KR20200030277A - 스핀-궤도 토크 라인을 갖는 반도체 소자 및 그 동작 방법 - Google Patents

스핀-궤도 토크 라인을 갖는 반도체 소자 및 그 동작 방법 Download PDF

Info

Publication number
KR20200030277A
KR20200030277A KR1020180108943A KR20180108943A KR20200030277A KR 20200030277 A KR20200030277 A KR 20200030277A KR 1020180108943 A KR1020180108943 A KR 1020180108943A KR 20180108943 A KR20180108943 A KR 20180108943A KR 20200030277 A KR20200030277 A KR 20200030277A
Authority
KR
South Korea
Prior art keywords
line
spin
layer
orbit torque
storage layer
Prior art date
Application number
KR1020180108943A
Other languages
English (en)
Other versions
KR102517332B1 (ko
Inventor
김재훈
신희주
피웅환
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020180108943A priority Critical patent/KR102517332B1/ko
Priority to US16/369,869 priority patent/US10825497B2/en
Priority to CN201910603076.6A priority patent/CN110896128B/zh
Publication of KR20200030277A publication Critical patent/KR20200030277A/ko
Priority to US17/039,455 priority patent/US11176982B2/en
Application granted granted Critical
Publication of KR102517332B1 publication Critical patent/KR102517332B1/ko

Links

Images

Classifications

    • H01L43/08
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1655Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1657Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • H01L43/02
    • H01L43/10
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/101Semiconductor Hall-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

반도체 소자는 적어도 하나의 제1 자성 층을 갖는 스토리지 층(storage layer)을 포함한다. 상기 스토리지 층과 대향하고 적어도 하나의 제2 자성 층을 갖는 기준 층(Reference layer)이 제공된다. 상기 스토리지 층 및 상기 기준 층 사이에 터널 배리어 층(Tunnel barrier layer)이 배치된다. 상기 스토리지 층의 측면에 적어도 하나의 스핀-궤도 토크 라인(spin-orbit torque line; SOT line)이 배치된다.

Description

스핀-궤도 토크 라인을 갖는 반도체 소자 및 그 동작 방법{SEMICONDUCTOR DEVICE INCLUDING SPIN-ORBIT TORQUE LINE AND METHOD OF OPERATING THE SAME}
스핀-궤도 토크 라인을 갖는 반도체 소자, 그 동작 방법, 및 그 형성 방법에 관한 것이다.
고집적화 및 고속 동작에 유리한 반도체 메모리 소자가 연구되고 있다. 이러한 요구에 따라 자성체의 극성 변화에 따른 저항 변화를 이용하는 자기 저항 메모리(magnetoresistive random access memory; MRAM)가 제시된바 있다. 상기 자성체의 극성을 스위칭하는 기술은 다양한 난관에 봉착하고 있다.
본 개시의 실시예들에 따른 과제는 고집적화에 유리하고 전기적 특성을 개선할 수 있는 반도체 소자, 그 동작 방법, 및 그 형성 방법을 제공하는데 있다.
본 개시의 실시예들에 따른 반도체 소자는 적어도 하나의 제1 자성 층을 갖는 스토리지 층(storage layer)을 포함한다. 상기 스토리지 층과 대향하고 적어도 하나의 제2 자성 층을 갖는 기준 층(Reference layer)이 제공된다. 상기 스토리지 층 및 상기 기준 층 사이에 터널 배리어 층(Tunnel barrier layer)이 배치된다. 상기 스토리지 층의 측면에 적어도 하나의 스핀-궤도 토크 라인(spin-orbit torque line; SOT line)이 배치된다.
본 개시의 실시예들에 따른 반도체 소자는 기판 상의 스위칭 소자를 포함한다. 상기 기판 상에 배치되고 상기 스위칭 소자에 접속된 제1 전극이 제공된다. 상기 제1 전극 상에 버퍼 층이 배치된다. 상기 버퍼 층 상에 배치되고, 스토리지 층, 상기 스토리지 층에 대향하는 기준 층, 및 상기 스토리지 층 및 상기 기준 층 사이의 터널 배리어 층을 갖는 자기 터널 접합(MTJ)이 제공된다. 상기 자기 터널 접합 상에 캐핑 층이 배치된다. 상기 캐핑 층 상에 제2 전극이 배치된다. 상기 스토리지 층의 측면에 적어도 하나의 스핀-궤도 토크 라인(SOT line)이 배치된다.
본 개시의 실시예들에 따른 반도체 소자는 기판 상의 제1 전극을 포함한다. 상기 제1 전극 상에 배치되고, 스토리지 층, 상기 스토리지 층에 대향하는 기준 층, 및 상기 스토리지 층 및 상기 기준 층 사이의 터널 배리어 층을 갖는 자기 터널 접합(MTJ)이 제공된다. 상기 자기 터널 접합 상에 제2 전극이 배치된다. 상기 스토리지 층의 측면에 적어도 하나의 스핀-궤도 토크 라인(SOT line)이 배치된다.
본 개시의 실시예들에 따르면, 스토리지 층의 측면에 배치된 스핀-궤도 토크 라인(spin-orbit torque line; SOT line)이 제공될 수 있다. 상기 스핀-궤도 토크 라인의 스핀 홀 효과를 이용하여 상기 스토리지 층의 자기 분극을 바꿀 수 있다. 고집적화에 유리하고 우수한 전기적 특성을 갖는 반도체 소자를 구현할 수 있다.
도 1은 본 개시에 따른 실시예로서, 반도체 소자를 설명하기 위한 사시도이다.
도 2 내지 도 4는 본 개시에 따른 실시예로서, 반도체 소자의 동작 방법을 설명하기 위한 개략도들이다.
도 5 내지 도 8은 본 개시에 따른 실시예로서, 반도체 소자를 설명하기 위한 단면도들이다.
도 9 내지 도 13은 본 개시에 따른 실시예로서, 반도체 소자의 주요 구성을 보여주는 레이아웃(layout)이다.
도 14 내지 도 17은 본 개시에 따른 실시예로서, 반도체 소자의 형성 방법을 설명하기 위한 단면도들이다.
도 1은 본 개시에 따른 실시예로서, 반도체 소자를 설명하기 위한 사시도이다. 본 개시의 실시예에 따른 반도체 소자는 MRAM(magnetoresistive random access memory), 또는 크로스포인트 메모리(X-point memory)와 같은 비-휘발성 메모리 소자를 포함할 수 있다. 일 실시예에서, 상기 반도체 소자는 eMRAM(embedded MRAM)을 포함할 수 있다. 일 실시예에서, 상기 반도체 소자는 pMTJ-MRAM(perpendicular Magnetic Tunnel Junction - MRAM)을 포함할 수 있다.
도 1을 참조하면, 본 개시의 실시예에 따른 반도체 소자는 자기 터널 접합(Magnetic Tunnel Junction; MTJ; 69) 및 스핀-궤도 토크 라인(spin-orbit torque line; SOT line; 85)을 포함할 수 있다. 상기 자기 터널 접합(69)은 스토리지 층(storage layer; 65), 터널 배리어 층(tunnel barrier layer; 67), 및 기준 층(reference layer; 68)을 포함할 수 있다. 상기 스토리지 층(65)은 자유 층(free layer)을 포함할 수 있다. 상기 스토리지 층(65)은 CoFeB 와 같은 적어도 하나의 제1 자성 층을 포함할 수 있다. 상기 기준 층(68)은 핀드 층(pinned layer), 고정 층(fixed layer), 또는 이들의 조합을 포함할 수 있다. 상기 기준 층(68)은 CoFeB 와 같은 적어도 하나의 제2 자성 층을 포함할 수 있다. 상기 스토리지 층(65) 및 상기 기준 층(68)은 서로 대향할 수 있다. 상기 터널 배리어 층(67)은 상기 기준 층(68) 및 상기 스토리지 층(65) 사이에 개재될 수 있다.
상기 스핀-궤도 토크 라인(85)은 상기 자기 터널 접합(69)의 측면에 배치될 수 있다. 상기 스핀-궤도 토크 라인(85)은 상기 스토리지 층(65)의 적어도 일 측면에 인접하게 배치될 수 있다. 상기 스핀-궤도 토크 라인(85)은 상기 스토리지 층(65)의 적어도 일 측면을 가로지를 수 있다. 상기 스핀-궤도 토크 라인(85)은 상기 스토리지 층(65)의 적어도 일 측면에 직접적으로 접촉될 수 있다. 상기 스핀-궤도 토크 라인(85)은 스핀 - 궤도 커플링(spin-orbit coupling)이 큰 비자성 금속(normal metal)을 포함할 수 있다. 상기 스핀-궤도 토크 라인(85)은 Pt, W, Ta, Ir, Hf, Hf/W, Ti/CoFeB, Bi2Se3, 또는 이들의 조합을 포함할 수 있다. 상기 스핀-궤도 토크 라인(85)은 상기 스토리지 층(65)보다 전기 저항이 낮은 물질을 포함할 수 있다.
상기 자기 터널 접합(69) 및 상기 스핀-궤도 토크 라인(85)은 다양한 배치 형태를 보일 수 있다. 일 실시예에서, 상기 스토리지 층(65) 상에 상기 터널 배리어 층(67)이 적층될 수 있다. 상기 상기 터널 배리어 층(67) 상에 상기 기준 층(68)이 적층될 수 있다. 상기 스토리지 층(65), 상기 터널 배리어 층(67), 및 상기 상기 터널 배리어 층(67)의 측면들은 수직 정렬될 수 있다. 상기 스토리지 층(65), 상기 터널 배리어 층(67), 및 상기 상기 터널 배리어 층(67)의 측면들은 실질적으로 동일한 평면을 이룰 수 있다.
상기 기준 층(68) 및 상기 스토리지 층(65)의 각각은 수직 자화 층을 포함할 수 있다. 상기 기준 층(68)의 자기 분극(magnetic polarization)은 제1 수직 방향으로 고정될 수 있다. 상기 제1 수직 방향은 상기 스토리지 층(65)에서 상기 기준 층(68)을 향하는 방향 또는 상기 기준 층(68)에서 상기 스토리지 층(65)을 향하는 방향에 해당될 수 있다. 상기 스토리지 층(65)의 자기 분극은 상기 스핀-궤도 토크 라인(85)을 통하여 흐르는 스위칭 전류에 의하여 상기 제1 수직 방향 또는 상기 제1 수직 방향과 반대되는 제2 수직 방향으로 바뀔 수 있다.
상기 기준 층(68) 및 상기 스토리지 층(65)이 평행 자기 분극(parallel magnetic polarization)을 갖는 경우에 상기 자기 터널 접합(69)은 저-저항 상태를 보일 수 있다. 상기 저-저항 상태는 데이터 "0"에 해당될 수 있다. 상기 기준 층(68) 및 상기 스토리지 층(65)이 반-평행 자기 분극(anti-parallel magnetic polarization)을 갖는 경우에 상기 자기 터널 접합(69)은 고-저항 상태를 보일 수 있다. 상기 고-저항 상태는 데이터 "1"에 해당될 수 있다. 상기 자기 터널 접합(69)의 스핀 분극 전류(spin polarized current)를 이용하여 비-휘발성 메모리 소자(non-volatile memory device)를 구현할 수 있다.
상기 스핀-궤도 토크 라인(85)은 상기 기준 층(68) 및 상기 터널 배리어 층(67)과 이격될 수 있다. 상기 스핀-궤도 토크 라인(85)은 상기 기준 층(68) 및 상기 터널 배리어 층(67)과 다른 레벨에 배치될 수 있다. 상기 스핀-궤도 토크 라인(85)의 상면은 상기 스토리지 층(65)의 상단보다 낮은 레벨에 배치될 수 있다. 상기 스핀-궤도 토크 라인(85)의 상면은 상기 스토리지 층(65) 및 상기 터널 배리어 층(67)의 계면보다 낮은 레벨에 배치될 수 있다.
상기 스핀-궤도 토크 라인(85)에 전류가 흐르면 스핀 홀 효과(spin hall effect; SHE)에 의하여 격자(lattice)의 스핀과 상호작용하여 전류 방향에 수직하게 스핀 분극 현상이 나타날 수 있다. 상기 스토리지 층(65)의 자기 분극은 상기 스핀-궤도 토크 라인(85)의 스핀 홀 효과(spin hall effect)에 의하여 바뀔 수 있다. 상기 스토리지 층(65)의 측면에 배치된 상기 스핀-궤도 토크 라인(85)에 제1 수평 방향으로 전류가 흐르면, 상기 스토리지 층(65)은 스핀 홀 효과에 의하여 상기 제1 수직 방향의 스핀 토크(spin torque)를 받게 되며, 상기 스토리지 층(65)의 자기 분극은 상기 제1 수직 방향으로 바뀔 수 있다. 상기 제1 수평 방향은 상기 제1 수직 방향과 교차하는 방향에 해당될 수 있다. 상기 제1 수평 방향은 상기 제1 수직 방향과 직교하는 방향에 해당될 수 있다. 상기 스핀-궤도 토크 라인(85)에 상기 제1 수평 방향과 반대되는 제2 수평 방향으로 전류가 흐르면, 상기 스토리지 층(65)은 스핀 홀 효과에 의하여 상기 제1 수직 방향과 반대되는 상기 제2 수직 방향의 스핀 토크를 받게 되며, 상기 스토리지 층(65)의 자기 분극은 상기 제1 수직 방향과 반대되는 상기 제2 수직 방향으로 바뀔 수 있다.
본 개시의 실시예에 따른 반도체 소자는, 스핀 터널링 토오크(spin tunneling torque; STT)에 의한 스위칭을 이용하지 않는 반면, 상기 스핀-궤도 토크 라인(85)의 스핀 홀 효과를 이용하여 상기 스토리지 층(65)의 자기 분극을 바꿀 수 있다. 상기 터널 배리어 층(67)의 두께에 대한 공정 여유는 현저히 증가할 수 있다. 상기 자기 터널 접합(69) 및 상기 스핀-궤도 토크 라인(85)을 갖는 반도체 소자는 터널자기저항(Tunnel Magneto Resistance; TMR) 증가, 내구성(endurance) 향상, 및 고집적화에 유리할 수 있다.
도 2 내지 도 4는 본 개시에 따른 실시예로서, 반도체 소자의 동작 방법을 설명하기 위한 개략도들이다.
도 2를 참조하면, 기준 층(68)은 비트라인(BL)에 접속될 수 있다. 스토리지 층(65)은 제1 스위칭 소자(TR1)를 경유하여 소스 라인(SL)에 접속될 수 있다. 상기 스핀-궤도 토크 라인(85)은 제1 단(T1) 및 상기 제1 단(T1)과 대향하는 제2 단(T2)을 포함할 수 있다. 상기 제1 단(T1) 및 상기 제2 단(T2)은 실질적으로 동일한 수평 레벨에 배치될 수 있다. 상기 제1 단(T1) 및 상기 제2 단(T2)의 사이에 있어서 상기 스핀-궤도 토크 라인(85)의 측면의 적어도 일부분은 상기 스토리지 층(65)의 측면의 일부분에 접촉될 수 있다. 상기 스핀-궤도 토크 라인(85)의 상기 제1 단(T1)은 제2 스위칭 소자(TR2)를 경유하여 상기 비트라인(BL)에 접속될 수 있다. 상기 스핀-궤도 토크 라인(85)의 상기 제2 단(T2)은 제3 스위칭 소자(TR3)를 경유하여 상기 소스 라인(SL)에 접속될 수 있다.
상기 제1 스위칭 소자(TR1), 상기 제2 스위칭 소자(TR2), 및 상기 제3 스위칭 소자(TR3)의 각각은 트랜지스터를 포함할 수 있다. 상기 제1 스위칭 소자(TR1)의 제1 게이트 전극은 읽기 워드 라인(RWL)에 접속될 수 있다. 상기 제1 스위칭 소자(TR1)는 상기 읽기 워드 라인(RWL)에 의하여 on/off 될 수 있다. 상기 제2 스위칭 소자(TR2)의 제2 게이트 전극은 쓰기 워드 라인(WWL)에 접속될 수 있다. 상기 제3 스위칭 소자(TR3)의 제3 게이트 전극은 상기 쓰기 워드 라인(WWL)에 접속될 수 있다. 상기 제2 스위칭 소자(TR2) 및 상기 제3 스위칭 소자(TR3)의 각각은 상기 쓰기 워드 라인(WWL)에 의하여 on/off 될 수 있다.
반도체 소자의 동작 방법
WWL RWL BL SL
Write 0 VDD GND VDD GND
Write 1 VDD GND GND VDD
Read GND VDD Vread GND
표 1을 참조하면, 쓰기 "0" 동작에 있어서, 상기 쓰기 워드 라인(WWL)에는 드레인 전압(VDD)이 인가되고, 상기 읽기 워드 라인(RWL)은 접지(GND)에 접속되고, 상기 비트라인(BL)에는 상기 드레인 전압(VDD)이 인가되고, 상기 소스 라인(SL)은 상기 접지(GND)에 접속될 수 있다. 상기 제1 단(T1) 및 상기 제2 단(T2) 사이에 상기 제1 수평 방향으로 전류가 흐를 수 있으며, 상기 스토리지 층(65)은 스핀 홀 효과에 의하여 상기 제1 수직 방향의 스핀 토크(spin torque)를 받게 되며, 상기 스토리지 층(65)의 자기 분극은 상기 제1 수직 방향으로 바뀔 수 있다.쓰기 "1" 동작에 있어서, 상기 쓰기 워드 라인(WWL)에는 상기 드레인 전압(VDD)이 인가되고, 상기 읽기 워드 라인(RWL)은 상기 접지(GND)에 접속되고, 상기 비트라인(BL)은 상기 접지(GND)에 접속되고, 상기 소스 라인(SL)에는 상기 드레인 전압(VDD)이 인가될 수 있다. 상기 제1 단(T1) 및 상기 제2 단(T2) 사이에 상기 제1 수평 방향과 반대되는 상기 제2 수평 방향으로 전류가 흐를 수 있으며, 상기 스토리지 층(65)은 스핀 홀 효과에 의하여 상기 제1 수직 방향과 반대되는 상기 제2 수직 방향의 스핀 토크(spin torque)를 받게 되며, 상기 스토리지 층(65)의 자기 분극은 상기 제1 수직 방향과 반대되는 상기 제2 수직 방향으로 바뀔 수 있다.
읽기 동작에 있어서, 상기 쓰기 워드 라인(WWL)은 상기 접지(GND)에 접속되고, 상기 읽기 워드 라인(RWL)에는 상기 드레인 전압(VDD)이 인가되고, 상기 비트라인(BL)에는 읽기 전압(Vread)이 인가되고, 상기 소스 라인(SL)은 상기 접지(GND)에 접속될 수 있다. 상기 스토리지 층(65)이 상기 제1 수직 방향의 자기 분극 또는 상기 제2 수직 방향의 자기 분극을 갖느냐에 따라 자기 터널 접합(69)은 저-저항 상태 또는 고-저항 상태를 보일 수 있다. 상기 자기 터널 접합(69)의 저-저항 상태 또는 고-저항 상태에 의존하여 데이터 “0"또는 "1"이 판독될 수 있다.
도 3을 참조하면, 상기 스핀-궤도 토크 라인(85)의 상기 제1 단(T1)은 상기 제2 스위칭 소자(TR2)를 경유하여 상기 비트라인(BL)에 접속될 수 있다. 상기 제1 단(T1) 및 상기 제2 단(T2)의 사이에 있어서 상기 스핀-궤도 토크 라인(85)의 측면의 적어도 일부분은 상기 스토리지 층(65)의 측면의 일부분에 접촉될 수 있다.
반도체 소자의 동작 방법
WWL RWL BL SL
Write 0 VDD VDD VDD GND
Write 1 VDD VDD GND VDD
Read GND VDD Vread GND
표 2를 참조하면, 쓰기 "0" 동작에 있어서, 상기 쓰기 워드 라인(WWL)에는 상기 드레인 전압(VDD)이 인가되고, 상기 읽기 워드 라인(RWL)에는 상기 드레인 전압(VDD)이 인가되고, 상기 비트 라인(BL)에는 상기 드레인 전압(VDD)이 인가되고, 상기 소스 라인(SL)은 상기 접지(GND)에 접속될 수 있다. 상기 제1 단(T1) 및 상기 제2 단(T2) 사이에 상기 제1 수평 방향으로 전류가 흐를 수 있으며, 상기 스토리지 층(65)은 스핀 홀 효과에 의하여 상기 제1 수직 방향의 스핀 토크(spin torque)를 받게 되며, 상기 스토리지 층(65)의 자기 분극은 상기 제1 수직 방향으로 바뀔 수 있다.쓰기 "1" 동작에 있어서, 상기 쓰기 워드 라인(WWL)에는 상기 드레인 전압(VDD)이 인가되고, 상기 읽기 워드 라인(RWL)에는 상기 드레인 전압(VDD)이 인가되고, 상기 비트라인(BL)은 상기 접지(GND)에 접속되고, 상기 소스 라인(SL)에는 상기 드레인 전압(VDD)이 인가될 수 있다. 상기 제1 단(T1) 및 상기 제2 단(T2) 사이에 상기 제1 수평 방향과 반대되는 상기 제2 수평 방향으로 전류가 흐를 수 있으며, 상기 스토리지 층(65)은 스핀 홀 효과에 의하여 상기 제1 수직 방향과 반대되는 상기 제2 수직 방향의 스핀 토크(spin torque)를 받게 되며, 상기 스토리지 층(65)의 자기 분극은 상기 제1 수직 방향과 반대되는 상기 제2 수직 방향으로 바뀔 수 있다.
읽기 동작에 있어서, 상기 쓰기 워드 라인(WWL)은 상기 접지(GND)에 접속되고, 상기 읽기 워드 라인(RWL)에는 상기 드레인 전압(VDD)이 인가되고, 상기 비트라인(BL)에는 상기 읽기 전압(Vread)이 인가되고, 상기 소스 라인(SL)은 상기 접지(GND)에 접속될 수 있다. 상기 자기 터널 접합(69)의 저-저항 상태 또는 고-저항 상태에 의존하여 데이터 “0"또는 "1"이 판독될 수 있다.
도 4를 참조하면, 상기 스핀-궤도 토크 라인(85)의 상기 제2 단(T2)은 상기 스토리지 층(65) 및 상기 제1 스위칭 소자(TR1) 사이에 접속될 수 있다. 상기 제2 단(T2) 및 상기 스토리지 층(65)은 상기 제1 스위칭 소자(TR1)를 경유하여 소스 라인(SL)에 접속될 수 있다. 도 3 및 표 2를 참조하여 설명한 것과 유사한 방법으로, 상기 자기 터널 접합(69)에 데이터 “0"또는 "1"을 쓰는 동작과 판독하는 동작이 수행될 수 있다.
도 5 내지 도 8은 본 개시에 따른 실시예로서, 반도체 소자를 설명하기 위한 단면도들이다.
도 5를 참조하면, 버퍼 층(63) 상에 자기 터널 접합(69)이 배치될 수 있다. 상기 자기 터널 접합(69) 상에 캐핑 층(71)이 배치될 수 있다. 상기 자기 터널 접합(69)은 스토리지 층(65), 터널 배리어 층(67), 및 기준 층(68)을 포함할 수 있다. 상기 스토리지 층(65)의 측면에 스핀-궤도 토크 라인(85)이 배치될 수 있다. 상기 스토리지 층(65)의 하면은 상기 버퍼 층(63)의 상면에 접촉될 수 있다. 상기 기준 층(68)의 상면은 상기 캐핑 층(71)의 하면에 접촉될 수 있다.
상기 스핀-궤도 토크 라인(85)은 상기 스토리지 층(65)의 측면에 직접적으로 접촉될 수 있다. 상기 스핀-궤도 토크 라인(85)은 상기 터널 배리어 층(67) 및 상기 기준 층(68)과 이격될 수 있다. 상기 스핀-궤도 토크 라인(85)의 상면은 상기 터널 배리어 층(67)의 하면보다 낮은 레벨에 배치될 수 있다. 상기 스핀-궤도 토크 라인(85) 및 상기 스토리지 층(65)의 계면의 연장선은 상기 스토리지 층(65) 및 상기 터널 배리어 층(67)의 계면과 교차할 수 있다. 상기 스핀-궤도 토크 라인(85) 및 상기 스토리지 층(65)의 계면의 연장선은 상기 스토리지 층(65) 및 상기 터널 배리어 층(67)의 계면과 직교할 수 있다.
상기 스핀-궤도 토크 라인(85)은 상기 버퍼 층(63)과 이격될 수 있다. 상기 스핀-궤도 토크 라인(85)의 하면은 상기 버퍼 층(63)의 상면보다 높은 레벨에 배치될 수 있다.
도 6을 참조하면, 스핀-궤도 토크 라인(85)의 상면은 스토리지 층(65)의 상면과 실질적으로 동일한 레벨에 배치될 수 있다. 상기 스핀-궤도 토크 라인(85) 및 상기 스토리지 층(65)의 계면은 상기 스토리지 층(65) 및 상기 터널 배리어 층(67)의 계면과 직교할 수 있다. 상기 스핀-궤도 토크 라인(85) 및 상기 스토리지 층(65)의 계면의 연장선은 상기 스토리지 층(65) 및 상기 터널 배리어 층(67)의 계면과 교차할 수 있다.
도 7을 참조하면, 스핀-궤도 토크 라인(85) 및 스토리지 층(65) 사이에 스페이서(83)가 개재될 수 있다. 상기 스페이서(83)는 상기 스핀-궤도 토크 라인(85) 및 상기 스토리지 층(65)과 다른 물질을 포함할 수 있다. 상기 스페이서(83)는 실리콘 산화물, 실리콘 질화물, 실리콘 산질화물, 또는 이들의 조합과 같은 절연층을 포함할 수 있다.
도 8을 참조하면, 자기 터널 접합(69)은 차례로 적층된 기준 층(68), 터널 배리어 층(67), 및 스토리지 층(65)을 포함할 수 있다. 상기 기준 층(68)의 하면은 버퍼 층(63)의 상면에 접촉될 수 있다. 상기 스토리지 층(65)의 상면은 캐핑 층(71)의 하면에 접촉될 수 있다. 상기 스토리지 층(65)의 측면에 스핀-궤도 토크 라인(85)이 배치될 수 있다. 상기 스토리지 층(65)의 하면은 상기 터널 배리어 층(67)의 상면보다 높은 레벨에 배치될 수 있다.
도 9 내지 도 13은 본 개시에 따른 실시예로서, 반도체 소자의 주요 구성을 보여주는 레이아웃(layout)이다.
도 9를 참조하면, 스핀-궤도 토크 라인(85)은 스토리지 층(65)의 측면에 인접하게 배치될 수 있다. 상기 스핀-궤도 토크 라인(85)은 상기 스토리지 층(65)의 측면에 직접적으로 접촉될 수 있다. 상기 스핀-궤도 토크 라인(85)은 상기 스토리지 층(65)의 측면을 가로지를 수 있다. 상기 스핀-궤도 토크 라인(85)은 상기 스토리지 층(65)보다 큰 수평 폭을 보일 수 있다.
도 10을 참조하면, 스토리지 층(65)은 4개의 측면을 포함할 수 있다. 스핀-궤도 토크 라인(85)은 상기 스토리지 층(65)의 상기 4개의 측면 중 3개 측면을 둘러쌀 수 있다.
도 11을 참조하면, 스핀-궤도 토크 라인(85)은 스토리지 층(65)의 4개의 측면 중 3개 측면을 둘러싸고 네 번째 측면 상에 부분적으로 연장될 수 있다.
도 12를 참조하면, 스토리지 층(65)은 상면도(top view) 상에서 보여질 때 둥근 모양을 보일 수 있다. 스핀-궤도 토크 라인(85)은 상기 스토리지 층(65)의 측면을 부분적으로 둘러쌀 수 있다. 상기 스핀-궤도 토크 라인(85)의 양단들은 서로 이격될 수 있다.
도 13을 참조하면, 서로 대향하는 제1 스핀-궤도 토크 라인(85A) 및 제2 스핀-궤도 토크 라인(85B) 사이에 스토리지 층(65)이 배치될 수 있다. 상기 제1 스핀-궤도 토크 라인(85A) 및 상기 제2 스핀-궤도 토크 라인(85B)은 서로 이격될 수 있다. 상기 제1 스핀-궤도 토크 라인(85A)에는 제1 수평 방향 전류가 인가될 수 있으며, 상기 제2 스핀-궤도 토크 라인(85B)에는 제2 수평 방향 전류가 인가될 수 있다. 상기 제1 수평 방향 전류 및 상기 제2 수평 방향 전류는 서로 반대 방향으로 흐를 수 있다.
도 14 내지 도 17은 본 개시에 따른 실시예로서, 반도체 소자의 형성 방법을 설명하기 위한 단면도들이다.
도 14를 참조하면, 기판(21) 상에 스위칭 소자(31), 하부 절연층(37), 층간 절연층(38), 소스 플러그(41), 및 소스 라인(43)이 형성될 수 있다. 상기 스위칭 소자(31)는 활성 영역(23), 소스/드레인 영역들(25), 게이트 유전층(26), 및 게이트 전극(29)을 포함할 수 있다. 상기 게이트 전극(29)은 워크펑션 도전층(27) 및 게이트 도전층(28)을 포함할 수 있다. 상기 게이트 전극(29)의 측면에 게이트 스페이서(33)가 형성될 수 있다. 상기 게이트 전극(29) 상에 게이트 캐핑 패턴(35)이 형성될 수 있다.
일 실시예에서, 상기 활성 영역(23)은 핀 활성 영역(fin active region)을 포함할 수 있다. 상기 스위칭 소자(31)는 핀 전계 효과 트랜지스터(fin field effect transistor; finFET)에 해당될 수 있다. 일 실시예에서, 상기 스위칭 소자(31)는 플라나(planar) 트랜지스터, 리세스 채널 어레이 트랜지스터(recess channel array transistor; RCAT), 수직 트랜지스터, 나노와이어 트랜지스터, 멀티 브리지 채널 트랜지스터(multi-bridge channel transistor; MBC transistor), 3차원 트랜지스터, 다이오드, 또는 이들의 조합을 포함할 수 있다.
상기 기판(21)은 실리콘 웨이퍼 또는 에스오아이(silicon on insulator; SOI) 웨이퍼와 같은 반도체 기판을 포함할 수 있다. 상기 활성 영역(23)은 상기 기판(21)의 일면에 한정될 수 있다. 일 실시예에서, 상기 활성 영역(23)은 P형 불순물들을 갖는 단결정 실리콘 층을 포함할 수 있다. 상기 소스/드레인 영역들(25)은 상기 게이트 전극(29) 양측에 인접하게 형성될 수 있다. 상기 소스/드레인 영역들(25)은 상기 활성 영역(23)과 다른 도전형일 수 있다. 예를들면, 상기 소스/드레인 영역들(25)은 에스이지(selective epitaxial growth; SEG) 방법에 의하여 형성된 N형 불순물들을 갖는 반도체 층을 포함할 수 있다. 상기 소스/드레인 영역들(25)의 상단들은 상기 게이트 전극(29)의 하면보다 높은 레벨에 돌출될 수 있다.
상기 게이트 전극(29)은 워드 라인에 해당될 수 있다. 상기 게이트 전극(29)은 금속, 금속 질화물, 금속 실리사이드, 도전성 카본, 폴리실리콘, 또는 이들의 조합을 포함할 수 있다. 일 실시예에서, 상기 게이트 전극(29)은 리플레이스먼트 게이트(replacement gate)에 해당될 수 있다. 상기 게이트 전극(29)은 상기 활성 영역(23)의 상면 및 측면을 덮을 수 있다. 상기 게이트 유전층(26)은 상기 게이트 전극(29) 및 상기 활성 영역(23)사이에 개재될 수 있다. 상기 게이트 유전층(26)은 상기 게이트 전극(29)의 바닥 및 측면을 덮을 수 있다. 상기 게이트 유전층(26)은 실리콘 산화물, 실리콘 질화물, 실리콘 산질화물, 고-유전물(high-K dielectrics), 또는 이들의 조합을 포함할 수 있다.
상기 게이트 스페이서(33)는 상기 게이트 전극(29) 및 상기 게이트 캐핑 패턴(35)의 측면을 덮을 수 있다. 상기 게이트 스페이서(33)는 실리콘 산화물, 실리콘 질화물, 실리콘 산질화물, 저-유전물(low-K dielectrics), 또는 이들의 조합을 포함할 수 있다. 상기 게이트 캐핑 패턴(35)은 상기 게이트 전극(29) 상에 정렬될 수 있다. 상기 게이트 캐핑 패턴(35)은 실리콘 산화물, 실리콘 질화물, 실리콘 산질화물, 저-유전물, 또는 이들의 조합을 포함할 수 있다. 일 실시예에서, 상기 게이트 스페이서(33) 및 상기 게이트 캐핑 패턴(35)은 실리콘 질화물을 포함할 수 있다.
상기 하부 절연층(37)은 상기 소스/드레인 영역들(25) 상을 덮을 수 있다. 상기 하부 절연층(37), 상기 게이트 캐핑 패턴(35), 및 상기 게이트 스페이서(33)의 상면들은 실질적으로 동일한 평면을 이룰 수 있다. 상기 층간 절연층(38)은 상기 하부 절연층(37), 상기 게이트 캐핑 패턴(35), 및 상기 게이트 스페이서(33) 상을 덮을 수 있다. 상기 하부 절연층(37) 및 상기 층간 절연층(38)은 실리콘 산화물, 실리콘 질화물, 실리콘 산질화물, 저-유전물, 또는 이들의 조합을 포함할 수 있다.
상기 소스 플러그(41)는 상기 하부 절연층(37)을 관통하여 상기 소스/드레인 영역들(25) 중 대응하는 하나에 접속될 수 있다. 상기 소스 라인(43)은 상기 층간 절연층(38) 내에 배치되고 상기 소스 플러그(41)에 접속될 수 있다. 상기 소스 플러그(41) 및 상기 소스 라인(43)은 금속, 금속 질화물, 금속 실리사이드, 도전성 카본, 폴리실리콘, 또는 이들의 조합을 포함할 수 있다.
도 15를 참조하면, 상기 층간 절연층(38) 및 상기 하부 절연층(37)을 관통하여 상기 소스/드레인 영역들(25) 중 대응하는 하나에 접속된 하부 플러그(51)가 형성될 수 있다. 상기 하부 플러그(51)는 금속, 금속 질화물, 금속 실리사이드, 도전성 카본, 폴리실리콘, 또는 이들의 조합을 포함할 수 있다. 상기 층간 절연층(38) 및 상기 하부 플러그(51)의 상면들은 실질적으로 동일한 평면 상에 노출될 수 있다.
도 16을 참조하면, 상기 층간 절연층(38) 및 상기 하부 플러그(51) 상에 상부 절연층(75)이 형성될 수 있다. 상기 상부 절연층(75) 내에 제1 전극(61), 버퍼 층(63), 자기 터널 접합(Magnetic Tunnel Junction; MTJ; 69), 캐핑 층(71), 제2 전극(73), 및 스핀-궤도 토크 라인(spin-orbit torque line; SOT line; 85)이 형성될 수 있다.
상기 제1 전극(61)은 상기 하부 플러그(51)에 직접적으로 접촉될 수 있다. 상기 제1 전극(61)은 Ti, TiN, Ta, TaN, W, WN, 또는 이들의 조합을 포함할 수 있다. 예를들면, 상기 제1 전극(61)은 TiN 층을 포함할 수 있다. 상기 버퍼 층(63)은 상기 제1 전극(61) 상에 형성될 수 있다. 상기 버퍼 층(63)은 다층 구조를 포함할 수 있다. 상기 버퍼 층(63)은 씨드 층(seed layer)을 포함할 수 있다. 상기 버퍼 층(63)의 적어도 일부는 다수의 층 사이의 결정 구조를 매칭하는 역할을 할 수 있다. 상기 버퍼 층(63)은 Ta, Ru, Pt, Pd, 또는 이들의 조합을 포함할 수 있다.
상기 자기 터널 접합(69)은 차례로 적층된 스토리지 층(storage layer; 65), 터널 배리어 층(tunnel barrier layer; 67), 및 기준 층(reference layer; 68)을 포함할 수 있다. 상기 스토리지 층(65)은 CoFeB 와 같은 적어도 하나의 제1 자성 층을 포함할 수 있다. 상기 스토리지 층(65)은 자유 층(free layer)을 포함할 수 있다. 상기 스토리지 층(65)은 하나 또는 다수의 에스에이에프(synthetic antiferromagnetic; SAF)구조를 포함할 수 있다. 상기 에스에이에프(SAF)구조는 두 개의 자성 층 및 상기 두 개의 자성 층 사이에 개재된 스페이서 층을 포함할 수 있다. 예를들면, 상기 에스에이에프(SAF)구조는 차례로 적층된 CoFeB 층, Ru 층, 및 CoFe 층을 포함할 수 있다.
상기 터널 배리어 층(67)은 상기 스토리지 층(65) 및 상기 기준 층(68) 사이에 형성될 수 있다. 상기 터널 배리어 층(67)은 MgO, RuO, VO, WO, VdO, TaO, HfO, MoO, 또는 이들의 조합과 같은 금속 산화물을 포함할 수 있다. 예를들면, 상기 터널 배리어 층(67)은 MgO 층 일 수 있다. 상기 기준 층(68)은 CoFeB 와 같은 적어도 하나의 제2 자성 층을 포함할 수 있다. 상기 기준 층(68)은 핀드 층(pinned layer), 고정 층(fixed layer), 또는 이들의 조합을 포함할 수 있다. 일 실시예에서, 상기 기준 층(68)은 하나 또는 다수의 에스에이에프(synthetic antiferromagnetic; SAF)구조를 포함할 수 있다. 상기 에스에이에프(SAF)구조는 두 개의 자성 층 및 상기 두 개의 자성 층 사이에 개재된 스페이서 층을 포함할 수 있다.
상기 캐핑 층(71)은 RuO, MgO, VO, WO, VdO, TaO, HfO, MoO, 또는 이들의 조합과 같은 금속 산화물을 포함할 수 있다. 예를들면, 상기 캐핑 층(71)은 RuO 층 일 수 있다. 상기 제2 전극(73)은 상부전극에 해당될 수 있다. 상기 제2 전극(73)은 Ti, TiN, Ta, TaN, W, WN, 또는 이들의 조합을 포함할 수 있다. 예를들면, 상기 제2 전극(73)은 TiN 층을 포함할 수 있다.
상기 스핀-궤도 토크 라인(85)은 상기 상부 절연층(75) 내에 상기 스토리지 층(65)의 측면에 인접하게 형성될 수 있다. 상기 스핀-궤도 토크 라인(85) 및 상기 스토리지 층(65)의 구성은 도 1 내지 도 13을 통하여 설명된 것과 유사하게 다양한 모양을 갖도록 형성될 수 있다. 상기 상부 절연층(75) 및 상기 제2 전극(73)의 상면들은 실질적으로 동일한 평면을 이룰 수 있다. 상기 상부 절연층(75)은 실리콘 산화물, 실리콘 질화물, 실리콘 산질화물, 저-유전물(low-K dielectrics), 또는 이들의 조합을 포함할 수 있다.
도 17을 참조하면, 상기 상부 절연층(75) 및 상기 제2 전극(73) 상에 상부 배선(77)이 형성될 수 있다. 상기 상부 배선(77)은 상기 상부 절연층(75) 및 상기 제2 전극(73) 상에 형성될 수 있다. 상기 상부 배선(77)은 금속, 금속 질화물, 금속 실리사이드, 도전성 카본, 또는 이들의 조합을 포함할 수 있다. 상기 상부 배선(77)은 상기 제2 전극(73)에 접촉될 수 있다. 상기 상부 배선(77)은 비트 라인에 해당될 수 있다.
이상, 첨부된 도면을 참조하여 본 개시에 따른 실시예들을 설명하였지만, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해하여야 한다.
21: 기판 23: 활성 영역
25: 소스/드레인 영역 26: 게이트 유전층
27: 워크펑션 도전층 28: 게이트 도전층
29: 게이트 전극 31: 스위칭 소자
33: 게이트 스페이서 35: 게이트 캐핑 패턴
37, 38, 75: 절연층 41: 소스 플러그
43: 소스 라인 51: 하부 플러그
61: 제1 전극 63: 버퍼 층
65: 스토리지 층(storage layer)
67: 터널 배리어 층(tunnel barrier layer)
68: 기준 층(reference layer)
69: 자기 터널 접합(Magnetic Tunnel Junction; MTJ)
71: 캐핑 층 73: 제2 전극
77: 상부 배선 83: 스페이서
85: 스핀-궤도 토크 라인(spin-orbit torque line; SOT line)
SL: 소스 라인 BL: 비트 라인
WWL: 쓰기 워드 라인 RWL: 읽기 워드 라인
TR1, TR2, TR3: 스위칭 소자

Claims (20)

  1. 적어도 하나의 제1 자성 층을 갖는 스토리지 층(storage layer);
    상기 스토리지 층과 대향하고 적어도 하나의 제2 자성 층을 갖는 기준 층(Reference layer);
    상기 스토리지 층 및 상기 기준 층 사이의 터널 배리어 층(Tunnel barrier layer); 및
    상기 스토리지 층의 측면에 배치된 적어도 하나의 스핀-궤도 토크 라인(spin-orbit torque line; SOT line)을 포함하는 반도체 소자.
  2. 제1 항에 있어서,
    상기 적어도 하나의 스핀-궤도 토크 라인은 상기 스토리지 층의 측면에 직접적으로 접촉된 반도체 소자.
  3. 제1 항에 있어서,
    상기 적어도 하나의 스핀-궤도 토크 라인은 상기 스토리지 층보다 큰 폭을 갖는 반도체 소자.
  4. 제1 항에 있어서,
    상기 적어도 하나의 스핀-궤도 토크 라인은 상기 기준 층과 이격된 반도체 소자.
  5. 제1 항에 있어서,
    상기 적어도 하나의 스핀-궤도 토크 라인은 상기 터널 배리어 층과 다른 레벨에 배치된 반도체 소자.
  6. 제1 항에 있어서,
    상기 적어도 하나의 스핀-궤도 토크 라인은
    제1 스핀-궤도 토크 라인; 및
    상기 제1 스핀-궤도 토크 라인과 대향하는 제2 스핀-궤도 토크 라인을 포함하되,
    상기 스토리지 층은 상기 제1 스핀-궤도 토크 라인 및 상기 제2 스핀-궤도 토크 라인 사이에 배치된 반도체 소자.
  7. 제1 항에 있어서,
    상기 적어도 하나의 스핀-궤도 토크 라인은 비자성 금속(normal metal)을 포함하는 반도체 소자.
  8. 제1 항에 있어서,
    상기 적어도 하나의 스핀-궤도 토크 라인은 Pt, W, Ta, Ir, Hf, Hf/W, Ti/CoFeB, Bi2Se3, 또는 이들의 조합을 포함하는 반도체 소자.
  9. 제1 항에 있어서,
    상기 적어도 하나의 스핀-궤도 토크 라인 및 상기 스토리지 층 사이의 스페이서를 더 포함하되,
    상기 스페이서는 상기 적어도 하나의 스핀-궤도 토크 라인 및 상기 스토리지 층과 다른 물질을 포함하는 반도체 소자.
  10. 제1 항에 있어서,
    상기 스토리지 층의 자기 분극은 제1 수직 방향 또는 상기 제1 수직 방향과 반대되는 제2 수직 방향을 띄고,
    상기 적어도 하나의 스핀-궤도 토크 라인을 흐르는 전류는 제1 수평 방향 또는 상기 제1 수평 방향과 반대되는 제2 수평 방향으로 흐르는 것을 포함하되,
    상기 제1 수직 방향은 상기 스토리지 층에서 상기 기준 층을 향하는 방향 또는 상기 기준 층에서 상기 스토리지 층을 향하는 방향이고,
    상기 제1 수평 방향은 상기 제1 수직 방향과 교차하는 반도체 소자.
  11. 제10 항에 있어서,
    상기 제1 수평 방향은 상기 제1 수직 방향과 직교하는 반도체 소자.
  12. 제1 항에 있어서,
    소스 라인;
    상기 소스 라인 및 상기 스토리지 층 사이에 접속된 제1 스위칭 소자;
    상기 제1 스위칭 소자의 제1 게이트 전극에 접속된 읽기 워드 라인;
    상기 기준 층에 접속된 비트 라인;
    상기 적어도 하나의 스핀-궤도 토크 라인의 제1 단과 상기 비트 라인 사이에 접속된 제2 스위칭 소자; 및
    상기 제2 스위칭 소자의 제2 게이트 전극에 접속된 쓰기 워드 라인을 더 포함하는 반도체 소자.
  13. 제12 항의 반도체 소자의 쓰기 동작에 있어서,
    상기 쓰기 워드 라인에 드레인 전압(VDD)을 인가하고,
    상기 읽기 워드 라인에 상기 드레인 전압(VDD)을 인가하고,
    상기 비트 라인에 상기 드레인 전압(VDD)을 인가하고, 그리고
    상기 소스 라인을 접지(GND)에 접속하는 것을 포함하는 반도체 소자의 동작 방법.
  14. 제12 항의 반도체 소자의 쓰기 동작에 있어서,
    상기 쓰기 워드 라인에 드레인 전압(VDD)을 인가하고,
    상기 읽기 워드 라인에 상기 드레인 전압(VDD)을 인가하고,
    상기 비트 라인을 접지(GND)에 접속하고, 그리고
    상기 소스 라인에 상기 드레인 전압(VDD)을 인가하는 것을 포함하는 반도체 소자의 동작 방법.
  15. 제12 항의 반도체 소자의 읽기 동작에 있어서,
    상기 쓰기 워드 라인을 접지(GND)에 접속하고,
    상기 읽기 워드 라인에 드레인 전압(VDD)을 인가하고,
    상기 비트 라인에 읽기 전압(Vread)을 인가하고, 그리고
    상기 소스 라인을 상기 접지(GND)에 접속하는 것을 포함하는 반도체 소자의 동작 방법.
  16. 제12 항에 있어서,
    상기 적어도 하나의 스핀-궤도 토크 라인의 상기 제1 단과 대향하는 제2 단과 상기 소스 라인 사이에 접속된 제3 스위칭 소자를 더 포함하되,
    상기 제3 스위칭 소자의 제3 게이트 전극은 상기 쓰기 워드 라인에 접속된 반도체 소자.
  17. 제16 항의 반도체 소자의 쓰기 동작에 있어서,
    상기 쓰기 워드 라인에 드레인 전압(VDD)을 인가하고,
    상기 읽기 워드 라인을 접지(GND)에 접속하고,
    상기 비트 라인에 상기 드레인 전압(VDD)을 인가하고, 그리고
    상기 소스 라인을 상기 접지(GND)에 접속하는 것을 포함하는 반도체 소자의 동작 방법.
  18. 제16 항의 반도체 소자의 쓰기 동작에 있어서,
    상기 쓰기 워드 라인에 드레인 전압(VDD)을 인가하고,
    상기 읽기 워드 라인을 접지(GND)에 접속하고,
    상기 비트 라인을 상기 접지(GND)에 접속하고, 그리고
    상기 소스 라인에 상기 드레인 전압(VDD)을 인가하는 것을 포함하는 반도체 소자의 동작 방법.
  19. 제16 항의 반도체 소자의 읽기 동작에 있어서,
    상기 쓰기 워드 라인을 접지(GND)에 접속하고,
    상기 읽기 워드 라인에 드레인 전압(VDD)을 인가하고,
    상기 비트 라인에 읽기 전압(Vread)을 인가하고, 그리고
    상기 소스 라인을 상기 접지(GND)에 접속하는 것을 포함하는 반도체 소자의 동작 방법.
  20. 기판 상의 제1 전극;
    상기 제1 전극 상에 배치되고, 스토리지 층, 상기 스토리지 층에 대향하는 기준 층, 및 상기 스토리지 층 및 상기 기준 층 사이의 터널 배리어 층을 갖는 자기 터널 접합(MTJ);
    상기 자기 터널 접합 상의 제2 전극; 및
    상기 스토리지 층의 측면에 배치된 적어도 하나의 스핀-궤도 토크 라인(SOT line)을 포함하는 반도체 소자.
KR1020180108943A 2018-09-12 2018-09-12 스핀-궤도 토크 라인을 갖는 반도체 소자 및 그 동작 방법 KR102517332B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020180108943A KR102517332B1 (ko) 2018-09-12 2018-09-12 스핀-궤도 토크 라인을 갖는 반도체 소자 및 그 동작 방법
US16/369,869 US10825497B2 (en) 2018-09-12 2019-03-29 Semiconductor device including spin-orbit torque line and method of operating the same
CN201910603076.6A CN110896128B (zh) 2018-09-12 2019-07-05 包括自旋轨道转矩线的半导体器件及其操作方法
US17/039,455 US11176982B2 (en) 2018-09-12 2020-09-30 Semiconductor device including spin-orbit torque line and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180108943A KR102517332B1 (ko) 2018-09-12 2018-09-12 스핀-궤도 토크 라인을 갖는 반도체 소자 및 그 동작 방법

Publications (2)

Publication Number Publication Date
KR20200030277A true KR20200030277A (ko) 2020-03-20
KR102517332B1 KR102517332B1 (ko) 2023-04-03

Family

ID=69718912

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180108943A KR102517332B1 (ko) 2018-09-12 2018-09-12 스핀-궤도 토크 라인을 갖는 반도체 소자 및 그 동작 방법

Country Status (3)

Country Link
US (2) US10825497B2 (ko)
KR (1) KR102517332B1 (ko)
CN (1) CN110896128B (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11127786B2 (en) 2019-01-28 2021-09-21 Samsung Electronics Co., Ltd. Magnetic memory device
KR20210158290A (ko) * 2020-06-23 2021-12-30 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 유니폴라 선택기를 갖는 메모리 디바이스
KR20220069798A (ko) 2020-11-20 2022-05-27 고려대학교 산학협력단 스핀궤도 토크(spin-orbit torque, SOT) 기반 자기 터널 접합 및 이의 제조 방법
EP4006999A1 (en) 2020-11-20 2022-06-01 Korea University Research and Business Foundation Spin-orbit torque (sot)-based magnetic tunnel junction and method of fabricating the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102604071B1 (ko) * 2018-11-23 2023-11-20 삼성전자주식회사 자기 기억 소자 및 이의 제조 방법
US11177430B2 (en) * 2019-06-17 2021-11-16 Taiwan Semiconductor Manufacturing Co., Ltd. Memory device and manufacturing method thereof
EP3848933A1 (en) * 2020-01-07 2021-07-14 Antaios Sot mram cell and array comprising a plurality of sot mram cells
CN111697130B (zh) * 2020-06-23 2022-05-24 中国科学院半导体研究所 具有水平不对称结构磁性自由层的磁存储单元和逻辑器件
CN112199041B (zh) * 2020-09-24 2022-05-17 浙江驰拓科技有限公司 存储元件、存储电路、数据存取方法及数据存取装置
JP7421462B2 (ja) * 2020-10-16 2024-01-24 株式会社東芝 磁気センサ及び検査装置
CN114566196A (zh) * 2020-11-27 2022-05-31 浙江驰拓科技有限公司 存储芯片
US11600769B2 (en) * 2021-01-08 2023-03-07 Integrated Silicon Solution, (Cayman) Inc. High density spin orbit torque magnetic random access memory
KR102440814B1 (ko) * 2021-07-01 2022-09-07 한국과학기술연구원 강자성체와 중금속 채널의 스핀 전류를 이용한 나노 스핀 소자
KR20240061795A (ko) 2022-11-01 2024-05-08 주식회사 코디 피부 주름 개선 및 항산화 기능을 가지는 자생식물 추출물 및 이를 유효성분으로 포함하는 화장료 조성물

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018022796A (ja) * 2016-08-04 2018-02-08 株式会社東芝 磁気メモリ
KR20180083805A (ko) * 2017-01-13 2018-07-23 한국과학기술원 반도체 소자, 반도체 소자 제어방법 및 광학 스위치

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7099123B2 (en) 2003-07-29 2006-08-29 Hitachi Global Storage Technologies Self-pinned abutted junction heads having an arrangement of a second hard bias layer and a free layer for providing a net net longitudinal bias on the free layer
US7732881B2 (en) 2006-11-01 2010-06-08 Avalanche Technology, Inc. Current-confined effect of magnetic nano-current-channel (NCC) for magnetic random access memory (MRAM)
US8400066B1 (en) 2010-08-01 2013-03-19 Lawrence T. Pileggi Magnetic logic circuits and systems incorporating same
JP5601976B2 (ja) 2010-11-04 2014-10-08 国立大学法人埼玉大学 スピントロニクス装置及び論理演算素子
US8446761B2 (en) * 2010-12-31 2013-05-21 Grandis, Inc. Method and system for providing multiple logic cells in a single stack
US9460397B2 (en) 2013-10-04 2016-10-04 Samsung Electronics Co., Ltd. Quantum computing device spin transfer torque magnetic memory
US20150213867A1 (en) 2014-01-28 2015-07-30 Qualcomm Incorporated Multi-level cell designs for high density low power gshe-stt mram
US9330748B2 (en) * 2014-05-09 2016-05-03 Tower Semiconductor Ltd. High-speed compare operation using magnetic tunnel junction elements including two different anti-ferromagnetic layers
KR102214507B1 (ko) 2014-09-15 2021-02-09 삼성전자 주식회사 자기 메모리 장치
US9300295B1 (en) 2014-10-30 2016-03-29 Qualcomm Incorporated Elimination of undesirable current paths in GSHE-MTJ based circuits
US10333058B2 (en) 2016-03-17 2019-06-25 Cornell University Nanosecond-timescale low-error switching of 3-terminal magnetic tunnel junction circuits through dynamic in-plane-field assisted spin-hall effect
CN107369759B (zh) * 2016-05-11 2021-02-09 上海磁宇信息科技有限公司 一种垂直型磁性随机存储器及其读写方法
US10381552B2 (en) * 2016-06-17 2019-08-13 Western Digital Technologies, Inc. SOT MRAM cell with perpendicular free layer and its cross-point array realization
JP6733496B2 (ja) 2016-10-27 2020-07-29 Tdk株式会社 スピン軌道トルク型磁化反転素子及び磁気メモリ
US10319901B2 (en) * 2016-10-27 2019-06-11 Tdk Corporation Spin-orbit torque type magnetization reversal element, magnetic memory, and high frequency magnetic device
US10396276B2 (en) 2016-10-27 2019-08-27 Tdk Corporation Electric-current-generated magnetic field assist type spin-current-induced magnetization reversal element, magnetoresistance effect element, magnetic memory and high-frequency filter
JP6972542B2 (ja) * 2016-12-02 2021-11-24 Tdk株式会社 スピン流磁化反転素子、磁気抵抗効果素子および磁気メモリ
WO2019031226A1 (ja) * 2017-08-07 2019-02-14 Tdk株式会社 スピン流磁気抵抗効果素子及び磁気メモリ
US10600460B2 (en) * 2017-10-13 2020-03-24 Everspin Technologies, Inc. Perpendicular magnetic memory using spin-orbit torque
WO2019108417A1 (en) * 2017-12-01 2019-06-06 Everspin Technologies, Inc. Spin transfer torque (stt) magnetic memory using spin-orbit torque (sot)
US11114608B2 (en) * 2018-07-25 2021-09-07 Everspin Technologies Inc. Combined spin-orbit torque and spin-transfer torque switching for magnetoresistive devices and methods therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018022796A (ja) * 2016-08-04 2018-02-08 株式会社東芝 磁気メモリ
KR20180083805A (ko) * 2017-01-13 2018-07-23 한국과학기술원 반도체 소자, 반도체 소자 제어방법 및 광학 스위치

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11127786B2 (en) 2019-01-28 2021-09-21 Samsung Electronics Co., Ltd. Magnetic memory device
KR20210158290A (ko) * 2020-06-23 2021-12-30 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 유니폴라 선택기를 갖는 메모리 디바이스
KR20220069798A (ko) 2020-11-20 2022-05-27 고려대학교 산학협력단 스핀궤도 토크(spin-orbit torque, SOT) 기반 자기 터널 접합 및 이의 제조 방법
EP4006999A1 (en) 2020-11-20 2022-06-01 Korea University Research and Business Foundation Spin-orbit torque (sot)-based magnetic tunnel junction and method of fabricating the same
KR20230118765A (ko) 2020-11-20 2023-08-14 고려대학교 산학협력단 스핀궤도 토크(spin-orbit torque, SOT) 기반 자기터널 접합 및 이의 제조 방법

Also Published As

Publication number Publication date
US11176982B2 (en) 2021-11-16
US20210027822A1 (en) 2021-01-28
US20200082858A1 (en) 2020-03-12
CN110896128B (zh) 2024-03-12
CN110896128A (zh) 2020-03-20
KR102517332B1 (ko) 2023-04-03
US10825497B2 (en) 2020-11-03

Similar Documents

Publication Publication Date Title
KR102517332B1 (ko) 스핀-궤도 토크 라인을 갖는 반도체 소자 및 그 동작 방법
US11362268B2 (en) Semiconductor structure and associated operating and fabricating method
US9698199B2 (en) Semiconductor device and method of manufacturing same
US11050016B2 (en) Semiconductor devices including spin-orbit torque line and contact plug
US20200176511A1 (en) Semiconductor device including spin-orbit torque line
US20230363181A1 (en) Bipolar selector with independently tunable threshold voltages
US20160380182A1 (en) Magnetoresistive element
US11825664B2 (en) Memory device and semiconductor die, and method of fabricating memory device
US20150070981A1 (en) Magnetoresistance element and magnetoresistive memory
US11968844B2 (en) Memory device
US20230329005A1 (en) Memory device, semiconductor device, and method of fabricating semiconductor device
US10937952B2 (en) Semiconductor devices including stress-inducing layers and methods of forming the same
US20230134533A1 (en) Magnetoresistive random access memory devices having efficient unit cell layouts
CN110890394B (zh) 磁阻式随机存取存储器
KR100979350B1 (ko) 마그네틱 램 및 그 제조 방법
JP2007157823A (ja) 磁気記憶装置

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant