KR20200128272A - Synthetic method of multi-walled carbon nanotubes using calcined catalyst - Google Patents

Synthetic method of multi-walled carbon nanotubes using calcined catalyst Download PDF

Info

Publication number
KR20200128272A
KR20200128272A KR1020190051644A KR20190051644A KR20200128272A KR 20200128272 A KR20200128272 A KR 20200128272A KR 1020190051644 A KR1020190051644 A KR 1020190051644A KR 20190051644 A KR20190051644 A KR 20190051644A KR 20200128272 A KR20200128272 A KR 20200128272A
Authority
KR
South Korea
Prior art keywords
metal catalyst
solution
carbon nanotubes
walled carbon
calcined
Prior art date
Application number
KR1020190051644A
Other languages
Korean (ko)
Inventor
박수영
Original Assignee
극동대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 극동대학교 산학협력단 filed Critical 극동대학교 산학협력단
Priority to KR1020190051644A priority Critical patent/KR20200128272A/en
Publication of KR20200128272A publication Critical patent/KR20200128272A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/881Molybdenum and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes

Abstract

The present invention relates to a method for synthesizing multi-walled carbon nanotubes using a calcined metal catalyst. More particularly, the present invention relates to a method for synthesizing multi-walled carbon nanotubes having high synthesis yield and excellent electrical conductivity by subjecting a metal catalyst for synthesizing carbon nanotubes to a calcination process at a constant temperature. To this end, the present invention comprises: a metal catalyst manufacturing step of manufacturing a first solution in which iron(III) nitrate nonahydrate (Fe(NO_3)_3·9H_2O) is dissolved, a second solution in which ammonium molybdate tetrahydrate ((NH_4)Mo7O_24·4H_2O) is dissolved, a metal catalyst precursor solution in which the first solution and the second solution are mixed and stirred, a third solution in which ammonium carbonate ((NH_4)_2CO_3) is dissolved, and a fourth solution in which aluminum hydroxide (Al(OH)_3) is dissolved, and then mixing the metal catalyst precursor solution and the third solution with the fourth solution, followed by stirring, filtering, and drying to manufacture a metal catalyst; a calcination step of calcining the metal catalyst in a reaction furnace; and a synthesis step of synthesizing carbon nanotubes by placing the calcined metal catalyst into a thermal CVD synthesizer, introducing a mixed gas, and heating the mixture.

Description

하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브의 합성방법 {Synthetic method of multi-walled carbon nanotubes using calcined catalyst}Synthetic method of multi-walled carbon nanotubes using calcined catalyst}

본 발명은 하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브의 합성방법에 관한 것으로서, 보다 상세하게는 탄소나노튜브를 합성하기 위한 금속촉매에 대하여 일정온도로 하소처리과정을 거치도록 함으로써 높은 합성수율과 우수한 전기전도성을 가진 다중벽 탄소나노튜브를 합성하는 방법에 관한 것이다. The present invention relates to a method for synthesizing multi-walled carbon nanotubes using a calcined metal catalyst, and more particularly, a high synthesis yield by subjecting a metal catalyst for synthesizing carbon nanotubes to a calcining process at a constant temperature. And a method of synthesizing multi-walled carbon nanotubes having excellent electrical conductivity.

탄소나노튜브는 21세기 나노기술의 핵심적인 소재 중에 하나로서 좌우가 똑 같은 대칭 형상을 이루는 1차원 분자의 선형적인 물리적인 특성을 나타내기 때문에 물리적, 화학적, 기계적 우수한 특성을 가지고 있으므로 디스플레이, 반도체 소자, 나노 화학 및 센서, 전자파 차폐, 연료전지, 고강도 복합체, 전도성 복합체 등에서 많은 응용이 이루어지고 있다. 탄소나노튜브는 탄소의 동소체인 플러렌(fullerene, C60)의 발견 이후 일본의 lijima 박사가 아크방전법을 사용한 실험에서 얻어진 흑연의 cluster를 투과전자현미경(TEM, Transmition Electron Microscope)으로 관찰하는 과정에서 발견되었다. 탄소나노튜브는 말려져 형성된 각도에 따라서 다양한 구조와 형태로 존재한다. 암체어(arm-chair)구조, 지그재그(zig-zag)구조로 있으며, 단일벽 탄소나노튜브(single-walled carbon nanotube) 및 다중벽 탄소나노튜브(multi-walled carbon nanotube) 형태로 나타낼 수 있다.Carbon nanotubes are one of the core materials of nanotechnology of the 21st century, and have excellent physical, chemical and mechanical properties because they exhibit the linear physical properties of one-dimensional molecules that form the same symmetric shape on the left and right. , Nano-chemistry and sensors, electromagnetic shielding, fuel cells, high-strength composites, conductive composites, etc., many applications are being made. After the discovery of fullerene (C60), a carbon allotrope, carbon nanotubes were discovered in the process of observing the graphite cluster obtained in an experiment using the arc discharge method by Dr. Lijima of Japan with a transmission electron microscope (TEM, Transmition Electron Microscope). Became. Carbon nanotubes exist in various structures and shapes depending on the angle formed by being rolled up. It has an arm-chair structure and a zig-zag structure, and can be represented in the form of single-walled carbon nanotubes and multi-walled carbon nanotubes.

탄소나노튜브와 관련해서 많은 사람들에 의하여 수많은 연구들이 있어왔는데, Yuan, Saito 등은 Ethylene Flame Synthesis of Well-Aligned Multi-Walled Carbon Nanotube 라는 연구에서 메탄 및 에틸렌 확산화염 속에 스테인레스스틸 그리드(grid)를 넣어 정해진 위치에서 탄소나노튜브가 합성되는 것을 제시하였다. 또한 투과전자현미경(TEM)과 원소분석장치(EDX) 장비를 사용하여 탄소나노튜브 내에서의 금속촉매를 확인하였고 측정결과를 통해 금속촉매가 탄소나노튜브의 수율의 변화 및 소재의 형상에 어떠한 역할을 하는지 확인할 수 있었다. 또 다른 연구에 의하면 금속촉매의 결정 또는 입자 사이즈는 탄소나노튜브의 단일벽 탄소나노튜브나 다중벽 탄소나노튜브로 분류될 수 있는 경향이 있다고 보고되었다. There have been numerous studies on carbon nanotubes by many people, but Yuan and Saito et al put stainless steel grids in methane and ethylene diffusion flames in a study called Ethylene Flame Synthesis of Well-Aligned Multi-Walled Carbon Nanotube. It has been suggested that carbon nanotubes are synthesized at predetermined locations. In addition, a transmission electron microscope (TEM) and an elemental analysis device (EDX) were used to confirm the metal catalyst in the carbon nanotubes, and through the measurement results, the metal catalyst changed the yield of the carbon nanotubes and the role of the material. I was able to see if I did it. Another study reported that the crystal or particle size of a metal catalyst tends to be classified as single-walled carbon nanotubes or multi-walled carbon nanotubes of carbon nanotubes.

탄소나노튜브의 합성에 있어서는, 금속촉매의 종류 및 조성비, 담지체(support)의 유형, 합성가스, 그리고 합성장비 및 온도등이 공정에 있어서 중요한 변수들이다. 탄소나노튜브의 합성방법에는 아크방전법(arc discharge), 레이저 기화법(laser evaporation), 화학기상증착법(CVD, chemical vapor deposition), 유동층 합성방법(Fluidized Bed Reactor), 플라즈마 화학기상증착법(PECVD, plasma enhanced chemical vapor deposition) 및 전기분해법(electrolysis method) 등 다양한 방법이 사용되고 있으며 현재도 효율적인 합성을 위한 새로운 합성방법들이 계속하여 개발되고 있다. 이들 중 다중벽 탄소나노튜브를 저렴하게 대량합성하기 위한 방안으로는 화학기상증착법이 적합하다고 알려져 있으며, 그 중에서도 열화학 기상증착법이 가장 적절하다고 알려져 있다. 박막 증착 방법 중의 한가지인 화학기상증착(Chemical Vapor Deposition, CVD)법은 만들고자 하는 박막의 성분을 지닌 기체상태의 화합물이 가열된 기판 근처나 기판 위에서 화학 반응을 통해 고체 박막을 형성하는 공정으로, 전자소자 분야에서 자주 이용되고 있으며 각종 코팅이나 재료 형성에도 쓰이고 있는 실용 기술이다. 화학 반응은 화합물의 산화, 환원, 열분해 현상을 이용하며 온도, 압력, 농도가 중요한 반응 제어 요소로 고려되어진다. 재료공정으로서 화학기상증착법의 특징을 살펴보면 적용대상이 다양하고, 고순도 기체의 사용이 가능하므로 고순도 재료의 합성에 적합하며, 합성공정에 대한 정밀한 제어가 가능하다는 장점을 가지고 있으며, 화학 반응을 일으키는 주된 에너지원의 종류에 따라 열CVD, 광CVD 그리고 플라즈마 CVD로 나누어 진다. In the synthesis of carbon nanotubes, the type and composition ratio of the metal catalyst, the type of support, the synthesis gas, and the synthesis equipment and temperature are important variables in the process. The synthesis method of carbon nanotubes includes arc discharge, laser evaporation, chemical vapor deposition (CVD), fluidized bed reactor, and plasma chemical vapor deposition (PECVD). Various methods such as plasma enhanced chemical vapor deposition) and electrolysis method are used, and new synthesis methods for efficient synthesis are still being developed. Among these, chemical vapor deposition is known to be suitable as a method for inexpensively mass-synthesizing multi-walled carbon nanotubes, and among them, thermochemical vapor deposition is known to be the most appropriate. Chemical Vapor Deposition (CVD), which is one of the thin film deposition methods, is a process in which a gaseous compound containing the component of the thin film to be made forms a solid thin film through a chemical reaction near or on a heated substrate. It is a practical technology that is frequently used in the field of devices and is also used for various coatings and material formation. Chemical reactions use the phenomena of oxidation, reduction and pyrolysis of compounds, and temperature, pressure, and concentration are considered as important reaction control factors. Looking at the characteristics of the chemical vapor deposition method as a material process, it is suitable for the synthesis of high-purity materials because it is suitable for the synthesis of high-purity materials and allows precise control of the synthesis process, as the targets of application are diverse and the use of high-purity gases is possible. According to the type of energy source, it is divided into thermal CVD, optical CVD and plasma CVD.

열화학 기상증착법(열CVD)을 통한 탄소나노튜브의 합성에는 금속촉매가 많은 영향을 주는데 일반적으로 전이금속인 철, 니켈, 코발트 등의 금속촉매가 많이 사용되고 있다. 금속촉매는 기존의 공침법, 습식담지법 및 DP(Deposition precipitation)법 등에 의해 만들어지는데, 공침법은 금속촉매 전구체와 지지체 전구체를 함께 침전시킨 뒤 열처리하는 방법이며 습식담지법은 지지체와 용매에 녹인 금속 전구체 용액을 건조한 후 열처리 방법이다. 그리고 DP법은 금속촉매전구체염 용액과 pH 조절제가 담지체 분산액 내에서 반응하여 침전체가 생성되도록 하고, 이들이 담지체 표면에 흡착 및 고화되도록 하여 만드는 방법이다. DP법에 의하여 제조된 금속촉매는, 기존의 공침법 및 함침법에 의해 제조된 금속촉매들과 비교했을 때 탄소나노튜브의 합성 수율에서 월등함을 보이기 때문에 탄소나노튜브 제조용 금속촉매의 제조방법으로 적합하며, 특히 탄소나노튜브의 대량생산에 적합하다. 그러나 DP법에 의하여 금속촉매를 만들어 탄소나노튜브를 합성함에 있어서는 금속촉매로 인한 불완전연소와 이에 따른 fume현상이 발생할 수 있는데, 이로 인하여 탄소나노튜브의 합성수율이 저하되는 등의 문제점이 있어왔기 때문에 이에 대한 해소방안이 필요하다.Metal catalysts have a lot of influence on the synthesis of carbon nanotubes through thermochemical vapor deposition (thermal CVD), and metal catalysts such as transition metals such as iron, nickel, and cobalt are widely used. The metal catalyst is made by the existing coprecipitation method, wet support method, and DP (deposition precipitation) method, and the coprecipitation method is a method of precipitating the metal catalyst precursor and the support precursor together and then heat treatment. The wet support method is a method of dissolving in a support and a solvent. This is a heat treatment method after drying the metal precursor solution. In the DP method, a metal catalyst precursor salt solution and a pH adjusting agent react in the carrier dispersion to form a precipitate, and they are adsorbed and solidified on the surface of the carrier. The metal catalyst prepared by the DP method is superior in the synthesis yield of carbon nanotubes compared to the metal catalysts prepared by the conventional coprecipitation method and impregnation method, so it is a method for producing a metal catalyst for carbon nanotube production. It is suitable, and especially suitable for mass production of carbon nanotubes. However, in the synthesis of carbon nanotubes by making a metal catalyst by the DP method, incomplete combustion and fume phenomenon may occur due to the metal catalyst, and this has caused problems such as lowering the synthesis yield of carbon nanotubes. There is a need for a solution to this.

Lijima, S., Helical Microtubules of Graphite Carbon, Nature 354 (1991) 56. Y. Ando, X. Zhao, M. Ohkohch, Production of petal-like graphite sheets by hydrogen arc discharge, Carbon 35 1 (1997) 153-158 T. Saito, K. Matsushige, K. Tanaka, Chemical treatment and modification of multiwalled carbon nanotubes, Physica B: Condensed Matter 323 1-4 (2002) 280-23 Frederic Hasche, Mehtap Oezaslan and Peter Strasser, Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts, Phys. Chem. Chem. Phys. 12 (2010) 15251-15258

Figure pat00001
Maria C. Gutierrez, MarJ. Hortiguela, J. Manuel Amarilla, Ricardo Jimenez, Maria L. Ferrer, and Francisco del Monte, Macroporous 3D Architectures of Self-Assembled MWCNT Surface Decorated with Pt Nanoparticles as Anodes for a Direct Methanol Fuel Cell, J. Phys. Chem. C 111 (15) (2007) 5557-5560 X. Sun, R. Li, D. Villers, J.P. Dodelet, S. Desilets, Composite electrodes made of Pt nanoparticles deposited on carbon nanotubes grown on fuel cell backings, Chemical Physics Letters 379 1-2 (2003) 99-104 V. Kumaresan, R. Velraj, Experimental investigation of the thermo-physical properties of water-ethylene glycol mixture based CNT nanofluids,Thermochimica Acta, 545 (2012) 180-186 R. S. Lee, J. Gavillet, M. Lamy de la Chapelle, A. Loiseau, J.-L. Cochon, D. Pigache, J. Thibault, and F. Willaime, Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration, Phys. Rev. B 64 (2001) 121405(R) Mo, C. B., Jeong Y. J., Lim, B. K. and Hong, S. H., "Fabrication Process and Mechanical/Electrical Properties of Carbon Nanotube/Metal Nanocomposites", Polymer Science and Technology 18 (2007) 6. Chunyu Li, Tsu-Wei Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces, Composites Science and Technology, 63 11 (2003) 1517-1524 Yuan, L., Saito, K., Hu, W. and Chen, Z., Ethyene Flame Synthesis of Well-Aligned Multi-Walled Carbon Nanotube, Chem. Phys. Lett., 346 (2001) 23~28. M. Tanemura, K. Iwata, K. Takahashi, Y. Fujimoto, and F. Okuyama, Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth parameters, Journal of Applied Physics 90 (2001) 1529. Xiang-Rong Ye, Yuehe Lin, Chongming Wang, Mark H. Engelhard, Yong Wang and Chien M. Wai, Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes, J. Mater. Chem.14 (2004) 908-913 Shuangqiang Chen, Peite Bao, Guoxiu Wang, Synthesis of Fe2O3-CNT-graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage, Nano Energy 2 3 (2013) 425-434 A. Gohier, C.P. Ewels, T.M. Minea, M.A. Djouadi, Carbon nanotube growth mechanism, switches from tip- to base-growth with decreasing catalyst particle size Carbon 46 10 (2008) 1331-1338 Daisuke Takagi, Yoshihiro Kobayashi, Hiroki Hibino, Satoru Suzuki and Yoshikazu Homma, Mechanism of Gold-Catalyzed Carbon Material Growth, Nano Lett. 8 (3) (2003) 832-835 Huaping Liu, Daisuke Takagi, Hiroshi Ohno, Shohei Chiashi, Tomohito Chokan and Yoshikazu Homma, Growth of Single-Walled Carbon Nanotubes from Ceramic Particles by Alcohol Chemical Vapor Deposition, Applied Physics Express 1 (2008) Kunming Dong, Xiaoming Ma, Hongbin Zhang, Guodong Lin, Novel MWCNT Support for Co-Mo Sulfide Catalyst in HDS of Thiophene and HDN of Pyrrole, Journal of Natural Gas Chemistry 15 1 (2006) 28-37 H. Bazzazzadegan, M. Kazemeini, A.M. Rashidi, A high performance multi-walled carbon nanotube-supported palladium catalyst in selective hydrogenation of acetylene-ethylene mixtures, Applied Catalysis A: General 399 1-2 31 (2011)184-190 Osa Emohare, Neil Rushton, Immobilized MWCNT support osteogenic cell culture 24 6 (2013) 1543-1550 Wang, Y., Wei, F., Luo, G., Yu, H. and Gu, G., The Large Scale Production of Carbon Nanotubes in a Nano-agglomerate Fluidized Bed Reactor, Chem. Phys. Lett. 364(5-6), (2002) 568-572. Hirofumi Takikawa, Miki Yatsuki, Tateki Sakakibara and Shigeo Itoh, Carbon nanotubes in cathodic vacuum arc discharge, J. Phys. D: Appl. Phys. 33 (2000) 826-830. Wahed Wasel, Kazunori Kuwana, Peter T.A. Reilly, Kozo Saito, Experimental characterization of the role of hydrogen in CVD synthesis of MWCNTs, Carbon 45 4 (2007) 833-838 Yu Hao, Zhang Qunfeng, Wei Fei, Qian Weizhong, Luo Guohua, Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism, Carbon 41 14 (2003) 2855-2863 H. Cui, O. Zhou, and B. R. Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition, Journal of Applied Physics 88 (2000) 6072 Myunghun Kim, Jinho Hong, Jeongwoo Lee, Chang Kook Hong, Sang Eun Shim, Fabrication of silica nanotubes using silica coated multi-walled carbon nanotubes as the template, Journal of Colloid and Interface Science 322 1 1 (2008) 321-326 Saloumeh Mesgari Abbasi, Alimorad Rashidi, Ali Nemati, Kaveh Arzani, The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina, Ceramics International 39 4 (2013) 3885-3891 Romil Bhandavat Gurpreet Singh, Synthesis, Characterization, and High Temperature Stability of Si(B)CN-Coated Carbon Nanotubes Using a Boron-Modified Poly(ureamethylvinyl)Silazane Chemistry, Journal of the American Ceramic Society 95 (2012) 5 Frederic Hasche, Mehtap Oezaslan and Peter Strasser, Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts, Phys. Chem. Chem. Phys. 12 (2010) 15251-15258 M. Irfan Malik, Zuhair Omar Malaibari, Muataz Atieh, Basim Abussaud, Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O, Chemical Engineering Science 152 2 (2016) 468-477 Lijima, S., Helical Microtubules of Graphite Carbon, Nature 354 (1991) 56. Y. Ando, X. Zhao, M. Ohkohch, Production of petal-like graphite sheets by hydrogen arc discharge, Carbon 35 1 (1997) 153-158 T. Saito, K. Matsushige, K. Tanaka, Chemical treatment and modification of multiwalled carbon nanotubes, Physica B: Condensed Matter 323 1-4 (2002) 280-23 Frederic Hasche, Mehtap Oezaslan and Peter Strasser, Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts, Phys. Chem. Chem. Phys. 12 (2010) 15251-15258
Figure pat00001
Maria C. Gutierrez, MarJ. Hortiguela, J. Manuel Amarilla, Ricardo Jimenez, Maria L. Ferrer, and Francisco del Monte, Macroporous 3D Architectures of Self-Assembled MWCNT Surface Decorated with Pt Nanoparticles as Anodes for a Direct Methanol Fuel Cell, J. Phys. Chem. C 111 (15) (2007) 5557-5560 X. Sun, R. Li, D. Villers, JP Dodelet, S. Desilets, Composite electrodes made of Pt nanoparticles deposited on carbon nanotubes grown on fuel cell backings, Chemical Physics Letters 379 1-2 (2003) 99-104 V. Kumaresan, R. Velraj, Experimental investigation of the thermo-physical properties of water-ethylene glycol mixture based CNT nanofluids, Thermochimica Acta, 545 (2012) 180-186 RS Lee, J. Gavillet, M. Lamy de la Chapelle, A. Loiseau, J.-L. Cochon, D. Pigache, J. Thibault, and F. Willaime, Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration, Phys. Rev. B 64 (2001) 121 405 (R) Mo, CB, Jeong YJ, Lim, BK and Hong, SH, "Fabrication Process and Mechanical/Electrical Properties of Carbon Nanotube/Metal Nanocomposites", Polymer Science and Technology 18 (2007) 6. Chunyu Li, Tsu-Wei Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces, Composites Science and Technology, 63 11 (2003) 1517-1524 Yuan, L., Saito, K., Hu, W. and Chen, Z., Ethyene Flame Synthesis of Well-Aligned Multi-Walled Carbon Nanotube, Chem. Phys. Lett., 346 (2001) 23-28. M. Tanemura, K. Iwata, K. Takahashi, Y. Fujimoto, and F. Okuyama, Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth parameters, Journal of Applied Physics 90 (2001) 1529. Xiang-Rong Ye, Yuehe Lin, Chongming Wang, Mark H. Engelhard, Yong Wang and Chien M. Wai, Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes, J. Mater. Chem. 14 (2004) 908-913 Shuangqiang Chen, Peite Bao, Guoxiu Wang, Synthesis of Fe2O3-CNT-graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage, Nano Energy 2 3 (2013) 425-434 A. Gohier, CP Ewels, TM Minea, MA Djouadi, Carbon nanotube growth mechanism, switches from tip- to base-growth with decreasing catalyst particle size Carbon 46 10 (2008) 1331-1338 Daisuke Takagi, Yoshihiro Kobayashi, Hiroki Hibino, Satoru Suzuki and Yoshikazu Homma, Mechanism of Gold-Catalyzed Carbon Material Growth, Nano Lett. 8 (3) (2003) 832-835 Huaping Liu, Daisuke Takagi, Hiroshi Ohno, Shohei Chiashi, Tomohito Chokan and Yoshikazu Homma, Growth of Single-Walled Carbon Nanotubes from Ceramic Particles by Alcohol Chemical Vapor Deposition, Applied Physics Express 1 (2008) Kunming Dong, Xiaoming Ma, Hongbin Zhang, Guodong Lin, Novel MWCNT Support for Co-Mo Sulfide Catalyst in HDS of Thiophene and HDN of Pyrrole, Journal of Natural Gas Chemistry 15 1 (2006) 28-37 H. Bazzazzadegan, M. Kazemeini, AM Rashidi, A high performance multi-walled carbon nanotube-supported palladium catalyst in selective hydrogenation of acetylene-ethylene mixtures, Applied Catalysis A: General 399 1-2 31 (2011)184-190 Osa Emohare, Neil Rushton, Immobilized MWCNT support osteogenic cell culture 24 6 (2013) 1543-1550 Wang, Y., Wei, F., Luo, G., Yu, H. and Gu, G., The Large Scale Production of Carbon Nanotubes in a Nano-agglomerate Fluidized Bed Reactor, Chem. Phys. Lett. 364(5-6), (2002) 568-572. Hirofumi Takikawa, Miki Yatsuki, Tateki Sakakibara and Shigeo Itoh, Carbon nanotubes in cathodic vacuum arc discharge, J. Phys. D: Appl. Phys. 33 (2000) 826-830. Wahed Wasel, Kazunori Kuwana, Peter TA Reilly, Kozo Saito, Experimental characterization of the role of hydrogen in CVD synthesis of MWCNTs, Carbon 45 4 (2007) 833-838 Yu Hao, Zhang Qunfeng, Wei Fei, Qian Weizhong, Luo Guohua, Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism, Carbon 41 14 (2003) 2855-2863 H. Cui, O. Zhou, and BR Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition, Journal of Applied Physics 88 (2000) 6072 Myunghun Kim, Jinho Hong, Jeongwoo Lee, Chang Kook Hong, Sang Eun Shim, Fabrication of silica nanotubes using silica coated multi-walled carbon nanotubes as the template, Journal of Colloid and Interface Science 322 1 1 (2008) 321-326 Saloumeh Mesgari Abbasi, Alimorad Rashidi, Ali Nemati, Kaveh Arzani, The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina, Ceramics International 39 4 (2013) 3885-3891 Romil Bhandavat Gurpreet Singh, Synthesis, Characterization, and High Temperature Stability of Si(B)CN-Coated Carbon Nanotubes Using a Boron-Modified Poly(ureamethylvinyl)Silazane Chemistry, Journal of the American Ceramic Society 95 (2012) 5 Frederic Hasche, Mehtap Oezaslan and Peter Strasser, Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts, Phys. Chem. Chem. Phys. 12 (2010) 15251-15258 M. Irfan Malik, Zuhair Omar Malaibari, Muataz Atieh, Basim Abussaud, Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O, Chemical Engineering Science 15 2 2 (2016) 468-477

상술한 문제점을 해결하기 위하여 창안된, 본 발명에 의한 하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브의 합성방법은, 탄소나노튜브 합성을 위해 제조되는 금속촉매에 대하여 적정한 온도로 하소처리를 하여 비표면적을 증가시킴으로써, 탄소나노튜브 합성 시 합성 수율을 높일 뿐만 아니라 우수한 전기전도성을 가지는 탄소나노튜브를 합성할 수 있는, 다중벽 탄소나노튜브의 합성방법을 제공하는 것을 목적으로 한다. The method for synthesizing multi-walled carbon nanotubes using a calcined metal catalyst according to the present invention, invented to solve the above-described problems, is performed by calcining at an appropriate temperature with respect to the metal catalyst produced for the synthesis of carbon nanotubes. An object of the present invention is to provide a method for synthesizing multi-walled carbon nanotubes capable of synthesizing carbon nanotubes having excellent electrical conductivity as well as increasing the synthesis yield when synthesizing carbon nanotubes by increasing the specific surface area.

본 발명의 또 다른 목적은, 대량생산을 위한 합성공정에서 금속촉매의 연속 투입시 발생할 수 있는 fume현상을 방지할 수 있도록, 최적의 온도로 하소처리된 금속촉매를 사용하여 탄소나노튜브를 합성하는 방법을 제공함으로써, 탄소나노튜브의 대량생산에 효과적인 다중벽 탄소나노튜브의 합성방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to synthesize carbon nanotubes using a metal catalyst calcined at an optimum temperature so as to prevent fume phenomenon that may occur when a metal catalyst is continuously added in a synthesis process for mass production. An object of the present invention is to provide a method for synthesizing multi-walled carbon nanotubes effective for mass production of carbon nanotubes by providing a method.

본 발명의 또 다른 목적은, 탄소나노튜브의 합성 시 합성수율을 높일 수 있고, 전기전도성이 우수한 탄소나노튜브를 합성할 수 있도록 하소된 금속촉매량과 합성가스량에 대한 최적의 비율 조건을 제시하고, 이를 적용한 탄소나노튜브의 합성방법을 제공하는 것을 목적으로 한다. Another object of the present invention is to provide an optimal ratio condition for the amount of calcined metal catalyst and the amount of synthesis gas so that the synthesis yield can be increased when the carbon nanotubes are synthesized, and carbon nanotubes having excellent electrical conductivity can be synthesized, It is an object of the present invention to provide a method for synthesizing carbon nanotubes using this.

본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. The technical problem to be achieved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned can be clearly understood by those of ordinary skill in the technical field to which the present invention belongs from the following description. There will be.

전술한 목적을 달성하기 위해 창안된, 본 발명에 의한 하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브의 합성방법은, Iron(Ⅲ) Nitrate Nonahydrate(Fe(NO₃)₃9H₂O)를 용해한 제1용액, Ammonium Molybdate tetrahydrate((NH₄)Mo7O₂₄4H₂O)를 용해한 제2용액, 상기 제1용액과 상기 제2용액을 혼합 및 교반한 금속촉매전구체용액, Ammonium Carbonate((NH₄)₂CO₃)를 용해한 제3용액 및 Aluminum Hydroxide(Al(OH)₃)를 용해한 제4용액을 제조한 후, 상기 제4용액에 상기 금속촉매전구체용액 및 상기 제3용액을 혼합하여 교반한 후 여과 및 건조하여 금속촉매를 제조하는 금속촉매제조단계; 상기 금속촉매를 반응로에서 하소 처리하는 하소단계; 및 하소된 상기 금속촉매를 열CVD 합성장치에 넣고 혼합가스를 투입한 후 가열하여 탄소나노튜브를 합성하는 합성단계;를 포함하는 것이 바람직하다. Invented to achieve the above object, the method for synthesizing multi-walled carbon nanotubes using a calcined metal catalyst according to the present invention is a first solution in which Iron(III) Nitrate Nonahydrate (Fe(NO3)₃9H₂O) is dissolved, A second solution in which Ammonium Molybdate tetrahydrate ((NH₄)Mo7O₂₄4H₂O) is dissolved, a metal catalyst precursor solution in which the first solution and the second solution are mixed and stirred, a third solution in which Ammonium Carbonate ((NH₄)₂CO₃) is dissolved, and Aluminum Hydroxide After preparing a fourth solution in which (Al(OH)₃) is dissolved, the metal catalyst precursor solution and the third solution are mixed with the fourth solution, stirred, filtered and dried to produce a metal catalyst. step; A calcination step of calcining the metal catalyst in a reaction furnace; And a synthesis step of putting the calcined metal catalyst into a thermal CVD synthesis apparatus, introducing a mixed gas, and heating to synthesize carbon nanotubes.

상술한 특징에 더하여 상기 금속촉매제조단계에서 상기 제1용액은 용매 100중량부에 대하여 Iron(Ⅲ) Nitrate Nonahydrate 118중량부를 용해하며, 상기 제2용액은 용매 100중량부에 대하여 Ammonium Molybdate tetrahydrate 20중량부를 용해하며, 상기 제3용액은 용매 100중량부에 대하여 Ammonium Carbonate 100중량부를 용해하며 상기 제4용액은 용매 100중량부에 대하여 Aluminum Hydroxide 50중량부를 용해하는 특징을 더 하는 것도 바람직하다. In addition to the above features, in the metal catalyst manufacturing step, the first solution dissolves 118 parts by weight of Iron(III) Nitrate Nonahydrate based on 100 parts by weight of the solvent, and the second solution is 20 parts by weight of Ammonium Molybdate tetrahydrate based on 100 parts by weight of the solvent. It is also preferable that the third solution dissolves 100 parts by weight of Ammonium Carbonate based on 100 parts by weight of the solvent, and the fourth solution dissolves 50 parts by weight of Aluminum Hydroxide with respect to 100 parts by weight of the solvent.

또한, 상술한 특징들에 더하여 상기 하소단계에서 하소온도는 500~700℃ 인 것을 특징으로 하는 하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브의 합성방법으로 하는 것도 바람직하다. In addition to the above-described features, it is also preferable to use a method for synthesizing multi-walled carbon nanotubes using a calcined metal catalyst, characterized in that the calcining temperature in the calcining step is 500 to 700°C.

이에 더하여, 상기 합성단계에서 상기 혼합가스는 ethylene, H₂ 및 N₂ 가스가 80: 25: 40의 부피비로 혼합되는 특징을 더 포함하는, 하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브의 합성방법으로 하는 것도 바람직하다. In addition, in the synthesis step, the mixed gas is a method of synthesizing multi-walled carbon nanotubes using a calcined metal catalyst, further comprising a feature in which ethylene, H₂ and N₂ gases are mixed in a volume ratio of 80:25:40. It is also desirable to do it.

뿐만 아니라 본 발명에 의한 하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브의 합성방법은 상술한 특징에 더하여 상기 합성단계에서 합성 온도는 650~700℃ 인 것을 특징을 더 포함하는 하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브의 합성방법인 것이 바람직하다. In addition, the method for synthesizing multi-walled carbon nanotubes using the calcined metal catalyst according to the present invention further comprises the above-described characteristics and the synthesis temperature in the synthesis step is 650 to 700°C. It is preferable that it is a synthesis method of multi-walled carbon nanotubes using.

본 발명에 의한 하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브의 합성방법은, 탄소나노튜브 합성에 사용되는 금속촉매에 대하여 최적의 온도로 하소처리를 함으로써 금속촉매에서 수분을 제거시키고 비표면적을 증가시키기 때문에, 다중벽 탄소나노튜브를 제조 시 합성수율이 크게 증가할 뿐만 아니라, 우수한 전기전도성을 가지는 탄소나노튜브를 얻을 수 있어 고품질과 고수율의 탄소나노튜브를 합성할 수 있는 효과가 있다. In the method for synthesizing multi-walled carbon nanotubes using a calcined metal catalyst according to the present invention, the metal catalyst used for carbon nanotube synthesis is calcined at an optimum temperature, thereby removing moisture from the metal catalyst and reducing the specific surface area. Because of the increase, the synthesis yield is greatly increased when manufacturing multi-walled carbon nanotubes, and carbon nanotubes having excellent electrical conductivity can be obtained, thereby synthesizing high-quality and high-yield carbon nanotubes.

또한 금속촉매에 대한 하소처리과정을 통해 금속촉매에서 수분이 제거됨에 따라 탄소나노튜브 합성 시 불완전연소를 방지할 수 있기 때문에, 대량 생산 공정에서 금속촉매의 연속 투입으로 인하여 발생할 수 있는 fume현상을 방지할 수 있고, 이에 따라 탄소나노튜브의 대량생산 시 고품질을 확보할 수 있게 하는 효과가 있다. In addition, as moisture is removed from the metal catalyst through the calcination process of the metal catalyst, incomplete combustion during the synthesis of carbon nanotubes can be prevented, thus preventing fume that may occur due to continuous input of the metal catalyst in the mass production process. In this way, there is an effect of ensuring high quality during mass production of carbon nanotubes.

뿐만 아니라 하소온도 등 최적의 하소조건과 함께 하소된 금속촉매량과 합성가스에 대한 최적의 조건을 제시하고, 이를 적용한 탄소나노튜브의 합성방법을 제공하기 때문에 품질과 수율이 우수한 다중벽 탄소나노튜브를 제공할 수 있는 효과가 있다. In addition, since it presents the optimum conditions for the amount of calcined metal catalyst and the synthesis gas along with the optimum calcination conditions such as calcination temperature, and provides a method for synthesizing carbon nanotubes using the same, the multi-walled carbon nanotubes with excellent quality and yield are provided. There is an effect it can provide.

도 1은 본 발명에 의하여 다중벽 탄소나노튜브가 합성되는 공정에 대한 흐름도이다.
도 2는 본 발명의 실시예에서 제조된 금속촉매를 온도별 하소처리를 진행한 후 얻어진 금속촉매의 사진이다.
도 3는 본 발명의 실시예에서 제조된 금속촉매의 투과전자현미경(TEM) 사진이다.
도 4는 본 발명의 실시예에서 금속촉매 및 support의 하소 전후 무게감소분과 합성수율, 비표면적분석, 압출평가시험 및 열중량분석결과를 나타낸 표이다.
도 5는 본 발명의 제조실시예를 통하여 합성된 다중벽 탄소나노튜브의 응집체 두께, 번들두께 및 번들길이를 측정한 표이다.
도 6는 본 발명의 제조실시예를 통하여 합성된 다중벽 탄소나노튜브의 주사전자현미경(SEM) 사진이다.
도 7은 본 발명의 제조실시예를 통하여 합성된 다중벽 탄소나노튜브의 투과전자현미경(TEM) 사진이다.
도 8은 본 발명의 제조실시예를 통하여 다중벽 탄소나노튜브의 표면저항을 측정하기 위한 압출 공정도이다.
1 is a flowchart of a process for synthesizing multi-walled carbon nanotubes according to the present invention.
2 is a photograph of a metal catalyst obtained after calcining the metal catalyst prepared in an embodiment of the present invention for each temperature.
3 is a transmission electron microscope (TEM) photograph of a metal catalyst prepared in an embodiment of the present invention.
Figure 4 is a table showing the weight reduction before and after calcination of the metal catalyst and support in the embodiment of the present invention, the synthetic yield, specific surface area analysis, extrusion evaluation test and thermogravimetric analysis results.
5 is a table measuring aggregate thickness, bundle thickness, and bundle length of multi-walled carbon nanotubes synthesized through a manufacturing example of the present invention.
6 is a scanning electron microscope (SEM) photograph of a multi-walled carbon nanotube synthesized through a manufacturing example of the present invention.
7 is a transmission electron microscope (TEM) photograph of a multi-walled carbon nanotube synthesized through a manufacturing example of the present invention.
8 is an extrusion process diagram for measuring the surface resistance of a multi-walled carbon nanotube through a manufacturing example of the present invention.

이하에서 상술한 목적과 특징이 분명해지도록 본 발명을 상세하게 설명할 것이며, 이에 따라 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한 본 발명을 설명함에 있어서 본 발명과 관련한 공지기술 중 이미 그 기술 분야에 익히 알려져 있는 것으로서, 그 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다. Hereinafter, the present invention will be described in detail so that the above-described objects and features become clear, and accordingly, a person of ordinary skill in the technical field to which the present invention pertains will be able to easily implement the technical idea of the present invention. In addition, in describing the present invention, when it is determined that a detailed description of the known technology may unnecessarily obscure the subject matter of the present invention, a detailed description thereof is provided as it is already well known in the technical field among known technologies related to the present invention. I will omit it.

아울러, 본 발명에서 사용되는 용어는 가능한 한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며 이 경우는 해당되는 발명의 설명부분에서 상세히 그 의미를 기재하였으므로, 단순한 용어의 명칭이 아닌 용어가 가지는 의미로서 본 발명을 파악하여야 함을 밝혀두고자 한다. 실시 예들에 대한 설명에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 실시 예들을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. In addition, the terms used in the present invention have selected general terms that are currently widely used as far as possible, but in certain cases, there are terms arbitrarily selected by the applicant, and in this case, the meaning of the terms has been described in detail in the description of the corresponding invention. It should be noted that the present invention should be understood as the meaning of the term, not the name of. The terms used in the description of the embodiments are only used to describe specific embodiments, and are not intended to limit the embodiments. Singular expressions include plural expressions unless the context clearly indicates otherwise.

실시 예들은 여러 가지 형태로 변경을 가할 수 있고 다양한 부가적 실시 예들을 가질 수 있는데, 여기에서는 특정한 실시 예들이 도면에 표시되고 관련된 상세한 설명이 기재되어 있다. 그러나 이는 실시 예들을 특정한 형태에 한정하려는 것이 아니며, 실시 예들의 사상 및 기술 범위에 포함되는 모든 변경이나 균등물 내지 대체물을 포함하는 것으로 이해되어야 할 것이다. The embodiments may be changed in various forms and may have various additional embodiments, in which specific embodiments are indicated in the drawings and related detailed descriptions are described. However, this is not intended to limit the embodiments to a specific form, and it should be understood that all changes, equivalents, or substitutes included in the spirit and scope of the embodiments are included.

다양한 실시 예들에 대한 설명 가운데 “제1”“제2”“첫째”또는“둘째”등의 표현들이 실시 예들의 다양한 구성요소들을 수식할 수 있지만, 해당 구성요소들을 한정하지 않는다. 예를 들어, 상기 표현들은 해당 구성요소들의 순서 및/또는 중요도 등을 한정하지 않는다. 상기 표현들은 한 구성요소를 다른 구성요소와 구분 짓기 위해 사용될 수 있다. In the description of various embodiments, expressions such as "first," "second," "first," or "second" may modify various elements of the embodiments, but the corresponding elements are not limited. For example, the expressions do not limit the order and/or importance of corresponding elements. The above expressions may be used to distinguish one component from another component.

본 발명에 의한 하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브의 합성방법에서는, 탄소나노튜브의 합성에 사용되는 금속촉매를 DP(deposition precipitation)법으로 제조하여 다중벽 탄소나노튜브(MWCNT)를 합성하도록 하는 것이 바람직하다. 금속촉매 제조방법 중 하나인 DP법은 금속촉매를 사용하여 탄소나노튜브를 합성할 때 합성 수율의 현저함을 보이기 때문에 탄소나노튜브의 대량생산공정에 적합하다. 또한 본 발명에 의한 하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브의 합성방법에서는, DP법으로 제조된 금속촉매에 대하여 최적의 온도를 적용하여 하소처리를 하도록 하는 것이 바람직한데, 탄소나노튜브의 대량생산 공정에서는 금속촉매의 연속적인 투입이 필요하며, 이렇게 금속촉매가 연속적으로 투입되는 경우에는 불완전연소로 인하여 fume현상이 발생하는데, 본 발명에 따라 금속촉매에 대하여 하소처리를 하는 경우 이러한 fume현상을 방지할 수 있어 탄소나노튜브의 대량생산에 효과적으로 적용될 수 있게 된다. In the method for synthesizing multi-walled carbon nanotubes using a calcined metal catalyst according to the present invention, a metal catalyst used for synthesizing carbon nanotubes is prepared by DP (deposition precipitation) to produce multi-walled carbon nanotubes (MWCNT). It is desirable to synthesize. DP method, one of the metal catalyst manufacturing methods, is suitable for the mass production process of carbon nanotubes because it shows remarkable yield when synthesizing carbon nanotubes using a metal catalyst. In addition, in the method for synthesizing multi-walled carbon nanotubes using the calcined metal catalyst according to the present invention, it is preferable to perform calcining treatment by applying an optimum temperature to the metal catalyst prepared by the DP method. In the mass production process, continuous input of the metal catalyst is required, and when the metal catalyst is continuously added, a fume phenomenon occurs due to incomplete combustion. When the metal catalyst is calcined according to the present invention, such a fume phenomenon Can be prevented, so that it can be effectively applied to mass production of carbon nanotubes.

이하에서는 본 발명에 의한 바람직한 실시예에 의한 다중벽 탄소나노튜브의 제조방법에 대하여 도 1을 참조하여 설명한다. 도 1은 본 발명에 의하여 다중벽 탄소나노튜브가 합성되는 공정에 대한 흐름도이다. 도 1에서 보는 바와 같이 본 발명에 의한 하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브의 합성방법에서는 먼저 금속촉매제조단계(s100 ~ s700)를 수행하도록 하는 것이 바람직하다. Hereinafter, a method of manufacturing a multi-walled carbon nanotube according to a preferred embodiment of the present invention will be described with reference to FIG. 1. 1 is a flowchart of a process for synthesizing multi-walled carbon nanotubes according to the present invention. As shown in FIG. 1, in the method for synthesizing multi-walled carbon nanotubes using a calcined metal catalyst according to the present invention, it is preferable to first perform the metal catalyst manufacturing steps (s100 to s700).

따라서 가장 먼저 Iron(Ⅲ) Nitrate Nonahydrate(Fe(NO₃)₃9H₂O)를 용매에 넣어 용해한 제1용액을 만드는 과정(s100 단계)을 수행하도록 하는 것이 바람직하다. 여기서 상기 제1용액을 만드는 데 사용되는 용매는 DI water로 하되, 상기 DI water 100중량부에 대하여 상기 Iron(Ⅲ) Nitrate Nonahydrate 118중량부를 넣고 완전히 수용액 상태가 될 때까지 Magnetic Stirrer를 사용하여 용해하도록 하는 것이 바람직하다. 그 다음에는 Ammonium Molybdate tetrahydrate((NH₄)Mo7O₂₄4H₂O)를 용매에 넣어 용해한 제2용액을 만드는 과정(s200 단계)을 수행하도록 하는 것이 바람직하다. 여기서 상기 제2용액을 만드는 데 사용되는 용매 또한 DI water로 하는 것이 바람직한데, 상기 DI water 100중량부에 대하여 상기 Ammonium Molybdate tetrahydrate 20중량부를 넣고 고형 분이 모두 녹아서 완전한 수용액 상태가 될 때까지 Magnetic Stirrer를 사용하여 용해하도록 하는 것이 바람직하다. 그 다음에는 상기 제1용액과 상기 제2용액을 혼합 및 교반하여 금속촉매전구체용액을 제조하는 과정(s250 단계)을 수행하도록 하는 것이 바람직하다. 상기 금속촉매전구체용액을 제조하는 과정(s250 단계)은 상기 제1용액에 상기 제2용액을 넣은 후, 두 가지 용액이 완전히 섞일 때까지 Mechanical Stirrer로 교반하도록 하는 것이 바람직하다.Therefore, it is preferable to first perform a process (step s100) of making a first solution in which Iron(III) Nitrate Nonahydrate (Fe(NO₃)₃9H₂O) is dissolved in a solvent. Here, the solvent used to make the first solution is DI water, but 118 parts by weight of the Iron(III) Nitrate Nonahydrate is added to 100 parts by weight of the DI water and dissolved using a magnetic stirrer until it is completely aqueous. It is desirable to do. After that, it is preferable to perform a process (step s200) of making a second solution in which Ammonium Molybdate tetrahydrate ((NH₄)Mo7O₂₄4H₂O) is dissolved in a solvent. Here, it is preferable to use DI water as the solvent used to make the second solution, and add 20 parts by weight of the Ammonium Molybdate tetrahydrate to 100 parts by weight of the DI water, and use the Magnetic Stirrer until all solids are dissolved and become a complete aqueous solution. It is desirable to use it to dissolve. Next, it is preferable to perform the process of preparing a metal catalyst precursor solution (step S250) by mixing and stirring the first solution and the second solution. In the process of preparing the metal catalyst precursor solution (step s250), it is preferable to add the second solution to the first solution and then stir with a mechanical stirrer until the two solutions are completely mixed.

그리고 Ammonium Carbonate((NH₄)₂CO₃)를 용매에 넣어 용해한 제3용액을 만드는 과정(s300 단계)을 수행하도록 하는 것이 바람직하다. 여기서 상기 제3용액을 만드는 데 사용되는 용매 또한 DI water로 하는 것이 바람직하며, 상기 DI water 100중량부에 대하여 상기 Ammonium Carbonate 100중량부를 넣고 약 2시간 동안 bath sonic을 사용하여 용해하며, 고형분이 완전히 용해되어 완전한 수용액 상태로 될 때까지 용해하도록 하는 것이 바람직하다. 그 다음에는 Aluminum Hydroxide(Al(OH)₃)를 용매에 넣어 용해한 제4용액을 만드는 과정(s400 단계)을 수행하도록 하는 것이 바람직하다. 상기 제4용액을 만드는 데 사용되는 용매 또한 DI water로 하는 것이 바람직하며, 상기 DI water 100중량부에 대하여 상기 Aluminum Hydroxide 50중량부를 넣고 완전히 섞일 때까지 Mechanical Stirrer로 교반하도록 하는 것이 바람직하다. 상기 제1용액, 상기 제2용액, 상기 제1용액과 상기 제2용액을 혼합한 상기 금속촉매전구체용액, 상기 제3용액 및 상기 제4용액이 만들어진 후에는 상기 제4용액에 상기 금속촉매전구체용액 및 상기 제3용액을 혼합한 혼합용액을 만들어 주는 것이 바람직하다(s500 단계). 상기 혼합용액은 상기 제4용액을 Mechanical Stirrer로 교반하면서 Dropping Funnel을 사용하여 상기 금속촉매전구체용액 및 상기 제3용액을 가하도록 하는 것이 바람직하다. In addition, it is preferable to perform a process (step s300) of preparing a third solution obtained by dissolving Ammonium Carbonate ((NH₄)₂CO₃) in a solvent. Here, the solvent used to prepare the third solution is also preferably DI water, and 100 parts by weight of the Ammonium Carbonate is added to 100 parts by weight of the DI water and dissolved using a bath sonic for about 2 hours, and the solid content is completely It is preferable to dissolve until it dissolves and becomes a complete aqueous solution. After that, it is preferable to perform the process of making a fourth solution (step s400) in which Aluminum Hydroxide (Al(OH)₃) is dissolved in a solvent. The solvent used to prepare the fourth solution is also preferably DI water, and 50 parts by weight of the Aluminum Hydroxide is added to 100 parts by weight of the DI water, and the mixture is stirred with a mechanical stirrer until completely mixed. After the first solution, the second solution, the metal catalyst precursor solution obtained by mixing the first solution and the second solution, the third solution, and the fourth solution are prepared, the metal catalyst precursor is added to the fourth solution. It is preferable to prepare a mixed solution obtained by mixing the solution and the third solution (step S500). It is preferable to add the metal catalyst precursor solution and the third solution to the mixed solution using a dropping funnel while stirring the fourth solution with a mechanical stirrer.

그 다음에는 상기 혼합용액을 여과하는 여과과정(s600 단계)을 거치도록 하는 것이 바람직한데, 상기 여과과정은 상기 혼합용액을 Filtering 장치를 이용하여 거르는 것으로서, Buchner Funnel에 여과지를 올리고, 상기 혼합용액을 두세 번에 걸쳐서 나누어 거르도록 하는 것이 바람직하다. 상기 여과과정(s600 단계)을 거친 뒤에는 건조과정(s700 단계)을 거치도록 하는 것이 바람직한데, 상기 건조과정(s700 단계)은 상기 여과지에 걸러진 Cake를 떨어내어 오븐에 넣은 뒤 150도의 온도로 16시간 이상 건조하도록 하는 것이 바람직하다. Next, it is preferable to undergo a filtration process (step s600) of filtering the mixed solution. In the filtration process, the mixed solution is filtered using a filtering device, and a filter paper is placed on the Buchner Funnel, and the mixed solution is It is advisable to divide it in two or three times. After passing through the filtration process (step s600), it is preferable to go through a drying process (step s700). In the drying process (step s700), after dropping the cake filtered on the filter paper and putting it in an oven, it is at a temperature of 150 degrees for 16 hours. It is desirable to dry it longer.

본 발명에 의한 하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브 제조방법에서 사용되는 금속촉매는 철(Fe)과 몰리브덴(Mo)을 이용하는 것이 바람직하다. 따라서 상술한 바와 같이 철의 전구체용액인 Iron(Ⅲ) Nitrate Nonahydrate를 용해한 제1용액과 몰리브덴의 전구체용액인 Ammonium Molybdate tetrahydrate를 용해한 제2용액을 혼합하여 만든 상기 금속촉매전구체용액을 사용하는 것이 바람직하다.It is preferable to use iron (Fe) and molybdenum (Mo) as the metal catalyst used in the method for manufacturing multi-walled carbon nanotubes using the calcined metal catalyst according to the present invention. Therefore, it is preferable to use the metal catalyst precursor solution prepared by mixing the first solution in which Iron(III) Nitrate Nonahydrate, which is a precursor solution of iron, and the second solution in which Ammonium Molybdate tetrahydrate, which is a precursor solution of molybdenum, are mixed as described above. .

한편 상술한 방법에 의하여 제조된 상기 금속촉매전구체용액은 pH조절제인 Ammonium Carbonate를 용해한 상기 제3용액과 혼합 시 금속산화물 또는 금속수산화물입자의 형태로 고화되며, Aluminum Hydroxide를 용해한 상기 제4용액에 섞일 때 상기 제4용액 상에 흡착되며, 금속산화물(또는 금속수산화물)과 상기 제4용액의 혼합물의 금속촉매 입자 형태로 상기 혼합용액 내에서 침전될 수 있다. 따라서 상기 제4용액에 상기 금속촉매전구체용액과 상기 제3용액을 가할 때 바람직한 양을 조절하여 금속촉매를 제조하여야 하며, 이는 전이 금속 전구체로부터 금속산화물 또는 금속수산화물의 침전을 형성하는 데 적정량의 pH조절제를 첨가하여야 금속 성분의 정량 침전을 유도하기 적합하기 때문이다. 따라서, 본 발명에서는 상기 제1용액, 상기 제2용액, 상기 제3용액 및 상기 제4용액의 제조에 사용되는 Iron(Ⅲ) Nitrate Nonahydrate, Ammonium Molybdate tetrahydrate, Ammonium Carbonate 및 Aluminum Hydroxide 각각의 성분비(중량)를 825:60.11:2000:1000으로 하는 것이 바람직하다.Meanwhile, the metal catalyst precursor solution prepared by the above-described method is solidified in the form of metal oxide or metal hydroxide particles when mixed with the third solution in which Ammonium Carbonate, a pH adjusting agent, is dissolved, and is mixed with the fourth solution in which Aluminum Hydroxide is dissolved. When adsorbed onto the fourth solution, it may be precipitated in the mixed solution in the form of metal catalyst particles of a mixture of a metal oxide (or metal hydroxide) and the fourth solution. Therefore, when the metal catalyst precursor solution and the third solution are added to the fourth solution, the metal catalyst must be prepared by adjusting a preferable amount, which is an appropriate amount of pH to form a metal oxide or metal hydroxide precipitate from the transition metal precursor. This is because it is suitable to induce quantitative precipitation of metal components only when a modifier is added. Therefore, in the present invention, the component ratio (weight) of each of Iron(III) Nitrate Nonahydrate, Ammonium Molybdate tetrahydrate, Ammonium Carbonate and Aluminum Hydroxide used in the preparation of the first solution, the second solution, the third solution, and the fourth solution ) Is preferably set to 825:60.11:2000:1000.

상기 금속촉매제조단계(s100~s700 단계)를 수행한 뒤에는, 상기 금속촉매를 반응로에서 하소(Calcination) 처리하는 하소단계(s800 단계)를 거치도록 하는 것이 바람직하다. 상기 하소단계(s800 단계)에서는 하소온도를 500~700℃로 하여 약 60분 정도 진행하도록 하는 것이 바람직하며, 더욱 자세하게는 상기 하소온도는 700℃로 한정하는 것이 더욱 바람직하다. 상기 금속촉매에 대하여 상기 하소단계(s800 단계)를 거치게 되는 경우 상기 금속촉매에서 수분이 제거되고 비표면적이 향상되기 때문에 탄소나노튜브의 합성 수율이 증가할 뿐만 아니라 전기전도성이 향상되는 결과를 가져온다. 또한 일반적인 탄소나노튜브의 생산공정에서 금속촉매를 연속적으로 투입하게 되면 fume이 발생하여 작업 공정에 영향을 받아 작업공정효율이 낮아지는데, 본 발명에서는 하소단계(s800 단계)를 거치도록 함으로써 fume이 발생되지 않게 되고, 이에 따라 대량생산을 위한 공정에 적용하여 탄소나노튜브의 품질을 향상시킬 수 있게 된다. After performing the metal catalyst manufacturing step (steps s100 to s700), it is preferable to undergo a calcination step (step s800) of calcining the metal catalyst in a reaction furnace. In the calcination step (step s800), the calcination temperature is preferably set to 500 to 700°C for about 60 minutes, and more particularly, the calcination temperature is more preferably limited to 700°C. When the metal catalyst is subjected to the calcination step (step s800), moisture is removed from the metal catalyst and the specific surface area is improved, resulting in an increase in the synthesis yield of carbon nanotubes and an improvement in electrical conductivity. In addition, when a metal catalyst is continuously added in the production process of a general carbon nanotube, fume is generated, which is affected by the work process, resulting in lower work process efficiency.In the present invention, fume is generated by undergoing a calcination step (step s800). Therefore, it is possible to improve the quality of carbon nanotubes by applying them to a process for mass production.

하소처리를 포함하여 산화 및 탄화와 같은 전형적인 금속촉매 표면 처리 공정은 금속촉매 표면에 응력(stress)을 야기하여 표면상에 파쇄(breakup) 현상을 일으키고 표면 거칠어짐, 갈라짐, 균열 등에 의하여 금속촉매표면의 비표면적을 증가시킬 뿐 아니라, 금속촉매 표면상에 결정학적 결함을 증가시키게 되어 탄소나노튜브를 포함한 여러 가지 형상의 탄소나노 구조체의 금속촉매 합성이 기여하게 된다. 또한 금속촉매의 담지체(support)의 비표면적을 개선하여 다중벽 탄소나노튜브를 합성하게 되면 합성수율(Carbon Yield)의 향상과 재현성 있는 고품질의 다중벽 탄소나노튜브 제조 기술을 확보하여 복합체 응용시 우수한 전기전도성을 발현할 수 있게 된다. 금속촉매 하소의 하소는 금속촉매를 연속공정장비에 투입하는 과정에서 금속촉매 내의 수분이 잔존하여 장비에 투입시 fume이 발생하여 작업 공정에 영향을 받아 작업공정효율이 낮아져서 이를 개선하기 위해서 진행하게 되었으며, 본 발명에서는 하소처리전과 금속촉매의 하소온도를 300℃, 500℃ 및 700℃ 로 변경한 금속촉매를 이용하여 합성한 다중벽 탄소나노튜브의 특성을 분석한 결과, DP법으로 제조한 금속촉매를 700℃로 하소처리한 후 합성된 다중벽 탄소나노튜브 복합체에서 가장 우수한 전기전도성을 확인할 수 있었다. 이때 DP법으로 제조한 금속촉매가 하소공정을 거치면서 감소된 무게는 금속촉매에 남아있던 수분이 빠져나와 금속촉매량이 감소하는 것으로 판단된다. Typical metal catalyst surface treatment processes, such as oxidation and carbonization, including calcination, cause stress on the surface of the metal catalyst, causing breakup on the surface, and surface roughening, cracking, cracking, etc. In addition to increasing the specific surface area, crystallographic defects on the surface of the metal catalyst are increased, thereby contributing to metal catalyst synthesis of carbon nanostructures of various shapes including carbon nanotubes. In addition, when multi-walled carbon nanotubes are synthesized by improving the specific surface area of the support of the metal catalyst, high-quality multi-walled carbon nanotubes manufacturing technology with improved carbon yield and reproducibility is secured when applying composites. Excellent electrical conductivity can be expressed. The calcination of the metal catalyst calcination was carried out to improve the work process efficiency due to the influence of the work process due to the fume generated when the metal catalyst was added to the equipment due to the remaining moisture in the process of introducing the metal catalyst into the continuous process equipment. , In the present invention, as a result of analyzing the properties of the multi-walled carbon nanotubes synthesized using a metal catalyst in which the calcination temperature of the metal catalyst was changed to 300°C, 500°C and 700°C, the metal catalyst prepared by the DP method After calcining at 700° C., the best electrical conductivity was confirmed in the synthesized multi-walled carbon nanotube composite. At this time, it is judged that the weight of the metal catalyst manufactured by the DP method decreases as the metal catalyst undergoes a calcination process, and moisture remaining in the metal catalyst escapes and the amount of the metal catalyst decreases.

상기 하소단계(s800 단계)를 수행한 후에는, 하소된 상기 금속촉매를 열CVD 합성장치에 넣고 혼합가스를 투입한 후 가열하여 탄소나노튜브를 합성하는 합성단계(s900 단계)를 수행하도록 하는 것이 바람직하다. 상기 합성단계(s900 단계)에서는, 연속공정이 가능한 화학기상증착법(Chemical Vapor Deposition)을 통해 다중벽 탄소나노튜브를 합성하도록 하는 것이 바람직하다. After performing the calcination step (step s800), a synthesis step (step s900) of synthesizing carbon nanotubes by putting the calcined metal catalyst into a thermal CVD synthesizer, introducing a mixed gas, and heating it is performed. desirable. In the synthesis step (s900 step), it is preferable to synthesize multi-walled carbon nanotubes through a chemical vapor deposition method capable of a continuous process.

화학기상증착법에서 탄소원료가스와 함께 환원가스로 수소가스가 투입되는데 수소가스의 역할은 1000K 정도로 높은 온도의 환원 분위기에서 금속촉매입자로부터 비정질 탄소를 에칭시키는 것이며, 너무 높은 농도의 수소는 탄소나노튜브가 성장되는 동안 아주 빨리 비정질 탄소를 제거할 수 있는 반면, 아주 낮은 농도의 수소는 금속촉매 표면이 비정질 탄소로 덮이는 비활성화가 초래될 수도 있다. 수소가스는 이러한 금속촉매의 비활성 현상을 저지하거나 지연시킬 수 있을 뿐만 아니라, 적정한 농도의 수소를 공급하여 금속촉매를 활성화 시킬 수 있게 된다. In the chemical vapor deposition method, hydrogen gas is introduced as a reducing gas along with the carbon raw material gas. The role of hydrogen gas is to etch amorphous carbon from metal catalyst particles in a reducing atmosphere at a temperature as high as 1000K, and too high concentration of hydrogen is carbon nanotubes. While the amorphous carbon can be removed very quickly during growth, very low concentrations of hydrogen may lead to deactivation of the metal catalyst surface covered with amorphous carbon. Hydrogen gas not only prevents or delays the inactivation of the metal catalyst, but also supplies hydrogen of an appropriate concentration to activate the metal catalyst.

따라서 탄소나노튜브의 제조시 환원가스의 농도를 조절함으로써, 공급되는 탄소원료가스가 탄소나노튜브로 전환되는 비율인 탄소나노튜브 선택도를 제어할 수 있으며 탄소나노튜브의 표면저항을 최적화할 수 있게 되어 탄소나노튜브의 전도도 및 물성이 향상된 탄소나노튜브를 제조할 수 있으며, 적정한 농도의 수소를 공급하여 금속촉매를 활성화 시킬 수도 있다. 이러한 이유로 화학기상증착법은 온도, 압력, 분위기 등의 제한된 조건 하에서 반응하여야 원하는 특성의 다중벽 탄소나노튜브를 합성할 수 있기 때문에 온도와 합성가스의 비율은 합성단계에서 중요한 역할을 한다. 따라서 상기 합성단계(s900 단계)에서 상기 혼합가스는 ethylene, H₂ 및 N₂ 가스가 80: 25: 40의 부피비로 혼합된 것으로 사용하는 것이 바람직하며, 합성 온도는 650~700℃가 바람직하다.Therefore, by controlling the concentration of the reducing gas during the production of carbon nanotubes, the selectivity of carbon nanotubes, which is the rate at which the supplied carbon raw material gas is converted to carbon nanotubes, can be controlled and the surface resistance of the carbon nanotubes can be optimized. Thus, a carbon nanotube with improved conductivity and physical properties of the carbon nanotube can be manufactured, and a metal catalyst can be activated by supplying hydrogen of an appropriate concentration. For this reason, since the chemical vapor deposition method can synthesize multi-walled carbon nanotubes of desired characteristics only by reacting under limited conditions such as temperature, pressure, and atmosphere, the ratio of temperature and synthesis gas plays an important role in the synthesis step. Therefore, in the synthesis step (s900 step), the mixed gas is preferably used as a mixture of ethylene, H₂, and N₂ gas in a volume ratio of 80: 25: 40, and the synthesis temperature is preferably 650 to 700°C.

이하에서는 실시예, 실험예 및 제조실시예 등을 통하여 본 발명을 보다 상세하게 설명한다. 이하에서 설명되는 실시예 등은 본 발명의 이해를 돕기 위하여 예시적으로 나타낸 것이며, 본 발명은 여기서 설명되는 일 실시예와 다르게 다양하게 변형되어 실시될 수 있음이 이해되어야 할 것이다. 이와 같이 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 본 기술분야에서 통상의 지식을 가진 자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다. Hereinafter, the present invention will be described in more detail through examples, experimental examples, and manufacturing examples. The embodiments and the like described below are illustratively shown to aid understanding of the present invention, and it should be understood that the present invention may be variously modified and implemented differently from the exemplary embodiment described herein. As described above, it is obvious to those of ordinary skill in the art that various changes and modifications can be made within the scope and spirit of the present invention, and it is natural that such modifications and modifications fall within the appended claims.

[실시예 1] 하소처리 하지 않은 금속촉매의 제조 [Example 1] Preparation of non-calcined metal catalyst

DP법을 이용하여 금속촉매를 제조하였다. Iron(Ⅲ) Nitrate Nonahydrate (이하 FeN)는 Daejung chemicals & metals Co.에서 제조한 것을 사용하였으며, Ammonium Molybdate tetrahydrate(이하 AMT) 및 Ammonium Carbonate (이하 NH₄)는 Samchun chemicals Co.에서 제조한 것을 사용하였고, Aluminum Hydroxide (이하 Al(OH)₃)는 KC사에서 제조한 것을 사용하였다. 각각의 성분비는 825g(700mL), 60.11g(300mL), 2kg(2L) 및 1Kg(1L)로 하였다. A metal catalyst was prepared using the DP method. Iron(Ⅲ) Nitrate Nonahydrate (hereinafter, FeN) was manufactured by Daejung Chemicals & Metals Co., and Ammonium Molybdate tetrahydrate (hereinafter referred to as AMT) and Ammonium Carbonate (hereinafter referred to as NH₄) were manufactured by Samchun chemicals Co. Aluminum Hydroxide (hereinafter, Al(OH)₃) was manufactured by KC. Each component ratio was 825g (700mL), 60.11g (300mL), 2kg (2L), and 1Kg (1L).

(1) FeN 825g을 700mL의 DI water에 넣고 용해하여 제1용액을 제조하였다. Magnatic Stirrer 를 사용하고, Stirrer 의 회전속도는 350으로 설정한 후 10분동안 작동하여 제조하였으며, 완전한 수용액이 된 것을 확인하였다.(1) 825 g of FeN was added to 700 mL of DI water and dissolved to prepare a first solution. Magnatic Stirrer was used, and the rotational speed of the stirrer was set to 350 and then operated for 10 minutes to confirm that it became a complete aqueous solution.

(2) AMT 60.11g을 300mL의 DI water에 넣고 용해하여 제2용액을 제조하였다. Magnetic Stirrer를 사용하고 Stirrer의 회전속도는 200으로 설정하여 10분간 작동하였고, 고형분이 완전히 녹아 완전한 수용액 상태가 된 것을 확인하였다. (2) A second solution was prepared by dissolving 60.11 g of AMT in 300 mL of DI water. A magnetic stirrer was used, and the rotation speed of the stirrer was set to 200 and operated for 10 minutes, and it was confirmed that the solid content was completely dissolved and became a complete aqueous solution.

(3) 상기 제1용액과 상기 제2용액을 혼합한 후에 Mechanical Stirrer로 10분간 교반하면서 완전히 수용액 상태가 되도록 하여 금속촉매전구체용액을 제조하였다. (3) After the first solution and the second solution were mixed, a metal catalyst precursor solution was prepared by stirring with a mechanical stirrer for 10 minutes to completely become an aqueous solution.

(4) Ammonium Carbonate(이하 NH₄) 2kg을 2L의 DI water에 넣고 용해하여 제3용액을 제조하고 2 시간 동안 bath Sonic을 사용하여 완전히 수용액 상태로 만들었다.(4) 2 kg of Ammonium Carbonate (hereinafter referred to as NH₄) was added to 2 L of DI water and dissolved to prepare a third solution, and the solution was completely made into an aqueous solution using bath Sonic for 2 hours.

(5) 대용량 비커에 2L의 DI water를 넣은 후 Al(OH)₃ 1kg을 넣어 혼합하고 Mechanical Stirrer를 사용하여 5분간 교반함으로써 제4용액을 제조하였다. Impeller의 회전속도는 850으로 하였다. (5) After adding 2L of DI water to a large-capacity beaker, 1kg of Al(OH)₃ was added and mixed, and a fourth solution was prepared by stirring for 5 minutes using a mechanical stirrer. The impeller's rotation speed was set to 850.

(6) 상기 제4용액을 Mechanical Stirrer로 교반하면서 Dropping Funnel 을 사용하여 상기 제1용액과 상기 제2용액을 혼합한 상기 금속촉매전구체용액 및 상기 제3용액을 30분간 서서히 가하면서 혼합하여 혼합용액을 제조하였다.(6) While stirring the fourth solution with a mechanical stirrer, using a dropping funnel, the metal catalyst precursor solution and the third solution are mixed for 30 minutes while gradually adding and mixing the mixed solution. Was prepared.

(7) 상기 혼합용액을 진공 Filtering 장치를 사용하여 거르는 과정을 진행하였는데, 2set 의 Buchner Funnel에 필터지를 2장 올리고, 용액을 1/2씩 나누어 거르는 과정을 반복하였다. (7) The mixed solution was filtered using a vacuum filtering device. Two filter papers were placed on 2 sets of Buchner Funnel, and the process was repeated by dividing the solution by 1/2.

(8) 은박 호일에 걸러진 Cake를 떨어내어, Box형 Oven에서 온도를 150℃로 설정하고 16시간 동안 건조하여 금속촉매를 수득하였다. (8) The cake filtered on the silver foil was dropped, and the temperature was set to 150°C in a box-type oven and dried for 16 hours to obtain a metal catalyst.

[실시예 2] 하소처리 한 금속촉매의 제조[Example 2] Preparation of calcined metal catalyst

실시예 1과 같이, (1) 내지 (8)과정을 거쳐 금속촉매를 제조한 후 아래와 같은 하소처리과정을 더하였다. As in Example 1, after manufacturing a metal catalyst through the processes (1) to (8), the following calcining process was added.

(9) room temperature 에서 금속촉매 600g을 1set(1batch)로 하여 3set를 설정한 후, 각각의 set에 대하여 각각의 하소온도를 300℃, 500℃ 및 700℃로 달리하여 반응로에서 각각 60분 동안 하소하였다. (9) After setting 3 sets of 600 g of metal catalyst as 1 set (1 batch) at room temperature, change each calcination temperature to 300°C, 500°C and 700°C for each set in the reactor for 60 minutes each. Calcined.

[실시예 3] 하소처리 하지 않은 support의 제조[Example 3] Preparation of support without calcining

(1) 대용량 비커에 2L의 DI water를 넣은 후 Al(OH)₃ 1kg을 넣어 혼합하고 Mechanical Stirrer를 사용하여 5분간 교반함으로써 제4용액을 제조하였다. 이 과정에서 Impeller의 회전속도는 850으로 하였다. (1) After adding 2L of DI water to a large-capacity beaker, 1kg of Al(OH)₃ was added, mixed, and stirred for 5 minutes using a Mechanical Stirrer to prepare a fourth solution. In this process, the impeller's rotational speed was set to 850.

(2) 상기 제4용액을 진공 Filtering 장치를 사용하여 거르는 과정을 진행하였는데, 2set의 Buchner Funnel 에 필터지를 2장 올리고, 용액을 1/2씩 나누어 거르는 과정을 반복하였다. (2) The fourth solution was filtered using a vacuum filtering device. Two filter papers were placed on 2 sets of Buchner Funnel, and the process was repeated by dividing the solution by 1/2.

(3) 은박 호일에 걸러진 Cake를 떨어내어, Box 형 Oven에서 온도를 150℃로 설정하고 16 시간 동안 건조하여 support를 수득하였다. (3) The cake filtered through silver foil was dropped, and the temperature was set to 150°C in a box-type oven and dried for 16 hours to obtain a support.

[실시예 4] 하소처리 한 support의 제조[Example 4] Preparation of calcined support

실시예 3과 같이 (1) 내지 (3) 과정을 거쳐 support를 제조한 후 아래와 같은 하소처리과정을 더하였다.After manufacturing a support through the processes (1) to (3) as in Example 3, the following calcining process was added.

(4) 제조된 support를 3set를 준비하여 각각 set에 대하여 300℃, 500℃ 및 700℃의 하소온도로 각각 60분 동안 반응로에서 하소를 진행하였다. (4) 3 sets of the prepared supports were prepared, and calcination was performed in a reaction furnace at a calcination temperature of 300°C, 500°C, and 700°C for each set for 60 minutes.

[제조실시예 1] 하소처리 하지 않은 금속촉매로 탄소나노튜브 제조[Production Example 1] Manufacture of carbon nanotubes with a metal catalyst that is not calcined

실시예 1에서 수득한 금속촉매 0.28g을 열CVD 합성장치에 투입한 후, 온도를 675℃로 설정하고, C₂H₄, H₂ 및 N₂가 80 : 25 : 40(slm)로 혼합된 혼합가스 하에서 20분간 합성을 진행하여 다중벽 탄소나노튜브(MWCNT)를 수득하였다. After adding 0.28 g of the metal catalyst obtained in Example 1 to a thermal CVD synthesizer, the temperature was set to 675° C., and under a mixed gas of 80:25:40 (slm) C₂H₄, H₂ and N₂ for 20 minutes Synthesis was performed to obtain a multi-walled carbon nanotube (MWCNT).

[제조실시예 2] 하소처리 한 금속촉매로 탄소나노튜브 제조[Production Example 2] Manufacture of carbon nanotubes with calcined metal catalyst

실시예 2에서 수득한 금속촉매 0.28g을 열CVD 합성장치에 투입한 후, 온도를 675℃로 설정하고, C₂H₄, H₂ 및 N₂가 80 : 25 : 40(slm)로 혼합된 혼합가스 하에서 20분간 합성을 진행하여 다중벽 탄소나노튜브(MWCNT)를 수득하였다.After adding 0.28 g of the metal catalyst obtained in Example 2 to a thermal CVD synthesizer, the temperature was set to 675° C., and C₂H₄, H₂ and N₂ were mixed for 20 minutes under a mixed gas of 80:25:40 (slm). Synthesis was performed to obtain a multi-walled carbon nanotube (MWCNT).

아래에서는 이러한 s100~ s700 단계과정을 통해 합성된 탄소나노튜브에 대하여 외형의 관찰을 위하여 응집체 두께와 번들두께 및 번들길이를 측정하고, 이에 대한 금속촉매와 담지체(support)의 회수와 다중벽 탄소나노튜브의 합성수율, 비표면적 분석(BET) 등을 측정하였으며, 합성된 다중벽 탄소나노튜브의 압출평가를 시행하고, 열중량 분석을 통해 금속촉매의 하소 효과에 대해 알아보았다. Below, the aggregate thickness, bundle thickness, and bundle length are measured to observe the appearance of the carbon nanotubes synthesized through the steps s100 to s700, and the recovery of the metal catalyst and support and the multi-wall carbon. The synthesis yield and specific surface area analysis (BET) of the nanotubes were measured, extrusion evaluation of the synthesized multi-walled carbon nanotubes was performed, and the calcination effect of the metal catalyst was investigated through thermogravimetric analysis.

[실험예 1] 금속촉매의 외형사진 및 TEM사진 관찰[Experimental Example 1] Observation of an external photo and TEM photo of a metal catalyst

본 발명의 실시예 1 내지 2에서 제조된 금속촉매의 외형 사진을 관찰해보았다. 도 2는 본 발명의 실시예에서 제조된 금속촉매에 대하여 하소처리 전의 사진과 각각의 온도별로 하소처리를 진행한 후 얻어진 금속촉매의 사진이다. The appearance photographs of the metal catalysts prepared in Examples 1 to 2 of the present invention were observed. 2 is a photograph of a metal catalyst prepared in an embodiment of the present invention before calcination and a photograph of the metal catalyst obtained after calcination at each temperature.

도 2(a)의 사진은 제조실시예 1에 의한, 하소처리가 안된 금속촉매로서 밝은 황토색을 띠고 있으며, 도 2(b)의 사진은 제조실시예 2에 의한, 300℃로 하소한 금속촉매의 사진으로서, 하소하지 않은 금속촉매의 색상보다 조금 더 어두운 황색의 색상을 보이고 있다. 또한 도 2(c)의 이미지는 제조실시예 2에서 500℃로 하소된 금속촉매에 대한 사진으로서, 색상은 붉은색을 가지지만 속을 확인해보면 붉은색과 어두운 황색의 금속촉매들이 섞여있는 것을 확인 할 수 있었다. 표면색상은 양호하지만 가운데 부분은 산화가 적절하게 이루어 지지 못한 것으로 보여진다. 도 2(d)의 사진은 제조실시예 2에서 700℃로 하소된 금속촉매에 대한 사진으로서, 색상은 가장 붉은색을 띄고 있다. 도 2(e)의 사진은 도 2(c)에 대한 확대사진으로서, 500℃로 하소된 금속촉매의 경우 표면색상은 양호하지만 가운데 부분은 산화가 적절하게 이루어지지 못한 것을 보여준다. 따라서 종합적으로 볼 때, 금속촉매를 700℃로 하소처리하는 것이 다른 온도로 하소하는 것에 비하여 가장 균일하게 하소되는 것으로 판단되었다. The photo of FIG. 2(a) is a metal catalyst that has not been calcined according to Preparation Example 1 and has a bright ocher color, and the photo of FIG. 2(b) is a metal catalyst calcined at 300° C. according to Preparation Example 2 As a photograph of, it shows a slightly darker yellow color than the color of the uncalcined metal catalyst. In addition, the image of FIG. 2(c) is a photograph of the metal catalyst calcined at 500° C. in Preparation Example 2. The color is red, but when checking the inside, it is confirmed that red and dark yellow metal catalysts are mixed. Could. The surface color is good, but the middle part seems to have not been properly oxidized. The photograph of FIG. 2(d) is a photograph of the metal catalyst calcined at 700° C. in Preparation Example 2, and the color is the reddest. The photograph of FIG. 2 (e) is an enlarged photograph of FIG. 2 (c), and shows that the metal catalyst calcined at 500° C. has a good surface color, but the central part is not properly oxidized. Therefore, comprehensively, it was determined that calcining the metal catalyst at 700°C is the most uniform calcining compared to calcining at other temperatures.

도 3은 본 발명의 실시예에서 제조된 금속촉매에 대한 투과전자현미경(transmission electron microscope)사진이다. 그 중 도 3(a)는 실시예 1에 의하여 제조된 금속촉매, 즉 하소하지 않은 금속촉매에 대한 사진이며, 도 3(b)는 실시예 2에서 300℃ 하소한 금속촉매에 대한 사진이며, 도 3(c)는 500℃로 하소한 금속촉매에 대한 사진이고, 도 3(d)는 700℃로 하소한 금속촉매에 대한 사진을 보여주고 있다. 3 is a transmission electron microscope photograph of a metal catalyst prepared in an embodiment of the present invention. Among them, FIG. 3(a) is a photograph of a metal catalyst prepared according to Example 1, that is, a metal catalyst not calcined, and FIG. 3 (b) is a photograph of a metal catalyst calcined at 300° C. in Example 2, FIG. 3(c) is a photograph of a metal catalyst calcined at 500°C, and FIG. 3(d) is a photograph of a metal catalyst calcined at 700°C.

[실험예 2] 금속촉매 및 support의 무게감소분 측정[Experimental Example 2] Measurement of weight reduction of metal catalyst and support

실시예 1 및 2에서 제조된 금속촉매 및 support의 무게감소분을 관찰해 보았다. 도 4는 본 발명의 실시예에서 금속촉매 및 support의 하소 전후 무게감소분과 다중벽 탄소나노튜브 합성수율(C.Y., Carbon Yield), 비표면적분석(BET, Brunauer, Emmett & Teller), 압출평가시험(Surface resistance) 및 열중량분석(TGA, thermogravimetric analysis)결과를 나타낸 표이다.The weight reduction of the metal catalyst and support prepared in Examples 1 and 2 was observed. Figure 4 is a weight reduction before and after calcination of a metal catalyst and a support in an embodiment of the present invention, a multi-walled carbon nanotube synthesis yield (CY, Carbon Yield), specific surface area analysis (BET, Brunauer, Emmett & Teller), extrusion evaluation test ( Surface resistance) and thermogravimetric analysis (TGA) results.

실시예 1 및 실시예 2에서 제조된 하소처리하지 않은 금속촉매와 하소처리 한 금속촉매의 무게를 비교해 봤을 때, 도 4에서 보는 바와 같이 하소처리 전에 600g이었던 금속촉매는, 300℃로 하소할 경우 잔량이 551g으로 감소하여 투입량 대비 91.8%의 수율로 회수되었고, 500℃로 하소할 경우 잔량이 422g으로 측정되어 투입량대비 70.3%의 수율로 회수되었다. 그리고 700℃로 하소하는 경우 416g이 회수되어 투입량 대비 무게는 69.3%의 수율로 회수되었는바, 700℃로 하소하는 경우에도 500℃로 하소된 금속촉매의 감소량과 비슷함을 알 수 있었다. When comparing the weight of the non-calcined metal catalyst prepared in Examples 1 and 2 with the calcined metal catalyst, as shown in FIG. 4, the metal catalyst having 600 g before calcining was calcined at 300°C. The remaining amount was reduced to 551g and recovered in a yield of 91.8% of the input amount, and when calcined at 500°C, the remaining amount was measured as 422g and recovered in a yield of 70.3% of the input amount. In addition, when calcined at 700°C, 416g was recovered, and the weight compared to the input amount was recovered in a yield of 69.3%. Even when calcined at 700°C, it was found that the reduction amount of the metal catalyst calcined at 500°C was similar.

또한 하소처리하지 않은 support와 하소처리 한 support를 비료해 봤을 때 하소처리전의 support는 600g이었으나, 300℃로 하소된 support의 무게는 541g이 회수되어 투입량 대비 90.1%가 회수되었고, 500℃로 하소된 support에서는 432g이 회수되어 투입량 대비 72.0%가 회수되었으며, 700℃에서 하소처리 된 support는 418g이 회수되어 투입량 대비 69.7%가 회수되었다. 결과적으로 하소처리 전 대비 하소처리 후의 감소비율에 있어 금속촉매와 support가 서로 유사한 것으로 분석되었다. 이러한 결과는 DP법으로 금속촉매를 제조할 때 금속촉매전구체용액 제조공정의 건조처리가 부족하여 발생하는 수분의 잔량의 영향으로 예상되었으나 하소처리 한 support의 무게감소분과 유사하게 분석 된 결과를 미루어 볼 때, support 자체가 가지고 있던 수분의 영향인 것으로 판단되었다. In addition, when fertilizing the uncalcined support and the calcined support, the support before calcining was 600g, but the weight of the support calcined at 300℃ was 541g and 90.1% of the input amount was recovered, and calcined at 500℃. 432g was recovered from the support, 72.0% of the input amount, and 418g of the support calcined at 700℃ was recovered, 69.7% of the input amount. As a result, it was analyzed that metal catalyst and support were similar to each other in the reduction ratio after calcining compared to before calcining. This result was expected to be the effect of the residual amount of moisture generated due to insufficient drying treatment of the metal catalyst precursor solution manufacturing process when the metal catalyst was prepared by the DP method, but the analysis result similar to the weight reduction of the calcined support can be seen. It was judged to be the influence of moisture that the support itself had.

[실험예 3] 다중벽 탄소나노튜브 합성수율(Carbon Yield, C.Y.)[Experimental Example 3] Multi-walled carbon nanotube synthesis yield (Carbon Yield, C.Y.)

도 4에서 보는 바와 같이, 제조실시예 2에서 700℃로 하소처리 한 금속촉매 0.28g을 투입하였을 때 2.32g의 다중벽 탄소나노튜브가 합성되었으며 합성수율은 729%로 관찰되었다. 그리고 500℃로 하소처리 한 금속촉매에서 대해서는 2.11g의 다중벽 탄소나노튜브가 합성되어 654%의 수율이 발생하였고, 300℃로 하소처리 한 금속촉매 0.28g에 대해서는 2.04g의 다중벽 탄소나노튜브가 합성되어 합성수율은 629%로 측정되었다. 이와 비교하였을 때, 제조실시예 1에서 하소처리하지 않은 금속촉매 0.28g으로 합성한 다중벽 탄소나노튜브는 2.02g으로 621%의 합성수율이 나타났다. 따라서 제조실시예 2에서 300℃로 하소처리 한 금속촉매로 얻어지는 합성수율과 제조실시예 1의 하소처리하지 않은 금속촉매를 사용하여 합성한 수율의 결과는 차이가 크지 않았음을 알 수 있었다. 결과적으로 볼 때 합성수율을 측정한 결과 하소온도의 변화에 따라 다르게 관찰되었으며, 하소처리 온도가 높아질수록 다중벽 탄소나노튜브 합성 수율은 증가하는 현상을 관찰할 수 있었다. As shown in FIG. 4, when 0.28 g of the metal catalyst calcined at 700° C. in Preparation Example 2 was added, 2.32 g of multi-walled carbon nanotubes were synthesized, and the synthesis yield was observed to be 729%. And for the metal catalyst calcined at 500°C, 2.11g of multi-walled carbon nanotubes were synthesized, resulting in a yield of 654%, and 2.04g of multi-walled carbon nanotubes for 0.28g of metal catalyst calcined at 300°C. Was synthesized and the synthesis yield was measured to be 629%. In comparison, the multi-walled carbon nanotubes synthesized with 0.28 g of the metal catalyst that were not calcined in Preparation Example 1 were 2.02 g, indicating a synthesis yield of 621%. Therefore, it was found that the result of the synthesis yield obtained with the metal catalyst calcined at 300°C in Preparation Example 2 and the yield synthesized using the non-calcined metal catalyst in Preparation Example 1 was not significantly different. As a result, as a result of measuring the synthesis yield, it was observed differently according to the change of the calcination temperature, and it was observed that the yield of the multi-walled carbon nanotubes increased as the calcination temperature increased.

[실험예 4] BET 분석[Experimental Example 4] BET analysis

DP법으로 제조한 금속촉매의 비표면적을 측정하기 위하여 BET(Brunauer, Emmett & Teller) 측정방법을 이용하였다. BET는 물리흡착 및 화학흡착을 이용하여 분말 또는 입자가 갖고 있는 비표면적을 측정하는 방법 중의 하나로, 분말 표면에 N₂를 흡착시켜 흡착된 질소가스의 양을 측정하여 BET식으로 계산하면 분말 또는 입자의 표면적을 구할 수 있다. In order to measure the specific surface area of the metal catalyst prepared by the DP method, a BET (Brunauer, Emmett & Teller) measurement method was used. BET is one of the methods of measuring the specific surface area of powders or particles using physical adsorption and chemical adsorption. When N₂ is adsorbed on the powder surface, the amount of adsorbed nitrogen gas is measured and calculated by the BET formula. You can find the surface area.

도 4에 측정된 비표면적 결과는 실시예 1의 하소처리하지 않은 금속촉매의 경우 59M²실시예 2에서 500℃로 하소처리한 금속촉매가 128M²700℃로 하소처리한 금속촉매는 169M²의 결과값을 나타내었다. 하소 온도가 높아질수록 금속촉매의 비표면적은 증가하는 현상을 보이므로, 이를 미루어 짐작해보면 비표면의 향상은 탄소나노튜브가 성장하는 데 필요한 성장핵도 함께 증가할 것으로 예상되었다. 따라서 하소공정의 온도가 높을수록 금속촉매의 비표면적이 넓어져 합성수율이 향상됨을 확인할 수 있었다. The results of the specific surface area measured in FIG. 4 show that the metal catalyst calcined at 500°C in Example 2 was 59M² for the non-calcined metal catalyst of Example 1, and the metal catalyst calcined at 128M² 700°C was 169M². Done. As the calcination temperature increases, the specific surface area of the metal catalyst increases, and from this, it is expected that the improvement of the specific surface will increase the growth nuclei required for the growth of carbon nanotubes. Therefore, it was confirmed that the higher the temperature of the calcination process, the wider the specific surface area of the metal catalyst, thereby improving the synthesis yield.

결과적으로 하소 온도가 300℃, 500℃ 및 700℃ 로 상승할수록 금속촉매의 비표면적이 상승하는 것으로 측정되었으며, 금속촉매의 비표면적 향상은 탄소나노튜브 합성수율의 향상과 높은 탄소함유량으로 이어지기 때문에 고수율과 고품질의 다중벽 탄소나노튜브를 합성하기 위해서는 적어도 500℃ 이상의 온도로 하소처리 한 금속촉매를 이용하는 것이 바람직하며, 700℃의 온도로 하소처리하는 것이 가장 바람직한 것으로 관찰되었다. As a result, it was measured that the specific surface area of the metal catalyst increased as the calcination temperature increased to 300°C, 500°C and 700°C. Because the improvement of the specific surface area of the metal catalyst leads to an improvement in the carbon nanotube synthesis yield and a high carbon content. In order to synthesize high-yield and high-quality multi-walled carbon nanotubes, it was observed that it is preferable to use a metal catalyst calcined at a temperature of at least 500°C, and that it is most preferable to calcinate at a temperature of 700°C.

[실험예 5] 다중벽 탄소나노튜브의 표면저항[Experimental Example 5] Surface resistance of multi-walled carbon nanotubes

제조실시예1 및 2에서 제조된 다중벽 탄소나노튜브(MWCNT) 2wt%와 LDPE5321의 폴리에틸렌(Polyethylene, PE)을 twin 압출기에 투입시켜 펠렛을 생성하였다. Twin Extruder의 장비로 진행하였으며, 멜팅온도를 150℃에서 진행하였다 feeder와 Twin Extruder 자체 rpm은 각각 5와 200으로 설정하였으며 펠렛 형태를 핫프레스에서 sheet형태로 MWCNT/PE 복합체를 제작하여 표면저항을 측정하였다. 핫프레스 공정은 펠렛 100g을 계량하여 180℃ 온도로 약 2분간 가열하고 2분간 냉각모드를 진행하여 sheet를 만들었다. 이렇게 만들어진 sheet는 4-probe 표면저항 측정장비로 9곳의 상중하부의 3곳씩 표면저항값을 측정하여 전기전도성을 분석하였다. 도 8은 본 발명의 제조실시예 1 내지 2에 의해 합성된 다중벽 탄소나노튜브의 표면저항을 측정하기 위하여 펠렛을 제조하는 압출 공정도이다.Pellets were produced by putting 2wt% of multi-walled carbon nanotubes (MWCNT) prepared in Preparation Examples 1 and 2 and polyethylene (PE) of LDPE5321 into a twin extruder. It was carried out with the equipment of the twin extruder, and the melting temperature was carried out at 150℃. The rpm of the feeder and the twin extruder were set to 5 and 200, respectively, and the surface resistance was measured by making the MWCNT/PE composite in the form of a sheet in a hot press for the pellet type. I did. In the hot press process, 100g of pellets were weighed, heated at 180°C for about 2 minutes, and cooled for 2 minutes to make a sheet. The sheet made in this way was analyzed for electrical conductivity by measuring the surface resistance value at each of the upper, middle, and lower parts of 9 locations with a 4-probe surface resistance measurement device. 8 is an extrusion process diagram for manufacturing pellets to measure the surface resistance of the multi-walled carbon nanotubes synthesized according to Preparation Examples 1 to 2 of the present invention.

압출평가 시험은 제조실시예 1의 MWCNT/PE 복합체와 제조실시예 2의 MWCNT/PE 복합체의 표면저항을 각각 측정하였고, 도 4에서 보는 바와 같이 제조실시예 1의 표면저항값은 2.9Ω/㎡로 나타났으며, 제조실시예 2의 300℃로 하소처리 한 금속촉매로 합성한 MWCNT/PE 복합체의 표면저항값은 2.8Ω/㎡ 로서 크게 차이 나지 않았다. 이에 비해, 제조실시예 2에 따른 MWCNT/PE 복합체의 표면저항값은 금속촉매의 하소처리 온도가 500℃일 때 2.6Ω/㎡과 하소처리온도 700℃일 때 2.4Ω/㎡로 나타나, 하소처리 온도가 높을수록 표면저항 값이 감소하여 전기전도성이 향상되었음을 유추할 수 있었다. In the extrusion evaluation test, the surface resistance of the MWCNT/PE composite of Preparation Example 1 and the MWCNT/PE composite of Preparation Example 2 were measured, respectively, and as shown in FIG. 4, the surface resistance of Preparation Example 1 was 2.9 Ω/m 2 The surface resistance value of the MWCNT/PE composite synthesized with the metal catalyst calcined at 300° C. of Preparation Example 2 was 2.8 Ω/m 2, which was not significantly different. In contrast, the surface resistance value of the MWCNT/PE composite according to Preparation Example 2 is 2.6 Ω/m 2 when the calcination temperature of the metal catalyst is 500° C. and 2.4 Ω/m 2 when the calcination temperature is 700° C. It could be inferred that the higher the temperature, the lower the surface resistance value and the electrical conductivity improved.

[실험예 6] 다중벽 탄소나노튜브의 TGA 분석[Experimental Example 6] TGA analysis of multi-walled carbon nanotubes

제조실시예 1과 2를 통하여 합성된 다중벽 탄소나노튜브의 탄소함유량(carbon contents)을 확인하기 위하여 열중량분석(TGA, Thermogravimetric analysis)를 이용하여 결과값을 측정하였다. TGA는 열로 인한 시료의 화학적, 물리적 변화로 생기는 무게 변동을 시간과 온도에 따라 관찰하는 장비로, 기본적으로 상온~1200℃에서 시료의 구성성분을 결정하거나 열적 안정성을 검사할 수 있어 고분자의 조성성분을 확인하는데 사용한다. Thermogravimetric Analyzer분석의 기본 원리는 온도가 올라감에 따라 다중벽 탄소나노튜브가 산화되는 과정에서 중량의 변화가 발생하여 탄소의 함량을 파악하게 되는 것으로서, 본 발명에서 TGA 분석을 위해 주입가스는 질소로 설정하였고, 10℃/min의 승온속도로 800℃까지 승온시키면서 얻게 되는 다중벽 탄소나노튜브의 질량변화를 측정하는 방식으로 진행하였다. In order to confirm the carbon contents of the multi-walled carbon nanotubes synthesized through Preparation Examples 1 and 2, the results were measured using thermogravimetric analysis (TGA). TGA is a device that observes weight fluctuations caused by chemical and physical changes of a sample due to heat according to time and temperature. Basically, it is possible to determine the composition of a sample or test its thermal stability at room temperature to 1200℃. It is used to check. The basic principle of the thermogravimetric analyzer analysis is that as the temperature increases, the weight changes during the oxidation of the multi-walled carbon nanotubes to determine the carbon content.In the present invention, the injection gas is set to nitrogen for TGA analysis. Then, the mass change of the multi-walled carbon nanotubes obtained while increasing the temperature to 800°C at a heating rate of 10°C/min was measured.

도 4에서 보는 바와 같이 제조실시예 1을 통해 하소처리하지 않은 금속촉매로 합성한 다중벽 탄소나노튜브의 탄소함유량은 67.3%로 가장 낮게 측정되었으며, 제조실시예 2의 하소처리 한 금속촉매로 합성한 다중벽 탄소나노튜브의 탄소함유량은 온도 300℃, 500℃ 및 700℃의 하소과정에서 각각 71.5%, 86.5%, 93.5%로 나타났으며 하소처리 온도가 높을수록 높은 비율의 탄소함유량을 나타내는 것으로 확인되었다. 이는 하소처리시 확인된 탄소함유량의 비율은 금속촉매에 잔존해 있던 수분이 하소과정을 통하여 수분이 제거된 비율만큼 다중벽 탄소나노튜브의 탄소순도가 증가하는 것으로 판단하였다. As shown in FIG. 4, the carbon content of the multi-walled carbon nanotubes synthesized with a metal catalyst that was not calcined through Preparation Example 1 was measured as the lowest as 67.3%, and synthesized with the calcined metal catalyst of Preparation Example 2 The carbon content of one multi-walled carbon nanotube was 71.5%, 86.5%, and 93.5%, respectively, in the calcination process at temperatures of 300℃, 500℃, and 700℃. The higher the calcination temperature, the higher the carbon content. Confirmed. It was judged that the carbon purity of the multi-walled carbon nanotubes increased as the ratio of the carbon content identified during the calcination treatment was the ratio of the moisture remaining in the metal catalyst removed through the calcination process.

[실험예 7] 다중벽 탄소나노튜브의 외형 [Experimental Example 7] Appearance of multi-walled carbon nanotubes

도 5는 본 발명의 제조실시예 1과 2에서 제조된 다중벽 탄소나노튜브의 응집체두께, 번들두께 및 번들길이를 측정한 표이며, 이를 통해 합성된 다중벽 탄소나노튜브의 외형을 관찰한 결과 제조실시예 1에 의해 합성된 다중벽 탄소나노튜브 응집체두께는 약 85μm로 측정이 되었으며, 번들두께와 번들길이는 각각 약 8.2μm, 75μm로 드러났다. 5 is a table measuring aggregate thickness, bundle thickness, and bundle length of the multi-walled carbon nanotubes prepared in Preparation Examples 1 and 2 of the present invention, and the result of observing the appearance of the synthesized multi-walled carbon nanotubes The thickness of the multi-walled carbon nanotube aggregate synthesized in Preparation Example 1 was measured to be about 85 μm, and the bundle thickness and bundle length were about 8.2 μm and 75 μm, respectively.

제조실시예 2에 의해 합성된 다중벽 탄소나노튜브의 응집체두께는 금속촉매의 하소처리 온도가 가장 높은 700℃에서 52μm로 크기가 가장 작게 측정되었다. 반면에 금속촉매의 하소처리 온도가 가장 낮았던 300℃로 제조한 금속촉매로 합성한 다중벽 탄소나노튜브의 경우 응집체두께 75μm로 가장 큰 응집체가 형성됨을 관찰 할 수 있었다. 또한, 7.7μm, 4.5μm 및 3.8μm 는 각각 300℃, 500℃ 및 700℃로 하소처리된 금속촉매로 제조된 다중벽 탄소나노튜브의 번들두께로 관찰되었다. 마지막으로, 하소온도 700℃로 처리한 금속촉매를 이용하여 제조된 다중벽 탄소나노튜브의 번들길이는 약 42μm로 관찰되었고, 300℃로 하소처리한 금속촉매의 다중벽 탄소나노튜브와 500℃로 하소처리 한 금속촉매의 다중벽 탄소나노튜브의 번들길이는 각각 82μm 전후와 58μm 전후로 관찰되었다. The aggregate thickness of the multi-walled carbon nanotubes synthesized according to Preparation Example 2 was measured as 52 μm at 700° C. where the calcination temperature of the metal catalyst was the highest. On the other hand, in the case of multi-walled carbon nanotubes synthesized with a metal catalyst prepared at 300°C, which had the lowest calcination temperature of the metal catalyst, it was observed that the largest aggregate was formed with an aggregate thickness of 75 μm. In addition, 7.7 μm, 4.5 μm, and 3.8 μm were observed as bundle thicknesses of multi-walled carbon nanotubes prepared with metal catalysts calcined at 300°C, 500°C and 700°C, respectively. Finally, the bundle length of the multi-walled carbon nanotubes prepared using the metal catalyst treated with a calcination temperature of 700°C was observed to be about 42 μm, and the multi-walled carbon nanotubes of the metal catalyst calcined at 300°C and 500°C. The bundle lengths of the multi-walled carbon nanotubes of the calcined metal catalyst were observed around 82 μm and around 58 μm, respectively.

[실험예 8] 다중벽 탄소나노튜브의 SEM 사진 및 TEM 사진 관찰[Experimental Example 8] SEM photograph and TEM photograph observation of multi-walled carbon nanotubes

제조실시예 1과 2를 통해 합성된 다중벽 탄소나노튜브를 SEM(Scanning Electron Microscope)과 TEM(Transmission Electron Microscope)을 사용하여 관찰하였다. 도 6은 본 발명의 제조실시예에서 제조된 다중벽 탄소나노튜브의 SEM 사진으로서, 도 6의 (a)는 제조실시예 1에 의한, 하소처리가 안된 금속촉매로 합성한 다중벽 탄소나노튜브의 SEM 사진이며, 도 6의 (b)부터 (d)의 SEM 사진은 제조실시예 2에 의한, 하소처리 한 금속촉매로 합성한 다중벽 탄소나노튜브의 SEM 사진이다. The multi-walled carbon nanotubes synthesized through Preparation Examples 1 and 2 were observed using a Scanning Electron Microscope (SEM) and a Transmission Electron Microscope (TEM). 6 is an SEM photograph of a multi-walled carbon nanotube prepared in Preparation Example of the present invention, and FIG. 6A is a multi-walled carbon nanotube synthesized with a non-calcined metal catalyst according to Preparation Example 1 SEM photographs of, and the SEM photographs of FIGS. 6B to 6D are SEM photographs of multi-walled carbon nanotubes synthesized with a calcined metal catalyst according to Preparation Example 2.

도 7은 제조실시예 1과 2에 의해 제조된 금속촉매로 합성한 다중벽 탄소나노튜브를 TEM으로 관찰한 사진이다. 도 7의 (a) 사진은 제조실시예 1에 의한 다중벽 탄소나노튜브의 사진이며, (b)는 제조실시예 2에 의한, 300℃로 하소처리 한 금속촉매로 합성한 다중벽 탄소나노튜브 사진이며, (c)는 500℃로 하소처리 한 금속촉매로 합성한 다중벽 탄소나노튜브 사진이고, (d)는 700℃ 온도로 하소처리 한 금속촉매로 합성한 다중벽 탄소나노튜브의 사진이다. 도 7로 미루어 보았을 때, 하소온도에 따라 다중벽 탄소나노튜브 번들두께의 차이가 발생하는 것을 볼 수 있으며, 제조실시예 1에 의한 (a)와 제조실시예 2에 의한 300℃로 하소처리 한 금속촉매로 합성한 다중벽 탄소나노튜브인 (b)의 번들두께의 변화는 거의 없는 것으로 보여지며, (c)와 (d)는 각각 500℃와 700℃로 하소처리 한 금속촉매로 합성한 다중벽 탄소나노튜브의 번들두께 차이는 금속촉매의 하소온도가 높을수록 합성된 다중벽 탄소나노튜브의 번들두께가 작아지는 것으로 나타났다. 7 is a photograph of TEM observation of multi-walled carbon nanotubes synthesized with metal catalysts prepared in Preparation Examples 1 and 2. Figure 7 (a) is a photograph of a multi-walled carbon nanotube according to Preparation Example 1, (b) is a multi-walled carbon nanotube synthesized with a metal catalyst calcined at 300°C according to Preparation Example 2 This is a picture, (c) is a picture of a multi-walled carbon nanotube synthesized with a metal catalyst calcined at 500℃, and (d) is a picture of a multi-walled carbon nanotube synthesized with a metal catalyst calcined at 700℃. . 7, it can be seen that the difference in the thickness of the multi-walled carbon nanotube bundle occurs according to the calcination temperature, and calcined at 300°C according to (a) according to Preparation Example 1 and Preparation Example 2 The bundle thickness of (b), a multi-walled carbon nanotube synthesized with a metal catalyst, appears to have little change in the bundle thickness. The difference in bundle thickness of the walled carbon nanotubes was found to decrease as the calcination temperature of the metal catalyst increased.

상술한 여러 가지 예로 본 발명을 설명하였으나, 본 발명은 반드시 이러한 예들에 국한되는 것이 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서 본 발명에 개시된 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 예들에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 한다. Although the present invention has been described with various examples described above, the present invention is not necessarily limited to these examples, and various modifications may be made without departing from the spirit of the present invention. Accordingly, the examples disclosed in the present invention are not intended to limit the technical idea of the present invention, but to explain the technical idea, and the scope of the technical idea of the present invention is not limited by these examples. The scope of protection of the present invention should be interpreted by the claims below, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (5)

Iron(Ⅲ) Nitrate Nonahydrate(Fe(NO₃)₃9H₂O)를 용해한 제1용액, Ammonium Molybdate tetrahydrate((NH₄)Mo7O₂₄4H₂O)를 용해한 제2용액, 상기 제1용액과 상기 제2용액을 혼합 및 교반한 금속촉매전구체용액, Ammonium Carbonate((NH₄)₂CO₃)를 용해한 제3용액 및 Aluminum Hydroxide(Al(OH)₃)를 용해한 제4용액을 제조한 후, 상기 제4용액에 상기 금속촉매전구체용액 및 상기 제3용액을 혼합하여 교반한 후 여과 및 건조하여 금속촉매를 제조하는 금속촉매제조단계;
상기 금속촉매를 반응로에서 하소 처리하는 하소단계; 및
하소된 상기 금속촉매를 열CVD 합성장치에 넣고 혼합가스를 투입한 후 가열하여 탄소나노튜브를 합성하는 합성단계;를 포함하는 것을 특징으로 하는 하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브의 합성방법
The first solution in which Iron(III) Nitrate Nonahydrate (Fe(NO₃)₃9H₂O) is dissolved, the second solution in which Ammonium Molybdate tetrahydrate ((NH₄)Mo7O₂₄4H₂O) is dissolved, and a metal catalyst obtained by mixing and stirring the first solution and the second solution After preparing a precursor solution, a third solution in which Ammonium Carbonate ((NH₄)₂CO₃) is dissolved, and a fourth solution in which Aluminum Hydroxide (Al(OH)₃) is dissolved, the metal catalyst precursor solution and the third solution are added to the fourth solution. A metal catalyst manufacturing step of mixing and stirring the solution, filtering and drying to prepare a metal catalyst;
A calcination step of calcining the metal catalyst in a reaction furnace; And
Synthesis step of synthesizing carbon nanotubes by putting the calcined metal catalyst into a thermal CVD synthesis apparatus, and heating after adding a mixed gas. Synthesis of multi-walled carbon nanotubes using a calcined metal catalyst. Way
제1항에 있어서,
상기 금속촉매제조단계에서 상기 제1용액은 용매 100중량부에 대하여 Iron(Ⅲ) Nitrate Nonahydrate 118중량부를 용해하며, 상기 제2용액은 용매 100중량부에 대하여 Ammonium Molybdate tetrahydrate 20중량부를 용해하며, 상기 제3용액은 용매 100중량부에 대하여 Ammonium Carbonate 100중량부를 용해하며 상기 제4용액은 용매 100중량부에 대하여 Aluminum Hydroxide 50중량부를 용해하는 것을 특징으로 하는 하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브의 합성방법
The method of claim 1,
In the metal catalyst manufacturing step, the first solution dissolves 118 parts by weight of Iron(III) Nitrate Nonahydrate with respect to 100 parts by weight of the solvent, and the second solution dissolves 20 parts by weight of Ammonium Molybdate tetrahydrate with respect to 100 parts by weight of the solvent. The third solution dissolves 100 parts by weight of Ammonium Carbonate based on 100 parts by weight of the solvent, and the fourth solution dissolves 50 parts by weight of Aluminum Hydroxide based on 100 parts by weight of the solvent, and uses a calcined metal catalyst. Tube synthesis method
제1항에 있어서,
상기 하소단계에서 하소온도는 500~700℃ 인 것을 특징으로 하는 하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브의 합성방법
The method of claim 1,
Method for synthesizing multi-walled carbon nanotubes using a calcined metal catalyst, characterized in that the calcination temperature in the calcination step is 500 to 700°C
제1항에 있어서,
상기 합성단계에서 상기 혼합가스는 ethylene, H₂ 및 N₂ 가스가 80: 25: 40의 부피비로 혼합되는 것을 특징으로 하는 하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브의 합성방법
The method of claim 1,
In the synthesis step, the mixed gas is a method of synthesizing multi-walled carbon nanotubes using a calcined metal catalyst, characterized in that ethylene, H₂ and N₂ gases are mixed in a volume ratio of 80:25:40
제1항에 있어서,
상기 합성단계에서 합성 온도는 650~700℃ 인 것을 특징으로 하는 하소처리된 금속촉매를 이용한 다중벽 탄소나노튜브의 합성방법
The method of claim 1,
Synthesis method of multi-walled carbon nanotubes using a calcined metal catalyst, characterized in that the synthesis temperature in the synthesis step is 650 ~ 700 ℃
KR1020190051644A 2019-05-02 2019-05-02 Synthetic method of multi-walled carbon nanotubes using calcined catalyst KR20200128272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190051644A KR20200128272A (en) 2019-05-02 2019-05-02 Synthetic method of multi-walled carbon nanotubes using calcined catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190051644A KR20200128272A (en) 2019-05-02 2019-05-02 Synthetic method of multi-walled carbon nanotubes using calcined catalyst

Publications (1)

Publication Number Publication Date
KR20200128272A true KR20200128272A (en) 2020-11-12

Family

ID=73398712

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190051644A KR20200128272A (en) 2019-05-02 2019-05-02 Synthetic method of multi-walled carbon nanotubes using calcined catalyst

Country Status (1)

Country Link
KR (1) KR20200128272A (en)

Non-Patent Citations (29)

* Cited by examiner, † Cited by third party
Title
A. Gohier, C.P. Ewels, T.M. Minea, M.A. Djouadi, Carbon nanotube growth mechanism, switches from tip- to base-growth with decreasing catalyst particle size Carbon 46 10 (2008) 1331-1338
Chunyu Li, Tsu-Wei Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces, Composites Science and Technology, 63 11 (2003) 1517-1524
Daisuke Takagi, Yoshihiro Kobayashi, Hiroki Hibino, Satoru Suzuki and Yoshikazu Homma, Mechanism of Gold-Catalyzed Carbon Material Growth, Nano Lett. 8 (3) (2003) 832-835
Frederic Hasche, Mehtap Oezaslan and Peter Strasser, Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts, Phys. Chem. Chem. Phys. 12 (2010) 15251-15258
H. Bazzazzadegan, M. Kazemeini, A.M. Rashidi, A high performance multi-walled carbon nanotube-supported palladium catalyst in selective hydrogenation of acetylene-ethylene mixtures, Applied Catalysis A: General 399 1-2 31 (2011)184-190
H. Cui, O. Zhou, and B. R. Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition, Journal of Applied Physics 88 (2000) 6072
Hirofumi Takikawa, Miki Yatsuki, Tateki Sakakibara and Shigeo Itoh, Carbon nanotubes in cathodic vacuum arc discharge, J. Phys. D: Appl. Phys. 33 (2000) 826-830.
Huaping Liu, Daisuke Takagi, Hiroshi Ohno, Shohei Chiashi, Tomohito Chokan and Yoshikazu Homma, Growth of Single-Walled Carbon Nanotubes from Ceramic Particles by Alcohol Chemical Vapor Deposition, Applied Physics Express 1 (2008)
Kunming Dong, Xiaoming Ma, Hongbin Zhang, Guodong Lin, Novel MWCNT Support for Co-Mo Sulfide Catalyst in HDS of Thiophene and HDN of Pyrrole, Journal of Natural Gas Chemistry 15 1 (2006) 28-37
Lijima, S., Helical Microtubules of Graphite Carbon, Nature 354 (1991) 56.
M. Irfan Malik, Zuhair Omar Malaibari, Muataz Atieh, Basim Abussaud, Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O, Chemical Engineering Science 152 2 (2016) 468-477
M. Tanemura, K. Iwata, K. Takahashi, Y. Fujimoto, and F. Okuyama, Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth parameters, Journal of Applied Physics 90 (2001) 1529.
Maria C. Gutierrez, MarJ. Hortiguela, J. Manuel Amarilla, Ricardo Jimenez, Maria L. Ferrer, and Francisco del Monte, Macroporous 3D Architectures of Self-Assembled MWCNT Surface Decorated with Pt Nanoparticles as Anodes for a Direct Methanol Fuel Cell, J. Phys. Chem. C 111 (15) (2007) 5557-5560
Mo, C. B., Jeong Y. J., Lim, B. K. and Hong, S. H., "Fabrication Process and Mechanical/Electrical Properties of Carbon Nanotube/Metal Nanocomposites", Polymer Science and Technology 18 (2007) 6.
Myunghun Kim, Jinho Hong, Jeongwoo Lee, Chang Kook Hong, Sang Eun Shim, Fabrication of silica nanotubes using silica coated multi-walled carbon nanotubes as the template, Journal of Colloid and Interface Science 322 1 1 (2008) 321-326
Osa Emohare, Neil Rushton, Immobilized MWCNT support osteogenic cell culture 24 6 (2013) 1543-1550
R. S. Lee, J. Gavillet, M. Lamy de la Chapelle, A. Loiseau, J.-L. Cochon, D. Pigache, J. Thibault, and F. Willaime, Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration, Phys. Rev. B 64 (2001) 121405(R)
Romil Bhandavat Gurpreet Singh, Synthesis, Characterization, and High Temperature Stability of Si(B)CN-Coated Carbon Nanotubes Using a Boron-Modified Poly(ureamethylvinyl)Silazane Chemistry, Journal of the American Ceramic Society 95 (2012) 5
Saloumeh Mesgari Abbasi, Alimorad Rashidi, Ali Nemati, Kaveh Arzani, The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina, Ceramics International 39 4 (2013) 3885-3891
Shuangqiang Chen, Peite Bao, Guoxiu Wang, Synthesis of Fe2O3-CNT-graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage, Nano Energy 2 3 (2013) 425-434
T. Saito, K. Matsushige, K. Tanaka, Chemical treatment and modification of multiwalled carbon nanotubes, Physica B: Condensed Matter 323 1-4 (2002) 280-23
V. Kumaresan, R. Velraj, Experimental investigation of the thermo-physical properties of water-ethylene glycol mixture based CNT nanofluids,Thermochimica Acta, 545 (2012) 180-186
Wahed Wasel, Kazunori Kuwana, Peter T.A. Reilly, Kozo Saito, Experimental characterization of the role of hydrogen in CVD synthesis of MWCNTs, Carbon 45 4 (2007) 833-838
Wang, Y., Wei, F., Luo, G., Yu, H. and Gu, G., The Large Scale Production of Carbon Nanotubes in a Nano-agglomerate Fluidized Bed Reactor, Chem. Phys. Lett. 364(5-6), (2002) 568-572.
X. Sun, R. Li, D. Villers, J.P. Dodelet, S. Desilets, Composite electrodes made of Pt nanoparticles deposited on carbon nanotubes grown on fuel cell backings, Chemical Physics Letters 379 1-2 (2003) 99-104
Xiang-Rong Ye, Yuehe Lin, Chongming Wang, Mark H. Engelhard, Yong Wang and Chien M. Wai, Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes, J. Mater. Chem.14 (2004) 908-913
Y. Ando, X. Zhao, M. Ohkohch, Production of petal-like graphite sheets by hydrogen arc discharge, Carbon 35 1 (1997) 153-158
Yu Hao, Zhang Qunfeng, Wei Fei, Qian Weizhong, Luo Guohua, Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism, Carbon 41 14 (2003) 2855-2863
Yuan, L., Saito, K., Hu, W. and Chen, Z., Ethyene Flame Synthesis of Well-Aligned Multi-Walled Carbon Nanotube, Chem. Phys. Lett., 346 (2001) 23~28.

Similar Documents

Publication Publication Date Title
US7799308B2 (en) Ultra-fine fibrous carbon and preparation method thereof
KR101446116B1 (en) Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof
Laurent et al. Synthesis of carbon nanotube–Fe-Al 2 O 3 nanocomposite powders by selective reduction of different Al 1.8 Fe 0.2 O 3 solid solutions
Mohammed et al. Full factorial design approach to carbon nanotubes synthesis by CVD method in argon environment
JP5560572B2 (en) CATALYST FOR CARBON NANOTUBE PRODUCING, METHOD FOR PRODUCING THE SAME, METHOD FOR PRODUCING CARBON NANOTUBE-CONTAINING COMPOSITION, AND CARBON NANOTUBE-CONTAINING COMPOSITION
Henao et al. Selective synthesis of carbon nanotubes by catalytic decomposition of methane using Co-Cu/cellulose derived carbon catalysts: A comprehensive kinetic study
CN110479310B (en) Preparation and application of supported cobalt sulfide catalyst for selectively synthesizing carbon nano tube
CN100432009C (en) Carbon nanotube/nano clay nano composite materials and method for preparing same
Xiang et al. Formation and catalytic performance of supported ni nanoparticles via self‐reduction of hybrid NiAl‐LDH/C composites
Awadallah et al. Effect of combining Al, Mg, Ce or La oxides to extracted rice husk nanosilica on the catalytic performance of NiO during COx-free hydrogen production via methane decomposition
Abdulkareem et al. Synthesis and Characterization of Tri-metallic Fe–Co–Ni Catalyst Supported on CaCO 3 for Multi-Walled Carbon Nanotubes Growth via Chemical Vapor Deposition Technique
Allaedini et al. Bulk production of bamboo-shaped multi-walled carbon nanotubes via catalytic decomposition of methane over tri-metallic Ni–Co–Fe catalyst
Abdullahi et al. Selective synthesis of single-walled carbon nanotubes on Fe–MgO catalyst by chemical vapor deposition of methane
Alexiadis et al. Influence of the composition of Fe2O3/Al2O3 catalysts on the rate of production and quality of carbon nanotubes
Manikandan et al. Fabrication of nanostructured clay–carbon nanotube hybrid nanofiller by chemical vapour deposition
JP5585275B2 (en) Carbon nanotube manufacturing method
Esteves et al. Catalyst preparation methods to reduce contaminants in a high-yield purification process of multiwalled carbon nanotubes
CN111943722A (en) Controllable method for synthesizing carbon nano tube on surface of foamed ceramic and application thereof
KR20200128272A (en) Synthetic method of multi-walled carbon nanotubes using calcined catalyst
Sarno et al. MoO2 synthesis for LIBs
Arabshahi et al. Growth of CNTs over Fe–Co/Nanometric TiO2 Catalyst by CVD: The Effects of Catalyst Composition and Growth Temperature
Ratković et al. Synthesis of high-purity carbon nanotubes over alumina and silica supported bimetallic catalysts
Dziike et al. Synthesis of carbon nanofibers over lanthanum supported on radially aligned nanorutile: A parametric study
KR101608477B1 (en) Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof
US20220298017A1 (en) Long and Narrow Diameter Carbon Nanotubes and Catalysts for Producing Same

Legal Events

Date Code Title Description
E601 Decision to refuse application