控制方法、装置和氢燃料混合动力汽车
EP3149499B1 (en) A method and system for monitoring the status of battery cells
EP3260871B1 (en) Battery system monitoring apparatus
JP7215397B2 (ja) 推定システムおよび推定方法
JP5838224B2 (ja) 電池制御装置
CN104245394B (zh) 车辆
CN111071045B (zh) 车辆、二次电池的老化评价装置及老化评价方法
US10333182B2 (en) Estimation of cell voltage excursion in the presence of battery pack sensing faults
KR20210102852A (ko) 전지 진단 장치 및 차량
JP7398500B2 (ja) バッテリ状態の測定方法
US20220294029A1 (en) Battery resistance measurement device, vehicle and battery resistance measurement method
WO2023233913A1 (ja) 電池ユニット及び電池監視装置
JP7398499B2 (ja) 可否判定装置、可否判定方法及びプログラム
US20230152386A1 (en) Deterioration diagnosis apparatus of battery and deterioration diagnosis method of battery
JP2022148131A (ja) 車両の電源制御システム
JP2014085118A (ja) 蓄電システムおよび異常判別方法