KR20210074483A - Catalyic loading structure and manufacturing method thereof - Google Patents

Catalyic loading structure and manufacturing method thereof Download PDF

Info

Publication number
KR20210074483A
KR20210074483A KR1020190165206A KR20190165206A KR20210074483A KR 20210074483 A KR20210074483 A KR 20210074483A KR 1020190165206 A KR1020190165206 A KR 1020190165206A KR 20190165206 A KR20190165206 A KR 20190165206A KR 20210074483 A KR20210074483 A KR 20210074483A
Authority
KR
South Korea
Prior art keywords
catalyst
silica particles
supporting structure
metal catalyst
acid
Prior art date
Application number
KR1020190165206A
Other languages
Korean (ko)
Inventor
신종민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020190165206A priority Critical patent/KR20210074483A/en
Publication of KR20210074483A publication Critical patent/KR20210074483A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/026Form of the solid particles
    • B01J35/50
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/023Catalysts characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/1004Surface area
    • B01J35/1019100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/1004Surface area
    • B01J35/1023500-1000 m2/g
    • B01J35/40
    • B01J35/615
    • B01J35/617
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Abstract

Provided are a catalyst-supported structure in which excellent catalytic activity is maintained to be reusable, and a manufacturing method thereof.

Description

촉매 담지 구조체 및 이의 제조 방법{CATALYIC LOADING STRUCTURE AND MANUFACTURING METHOD THEREOF}Catalyst-supported structure and its manufacturing method {CATALYIC LOADING STRUCTURE AND MANUFACTURING METHOD THEREOF}

본 출원은 촉매 담지 구조체 및 이의 제조 방법에 관한 것이다.The present application relates to a catalyst supporting structure and a method for preparing the same.

지난 20~30년 동안 무기 나노 입자를 담지체로 촉매를 담지하여 촉매 반응 연구가 활발히 진행되고 있다.For the past 20 to 30 years, catalytic reaction research has been actively carried out by supporting catalysts with inorganic nanoparticles as a support.

특히 무기 나노 입자 중에서도 실리카 나노 입자는 견고하고, 표면적이 크며, 화학적으로 비활성이고, 표면을 용이하게 개질할 수 있기 때문에 생물의학적 용도, 즉, 약물 전달 물질로 사용될 잠재력이 큰 물질 이다.In particular, among inorganic nanoparticles, silica nanoparticles have great potential for use as biomedical applications, that is, drug delivery materials, because they are robust, have a large surface area, are chemically inert, and can be easily modified on the surface.

최근 실라카 입자의 표면을 개질하여 이른 바, 주름진 표면을 갖는 실리카 입자(Wrinkle Silica Nanoparticle, WSN)를 제조하는데 성공하였고, 이를 촉매 지지체로 활용하기 위한 연구가 활발히 진행되고 있다.Recently, by modifying the surface of silica particles, so-called wrinkled silica particles (Wrinkle Silica Nanoparticles, WSN) have been successfully manufactured, and research for using them as a catalyst support is being actively conducted.

현재까지 알려진 촉매 담지 방법으로는, 실리카 입자에 촉매를 코팅하거나 또는 실리카 입자를 촉매 전구체 용액에 분산한 후 환원제 처리 방법이 널리 알려져 있다.As a catalyst-supporting method known to date, a method of treating silica particles with a reducing agent after coating the catalyst or dispersing the silica particles in a catalyst precursor solution is widely known.

그러나, 상기 코팅 방법을 통해 제조된 촉매 담지 구조체는 촉매 반응 시 촉매 입자가 지지체로부터 떨어져 나가 촉매 활성이 점점 낮아지는 문제가 있다. However, the catalyst supporting structure prepared through the coating method has a problem in that the catalyst particles are separated from the support during the catalyst reaction and the catalytic activity is gradually lowered.

또한, 환원제를 이용한 환원 처리의 경우, 촉매 전구체에서 환원된 촉매 입자들이 지지체에 담지되기도 하지만, 상당량 전구체들이 개별적으로 환원되어 낭비되는 촉매 입자가 많이 생성되는 문제가 있었다. In addition, in the case of the reduction treatment using a reducing agent, although catalyst particles reduced from the catalyst precursor are sometimes supported on the support, there is a problem in that a significant amount of the precursors are individually reduced to generate a lot of wasted catalyst particles.

더욱이, 지지체에 담지된 촉매입자와 개별적으로 생성된 촉매 입자를 분리하기 힘든 문제가 있었다. 이로 인해 촉매를 1회성 사용으로 그치는 경우가 많았으며, 금속 촉매는 대부분 고비용의 재료이기 때문에 재사용하지 않을 경우 비용적으로 큰 부담이 생긴다.Furthermore, there is a problem in that it is difficult to separate the catalyst particles supported on the support and the separately generated catalyst particles. For this reason, in many cases the catalyst was used only once, and since most metal catalysts are expensive materials, if they are not reused, a large cost burden arises.

본 출원은 우수한 촉매 활성이 유지되어 재사용이 가능한 촉매 담지 구조체 및 이의 제조 방법을 제공한다.The present application provides a catalyst support structure and a method for preparing the same, which can be reused by maintaining excellent catalytic activity.

본 출원은 표면 개질된 실리카 입자에 금속 촉매가 담지된 촉매 담지 구조체에 관한 것이다. The present application relates to a catalyst supporting structure in which a metal catalyst is supported on surface-modified silica particles.

구체적으로, 본 출원에 따른 촉매 담지 구조체는 복수 개의 산과 골을 포함하는 표면을 갖는 실리카 입자 및 상기 산 및 골에 담지된 금속 촉매를 포함하고, 상기 골에 담지된 금속 촉매의 함량은 산에 담지된 금속 촉매의 함량보다 크다. 상기 금속 촉매는 Mx+와 같이 양이온 형태로, 실리카 입자의 표면에 형성된 수산화기(OH-)와 정전기적으로 결합한 상태로, 열 처리 등을 통해 담지된다.Specifically, the catalyst supporting structure according to the present application includes silica particles having a surface including a plurality of acids and valleys and a metal catalyst supported on the acids and valleys, and the content of the metal catalyst supported on the valleys is supported on the acid. greater than the content of the metal catalyst. The metal catalyst is supported in the form of a cation, such as M x+ , in a state in which it is electrostatically bound to a hydroxyl group (OH-) formed on the surface of the silica particle, and is subjected to heat treatment.

일반적으로, 실리카 입자는 무독성, 생체 적합성, 크기 조절의 용이성, 화학적 안정성, 다공성, 표면 개질 용이성 등의 여러 가지 장점으로 인해, 생물학적 응용과 나노 촉매 등의 분야에 활용 가능한 장점을 가진다. 본 출원에 따른 촉매 담지 구조체는 상기 실리카 입자의 고유 물성을 유지하면서, 촉매를 담지하는데 최적화되도록 복수 개의 산과 골을 포함하도록 표면을 개질한 실리카 입자를 포함한다.In general, silica particles have various advantages such as non-toxicity, biocompatibility, ease of size control, chemical stability, porosity, and ease of surface modification, which can be used in biological applications and fields such as nanocatalysts. The catalyst supporting structure according to the present application includes silica particles whose surface is modified to include a plurality of acids and valleys so as to be optimized to support the catalyst while maintaining the intrinsic properties of the silica particles.

구체적으로, 상기 산은 표면에서 볼록한 부분이고, 골은 산과 산 사이에 형성된 오목한 부분을 의미한다. 상기 실리카 입자는 표면이 복수 개의 산과 골을 포함함에 따라, 주름진 표면을 가질 수 있다. 이러한 주름진 표면을 갖는 실리카 입자는 모세관 형태를 갖는 기존의 메조 기공 담지체들에 비하여 고유의 기하학적 특징을 갖기 때문에 동일한 수준의 질량 및 표면적 대비 촉매 담지 효율이 뛰어난 장점을 가진다.Specifically, the acid is a convex portion on the surface, and the valley refers to a concave portion formed between the acid and the acid. The silica particles may have a corrugated surface as the surface includes a plurality of mountains and valleys. Since silica particles having such a corrugated surface have inherent geometric characteristics compared to conventional mesopore carriers having a capillary shape, they have the advantage of excellent catalyst loading efficiency compared to mass and surface area at the same level.

상기 산에 담지된 금속 촉매는 외부로 노출되는 반면, 골에 담지된 금속 촉매는 인접한 산에 의해 외부로 노출이 방지된다. 상기 산에 담지된 금속 촉매의 경우, 외부로 노출되기 때문에 촉매 반응 속도에서는 유리하지만, 반복적인 재사용 시 구조체로부터 쉽게 이탈될 수 있다. 이로 인해, 산에 담지된 금속 촉매의 함량이 클수록, 촉매 담지 구조체는 반복적 재사용 시 촉매 활성이 점점 낮아지는 문제가 발생할 수 있다.The metal catalyst supported on the acid is exposed to the outside, while the metal catalyst supported on the bone is prevented from being exposed to the outside by the adjacent acid. In the case of the metal catalyst supported on the acid, it is advantageous in the catalytic reaction rate because it is exposed to the outside, but may be easily separated from the structure during repeated reuse. For this reason, as the content of the metal catalyst supported on the acid increases, the catalyst-supported structure may have a problem in that the catalyst activity gradually decreases during repeated reuse.

한편, 골에 담지된 금속 촉매의 경우, 외부로 노출되지 않기 때문에 반복적인 재사용에도 불구하고 구조체로부터 이탈이 방지될 수 있다. 따라서, 골에 담지된 금속 촉매의 함량이 클수록, 촉매 담지 구조체는 반복적으로 재사용하더라도 우수한 촉매 활성이 유지될 수 있다.On the other hand, in the case of the metal catalyst supported on the bone, since it is not exposed to the outside, separation from the structure can be prevented despite repeated reuse. Accordingly, as the content of the metal catalyst supported on the bone increases, the catalyst supporting structure may maintain excellent catalytic activity even if it is repeatedly reused.

즉, 본 출원에 따른 촉매 담지 구조체는 상기 골에 담지된 금속 촉매의 함량은 산에 담지된 금속 촉매의 함량보다 큼에 따라, 반복적으로 재사용하더라도 금속 촉매의 이탈이 방지되어 우수한 촉매 활성이 유지될 수 있다.That is, in the catalyst supporting structure according to the present application, the content of the metal catalyst supported on the bone is greater than the content of the metal catalyst supported on the acid, so even if it is repeatedly reused, the metal catalyst is prevented from leaving and excellent catalytic activity is maintained. can

상기 내용을 고려할 때, 골에만 금속 촉매가 담지되는 것이 유리하지만, 이는 이론적으로 가능할 뿐 실제 제조 공정 여건 상 구현되기 어렵다. 본 출원에 따른 촉매 담지 구조체는 구체적인 공정 조건을 확립함으로써, 대부분의 금속 촉매가 골에만 존재할 수 있다.Considering the above, it is advantageous that the metal catalyst is supported only on the bone, but this is only theoretically possible and difficult to implement under the conditions of the actual manufacturing process. In the catalyst supporting structure according to the present application, by establishing specific process conditions, most metal catalysts may exist only in the bone.

예를 들어, 상기 골에 담지된 금속 촉매의 함량은 금속 촉매 전체 중량에 대하여 60 내지 99 중량%, 65 내지 99 중량%, 70 내지 99 중량%, 75 내지 99 중량%, 80 내지 99 중량% 또는 85 내지 99 중량% 범위 내일 수 있다. 상기에서 금속 촉매 전체 함량은 산 및 골에 담지된 금속 촉매의 함량을 의미한다.For example, the content of the metal catalyst supported on the bone may be 60 to 99% by weight, 65 to 99% by weight, 70 to 99% by weight, 75 to 99% by weight, 80 to 99% by weight or 80 to 99% by weight based on the total weight of the metal catalyst. 85 to 99% by weight. In the above, the total content of the metal catalyst means the content of the metal catalyst supported on the acid and bone.

또 하나의 예시에서, 상기 산 및 골에 담지된 금속 촉매의 함량은 실리카 입자의 함량에 대하여 0.1 내지 20 중량%, 0.1 내지 15 중량%, 0.5 내지 10 중량% 또는 1 내지 5 중량% 범위 내일 수 있다. 예를 들어, 상기 함량은 IPC 분석을 통해 정량적으로 계산할 수 있다.In another example, the content of the metal catalyst supported on the acid and bone may be in the range of 0.1 to 20 wt%, 0.1 to 15 wt%, 0.5 to 10 wt%, or 1 to 5 wt% based on the content of silica particles have. For example, the content can be quantitatively calculated through IPC analysis.

특정 부분에 담지된 금속 촉매의 함량을 상기 범위로 조절하기 위해서는 촉매를 담지 공정 조건을 구체적으로 설립하는 것이 중요하다. 예를 들어, 본 출원에 따른 촉매 나노 구조체는 환원제 없이 촉매 금속 전구체 용액에 실리카 입자를 분산시켜 침전물을 형성한 후, 열처리를 거쳐 제조하는 방법으로 제조됨에 따라 전술한 함량 조건을 만족할 수 있다. 이에 반해, 기존의 코팅 방법 또는 환원제를 이용한 촉매 담지 공정으로는 제조된 구조체에서는 오히려 골에 담지된 금속 촉매보다 산에 담지된 금속 촉매의 함량이 클 수 있고, 이러한 촉매 담지 구조체는 반복적인 재사용에 따라 촉매 활성이 낮아지는 문제가 있을 수 있다.In order to control the content of the metal catalyst supported on a specific part in the above range, it is important to specifically establish the catalyst-supporting process conditions. For example, the catalyst nanostructure according to the present application is prepared by dispersing silica particles in a catalyst metal precursor solution without a reducing agent to form a precipitate, followed by heat treatment, so that the content conditions described above may be satisfied. On the other hand, in the structure prepared by the conventional coating method or the catalyst supporting process using a reducing agent, the content of the metal catalyst supported on acid may be greater than that of the metal catalyst supported on the bone, and such a catalyst supporting structure is not suitable for repeated reuse. Accordingly, there may be a problem in that the catalytic activity is lowered.

본 출원에 따른 촉매 나노 구조체는 실리카 입자의 크기 및 표면적과 관련된 물성 인자들을 후술하는 범위 내로 조절함으로써, 생물학적 응용과 나노 촉매 등의 다양한 분야에 활용 가능하다.The catalyst nanostructure according to the present application can be utilized in various fields such as biological applications and nanocatalysts by controlling physical property factors related to the size and surface area of silica particles within the ranges described below.

하나의 예시에서, 상기 실리카 입자의 평균 입경은 50 내지 1,000nm, 100 내지 800nm, 200 내지 600nm 또는 250 내지 500nm 범위 내일 수 있다. 상기 실리카의 산과 산 사이의 간격(또는 주름 간격)은 5 내지 50nm, 10 내지 40nm 또는 15 내지 35nm 범위 내일 수 있다. 상기 실리카 입자의 산의 두께(또는 주름 두께)는 2 내지 20nm, 3 내지 15nm 또는 5 내지 10nm 범위 내일 수 있다. In one example, the average particle diameter of the silica particles may be in the range of 50 to 1,000 nm, 100 to 800 nm, 200 to 600 nm, or 250 to 500 nm. The acid-to-acid spacing (or wrinkle spacing) of the silica may be in the range of 5 to 50 nm, 10 to 40 nm, or 15 to 35 nm. The acid thickness (or wrinkle thickness) of the silica particles may be in the range of 2 to 20 nm, 3 to 15 nm, or 5 to 10 nm.

그리고, 상기 실리카 입자의 유효 표면적(BET)는 400 내지 600m2/g, 420 내지 580m2/g 또는 450 내지 550 m2/g범위 내일 수 있다. 상기 실라카 입자의 평균 입경, 주름 두께, 주름 간격 및 유효 표면적은 SEM 분석 장비를 이용하여 측정할 수 있으며, 예를 들어, 상기 수치 범위는 200개의 실리카 입자에 대해 측정한 평균값일 수 있다. In addition, the effective surface area (BET) of the silica particles may be in the range of 400 to 600 m 2 /g, 420 to 580 m 2 /g, or 450 to 550 m 2 /g. The average particle diameter, wrinkle thickness, wrinkle spacing, and effective surface area of the silica particles may be measured using SEM analysis equipment. For example, the numerical range may be an average value measured for 200 silica particles.

상기 금속 촉매는 목적하는 촉매 반응에 따라 다양한 종류를 제한 없이 사용할 수 있다. 예를 들어, 상기 금속 촉매는 백금(Pt), 팔라듐(Pd), 은(Ag), 금(Au), 코발트(Co), 니켈(Ni), 철(Fe), 구리(Cu), 카드뮴(Cd), 아연(Zn), 루비듐(Rb) 및 유로퓸(Eu)으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.Various types of the metal catalyst may be used without limitation depending on the desired catalytic reaction. For example, the metal catalyst is platinum (Pt), palladium (Pd), silver (Ag), gold (Au), cobalt (Co), nickel (Ni), iron (Fe), copper (Cu), cadmium ( Cd), zinc (Zn), rubidium (Rb), and europium (Eu) may include at least one selected from the group consisting of.

본 출원은 또한 전술한 촉매 담지 구조체의 제조 방법에 관한 것이다. 상기 제조 방법은 우수한 촉매 활성을 유지되어 재사용이 가능한 촉매 담지 구조체를 제공할 수 있다.The present application also relates to a method for manufacturing the above-described catalyst support structure. The preparation method can provide a catalyst support structure that can be reused by maintaining excellent catalytic activity.

구체적으로, 상기 제조 방법은 복수 개의 산과 골을 포함하는 표면을 갖는 실리카 입자를 합성하는 합성 단계; 상기 합성된 실리카 입자를 금속 촉매 전구체 용액에 분산하여 침전물을 형성하는 형성 단계; 및 상기 침전물을 열처리하여 전술한 촉매 담지 구조체를 제조하는 제조 단계를 포함한다.Specifically, the manufacturing method comprises a synthesis step of synthesizing silica particles having a surface including a plurality of acids and valleys; forming a precipitate by dispersing the synthesized silica particles in a metal catalyst precursor solution; and a manufacturing step of heat-treating the precipitate to prepare the above-described catalyst supporting structure.

상기 복수 개의 산과 골을 포함하는 표면을 갖는 실리카 입자를 합성하는 방법은 공지된 기술을 제한 없이 사용할 수 있으며, 예를 들어, 국내 공개특허 제10-2016-0025338호에 잘 기술되어 있다. A method of synthesizing silica particles having a surface including a plurality of acids and valleys may use a known technique without limitation, and for example, it is well described in Korean Patent Application Laid-Open No. 10-2016-0025338.

상기 형성 단계에서, 금속 촉매 전구체 용액은 전술한 금속들을 이온 상태로 포함하고, 예를 들어, 금속 양이온을 포함할 수 있다. 상기 형성 단계에 대해 자세히 설면하면, 상기 합성된 실리카 입자는 금속 촉매 전구체 용액에 분산되면, 실리카 입자의 표면에 포함된 골의 수산화기(OH-)와 상기 금속 촉매 전구체 용액에 존재하는 금속 양이온(M+)이 정전기적 인력으로 결합되면서 전하가 중화되어 침전물을 형성하게 된다.In the forming step, the metal catalyst precursor solution includes the above-described metals in an ionic state, for example, may include a metal cation. In detail about the formation step, when the synthesized silica particles are dispersed in the metal catalyst precursor solution, the hydroxyl groups (OH ) of the bones contained in the surface of the silica particles and the metal cations (M + ) is combined by electrostatic attraction to neutralize the charge to form a precipitate.

이렇게 형성된 상기 침전물은 열처리를 거쳐 분말 형태의 촉매 담지 구조체를 제조할 수 있다. 제조된 촉매 담지 구조체는 전술한 일반식 1을 만족할 수 있다. 상기 열처리에 의해 실리카 입자의 골에 정전기적 인력으로 담지된 금속 양이온(M+)은 산화 촉매(MOx)로 전환될 수 있다.The precipitate thus formed may be subjected to heat treatment to prepare a catalyst supporting structure in powder form. The prepared catalyst supporting structure may satisfy General Formula 1 described above. Metal cations (M + ) supported by electrostatic attraction on the bone of silica particles by the heat treatment may be converted into oxidation catalysts (MO x ).

하나의 예시에서, 상기 열처리는 300 내지 500℃ 온도 범위 내에서, 1 내지 24 시간, 1 내지 20 시간, 1 내지 15시간, 2 내지 10시간 또는 2 내지 8시간 동안 수행될 수 있다. 또한, 상기 열처리는 효과적인 촉매 담지 구조체 형성을 위하여 환원 분위기에서 수행될 수 있다. 상기 열처리는 예를 들어, 수소를 포함하는 비활성 기체를 퍼징하는 환원 분위기에서 열처리될 수 있다. 이 때, 상기 비활성 기체는 아르곤 또는 질소일 수 있다.In one example, the heat treatment may be performed within a temperature range of 300 to 500° C. for 1 to 24 hours, 1 to 20 hours, 1 to 15 hours, 2 to 10 hours, or 2 to 8 hours. In addition, the heat treatment may be performed in a reducing atmosphere in order to form an effective catalyst support structure. The heat treatment may be performed, for example, in a reducing atmosphere in which an inert gas containing hydrogen is purged. At this time, the inert gas may be argon or nitrogen.

본 출원에 따른 제조 방법은 실리카 입자 표면의 수산화기(OH-)와 금속 양이온(M+)의 결합에 의해 자연히 형성된 침전물로부터 촉매 담지 구조체를 제조할 수 있기 때문에 별도의 환원제를 필요로 하지 않는다.The manufacturing method according to the present application does not require a separate reducing agent because the catalyst-supported structure can be prepared from the precipitate naturally formed by the bonding of the hydroxyl group (OH-) and the metal cation (M + ) on the surface of the silica particle.

예를 들어, 본 출원에서 금속 촉매 전구체 용액은 환원제를 포함하지 않을 수 있다. 환원제의 경우, 금속 양이온(M+)을 환원시켜 실리카 입자의 표면과 결합을 방해하는 요소로 작용한다. 따라서, 상기 용액이 환원제를 포함하지 않음에 따라, 개별적으로 환원되어 실리카 입자와 결합하지 않는 금속 촉매의 형성을 방지할 수 있다. 또한, 개별적으로 환원되는 금속 촉매를 별도로 분리하지 않아도 되는 공정 상의 이점도 있다.For example, in the present application, the metal catalyst precursor solution may not include a reducing agent. In the case of a reducing agent, it reduces metal cations (M + ) and acts as a factor that prevents bonding with the surface of silica particles. Therefore, as the solution does not contain a reducing agent, it is possible to prevent the formation of a metal catalyst that is individually reduced and does not bind to the silica particles. In addition, there is also an advantage in the process that does not need to separately separate the metal catalyst to be individually reduced.

본 출원은 우수한 촉매 활성이 유지되어 재사용이 가능한 촉매 담지 구조체를 제공한다.The present application provides a catalyst support structure that can be reused by maintaining excellent catalytic activity.

도 1은 실시예 1에 따라 합성된 실리카 입자의 SEM 이미지이다.
도 2는 실시예 1에 따라 제조된 촉매 담지 구조체의 TEM 이미지이다.
도 3은 실시예 1에 따라 제조된 촉매 담지 구조체의 TEM 이미지이다.
도 4는 실시예 1에 따라 제조된 촉매 담지 구조체의 TEM 이미지이다.
도 5 및 6은 실시예 4에 따라 합성된 실리카 입자의 SEM 이미지이다.
1 is an SEM image of silica particles synthesized according to Example 1.
2 is a TEM image of the catalyst support structure prepared according to Example 1.
3 is a TEM image of the catalyst support structure prepared according to Example 1.
4 is a TEM image of the catalyst support structure prepared according to Example 1.
5 and 6 are SEM images of silica particles synthesized according to Example 4.

이하 실시예 및 비교예를 통하여 상기 기술한 내용을 보다 구체적으로 설명한다. 그러나, 본 출원의 범위가 하기 실시예에 의해 제한되는 것은 아니다.Hereinafter, the above-described contents will be described in more detail through Examples and Comparative Examples. However, the scope of the present application is not limited by the following examples.

실시예 1Example 1

<실리카 입자 합성><Silica particle synthesis>

계면활성제 세틸피리디늄 브로마이드(cetylpyridinium bromide, CTAB) 5.7g, 염기성 물질 요소(urea) 3.6g을 물 180g에 용해시켰다. 이후 유기 용매로 시클로헥산(cyclohexane) 140g을 추가로 첨가한 후, 테트라에틸오소실리케이트(tetraethylorthosilicate, TEOS) 15g을 첨가하였다. 상기 혼합용액을 중탕을 이용하여 70℃에서 16시간 가열하여 주름진 표면을 갖는 실리카 입자를 합성하였다. 5.7 g of surfactant cetylpyridinium bromide (CTAB) and 3.6 g of basic substance urea were dissolved in 180 g of water. Thereafter, 140 g of cyclohexane was further added as an organic solvent, and 15 g of tetraethylorthosilicate (TEOS) was added thereto. The mixed solution was heated at 70° C. for 16 hours using a bath to synthesize silica particles having a corrugated surface.

합성된 입자를 아센톤과 물로 3차례 세척하고, 세척이 완료된 입자의 크기 및 표면을 SEM을 통해 확인하였다. 그 결과는 도 1에 도시하였다. 도 1을 참조하면, 합성된 실리카 입자의 평균 직경은 300nm이였고, 복수 개의 산과 골을 포함하는(주름진 표면)을 갖는 것을 확인하였다. The synthesized particles were washed three times with ascentone and water, and the size and surface of the washed particles were confirmed through SEM. The results are shown in FIG. 1 . Referring to FIG. 1 , the average diameter of the synthesized silica particles was 300 nm, and it was confirmed that they had a plurality of mountains and valleys (corrugated surface).

<촉매 담지 구조체 제조><Production of catalyst support structure>

소듐 테트라클로로팔라데이트(sodium tetrachloropalladate, Na2PdCl4) 5.9g을 물 120ml에 용해시켜 금속 전구체 용액을 제조하였다. 그리고 상기에서 합성한 실리카 입자 (평균 입경: 300nm) 4g을 상기 금속 전구체 용액에 첨가한 후 2시간 동안 교반하여 침전물을 생성하였다. 생성된 침전물을 2,500rpm에서 10분간 원심 분리하여 분말을 수득하였다. 수득한 분말을 500℃ 대기 분위기의 전기로에서 가열하고 환원분위기에서 추가 가열하여 촉매 담지 구조체(WSN-Pd)를 제조하였다.A metal precursor solution was prepared by dissolving 5.9 g of sodium tetrachloropalladate (Na 2 PdCl 4 ) in 120 ml of water. Then, 4 g of the synthesized silica particles (average particle diameter: 300 nm) were added to the metal precursor solution and stirred for 2 hours to generate a precipitate. The resulting precipitate was centrifuged at 2,500 rpm for 10 minutes to obtain a powder. The obtained powder was heated in an electric furnace in an atmospheric atmosphere at 500° C. and further heated in a reducing atmosphere to prepare a catalyst supporting structure (WSN-Pd).

도 2는 실시예 1에서 제조된 촉매 담지 구조체의 TEM 이미지이다. 도 2로부터, 대부분의 금속 촉매가 골에 담지된 것을 확인하였다.2 is a TEM image of the catalyst support structure prepared in Example 1. From Figure 2, it was confirmed that most of the metal catalyst was supported on the bone.

실시예 2Example 2

<실리카 입자 합성><Silica particle synthesis>

실시예 1과 동일한 방법으로 실리카 입자를 제조하였다.Silica particles were prepared in the same manner as in Example 1.

<촉매 담지 구조체 제조><Production of catalyst support structure>

소듐 테트라크로로플라티네이트(II) 하이드레이트(sodium tetrachloroplatinate(II) hydrate) 8g을 물 120ml에 용해시켜 금속 전구체 용액을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 촉매 담지 구조체(WSN-Pt)를 제조하였다.Catalyst support structure (WSN-Pt) in the same manner as in Example 1, except that 8 g of sodium tetrachloroplatinate (II) hydrate was dissolved in 120 ml of water to prepare a metal precursor solution. was prepared.

도 3은 실시예 2에서 제조된 촉매 담지 구조체의 TEM 이미지이다. 도 3으로부터, 대부분의 금속 촉매가 골에 담지된 것을 확인하였다.3 is a TEM image of the catalyst support structure prepared in Example 2. From FIG. 3, it was confirmed that most of the metal catalyst was supported on the bone.

실시예 3Example 3

<실리카 입자 합성><Silica particle synthesis>

실시예 1과 동일한 방법으로 실리카 입자를 제조하였다.Silica particles were prepared in the same manner as in Example 1.

<촉매 담지 구조체 제조><Production of catalyst support structure>

코발트(II)클로라이드 (cobalt(II) chloride) 4.8g을 물 120ml에 용해시켜 금속 전구체 용액을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 촉매 담지 구조체(WSN-Co)를 제조하였다.A catalyst supporting structure (WSN-Co) was prepared in the same manner as in Example 1, except that 4.8 g of cobalt(II) chloride was dissolved in 120 ml of water to prepare a metal precursor solution.

도 4는 실시예 3에서 제조된 촉매 담지 구조체의 TEM 이미지이다. 도 4로부터, 촉매가 주름 내부에 담지된 것을 확인하였다.4 is a TEM image of the catalyst support structure prepared in Example 3. From Fig. 4, it was confirmed that the catalyst was supported inside the wrinkle.

실시예 4Example 4

<실리카 입자 합성><Silica particle synthesis>

계면활성제 세틸피리디늄 브로마이드(cetylpyridinium bromide, CTAB) 5.7g, 염기성 물질 요소(urea) 3.6g을 물 180g에 용해시켰다. 이후 유기 용매로 시클로헥산(cyclohexane) 140g을 추가로 첨가한 후, 테트라에틸오소실리케이트(tetraethylorthosilicate, TEOS) 30g을 첨가하였다. 상기 혼합용액을 중탕을 이용하여 70℃에서 16시간 가열하여 주름진 표면을 갖는 실리카 입자를 합성하였다. 5.7 g of surfactant cetylpyridinium bromide (CTAB) and 3.6 g of basic substance urea were dissolved in 180 g of water. Thereafter, 140 g of cyclohexane was further added as an organic solvent, and then 30 g of tetraethylorthosilicate (TEOS) was added. The mixed solution was heated at 70° C. for 16 hours using a bath to synthesize silica particles having a corrugated surface.

합성된 입자를 아센톤과 물로 3차례 세척하고, 세척이 완료된 입자의 크기 및 표면을 SEM을 통해 확인하였다. 그 결과는 도 5 및 6에 도시하였다. 도 5 및 6을 참조하면, 실시예 4에서 제조된 실리카 입자의 평균 입경은 450nm이였고, 복수 개의 산과 골을 포함하는(주름진 표면)을 갖는 것을 확인하였다.The synthesized particles were washed three times with ascentone and water, and the size and surface of the washed particles were confirmed through SEM. The results are shown in FIGS. 5 and 6 . 5 and 6 , the average particle diameter of the silica particles prepared in Example 4 was 450 nm, and it was confirmed that they had a plurality of mountains and valleys (corrugated surface).

<촉매 담지 구조체 제조><Production of catalyst support structure>

소듐 테트라클로로팔라데이트(sodium tetrachloropalladate, Na2PdCl4) 5.9g을 물 120ml에 용해시켜 금속 전구체 용액을 제조하였다. 그리고 상기에서 실리카 입자(평균 입경: 450nm) 4g을 상기 금속 전구체 용액에 첨가한 후 2시간 동안 교반하여 침전물을 생성하였다. 생성된 침전물을 2,500rpm에서 10분간 원심 분리하여 분말을 수득하였다. 수득한 분말을 500℃ 대기 분위기의 전기로에서 가열하고 환원분위기에서 추가 가열하여 촉매 담지 구조체(WSN-Pd)를 제조하였다.A metal precursor solution was prepared by dissolving 5.9 g of sodium tetrachloropalladate (Na 2 PdCl 4 ) in 120 ml of water. Then, 4 g of silica particles (average particle diameter: 450 nm) were added to the metal precursor solution and stirred for 2 hours to generate a precipitate. The resulting precipitate was centrifuged at 2,500 rpm for 10 minutes to obtain a powder. The obtained powder was heated in an electric furnace in an atmospheric atmosphere at 500° C. and further heated in a reducing atmosphere to prepare a catalyst supporting structure (WSN-Pd).

비교예 1Comparative Example 1

<실리카 입자 합성><Silica particle synthesis>

실시예 1과 동일한 방법으로 실리카 입자를 제조하였다.Silica particles were prepared in the same manner as in Example 1.

<촉매 담지 구조체 제조><Production of catalyst support structure>

소듐 테트라클로로팔라데이트(sodium tetrachloropalladate, Na2PdCl4) 5.9g을 물 120ml에 용해시킨 후, 유기 환원제로 NaBH4(0.1M) 용액을 1ml 투입하고 10분간 혼합하여 금속 전구체 용액을 제조하였다. 그리고 상기에서 합성한 실리카 입자(평균 입경: 300nm) 4g을 상기 금속 전구체 용액에 첨가한 후 2시간 동안 교반하여 침전물을 생성하였다. 생성된 침전물을 2,500rpm에서 10분간 원심 분리하여 분말을 수득하였다. 수득한 분말을 500℃ 대기 분위기의 전기로에서 가열하고 환원분위기에서 추가 가열하여 촉매 담지 구조체(WSN-Pd)를 제조하였다.After dissolving 5.9 g of sodium tetrachloropalladate (Na 2 PdCl 4 ) in 120 ml of water , 1 ml of NaBH 4 (0.1M) solution was added as an organic reducing agent and mixed for 10 minutes to prepare a metal precursor solution. Then, 4 g of the synthesized silica particles (average particle diameter: 300 nm) were added to the metal precursor solution and stirred for 2 hours to generate a precipitate. The resulting precipitate was centrifuged at 2,500 rpm for 10 minutes to obtain a powder. The obtained powder was heated in an electric furnace in an atmospheric atmosphere at 500° C. and further heated in a reducing atmosphere to prepare a catalyst supporting structure (WSN-Pd).

비교예 2Comparative Example 2

<실리카 입자 합성><Silica particle synthesis>

Stober 합성 방법을 이용하여, 주름이 없는 실리카 입자를 합성하였다. 구체적으로, 물 15g, 에탄올 85ml, 암모니아수 (28wt%) 6ml, TEOS 2.8g를 혼합 용기에 넣고 상온에서 1시간 교반하여 실리카 입자를 제조하였다. 상기 제조된 실리카 입자의 표면에는 산과 골이 관찰되지 않았다.Using the Stober synthesis method, wrinkle-free silica particles were synthesized. Specifically, 15 g of water, 85 ml of ethanol, 6 ml of aqueous ammonia (28 wt%), and 2.8 g of TEOS were placed in a mixing container and stirred at room temperature for 1 hour to prepare silica particles. Acids and valleys were not observed on the surface of the prepared silica particles.

<촉매 담지 구조체 제조><Production of catalyst support structure>

상기 주름이 없는 실리카 입자를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 촉매 담지 구조체를 제조하였다.A catalyst support structure was prepared in the same manner as in Example 1, except that the wrinkle-free silica particles were used.

실험예 - 촉매 활성 평가 Experimental Example - Catalyst Activity Evaluation

하기 반응식으로 나타나는 Suzuki Coupling Reaction (Eur. J. Org. chem., 2013, 4345-4350)의 생성물 수율을 통해 실시예 1, 실시예 4 비교예 1 및 비교예 2에서 제조된 촉매 담지 구조체에 대한 촉매 활성 평가를 수행하였다. 대조군으로 상용화 촉매 Pd-TTP (Tetrakis(triphenylphosphine)palladium(0), 216666, Sigma-aldrich) 및 Pd/C (520888, Sigma-aldrich) (비교예 3 및 4)에 대해서도 추가로 촉매 활성 평가를 수행하였다.Examples 1, 4 Comparative Examples 1 and 2 through the product yield of Suzuki Coupling Reaction (Eur. J. Org. chem., 2013, 4345-4350) represented by the following reaction formula For the catalyst support structure prepared in Comparative Example 1 and Comparative Example 2 Catalyst activity evaluation was performed. As a control, the commercial catalyst Pd-TTP (Tetrakis(triphenylphosphine)palladium(0), 216666, Sigma-aldrich) and Pd/C (520888, Sigma-aldrich) (Comparative Examples 3 and 4) were additionally evaluated for catalytic activity. did.

[반응식][reaction formula]

Figure pat00001
Figure pat00001

구체적으로, 4-브로모페놀 (4-bromophenol) 0.173g (1mmol), 페닐보로닉 산 (phenylboronic acid) 0.183g (1.5mmol), 에탄올 4ml, 물 4ml, K2Co3 0.212g (2mmol)을 플레이크에 정량하여 투입하고, 이어서 실시예 및 비교예에서 제조된 촉매 담지 구조체를 각각 0.03mmol에 맞추어 투입하였다. 그리고 1시간 교반하고, 원심분리로 촉매 담지 구조체를 분리한 후 GC를 통해 촉매 활성(수율)을 측정하였다. 수율 결과는 아래 표에 기재하였다.Specifically, 4-bromophenol (4-bromophenol) 0.173g (1mmol), phenylboronic acid (phenylboronic acid) 0.183g (1.5mmol), ethanol 4ml, water 4ml, K2Co3 0.212g (2mmol) to the flakes It was quantitatively added, and then, the catalyst-supporting structures prepared in Examples and Comparative Examples were added according to 0.03 mmol, respectively. Then, the mixture was stirred for 1 hour, and the catalyst support structure was separated by centrifugation, and then catalyst activity (yield) was measured through GC. The yield results are shown in the table below.

실시예Example 비교예comparative example 1One 44 1One 22 33 44 반응시간reaction time 1시간1 hours 1시간1 hours 1시간1 hours 1시간1 hours 1시간1 hours 1시간1 hours 수율(%)yield(%) 50.750.7 49.549.5 20.420.4 3.33.3 49.249.2 10.210.2

Claims (12)

복수 개의 산과 골을 포함하는 표면을 갖는 실리카 입자; 및
상기 산 및 골에 담지된 금속 촉매를 포함하고,
상기 골에 담지된 금속 촉매의 함량은 산에 담지된 금속 촉매의 함량보다 큰, 촉매 담지 구조체.
Silica particles having a surface comprising a plurality of acids and valleys; and
Containing a metal catalyst supported on the acid and bone,
The content of the metal catalyst supported on the bone is greater than the content of the metal catalyst supported on the acid, catalyst support structure.
제 1 항에 있어서, 상기 골에 담지된 금속 촉매의 함량은 금속 촉매 전체 함량에 대하여 60 내지 99 중량%인, 촉매 담지 구조체.According to claim 1, wherein the content of the metal catalyst supported on the bone is 60 to 99% by weight based on the total content of the metal catalyst, the catalyst supporting structure. 제 1 항에 있어서, 상기 산 및 골에 담지된 금속 촉매의 함량은 실리카 입자의 함량에 대하여 0.1 내지 20 중량%인, 촉매 담지 구조체.According to claim 1, wherein the content of the metal catalyst supported on the acid and bone is 0.1 to 20% by weight based on the content of the silica particles, the catalyst supporting structure. 제 1 항에 있어서, 상기 실리카 입자의 평균 입경은 50 내지 1,000nm인, 촉매 담지 구조체.The catalyst supporting structure according to claim 1, wherein the silica particles have an average particle diameter of 50 to 1,000 nm. 제 1 항에 있어서, 상기 실리카 입자의 산과 산 사이의 간격은 5 내지 50nm인, 촉매 담지 구조체.The catalyst supporting structure according to claim 1, wherein the distance between the acid and the acid of the silica particles is 5 to 50 nm. 제 1 항에 있어서, 상기 실리카 입자의 산의 두께는 2 내지 20nm인, 촉매 담지 구조체.According to claim 1, wherein the thickness of the acid of the silica particles is 2 to 20nm, the catalyst supporting structure. 제 1 항에 있어서, 상기 실리카 입자의 유효 표면적(BET)은 400 내지 600m2/g 범위 내인, 촉매 담지 구조체.The catalyst supporting structure according to claim 1, wherein the effective surface area (BET) of the silica particles is in the range of 400 to 600 m 2 /g. 제 1 항에 있어서, 상기 금속 촉매는 백금(Pt), 팔라듐(Pd), 은(Ag), 금(Au), 코발트(Co), 니켈(Ni), 철(Fe), 구리(Cu), 카드뮴(Cd), 아연(Zn), 루비듐(Rb) 및 유로퓸(Eu)으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 촉매 담지 구조체.According to claim 1, wherein the metal catalyst is platinum (Pt), palladium (Pd), silver (Ag), gold (Au), cobalt (Co), nickel (Ni), iron (Fe), copper (Cu), A catalyst supporting structure comprising at least one selected from the group consisting of cadmium (Cd), zinc (Zn), rubidium (Rb) and europium (Eu). 복수 개의 산과 골을 포함하는 표면을 갖는 실리카 입자를 합성하는 합성 단계;
상기 합성된 실리카 입자를 금속 촉매 전구체 용액에 분산하여 침전물을 형성하는 형성 단계; 및
상기 침전물을 열처리하여 제 1 항에 따른 촉매 담지 구조체를 제조하는 제조 단계를 포함하는, 촉매 담지 구조체의 제조 방법.
A synthesis step of synthesizing silica particles having a surface including a plurality of acids and valleys;
forming a precipitate by dispersing the synthesized silica particles in a metal catalyst precursor solution; and
A method for manufacturing a catalyst supporting structure, comprising a manufacturing step of heat-treating the precipitate to prepare the catalyst supporting structure according to claim 1 .
제 9 항에 있어서, 상기 열처리는 300 내지 500℃ 온도 범위 내에서, 1 내지 24시간 동안 수행되는, 촉매 담지 구조체의 제조 방법.The method of claim 9, wherein the heat treatment is performed within a temperature range of 300 to 500° C. for 1 to 24 hours. 제 9 항에 있어서, 상기 열처리는 환원 분위기에서 수행되는, 촉매 담지 구조체의 제조 방법.The method of claim 9 , wherein the heat treatment is performed in a reducing atmosphere. 제 9 항에 있어서, 금속 촉매 전구체 용액은 환원제를 포함하지 않는, 촉매 담지 구조체의 제조 방법.



The method of claim 9 , wherein the metal catalyst precursor solution does not contain a reducing agent.



KR1020190165206A 2019-12-12 2019-12-12 Catalyic loading structure and manufacturing method thereof KR20210074483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190165206A KR20210074483A (en) 2019-12-12 2019-12-12 Catalyic loading structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190165206A KR20210074483A (en) 2019-12-12 2019-12-12 Catalyic loading structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR20210074483A true KR20210074483A (en) 2021-06-22

Family

ID=76600435

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190165206A KR20210074483A (en) 2019-12-12 2019-12-12 Catalyic loading structure and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR20210074483A (en)

Similar Documents

Publication Publication Date Title
Zhao et al. Basic concepts and recent advances in nitrophenol reduction by gold-and other transition metal nanoparticles
EP2291324B1 (en) Process for preparing nanocomposites consisting of carbon nanotube and metal
EP2254692B1 (en) Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from said dispersions
JP4044673B2 (en) Polybetaine-stabilized palladium-containing nanoparticles, method for preparing the particles, and catalyst prepared from the particles to produce vinyl acetate
Ishida et al. Direct deposition of gold nanoparticles onto polymer beads and glucose oxidation with H2O2
Liu et al. Effective reduction of 4-nitrophenol with Au NPs loaded ultrathin two dimensional metal-organic framework nanosheets
JP5643197B2 (en) Heterogeneous copper nanocatalyst and method for producing the same
Favier et al. Metal-based nanoparticles dispersed in glycerol: An efficient approach for catalysis
Cid et al. Synthesis, characterization, and potential applications of transition metal nanoparticles
JP2011089143A (en) Method for producing mono-component system and bi-component system cubic type metal nanoparticle
CN107537517B (en) Alloy colloid and preparation method and application thereof
Vigneron et al. Evolution in the chemical making of gold oxidation catalysts
EP1133447A1 (en) Water-soluble nanostructured metal-oxide colloids and method for preparing the same
Mourdikoudis et al. Colloidal chemical bottom-up synthesis routes of pnictogen (As, Sb, Bi) nanostructures with tailored properties and applications: a summary of the state of the art and main insights
Xu et al. Tunable synthesis solid or hollow Au–Ag nanostructure, assembled with GO and comparative study of their catalytic properties
Ranjbar Bahadori et al. Synthesis of cobalt, palladium, and rhenium nanoparticles
Tai et al. Preparation, thermal stability, and CO oxidation activity of highly loaded Au/titania-coated silica aerogel catalysts
JP5647415B2 (en) Preparation of nanoparticles containing iron and titanium
Larios-Rodríguez et al. Green-chemical synthesis of monodisperse Au, Pd and bimetallic (core–shell) Au–Pd, Pd–Au nanoparticles
US20190308155A1 (en) Improved precious metal nanoparticles
KR20210074483A (en) Catalyic loading structure and manufacturing method thereof
Beigbaghlou et al. Introducing of a New Bio-inspired Hierarchical Porous Silica as an Inorganic Host for Ni–Pd Alloy Nanoparticles for the Synthesis of Aminobiphenyls from the One-Pot Suzuki–Miyaura Coupling-Nitro Reduction
JP3944875B2 (en) Catalyst for synthesizing carboxylic acid ester and method for producing carboxylic acid ester
Li et al. Preparation of carbon dots-metal nanoparticles nanocomposites and their application in heterogeneous catalysis
JP2017095303A (en) Layering silicon composite material, manufacturing method therefor and precipitation method of metal