KR20200128276A - 열처리 한 단일벽 탄소나노튜브의 합성방법 - Google Patents

열처리 한 단일벽 탄소나노튜브의 합성방법 Download PDF

Info

Publication number
KR20200128276A
KR20200128276A KR1020190051682A KR20190051682A KR20200128276A KR 20200128276 A KR20200128276 A KR 20200128276A KR 1020190051682 A KR1020190051682 A KR 1020190051682A KR 20190051682 A KR20190051682 A KR 20190051682A KR 20200128276 A KR20200128276 A KR 20200128276A
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
walled carbon
heat treatment
gas
walled
Prior art date
Application number
KR1020190051682A
Other languages
English (en)
Other versions
KR102254966B1 (ko
Inventor
박수영
Original Assignee
극동대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 극동대학교 산학협력단 filed Critical 극동대학교 산학협력단
Priority to KR1020190051682A priority Critical patent/KR102254966B1/ko
Publication of KR20200128276A publication Critical patent/KR20200128276A/ko
Application granted granted Critical
Publication of KR102254966B1 publication Critical patent/KR102254966B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 열처리 한 단일벽 탄소나노튜브의 합성방법에 관한 것으로서, 더욱 상세하게는 단일벽 탄소나노튜브의 순도를 높이고 비정질 탄소와 금속잔여물을 효과적으로 제거할 수 있도록 열처리 과정을 포함하는 단일벽 탄소나노튜브의 합성방법에 관한 것이다. 이를 위하여 본 발명에 의한 열처리를 단일벽 탄소나노튜브의 합성방법은, 탄소봉에 Fe, Co, Ni, S 또는 Y₂O₃ 중 하나 이상의 금속촉매와 탄소 파우더를 주입하는 주입단계; 상기 탄소봉을 아크방전장치의 양극에 장입한 후 상기 아크방전장치 내에 헬륨가스를 주입하여 압력을 150torr로 유지하면서 상기 양극과 음극 사이에 전류를 흘려 탄소나노튜브를 합성하는 합성단계; 및 상기 탄소나노튜브를 열처리용 챔버에 넣고 가스를 주입하여 열처리하는 열처리단계; 를 포함하는 것을 특징으로 하는 것이 바람직하다.

Description

열처리 한 단일벽 탄소나노튜브의 합성방법 {Synthesis method for Single-walled carbon nanotubes by post-annealing}
본 발명은 열처리 한 단일벽 탄소나노튜브의 합성방법에 관한 것으로서, 더욱 상세하게는 단일벽 탄소나노튜브의 품질을 높이고 비정질 탄소와 금속잔여물을 효과적으로 제거할 수 있도록 열처리 과정을 포함하는 단일벽 탄소나노튜브의 합성방법에 관한 것이다.
탄소나노튜브(CNT, Carbon nanotube)는 21세기 선도기술로 연구되는 나노소재이며, 높은 전기전도도, 열전도도, 비 표면적, 화학적 안정성 등 우수한 성질은 가지고 있기 때문에 센서, 나노복합체, 투명전극 등의 다양한 응용분야에 활용하는 연구들이 진행 중이다.
탄소나노튜브는 직경은 수~수십 nm인데 비하여 길이는 수백 μm를 가져서 종횡비가 매우 크며 단일벽, 다중벽, 다발 등의 여러 가지 구조를 가지고 있으며, 탄소나노튜브의 감겨진 형태에 따라 도체가 되거나 반도체가 될 수도 있는 등 전도성이 달라지며, 직경에 따라서는 에너지 갭이 달라지는 특징이 있다.
탄소나노튜브는 벽을 이루고 있는 탄소원자의 결합수에 따라 구분하며, 단일벽 탄소나노튜브(Single-wall Nanotube)는 탄소원자로 구성된 벽이 하나인 튜브 형태로 전기전도성, 열전도성이 가장 우수하여, 단일벽 나노튜브를 이용한 실용화 제품개발 노력이 활발히 진행되고 있으며, 단일벽 탄소나노튜브를 전자방출원으로 적용하는 FED(Field Emission Display)는 뛰어난 표시특성을 가지고 경량화가 가능한 디스플레이로 평가된다. 그러나 나노 크기의 탄소나노튜브를 이용한 나노소재를 개발하기 위해서는 탄소나노튜브의 분산성 개발과 나노크기를 조절할 수 있는 기술이 더불어 개발되어야 하는 실정이다.
한편, 탄소나노튜브의 합성법에는 레이저 증착법(laser vaporization), 화학 기상 증착법(Chemical Vapor Deposition), 아크방전법(Arc-discharge) 등의 방법이 있으며, 아크방전법은 장치가 간단하고 값이 싸며 또한 대량 생산의 장점이 있어, 단일벽 탄소나노튜브의 합성에 주로 사용되는 합성방법이다. 아크방전법은 두 개의 탄소막대를 음극과 양극에 배치하고, 헬륨분위기 하에서 두 전극 사이에 직류 전원을 인가하면 전극사이에서 방전이 일어나고 방전에 의해 발생된 다량의 전자는 양극으로 이동하여 양극의 탄소막대에 충돌하게 된다. 이때 전자의 충돌에 의해서 양극의 탄소막대에서 떨어져 나온 탄소크러스트들은 낮은 온도로 냉각되어 있는 음극의 탄소막대 표면에 응축된다. 이렇게 음극에서 응축된 탄소덩어리에는 탄소나노뷰트와 탄소 나노 파티클 그리고 비정질 탄소가 포함되어진다. 일반적으로 다중벽 탄소나노튜브 구조를 가지게 되지만, 양극 탄소막대에 Co, Ni, Fe, Y 등의 금속파우더를 적절한 비율로 혼합하여 전기방전을 일으키면 단일벽 탄소나노튜브를 합성시킬 수 있다.
아크방전법에서 고품질의 탄소나노튜브를 얻기 위한 가장 중요한 요소는 아크방전장치 내의 압력과 인가전류인데, 아크방전장치 내 압력이 증가하면 탄소나노튜브의 수율이 증가하지만 너무 높을 경우에는 오히려 탄소나노튜브의 수율이 떨어진다. 또한 전류는 안정된 플라즈마를 유지할 수 있는 범위 내에서 가능한 낮은 전류 값을 가지는 것이 좋으며, 두 개의 탄소전극 사이에 교류 혹은 직류를 가해 방전을 일으키는데 현재는 탄소나노튜브의 수율이 높은 직류가 대부분 사용된다.
아크방전법을 사용하여 단일벽 탄소나노튜브를 합성하게 되면 비정질 탄소와 금속의 잔여물들이 단일벽 탄소나노튜브에 남아 있게 되어 단일벽 탄소나노튜브의 본연의 우수한 성질을 발현하는 데 저해 요인으로 작용한다.
고순도의 탄소나노튜브 얻기 위하여 탄소나노튜브 합성의 후처리인 정제단계를 통해 불순물을 제거하여야 하며, 탄소나노튜브의 합성과정 중 포함될 수 있는 불순물질의 종류는 비정질 탄소, 풀러렌, 그래파이트, 금속촉매 등이 있으며, 일반적으로 화학적 방법 및 물리적 방법 등으로 이러한 불순물을 제거함으로써 탄소나노튜브를 정제하고, 탄소나노튜브의 기초물성 또는 구조를 연구하거나 응용연구를 하기 위해서는 탄소나노튜브에 붙어 있는 불순물질을 반드시 정제해야 한다.
탄소나노튜브의 정제 방법으로는 기상 산화법, 액상 산화법, 열처리 등이 있으며, 기상 산화법은 주로 다중벽 탄소나노튜브의 정제에 사용되었던 방법이나, 기체 상태에서 산화 과정동안 산화가 부분적으로 이루어졌기 때문에 수율이 낮다. 또한, 액상 산화법은 산용액에 합성한 시료를 담가 환류시키면 금속들과 부산물 탄소들이 산화되는 방법으로, 산용액의 위험성과 후처리가 어려운 단점이 있어 이러한 단점들을 개선하기 위해 다른 방법에 대한 많은 연구가 필요한 실정이며, 이러한 연구개발들은 탄소나노튜브 복합체를 응용한 전자산업, 디스플레이소재, 구조재료, 스포츠, 자동차, 항공산업 등에 다양하게 적용될 수 있는 소재를 합성할 것으로 기대할 수 있다.
M. S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.), Carbon Naontubes : Synthesis, Structure, Properfies and Applications, Springer, Berlin (2001). Chong-yang Liu, Allen J. Bard, Fred Wudl, Iris Weitz and James R. Heath, Electrochemical Characterization of Films of Single-Walled Carbon Nanotubes and Their Possible Application in Supercapacitors, Electrochem. Solid-State Lett. 2 11 (199) 577-578 W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Fully sealed, high brightness carbon-nanotube field-emission display, Appl. Phys. Lett. 75 (1999) 3129 Li Yukui, Zhu Changchun, Liu Xinghui, Field emission display with carbon nanotubes cathode: prepared by a screen-printing process, Diamond and Related Materials 11 11 (2002) 1845-1847 Jae-Yoo Kim, Moonhee Kim, HeonMo Kim, J Joo, Jong-Ho Choi, Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites, Optical Materials 21 1-3 (2003) 147-151 Robert Socher, Beate Krause, Michael T. Muller, Regine Boldt, Petra Potschke, The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites, Polymer 53 2 24 (2012) 495-504 E.F. Antunes, A.O. Lobo, E.J. Corat, V.J. Trava-Airoldi, Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes, Carbon 45 5 (2007) 913 921 Yabin Chen, Jin Zhang, Diameter controlled growth of single-walled carbon nanotubes from SiO2 nanoparticles, Carbon 49 10 (2011) 3316-3324 Paul Theilmann, Dong-Jin Yun, Peter Asbeck, Sung-Hoon Park, Superior electromagnetic interference shielding and dielectric properties of carbon nanotube composites through the use of high aspect ratio CNTs and three-roll milling, Organic Electronics 14 6 (2013) 1531-1537 Elnaz Esmizadeh, Ali Akbar Yousefi, Ghasem Naderi, Effect of type and aspect ratio of different carbon nanotubes on cure behavior of epoxy-based nanocomposites, Iranian Polymer Journal 24 1 (2015) 1-12 Yuki Matsuda, Jamil Tahir-Kheli, and William A. Goddard, Definitive Band Gaps for Single-Wall Carbon Nanotubes, J. Phys. Chem. Lett. 1 (19) (2010) 2946-2950 P.C.P. Watts, D.R. Ponnampalam, W.K. Hsu, A. Barnes, B. Chambers, The complex permittivity of multi-walled carbon nanotube-polystyrene composite films in X-band, Chemical Physics Letters 378 5-6 (2003) 609-614 Anusorn KongkanandPrashant V. Kamat, Electron Storage in Single Wall Carbon Nanotubes. Fermi Level Equilibration in Semiconductor-SWCNT Suspensions, ACS Nano 1 (1) (2007) 13-21 Gun-Do Lee, Cai-Zhuang Wang, Jaejun Yu, Euijoon Yoon, Nong-Moon Hwang, and Kai-Ming Ho, Formation of carbon nanotube semiconductor-metal intramolecular junctions by self-assembly of vacancy defects, Phys. Rev. B 76 (2007) 165413 Christopher M. Schauerman, Jack Alvarenga, Brian J. Landi, Cory D. Cress, Ryne P. Raffaelle, Impact of nanometal catalysts on the laser vaporization synthesis of single wall carbon nanotubes, Carbon 47 10 (2009) 2431-2435 Pavel Nikolaev, Olga Gorelik, Rama kumar Allada, Edward Sosa, Sivaram Arepalli, and Leonard Yowell, Soft-Bake Purification of Single-Walled Carbon Nanotubes Produced by Pulsed Laser Vaporization, J. Phys. Chem. C 111 (48) (2007) 17678-17683 Eugene G. Gamaly and Thomas W. Ebbesen, Mechanism of carbon nanotube formation in the arc discharge, Phys. Rev. B 52 (1995) 2083 Ya-Li Li, Ian A. Kinloch, Alan H. Windle, Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis, Science 304 5668 (2004) 276-278 T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Catalytic growth of single walled manotubes by laser vaporization, Chemical Physics Letters 243 1-2, 8 (1995) 49-54 D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, and R. E. Smalley, Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett. 74, (1999) 3803 Jie Ma, Jian-Nong Wang, Chung-Jung Tsai, Ruth Nussinov, Buyong Ma, Diameters of single-walled carbon nanotubes (SWCNTs) and related nanochemistry and nanobiology, Frontiers of Materials Science in China 4 1 (2010) 17-28 M. Ismail, Y. Zhao, X.B. Yu, A. Ranjbar, S.X. Dou, Improved hydrogen desorption in lithium alanate by addition of SWCNT-metallic catalyst composite, International Journal of Hydrogen Energy 36 5 (2011) 3593-3599 Lijie Ci, Jinquan Wei, Bingqing Wei, Ji Liang, Cailu Xu, Dehai Wu, Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon 39 3 (2001) 329-335 Xiaowei He, Weilu Gao, Lijuan Xie, Bo Li, Qi Zhang, Sidong Lei, John M. Robinson, Erik H. Haroz, Stephen K. Doorn, Weipeng Wang, Robert Vajtai, Pulickel M. Ajayan, W. Wade Adams, Robert H. Hauge, Junichiro Kono, Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes, Nature Nanotechnology 11 (2016) 633-638 Hong-Zhang Geng, Ki Kang Kim, Kang Pyo So, Young Sil Lee, Youngkyu Chang, and Young Hee Lee, Effect of Acid Treatment on Carbon Nanotube-Based Flexible Transparent Conducting Films, J. Am. Chem. Soc. 129 (25) (2007) 7758-7759 M. P. Siegal, D. L. Overmyer, and P. P. Provencio, Precise control of multiwall carbon nanotube diameters using thermal chemical vapor deposition, Appl. Phys. Lett. 80 (2002) 2171 Chia-Ming Chen, Yong-Ming Dai, Jenn Gwo Huang, Jih-Mirn Jehng, Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method, Carbon 44 9 (2006) 1808-1820 YeoHeung Yun, Vesselin Shanov, Yi Tu, Srinivas Subramaniam, and Mark J. Schulz, Growth Mechanism of Long Aligned Multiwall Carbon Nanotube Arrays by WaterAssisted Chemical Vapor Deposition, J. Phys. Chem. B 110 (47) (2006) 23920-23925 R. G. Lacerda, A. S. Teh, M. H. Yang, K. B. K. Teo, N. L. Rupesinghe, S. H. Dalal, K. K. K. Koziol, D. Roy, G. A. J. Amaratunga, and W. I. Milne, Growth of high-quality single-wall carbon nanotubes without amorphous carbon formation, Appl. Phys. Lett. 84 (2004) 269 Sivaram Arepalli, Pavel Nikolaev, Olga Gorelik, Victor G Hadjiev, Williams Holmes, Bradley Files, Leonard Yowell, Protocol for the characterization of single-wall carbon nanotube material quality, Carbon 42 8-9 (2004) 1783-1791 Mi Chen, Hung-Wei Yu, Jhih-Hong Chen, Horng-Show Koo, Effect of purification treatment on adsorption characteristics of carbon nanotubes, Diamond and Related Materials 16 4-7 (2007) 1110-1115 E. Castillejos, B. Bachiller-Baeza, M. Perez-Cadenas, E. Gallegos-Suarez, I. Rodriguez-Ramos, A. Guerrero-Ruiz b,, K. Tamargo-Martinez, A. Martinez-Alonso, J.M.D. Tascon, Structural and surface modifications of carbon nanotubes when submitted to high temperature annealing treatments, Journal of Alloys and Compounds 536 1 25 (2012) S460-S463 Aranzazu Heras, Alvaro Colina, Jesus Lopez-Palacios, Antti Kaskela, Albert G. Nasibulin, Virginia Ruiz, Esko I. Kauppinen, Flexible optically transparent single walled carbon nanotube electrodes for UV-Vis absorption spectroelectrochemistry, Electrochemistry Communications 11 2 (2009) 442-445 Wei Zhang, b, Les Johnson, S. Ravi P. Silva, M.K. Lei, The effect of plasma modification on the sheet resistance of nylon fabrics coated with carbon nanotubes, Applied Surface Science 258 20 1 (2012) 8209-8213 Satoru Shoji, Hidemasa Suzuki, Remo Proietti Zaccaria, Zouheir Sekkat, and Satoshi Kawata, Optical polarizer made of uniaxially aligned short single-wall carbon nanotubes embedded in a polymer film, Phys. Rev. B 77 (2008) 153407 Kunihiko Okano, Ikuyo Noguchi and Takashi Yamashita, Anisotropic Carbon Nanotube Films Fabricated from a Lyotropic Liquid-Crystalline Polymer, Macromolecules 43 (13) (2010) 5496-5499 Jun-Ho Shin, D W Shin, S P Patole, J H Lee, S M Park and J B Yoo, Smooth, transparent, conducting and flexible SWCNT films by filtration-wet transfer processes, Journal of Physics D: Applied Physics 42 (2009) 4 Alejandro De Falco, Mirta L. Fascio, Melisa E. Lamanna, Maria A. Corcuera, InMondragon, Gerardo H. Rubiolo, Norma B. D’Silvia Goyanes, Thermal treatment of the carbon nanotubes and their functionalization with styrene, Physica B: Condensed Matter 404 18 (2009) 2780-2783 P.S. Goh, B.C. Ng, A.F. Ismail, M. Aziz, Y. Hayashi, Pre-treatment of multi-walled carbon nanotubes for polyetherimide mixed matrix hollow fiber membranes, Journal of Colloid and Interface Science 386 1 (2012) 80-87 A Anson, M Benham, J Jagiello, M A Callejas, A M Benito, W K Maser, A Zuttel, P Sudan and M T Martinez, Hydrogen adsorption on a single-walled carbon nanotube material: a comparative study of three different adsorption techniques, Nanotechnology 15 (2004) 11 Michael J. McAllister, Je-Luen Li, Douglas H. Adamson, Hannes C. Schniepp, Ahmed A. Abdala, Jun Liu, Margarita Herrera-Alonso, David L. Milius, Roberto Car, Robert K. Prud'homme, and Ilhan A. Aksay, Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite, Chem. Mater. 19 (18) (2007) 4396-4404 Pillai, Sreejarani K. Augustyn, Willem G. Rossouw, Margaretha H. McCrindle, Robert, The Effect of Calcination on Multi-Walled Carbon Nanotubes Produced by Dc-Arc Discharge, Journal of Nanoscience and Nanotechnology 8 7 (2008) 3539 3544(6)
전술한 문제점을 해결하기 위하여 창안된 본 발명에 의한 열처리 한 단일벽 탄소나노튜브의 합성방법은, 간단한 장치를 사용하는 아크방전법에 있어서, 탄소나노튜브 합성을 위한 최적의 조건을 제공함으로써 값이 싸며 대량 생산이 가능한 단일벽 탄소나노튜브의 합성방법을 제공하는 것을 목적으로 한다.
본 발명의 또 다른 목적은, 불순물이 함유된 단일벽 탄소나노튜브를 염소와 질소의 혼합가스 하에서 열처리를 함으로써 미반응 금속물질과 비정질 탄소가 제거되어 고 순도로 열처리 된 단일벽 탄소나노튜브의 합성방법을 제공하는 것을 목적으로 한다.
본 발명의 또 다른 목적은, 열처리를 통하여 순도를 높임으로써 탄소나노튜브의 면저항이 감소되고 전기전도성과 투과도가 증가하여 디스플레이 응용에 적합한 고품질의 단일벽 탄소나노튜브를 얻을 수 있는 합성방법을 제공하는 것을 목적으로 한다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
전술한 목적을 달성하기 위해 창안된, 본 발명에 의한 열처리 한 단일벽 탄소나노튜브의 합성방법은, 탄소봉에 Fe, Co, Ni, S 또는 Y₂O₃ 중 하나 이상의 금속촉매와 탄소 파우더를 주입하는 주입단계; 상기 탄소봉을 아크방전장치의 양극에 장입한 후 상기 아크방전장치 내에 헬륨가스를 주입하여 압력을 150torr로 유지하면서 상기 양극과 음극 사이에 전류를 흘려 탄소나노튜브를 합성하는 합성단계; 및 상기 탄소나노튜브를 열처리용 챔버에 넣고 가스를 주입하여 열처리하는 열처리단계; 를 포함하는 것이 바람직하다.
상술한 특징에 더하여, 상기 열처리단계는 상기 열처리용 챔버를 아르곤가스 분위기에서 900℃까지 승온하는 승온단계; 60분 동안 900℃의 온도를 유지하며 상기 열처리용 챔버에 염소가스와 산소가스를 주입하는 가스주입단계; 및 상기 열처리용 챔버에 아르곤가스과 질소가스를 주입하면서 감온하는 감온단계; 로 이루어진 것을 특징으로 하는 것이 바람직하다.
또한, 상술한 특징에 더하여, 상기 합성단계에서 상기 양극과 상기 음극 사이에 흐르는 전류는 400A인 것을 특징으로 하는 것도 바람직하다.
한편, 본 발명에 의한 열처리 한 단일벽 탄소나노튜브의 합성방법은, 상기 승온단계에서의 승온속도는 15℃/분이며, 상기 감온단계에서의 감온속도는 7.5℃/분인 것을 특징으로 하는 것도 바람직하다.
이 경우, 상기 승온단계에서 상기 아르곤가스의 유량은 상기 탄소나노튜브 1g당 1000sccm이며, 상기 가스주입단계에서 상기 염소가스와 상기 산소가스의 유량은 상기 탄소나노튜브 1g당 각각 250sccm이며, 상기 감온단계에서 상기 아르곤가스와 상기 질소가스의 유량은 상기 탄소나노튜브 1g당 각각 1000sccm과 250sccm인 것을 특징으로 하는 것이 바람직하다.
본 발명에 의한 열처리 한 단일벽 탄소나노튜브의 합성방법은, 간단한 장치를 사용하는 아크방전법에 있어서, 탄소나노튜브 합성을 위한 최적의 조건을 제공함으로써 값이 싸며 대량 생산이 가능한 단일벽 탄소나노튜브의 합성방법을 제공할 수 있는 효과가 있다.
또한, 본 발명에 의한 열처리 한 단일벽 탄소나노튜브의 합성방법은, 불순물이 함유된 탄소나노튜브를 염소와 질소의 혼합가스 하에서 열처리를 통하여 미반응 금속물질과 비정질 탄소가 제거된 고 순도로 열처리된 단일벽 탄소나노튜브의 합성방법을 제공할 수 있는 효과가 있다.
이와 더불어 본 발명에 의한 열처리 한 단일벽 탄소나노튜브의 합성방법은, 열처리를 통하여 순도가 높아지기 때문에 면저항이 감소되고 전기전도성과 투과도가 증가하여 디스플레이 응용에 적합한 고품질의 단일벽 탄소나노튜브의 합성방법을 제공하는 효과가 있다.
도 1은 본 발명에 의하여 단일벽 탄소나노튜브가 합성되는 공정에 대한 흐름도이다.
도 2는 본 발명에 의하여 제조된 단일벽 탄소나노튜브의 열처리 공정의 온도변화를 나타낸 그래프이다.
도 3는 본 발명에 의하여 제조된 가스 분위기별 단일벽 탄소나노튜브의 투과전자현미경(TEM) 사진이다.
도 4는 본 발명에 의하여 제조된 단일벽 탄소나노튜브의 주사전자현미경(SEM) 사진이다.
도 5는 본 발명에 의하여 제조된 단일벽 탄소나노튜브의 흡광도, 표면저항 및 투과도를 측정한 표이다.
도 6는 본 발명에 의하여 제조된 단일벽 탄소나노튜브 절개면의 주사전자현미경(SEM) 사진이다.
도 7은 본 발명에 의하여 합성된 단일벽 탄소나노튜브의 길이를 측정한 표이다.
이하에서 상술한 목적과 특징이 분명해지도록 본 발명을 상세하게 설명할 것이며, 이에 따라 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한 본 발명을 설명함에 있어서 본 발명과 관련한 공지기술 중 이미 그 기술 분야에 익히 알려져 있는 것으로서, 그 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다.
아울러, 본 발명에서 사용되는 용어는 가능한 한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며 이 경우는 해당되는 발명의 설명부분에서 상세히 그 의미를 기재하였으므로, 단순한 용어의 명칭이 아닌 용어가 가지는 의미로서 본 발명을 파악하여야 함을 밝혀두고자 한다. 실시 예들에 대한 설명에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 실시 예들을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
실시 예들은 여러 가지 형태로 변경을 가할 수 있고 다양한 부가적 실시 예들을 가질 수 있는데, 여기에서는 특정한 실시 예들이 도면에 표시되고 관련된 상세한 설명이 기재되어 있다. 그러나 이는 실시 예들을 특정한 형태에 한정하려는 것이 아니며, 실시 예들의 사상 및 기술 범위에 포함되는 모든 변경이나 균등물 내지 대체물을 포함하는 것으로 이해되어야 할 것이다.
다양한 실시 예들에 대한 설명 가운데 “제1”“제2”“첫째”또는“둘째”등의 표현들이 실시 예들의 다양한 구성요소들을 수식할 수 있지만, 해당 구성요소들을 한정하지 않는다. 예를 들어, 상기 표현들은 해당 구성요소들의 순서 및/또는 중요도 등을 한정하지 않는다. 상기 표현들은 한 구성요소를 다른 구성요소와 구분 짓기 위해 사용될 수 있다.
본 발명에 의한 열처리 한 단일벽 탄소나노튜브의 합성방법에서는, 아크방전법에 의해 탄소나노튜브를 합성한 후 합성된 단일벽 탄소나노튜브(SWCNT)를 특정 가스 분위기 하에서 열처리 하도록 하는 것이 바람직하다. 탄소나노튜브의 합성방법 중 하나인 아크방전법은 음극(anode)과 양극(cathode)으로 탄소봉을 설치하고 두 전극에 전압을 가하면 상기 두 전극 사이에 방전이 일어나게 되고 양극 탄소봉에서 떨어져 나온 탄소 크러스트들이 음극 탄소봉 막대에 부착되어 탄소나노튜브가 제조되는 방식으로, 화학기상증착법(Chemical Vapor Deposition, CVD)등과 같이 화학적 방법으로 탄소나노튜브를 제조하는 시간보다 상당히 짧은 시간 내에 제조할 수 있어 대량생산에 효과적으로 적용할 수 있다.
이에 더하여 본 발명에 의한 열처리 한 단일벽 탄소나노튜브의 합성방법에서는, 아크방전법으로 합성된 단일벽 탄소나노튜브에 대하여 열처리를 추가함으로써 비정질 탄소와 미반응 금속물질을 제거해주기 때문에 고품질의 단일벽 탄소나노튜브를 합성하는 방법을 제공한다. 열처리단계에서 분위기가스의 종류, 유량 및 열처리용 챔버의 온도를 본 발명에서 제시하는 최적의 조건으로 조절하면 불순물 제거효과가 우수하고 전기 전도성이 향상된 고순도의 단일벽 탄소나노튜브를 제조할 수 있다. 이렇게 제조된 단일벽 탄소나노튜브는 디스플레이 투명전극, 전기전도성 응용분야 및 가스 센서의 감응성소재 그리고 정전기 방지 복합체 소재에 응용되어 우수한 특성을 구현하는 효과를 가져올 수 있다.
이하에서는 본 발명에 의한 바람직한 단일벽 탄소나노튜브의 합성방법에 대하여 도 1을 참조하여 설명한다. 도 1은 본 발명에 의하여 단일벽 탄소나노튜브가 합성되는 공정에 대한 흐름도이다. 도 1에서 보는 바와 같이 본 발명에 의한 열처리 한 단일벽 탄소나노튜브의 합성방법에서는 먼저 주입단계와 합성단계를 수행하도록 하는 것이 바람직하다.
따라서 가장 먼저 탄소봉에 금속/금속산화물 촉매물질인 Fe, Co, Ni, S 또는 Y₂O₃ 중 하나 이상의 금속촉매와 탄소 파우더를 적층하여 주입하는 주입단계(s100 단계)를 수행하도록 하는 것이 바람직하다. 금속촉매 충전 시 사용되는 탄소 전극(양극)인 탄소봉은 탄소나노튜브 제조 시 공급되는 탄소 원자를 제공하기 위한 것이며, 내부가 뚫린 실린더 형태를 사용하여 그 안에 상기 금속촉매를 투입하고 아크방전장치에 장입하는 것이 바람직하다(s200 단계). 상기 금속촉매는 전이금속과 함께 순도를 높이기 위해 이트륨(Y)이 함유된 Y₂O₃를 첨가하도록 하고 황(S)은 촉진제로 사용하는 것이 바람직하다.
그 다음에는 합성단계인 상기 아크방전장치 내에 헬륨가스를 주입하는 것이 바람직하다(s300 단계). 아크방전장치 내의 플라즈마 형성에는 버퍼가스로 헬륨가스를 주입하여 사용하는 것이 바람직한데, 헬륨 가스는 열전도도가 높기 때문에 아크 방전시 온도가 고온 상태로 유지하도록 하므로 고품질의 탄소나노튜브의 성장을 돕는 효과가 있다.
이에 더하여 상기 아크방전장치 내의 양극과 음극 사이에 고 전류를 인가하고 방전을 일으키게 되면, 상기 양극에 위치한 탄소봉을 증발시켜 탄소나노튜브를 제조되는데, 이때 상기 양극과 음극 사이에 인가되는 전류는 400A의 직류전류로 하고 상기 아크방전장치 내의 압력은 150torr로 유지하며, 합성시간은 탄소봉의 소진 주기인 10분 동안 진행하는 것이 바람직하다(s300 단계). 상기 전류 범위 내에서 음극에서 튀어나온 전자가 양극에 있는 탄소봉과 충돌하여 탄소봉을 증발시키므로 고품질의 탄소나노튜브 제조가 용이하다.
상기 아크 방전이 발생하면 양극에 장착된 상기 탄소봉이 증발하면서 탄소봉 안에 있던 상기 탄소 파우더와 상기 금속/금속산화물 촉매물질이 증발하게 되며, 증발된 물질들이 온도가 낮은 곳으로 이동하며 다시 재결합하는 과정을 거치게 되는데, 상기 과정에서 금속 촉매 표면에 탄소가 증착되며 단일벽 탄소나노튜브가 형성되도록 하는 것이 바람직하다(s400 단계).
그 다음에는 상기 단일벽 탄소나노튜브를 수거하여(s500 단계) 열처리하는 단계를 거치는 것이 바람직하다. 상기 열처리단계는 단일벽 탄소나노튜브의 제조에 있어서 함께 생성된 부산물이자 불순물을 제거해 주는 역할을 하며, 상기 열처리단계에서 열처리가 이루어지는 온도는 900℃인 것이 바람직하다.
열처리 온도가 900℃인 이유는 900℃ 미만의 온도에서 열처리 할 경우 비정질 탄소 및 불순물이 완전히 제거되지 못하는 문제점이 존재하고, 상기 900도를 초과한 온도에서 열처리 하게 될 경우에는 탄소나노튜브까지 제거하게 되는 문제점이 존재하기 때문이다. 또한 상기 열처리 시 불활성가스 혹은 불활성가스들의 혼합 가스 분위기에서 열처리 하게 되는데 상기 불활성 가스는 아르곤가스이거나 아르곤와 질소의 혼합가스인 것이 바람직하다. 이에 더하여 부산물로 생성될 수 있는 CO₂를 열처리용 챔버 밖으로 배기시켜주기 위한 퍼지가스(purge gas)로는 질소가스를 이용하는 것이 바람직하다.
상기 단일벽 탄소나노튜브에 대한 열처리단계의 공정조건은, 상기 단일벽 탄소나노튜브 1g당 아르곤가스의 유량을 1000sccm으로 흘려주면서 열처리용 챔버의 온도를 상온에서 900℃까지 15℃/분의 속도로 60분간 상승시키는 승온단계(s600 단계), 염소와 산소의 혼합가스를 각각 상기 단일벽 탄소나노튜브 1g당 250sccm씩 250: 250의 유량비로 상기 열처리용 챔버에 주입하면서 60분간 900도를 유지하는 가스주입단계를 진행하는 것이 바람직하다(s700 단계). 상기 열처리단계에서는 열의 복사를 이용하여 합성된 단일벽 탄소나노튜브 내의 불순물인 미반응 금속잔여물과 비정질 탄소를 제거하는 원리는 온도가 상승하면서 상기 단일벽 탄소나노튜브의 불순물이 팽창하게되어 틈이 발생하고 그 사이로 염소와 산소의 혼합가스가 스며들어 불순물들이 제거되는 것이다.
그 후 이어지는 감온단계에서는 상기 열처리용 챔버에 아르곤가스와 질소가스를 주입시키면서 2시간 동안 900도에서 상온까지 7.5℃/분의 속도로 온도를 낮추는 것이 바람직하며,(s800 단계) 이때 상기 단일벽 탄소나노튜브 1g당 상기 아르곤가스와 상기 질소가스의 유량은 각각 1000sccm과 250sccm으로 1000: 250의 유량비인 것이 바람직하다. 도 2는 본 발명의 실시예에서 제조된 단일벽 탄소나노튜브의 열처리 공정의 온도변화를 나타낸 그래프이다.
이하에서는 실시예, 실험예 및 제조실시예 등을 통하여 본 발명을 보다 상세하게 설명한다. 이하에서 설명되는 실시예 등은 본 발명의 이해를 돕기 위하여 예시적으로 나타낸 것이며, 본 발명은 여기서 설명되는 일 실시예와 다르게 다양하게 변형되어 실시될 수 있음이 이해되어야 할 것이다. 이와 같이 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 본 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
이하의 실시예, 실험예 및 제조실시예 등에서는 본 발명에 의한 아크방전법을 이용하여 단일벽 탄소나노튜브를 합성하였고, 이렇게 합성된 단일벽 탄소나노튜브를 열처리를 거쳐 고품질과 고순도의 우수한 성능을 가지는 단일벽 탄소나노튜브를 제조하였다. 또한, 열처리 공정을 통하여 단일벽 탄소나노튜브의 붙어있는 미반응 금속잔여물과 비정질 탄소가 제거된 결과를 SEM, TEM, Haze meter, UV 흡광도 및 면저항의 분석을 통하여 확인하였다. 이러한 결과값들을 바탕으로 단일벽 탄소나노튜브에 대한 열처리조건 등 최적의 제조공정 및 조건들을 확인할 수 있었다.
[실시예 1] 단일벽 탄소나노튜브 합성
(1) 아크방전장치에 두 개의 탄소봉을 음극과 양극에 설치하였다. 이때 상기 양극의 상기 탄소봉은 직경 15mm인 실린더 형태로 내부에는 Fe, Co, Ni, Y₂O₃ 및 탄소 파우더를 적층하여 장입하였다.
(2) 상기 아크방전장치 내 버퍼가스(buffer gas)로 헬륨가스를 흘려주면서 상기 아크방전장치 내 압력 150torr와 전류 400A의 조건으로 아크 방전시켜 단일벽 탄소나노튜브를 합성하였다.
(3) 단일벽 탄소나노튜브의 합성시간은 탄소봉의 소진 주기인 10분으로 하였다.
[제조실시예 1] 염소가스에 의한 단일벽 탄소나노튜브의 열처리
실시예 1을 통해 합성된 상기 단일벽 탄소나노튜브 1g에 대하여 열처리용 챔버를 이용하여 열처리단계를 진행하였다. 상기 열처리단계 진행 시 불순물 제거를 위해서 상기 열처리용 챔버 내의 분위기가스로 고순도의 염소가스를 사용하였고, 상기 열처리단계에서 산소가스의 사용으로 CO과 CO₂가 부산물로 발생했을 경우를 대비하여 배기처리해주기 위한 퍼지가스로는 질소가스를 이용하였다.
(1) 아르곤가스를 1000sccm으로 흘려주면서 열처리용 챔버의 온도를 60분동안 분당 15℃의 속도로 900℃까지 서서히 승온시켰다.
(2) 상기 열처리용 챔버의 온도는 900도를 유지하면서, 상기 열처리용 챔버 내에 염소가스를 500sccm으로 흘려주는 가스주입단계를 60분간 진행하였다.
(3) 온도하강을 위한 감온단계는 120분간 진행되었으며, 감온속도는 7.5℃/분으로 상온까지 서서히 감온시켰고, 이때 아르곤 1000sccm과 질소 200sccm의 혼합가스를 분위기 가스로 주입하여 공정을 진행하였다.
[제조실시예 2] 산소가스에 의한 단일벽 탄소나노튜브의 열처리
실시예 1로 합성한 단일벽 탄소나노튜브 1g에 대하여 상기 제조실시예 1과 동일한 방법 및 과정으로 열처리과정을 진행하되, 상기 (2)과정에서 분위기가스는 염소가스 대신 산소가스를 사용하였다.
[제조실시예 3] 염소와 산소의 혼합가스에 의한 단일벽 탄소나노튜브의 열처리
실시예 1로 합성한 단일벽 탄소나노튜브 1g에 대하여 상기 제조실시예 1과 동일한 방법 및 과정으로 열처리과정을 진행하되, 상기 (2)과정에서 분위기가스는 염소가스와 산소가스를 혼합하여 사용하였는데, 염소와 산소의 유량비를 250: 250(sccm)로 하였다.
[실험예 1] 열처리 한 단일벽 탄소나노튜브 질량 변화
실시예 1에서 제조된 단일벽 탄소나노튜브 1g에 대하여 열처리 후 무게를 측정하여 불순물의 제거상태를 관찰하였다. 또한, 도 2는 실시예 1과 제조실시예 1 내지 3에서 제조한 단일벽 탄소나노튜브에 대하여 염소가스, 산소가스 또는 염소와 산소의 혼합가스 분위기에서 열처리하는 과정과 각각의 열처리과정에 따른 무게변화를 도시한 것이다.
도 2에서 보는 바와 같이 단일벽 탄소나노튜브 1g에 대한 무게 변화는 제조실시예 1에서 0.85g으로 감소하여 0.15g의 불순물이 염소가스의 열처리에 의해 제거되었음을 파악할 수 있었으며, 제조실시예 2에서는 0.78g의 불순물이 산소가스의 열처리에 의해 0.22g이 제거되었으며, 제조실시예 3에서는 0.72g으로 염소와 산소의 혼합가스 열처리에 의해 0.28g의 불순물이 제거되었음을 알 수 있었다. 따라서 이러한 열처리 후의 단일벽 탄소나노튜브 무게의 감소는 공급가스의 분위기에 따라 제조실시예 3에서 단일벽 탄소나노튜브가 가장 많은 무게 감소분을 보였으며, 제조실시예 2, 제조실시예 1의 순으로 무게 감소량이 큰 것을 알 수 있었다.
이러한 결과는 아크방전법으로 합성될 때 불순물인 비정질 탄소와 미반응 금속잔여물의 잔여물이 단일벽 탄소나노튜브와 함께 존재하여 불순물 형태로 붙어있게 되는데 열처리 과정에서 열의 복사를 이용하여 비정질 탄소와 미반응 금속잔여물이 제거되어 순도가 높은 단일벽 탄소나노튜브을 얻을 수 있어 불순물이 제거된 무게만큼 열처리 후 무게는 감소하는 것으로 판단하였다.
[실험예 2] TEM 사진 관찰
도 3은 제조실시예 1 내지 3에 의한 단일벽 탄소나노튜브의 TEM(Transmission Electron Microscope)사진을 나타내었다. 도 3의 (a)에서는 단일벽 탄소나노튜브가 합성된 후 촉매의 미반응 금속의 불순물과 비정질 탄소가 혼재되어 있는 단일벽 탄소나노튜브의 형상을 보여주고 있으며, 도 3의 (b)는 염소가스분위기에서 열처리를 거친 제조실시예 2의 단일벽 탄소나노튜브 형상으로서 도 3의 (a)에 비해 미반응 금속물질과 비정질 탄소가 다수 사라진 단일벽 탄소나노튜브의 형상을 보여주고 있다. 도 3의 (c)는 제조실시예 2에 의한 단일벽 탄소나노튜브의 TEM 사진으로 도 3의 (b)와 마찬가지로 비정질 탄소와 미반응 금속잔여물이 다수 감소되어 혼재되어 있는 형상이 관찰되었다. 도 3의 (d)는 제조실시예 3을 통해 제조된 단일벽 탄소나노튜브의 TEM사진으로 불순물인 비정질 탄소와 미반응 금속잔여물이 현저히 제거되어 단일벽 탄소나노튜브의 이미지가 뚜렷이 관찰되었다.
이러한 결과를 보면 열처리를 통한 정제과정시 염소, 산소를 각각 개체로 열처리를 진행하였을 경우 미반응 금속잔여물과 비정질 탄소가 남아 있는 형상이 관찰되었고, 염소와 산소를 동시에 투입하여 열처리를 진행한 단일벽 탄소나노튜브에서는 미반응 금속잔여물과 비정질 탄소가 비교적 감소했음을 확인하여 가장 효과적인 열처리 분위기는 염소와 산소를 혼합하여 투입했을 경우인 것으로 관찰되었다.
[실험예 3] SEM, UV 흡광도, 투과도 및 면저항 측정
UV Absorbance Detector는 단일벽 탄소나노튜브의 물질에 빛을 쏘아 그 빛을 얼마나 흡수하는 것을 말하며 물질에 통과한 빛의 양을 검출하므로 단일벽 탄소나노튜브의 순도를 가늠할 수 있는 기준이 되며, UV 흡광도가 높을수록 단일벽 탄소나노튜브의 순도가 높은 경향이 있다.
본 발명에 의하여 제조된 단일벽 탄소나노튜브로 SEM 사진과 UV 흡광도를 측정하기 위해 UV 솔루션을 만들어 Jelight사가 제조한 모델명 144AX-220의 UVO Cleaner와 한일과학산업이 제조한 모델명 SUPRA 25K의 원심분리기를 이용하여 흡광도를 측정하였다. UVO Cleaner를 550nm로 설정하여 UV 흡광도를 측정하였으며, 원심분리기는 본체의 Rotor 2개 중 14,000rpm으로 10분간 진행하여 UV 솔루션을 만들었다. UV 솔루션은 실시예 1, 제조실시예 1 내지 제조실시예 3에 의하여 제조된 단일벽 탄소나노튜브 100mg과 계면활성제(Surfactant) 123mg를 혼합하여 원심분리를 이용하여 얻었다. UV 솔루션은 상등액 143mg(SWCNT+Surfactant) 과 침전물 90mg(SWCNT+Surfactant)으로 확인될 수 있었으며, UV 측정용 솔루션을 SEM 홀더에 떨어트린 후 건조되면 바닥면과 벌어진 틈 사이로 단일벽 탄소나노튜브의 길이를 SEM 20,000배에서 관찰할 수 있었다.
또한, 면저항의 감소를 관찰함으로써 단일벽 탄소나노튜브의 소재가 가지는 전기전도성이 향상되었음을 알 수 있으며, 투과도는 haze meter로 측정하여 유리에 코팅한 단일벽 탄소나노튜브의 전체 광선의 투과율을 측정하여 LCD 등 디스플레이 응용시에 적합함을 확인할 수 있다.
투과도와 면저항 측정은 Haze meter와 4probe 면저항 측정기를 이용하여 측정하였다. 유리판 위에 단일벽 탄소나노튜브 분산의 표준용액을 코팅하여 관찰하였으며, 표준용액은 단일벽 탄소나노튜브 0.5wt%에 대하여 DI water 50ml에 단일벽 탄소나노튜브 0.25g와 Demol NL 0.75g을 더하여 제조하였으며, DI water 10ml와 습윤제 0.25g과 PUD 0.42g을 더 첨가한 후, 투과도 및 면저항을 측정하였다.
도 4는 열처리 분위기가스 조건에 따른 SEM사진이며, 도 4의 (a)는 실시예 1의 단일벽 탄소나노튜브이고, 도 4의 (b)는 제조실시예 1에 의한 단일벽 탄소나노튜브이며, 도 4의 (c)는 제조실시예 2에 의한 단일벽 탄소나노튜브이고, 도 4의 (d)는 제조실시예 3에 의한 단일벽 탄소나노튜브 사진이다. 도 5은 열처리 분위기가스 조건에 따른 투과도, 면저항 및 550nm에서의 흡광도의 결과를 나타내었다. 도 4의 (a)는 실시예 1에 의해 제조된 단일벽 탄소나노튜브의 SEM 사진를 보여주고 있으며, 도 4의 (b)는 제조실시예 1의 단일벽 탄소나노튜브의 SEM 사진이며, 도 4의 (c)는 제조실시예 2에 의한 단일벽 탄소나노튜브의 SEM 사진이며, 도 4의 (d)는 제조실시예 3에 의한 단일벽 탄소나노튜브의 SEM 사진이다.
도 5에서 관찰된 실시예 1에 의한 단일벽 탄소나노튜브의 특성값은 면저항 1253Ω/㎡, 투과도 78.55% 및 흡광도 Avg. 0.450이며, 제조실시예 3에 의한 단일벽 탄소나노튜브의 특성값은 면저항 775Ω/㎡, 투과도 88.87% 및 흡광도 Avg. 0.751이다. 도 4에서 관찰된 SEM으로 볼 때, 제조실시예 3의 단일벽 탄소나노튜브가 미반응 금속잔여물과 비정질 탄소의 제거가 가장 확실하게 이루어짐을 알 수 있으며, 면저항값이 가장 낮고, 투과도가 가장 높으며 흡광도가 가장 높은 것으로 확인되었으며 소재 응용의 성능적인 측면에서 가장 응용하기 적합한 소재인 것으로 유추할 수 있었다.
이는 불순물이 잘 정제된 단일벽 탄소나노튜브일수록 면저항값이 감소하였는데 고순도 단일벽 탄소나노튜브는 전기전도도의 향상된 특성을 보여주며, 또한 흡광도의 헤이즈 측정은 단일벽 탄소나노튜브 내의 불순물이 적을수록 단일벽 탄소나노튜브가 분산되어 헤이즈의 값이 낮아지는 특성을 파악할 수 있었기 때문이다.
결과적으로 염소와 산소의 혼합가스를 투입하여 열처리 한 제조실시예 3의 단일벽 탄소나노튜브에서 가장 우수한 결과를 나타나 산소가스와 염소가스의 분위기에서 열처리 한 단일벽 탄소나노튜브의 순도가 가장 높음을 알 수 있다.
[실험예 4] 절개면의 SEM사진 관찰
도 6은 본 발명에 의하여 제조된 단일벽 탄소나노튜브 절개면의 주사전자현미경(SEM) 사진이다. 도 6의 (a)는 실시예 1에 의한 단일벽 탄소나노튜브이고, 도 6의 (b)는 제조실시예 1에 의한 단일벽 탄소나노튜브이며, 도 6의 (c)는 제조실시예 2에 의한 단일벽 탄소나노튜브이고, 도 6의 (d)는 제조실시예 3에 의한 단일벽 탄소나노튜브 사진이다. 도 6의 (a)에서 (d)로 갈수록 불순물이 제거되어 잘 정제된 단일벽 탄소나노튜브의 모습을 확인할 수 있었다.
[실험예 5] 절개면의 길이 관찰
열처리를 거쳐 제조된 단일벽 탄소나노튜브의 솔루션을 제작한 후 상부에 존재하는 액체인 상등액을 이용하여 단일벽 탄소나노튜브절개면의 길이를 관찰하였다. 도 6은 단일벽 탄소나노튜브를 합성한 후 UV 측정용 솔루션을 만들어 SEM 시편홀더에 상등액을 떨어트려 건조시 벌어진 틈 사이로 단일벽 탄소나노튜브 절개면의 길이를 관찰하였다.
도 6의 (a)는 실시예 1에 의해 제조된 단일벽 탄소나노튜브로서 관찰된 단일벽 탄소나노튜브 절개면의 길이는 최대 약 5~6μm 이상 길이와 평균적으로 2~3μm 이상의 길이로 관찰되었다. 도 6의 (b)는 제조실시예 1에 의해 제조된 단일벽 탄소나노튜브이며, SEM 관찰시 길이는 최대 4~5μm 이상으로 관찰되었으며, 평균길이 약 2μm로 확인하였다. 도 6의 (c)는 제조실시예 2에 의해 합성된 단일벽 탄소나노튜브이며, SEM 관찰 시 최대길이는 약 1~2μm으로 관찰되며 평균길이는 약 1μm로 확인되었다. 도 6의 (d)는 제조실시예 3에 의해 합성된 단일벽 탄소나노튜브를 이용하여 SEM사진을 관찰하였고, 최대길이는 약 1~2μm으로 관찰되었으며 평균길이 또한 약 1~2μm 정도로 확인하였다. 도 7은 앞서 관찰한 평균길이와 최대길이를 토대로 작성한 표이다.
열처리 공정 전 후의 단일벽 탄소나노튜브 길이를 SEM으로 관찰한 결과 실시예1에 의한 열정제 전 단일벽 탄소나노튜브 최대길이는 약 5~6μm로 제조실시예 3의 열처리 후 단일벽 탄소나노튜브 최대길이의 약 1~2μm로 나타나 열처리를 걸쳐 불순물이 효과적으로 제거된 단일벽 탄소나노튜브T의 길이는 짧음을 알 수 있었다.
상술한 바와 같이 본 발명에서는 아크방전법을 사용하여 단일벽 탄소나노튜브를 합성하였으며 비정질 탄소와 금속의 잔여물을 제거하는 최적의 분위기가스 조건을 알아내기 위하여 열처리 공정 염소가스, 산소가스 및 염소와 산소의 혼합가스 분위기에서 각각 열처리를 진행하였고, 염소가스와 산소가스를 동시에 투입하여 열처리를 실시한 소재가 불순물 제거가 가장 최적의 공정 조건임을 확인하였다. 그리고 단일벽 탄소나노튜브의 우수한 특성을 확인하기 위해 투과도, UV 흡광도와 면저항을 측정하여 단일벽 탄소나노튜브의 특성을 확인하였는데, 결론적으로 열처리 공정으로 인해 단일벽 탄소나노튜브의 붙어있는 미반응 금속잔여물과 비정질 탄소가 열처리공정을 통하여 제거됨을 SEM, TEM, Haze meter, UV 흡광도 및 면저항의 분석을 통하여 확인하였다. 이러한 결과를 바탕으로 단일벽 탄소나노튜브의 불순물이 가장 효과적으로 제거할 수 있는 열처리 분위기가스의 조건은 염소와 산소의 혼합가스인 것으로 관찰되었다.
상술한 여러 가지 예로 본 발명을 설명하였으나, 본 발명은 반드시 이러한 예들에 국한되는 것이 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서 본 발명에 개시된 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 예들에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 한다.

Claims (5)

  1. 탄소봉에 Fe, Co, Ni, S 또는 Y₂O₃ 중 하나 이상의 금속촉매와 탄소 파우더를 주입하는 주입단계;
    상기 탄소봉을 아크방전장치의 양극에 장입한 후 상기 아크방전장치 내에 헬륨가스를 주입하여 압력을 150torr로 유지하면서 상기 양극과 음극 사이에 전류를 흘려 탄소나노튜브를 합성하는 합성단계; 및
    상기 탄소나노튜브를 열처리용 챔버에 넣고 가스를 주입하여 열처리하는 열처리단계;를 포함하는 것을 특징으로 하는 단일벽 탄소나노튜브의 합성방법
  2. 제1항에 있어서,
    상기 열처리단계는 상기 열처리용 챔버를 아르곤가스 분위기에서 900℃까지 승온하는 승온단계;
    60분 동안 900℃의 온도를 유지하며 상기 열처리용 챔버에 염소가스와 산소가스를 주입하는 가스주입단계; 및
    상기 열처리용 챔버에 아르곤가스과 질소가스를 주입하면서 감온하는 감온단계;로 이루어진 것을 특징으로 하는 단일벽 탄소나노튜브의 합성방법
  3. 제1항에 있어서,
    상기 합성단계에서 상기 양극과 상기 음극 사이에 흐르는 상기 전류는 400A인 것을 특징으로 하는 단일벽 탄소나노튜브의 합성방법
  4. 제2항에 있어서,
    상기 승온단계에서의 승온속도는 15℃/분이며, 상기 감온단계에서의 감온속도는 7.5℃/분 인 것을 특징으로 하는 단일벽 탄소나노튜브의 합성방법
  5. 제2항에 있어서,
    상기 승온단계에서 상기 아르곤가스의 유량은 상기 탄소나노튜브 1g당 1000sccm이며, 상기 가스주입단계에서 상기 염소가스와 상기 산소가스의 유량은 상기 탄소나노튜브 1g당 각각 250sccm이며, 상기 감온단계에서 상기 아르곤가스와 상기 질소가스의 유량은 상기 탄소나노튜브 1g당 각각 1000sccm과 250sccm인 것을 특징으로 하는 단일벽 탄소나노튜브의 합성방법
KR1020190051682A 2019-05-02 2019-05-02 열처리 한 단일벽 탄소나노튜브의 합성방법 KR102254966B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190051682A KR102254966B1 (ko) 2019-05-02 2019-05-02 열처리 한 단일벽 탄소나노튜브의 합성방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190051682A KR102254966B1 (ko) 2019-05-02 2019-05-02 열처리 한 단일벽 탄소나노튜브의 합성방법

Publications (2)

Publication Number Publication Date
KR20200128276A true KR20200128276A (ko) 2020-11-12
KR102254966B1 KR102254966B1 (ko) 2021-05-24

Family

ID=73398714

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190051682A KR102254966B1 (ko) 2019-05-02 2019-05-02 열처리 한 단일벽 탄소나노튜브의 합성방법

Country Status (1)

Country Link
KR (1) KR102254966B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112897511A (zh) * 2021-02-05 2021-06-04 中国科学院苏州纳米技术与纳米仿生研究所 一种表面洁净单壁碳纳米管、其制备方法、***及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4000257B2 (ja) * 2001-12-26 2007-10-31 日機装株式会社 カーボンナノファイバーの後処理方法及び黒鉛化カーボンナノファイバーの製造方法
KR20120012031A (ko) * 2010-07-30 2012-02-09 한화나노텍 주식회사 다중 촉매를 이용한 단일벽 탄소나노튜브의 제조방법
JP5424481B2 (ja) * 2007-03-13 2014-02-26 東洋炭素株式会社 カーボンナノチューブを含んだ炭素材料の精製方法
KR20140092642A (ko) * 2013-01-16 2014-07-24 한국과학기술연구원 아크 방전을 이용한 고품질 그래핀 제조 방법 및 이를 이용한 고품질 그래핀
KR20170027934A (ko) * 2015-09-02 2017-03-13 주식회사 익성 이차전지용 실리콘 산화물계 음극 소재의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4000257B2 (ja) * 2001-12-26 2007-10-31 日機装株式会社 カーボンナノファイバーの後処理方法及び黒鉛化カーボンナノファイバーの製造方法
JP5424481B2 (ja) * 2007-03-13 2014-02-26 東洋炭素株式会社 カーボンナノチューブを含んだ炭素材料の精製方法
KR20120012031A (ko) * 2010-07-30 2012-02-09 한화나노텍 주식회사 다중 촉매를 이용한 단일벽 탄소나노튜브의 제조방법
KR20140092642A (ko) * 2013-01-16 2014-07-24 한국과학기술연구원 아크 방전을 이용한 고품질 그래핀 제조 방법 및 이를 이용한 고품질 그래핀
KR20170027934A (ko) * 2015-09-02 2017-03-13 주식회사 익성 이차전지용 실리콘 산화물계 음극 소재의 제조방법

Non-Patent Citations (42)

* Cited by examiner, † Cited by third party
Title
A Anson, M Benham, J Jagiello, M A Callejas, A M Benito, W K Maser, A Zuttel, P Sudan and M T Martinez, Hydrogen adsorption on a single-walled carbon nanotube material: a comparative study of three different adsorption techniques, Nanotechnology 15 (2004) 11
Alejandro De Falco, Mirta L. Fascio, Melisa E. Lamanna, Maria A. Corcuera, InMondragon, Gerardo H. Rubiolo, Norma B. D’Silvia Goyanes, Thermal treatment of the carbon nanotubes and their functionalization with styrene, Physica B: Condensed Matter 404 18 (2009) 2780-2783
Anusorn KongkanandPrashant V. Kamat, Electron Storage in Single Wall Carbon Nanotubes. Fermi Level Equilibration in Semiconductor-SWCNT Suspensions, ACS Nano 1 (1) (2007) 13-21
Aranzazu Heras, Alvaro Colina, Jesus Lopez-Palacios, Antti Kaskela, Albert G. Nasibulin, Virginia Ruiz, Esko I. Kauppinen, Flexible optically transparent single walled carbon nanotube electrodes for UV-Vis absorption spectroelectrochemistry, Electrochemistry Communications 11 2 (2009) 442-445
Chia-Ming Chen, Yong-Ming Dai, Jenn Gwo Huang, Jih-Mirn Jehng, Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method, Carbon 44 9 (2006) 1808-1820
Chong-yang Liu, Allen J. Bard, Fred Wudl, Iris Weitz and James R. Heath, Electrochemical Characterization of Films of Single-Walled Carbon Nanotubes and Their Possible Application in Supercapacitors, Electrochem. Solid-State Lett. 2 11 (199) 577-578
Christopher M. Schauerman, Jack Alvarenga, Brian J. Landi, Cory D. Cress, Ryne P. Raffaelle, Impact of nanometal catalysts on the laser vaporization synthesis of single wall carbon nanotubes, Carbon 47 10 (2009) 2431-2435
D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, and R. E. Smalley, Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett. 74, (1999) 3803
E. Castillejos, B. Bachiller-Baeza, M. Perez-Cadenas, E. Gallegos-Suarez, I. Rodriguez-Ramos, A. Guerrero-Ruiz b,, K. Tamargo-Martinez, A. Martinez-Alonso, J.M.D. Tascon, Structural and surface modifications of carbon nanotubes when submitted to high temperature annealing treatments, Journal of Alloys and Compounds 536 1 25 (2012) S460-S463
E.F. Antunes, A.O. Lobo, E.J. Corat, V.J. Trava-Airoldi, Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes, Carbon 45 5 (2007) 913 921
Elnaz Esmizadeh, Ali Akbar Yousefi, Ghasem Naderi, Effect of type and aspect ratio of different carbon nanotubes on cure behavior of epoxy-based nanocomposites, Iranian Polymer Journal 24 1 (2015) 1-12
Eugene G. Gamaly and Thomas W. Ebbesen, Mechanism of carbon nanotube formation in the arc discharge, Phys. Rev. B 52 (1995) 2083
Gun-Do Lee, Cai-Zhuang Wang, Jaejun Yu, Euijoon Yoon, Nong-Moon Hwang, and Kai-Ming Ho, Formation of carbon nanotube semiconductor-metal intramolecular junctions by self-assembly of vacancy defects, Phys. Rev. B 76 (2007) 165413
Hong-Zhang Geng, Ki Kang Kim, Kang Pyo So, Young Sil Lee, Youngkyu Chang, and Young Hee Lee, Effect of Acid Treatment on Carbon Nanotube-Based Flexible Transparent Conducting Films, J. Am. Chem. Soc. 129 (25) (2007) 7758-7759
Jae-Yoo Kim, Moonhee Kim, HeonMo Kim, J Joo, Jong-Ho Choi, Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites, Optical Materials 21 1-3 (2003) 147-151
Jie Ma, Jian-Nong Wang, Chung-Jung Tsai, Ruth Nussinov, Buyong Ma, Diameters of single-walled carbon nanotubes (SWCNTs) and related nanochemistry and nanobiology, Frontiers of Materials Science in China 4 1 (2010) 17-28
Jun-Ho Shin, D W Shin, S P Patole, J H Lee, S M Park and J B Yoo, Smooth, transparent, conducting and flexible SWCNT films by filtration-wet transfer processes, Journal of Physics D: Applied Physics 42 (2009) 4
Kunihiko Okano, Ikuyo Noguchi and Takashi Yamashita, Anisotropic Carbon Nanotube Films Fabricated from a Lyotropic Liquid-Crystalline Polymer, Macromolecules 43 (13) (2010) 5496-5499
Li Yukui, Zhu Changchun, Liu Xinghui, Field emission display with carbon nanotubes cathode: prepared by a screen-printing process, Diamond and Related Materials 11 11 (2002) 1845-1847
Lijie Ci, Jinquan Wei, Bingqing Wei, Ji Liang, Cailu Xu, Dehai Wu, Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon 39 3 (2001) 329-335
M. Ismail, Y. Zhao, X.B. Yu, A. Ranjbar, S.X. Dou, Improved hydrogen desorption in lithium alanate by addition of SWCNT-metallic catalyst composite, International Journal of Hydrogen Energy 36 5 (2011) 3593-3599
M. P. Siegal, D. L. Overmyer, and P. P. Provencio, Precise control of multiwall carbon nanotube diameters using thermal chemical vapor deposition, Appl. Phys. Lett. 80 (2002) 2171
M. S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.), Carbon Naontubes : Synthesis, Structure, Properfies and Applications, Springer, Berlin (2001).
Mi Chen, Hung-Wei Yu, Jhih-Hong Chen, Horng-Show Koo, Effect of purification treatment on adsorption characteristics of carbon nanotubes, Diamond and Related Materials 16 4-7 (2007) 1110-1115
Michael J. McAllister, Je-Luen Li, Douglas H. Adamson, Hannes C. Schniepp, Ahmed A. Abdala, Jun Liu, Margarita Herrera-Alonso, David L. Milius, Roberto Car, Robert K. Prud'homme, and Ilhan A. Aksay, Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite, Chem. Mater. 19 (18) (2007) 4396-4404
P.C.P. Watts, D.R. Ponnampalam, W.K. Hsu, A. Barnes, B. Chambers, The complex permittivity of multi-walled carbon nanotube-polystyrene composite films in X-band, Chemical Physics Letters 378 5-6 (2003) 609-614
P.S. Goh, B.C. Ng, A.F. Ismail, M. Aziz, Y. Hayashi, Pre-treatment of multi-walled carbon nanotubes for polyetherimide mixed matrix hollow fiber membranes, Journal of Colloid and Interface Science 386 1 (2012) 80-87
Paul Theilmann, Dong-Jin Yun, Peter Asbeck, Sung-Hoon Park, Superior electromagnetic interference shielding and dielectric properties of carbon nanotube composites through the use of high aspect ratio CNTs and three-roll milling, Organic Electronics 14 6 (2013) 1531-1537
Pavel Nikolaev, Olga Gorelik, Rama kumar Allada, Edward Sosa, Sivaram Arepalli, and Leonard Yowell, Soft-Bake Purification of Single-Walled Carbon Nanotubes Produced by Pulsed Laser Vaporization, J. Phys. Chem. C 111 (48) (2007) 17678-17683
Pillai, Sreejarani K. Augustyn, Willem G. Rossouw, Margaretha H. McCrindle, Robert, The Effect of Calcination on Multi-Walled Carbon Nanotubes Produced by Dc-Arc Discharge, Journal of Nanoscience and Nanotechnology 8 7 (2008) 3539 3544(6)
R. G. Lacerda, A. S. Teh, M. H. Yang, K. B. K. Teo, N. L. Rupesinghe, S. H. Dalal, K. K. K. Koziol, D. Roy, G. A. J. Amaratunga, and W. I. Milne, Growth of high-quality single-wall carbon nanotubes without amorphous carbon formation, Appl. Phys. Lett. 84 (2004) 269
Robert Socher, Beate Krause, Michael T. Muller, Regine Boldt, Petra Potschke, The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites, Polymer 53 2 24 (2012) 495-504
Satoru Shoji, Hidemasa Suzuki, Remo Proietti Zaccaria, Zouheir Sekkat, and Satoshi Kawata, Optical polarizer made of uniaxially aligned short single-wall carbon nanotubes embedded in a polymer film, Phys. Rev. B 77 (2008) 153407
Sivaram Arepalli, Pavel Nikolaev, Olga Gorelik, Victor G Hadjiev, Williams Holmes, Bradley Files, Leonard Yowell, Protocol for the characterization of single-wall carbon nanotube material quality, Carbon 42 8-9 (2004) 1783-1791
T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Catalytic growth of single walled manotubes by laser vaporization, Chemical Physics Letters 243 1-2, 8 (1995) 49-54
W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Fully sealed, high brightness carbon-nanotube field-emission display, Appl. Phys. Lett. 75 (1999) 3129
Wei Zhang, b, Les Johnson, S. Ravi P. Silva, M.K. Lei, The effect of plasma modification on the sheet resistance of nylon fabrics coated with carbon nanotubes, Applied Surface Science 258 20 1 (2012) 8209-8213
Xiaowei He, Weilu Gao, Lijuan Xie, Bo Li, Qi Zhang, Sidong Lei, John M. Robinson, Erik H. Haroz, Stephen K. Doorn, Weipeng Wang, Robert Vajtai, Pulickel M. Ajayan, W. Wade Adams, Robert H. Hauge, Junichiro Kono, Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes, Nature Nanotechnology 11 (2016) 633-638
Yabin Chen, Jin Zhang, Diameter controlled growth of single-walled carbon nanotubes from SiO2 nanoparticles, Carbon 49 10 (2011) 3316-3324
Ya-Li Li, Ian A. Kinloch, Alan H. Windle, Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis, Science 304 5668 (2004) 276-278
YeoHeung Yun, Vesselin Shanov, Yi Tu, Srinivas Subramaniam, and Mark J. Schulz, Growth Mechanism of Long Aligned Multiwall Carbon Nanotube Arrays by WaterAssisted Chemical Vapor Deposition, J. Phys. Chem. B 110 (47) (2006) 23920-23925
Yuki Matsuda, Jamil Tahir-Kheli, and William A. Goddard, Definitive Band Gaps for Single-Wall Carbon Nanotubes, J. Phys. Chem. Lett. 1 (19) (2010) 2946-2950

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112897511A (zh) * 2021-02-05 2021-06-04 中国科学院苏州纳米技术与纳米仿生研究所 一种表面洁净单壁碳纳米管、其制备方法、***及应用

Also Published As

Publication number Publication date
KR102254966B1 (ko) 2021-05-24

Similar Documents

Publication Publication Date Title
Neupane et al. Synthesis and field emission properties of vertically aligned carbon nanotube arrays on copper
Wang et al. Large-scale synthesis of single-walled carbon nanohorns by submerged arc
Montoro et al. A multi-step treatment to effective purification of single-walled carbon nanotubes
Xie et al. Carbon nanotube arrays
Koshio et al. Metal-free production of high-quality multi-wall carbon nanotubes, in which the innermost nanotubes have a diameter of 0.4 nm
Liu et al. Thermal and chemical durability of nitrogen-doped carbon nanotubes
Wei et al. Preparation of highly pure double-walled carbon nanotubes
Seo et al. Synthesis and manipulation of carbon nanotubes
Kim et al. Double-walled carbon nanotubes: synthesis, structural characterization, and application
Lyu et al. Synthesis and characterization of high-quality double-walled carbon nanotubes by catalytic decomposition of alcohol
US10703632B2 (en) Method of purifying carbon nanotubes
Mahanandia et al. A one-step technique to prepare aligned arrays of carbon nanotubes
Tocoglu et al. The effect of oxidants on the formation of multi-walled carbon nanotube buckypaper
JP4761346B2 (ja) 2層カーボンナノチューブ含有組成物
Li et al. Efficient purification of single-walled carbon nanotube fibers by instantaneous current injection and acid washing
KR102254966B1 (ko) 열처리 한 단일벽 탄소나노튜브의 합성방법
Kang et al. Direct synthesis of fullerene-intercalated porous carbon nanofibers by chemical vapor deposition
Zhi et al. Boron carbonitride nanotubes
Kim et al. Exfoliation of Single‐Walled Carbon Nanotubes by Electrochemical Treatment in a Nitric Acid
Liu et al. Synthesis, characterization and field emission of single wall carbon nanotubes
Vigolo et al. Processing carbon nanotubes
Mittal et al. Carbon nanotube based 3-dimensional hierarchical field emitter structure
Dimitrov et al. Production, purification, characterization, and application of CNTs
JP2004331477A (ja) 単層カーボンナノチューブの製造方法及び装置
Shalu et al. Carbon Nanotubes: A Concise Review of The Synthesis Techniques, Properties, and Applications

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant