KR20200026914A - Dna 생산 방법 및 dna 단편 연결용 키트 - Google Patents

Dna 생산 방법 및 dna 단편 연결용 키트 Download PDF

Info

Publication number
KR20200026914A
KR20200026914A KR1020207002744A KR20207002744A KR20200026914A KR 20200026914 A KR20200026914 A KR 20200026914A KR 1020207002744 A KR1020207002744 A KR 1020207002744A KR 20207002744 A KR20207002744 A KR 20207002744A KR 20200026914 A KR20200026914 A KR 20200026914A
Authority
KR
South Korea
Prior art keywords
dna
reaction
reaction solution
exonuclease
fragments
Prior art date
Application number
KR1020207002744A
Other languages
English (en)
Other versions
KR102278495B1 (ko
Inventor
마사유키 스에츠구
타츠아키 쿠라타
Original Assignee
오리시로 제노믹스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오리시로 제노믹스 가부시키가이샤 filed Critical 오리시로 제노믹스 가부시키가이샤
Publication of KR20200026914A publication Critical patent/KR20200026914A/ko
Application granted granted Critical
Publication of KR102278495B1 publication Critical patent/KR102278495B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • C12N15/1031Mutagenizing nucleic acids mutagenesis by gene assembly, e.g. assembly by oligonucleotide extension PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/64General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

본 발명은 2종류 이상의 DNA 단편을 염기서열이 상동인 영역끼리 서로 연결시켜 직쇄상 또는 환상의 DNA를 수득하는 방법 및 이 방법에 이용하는 DNA 단편 연결용 키트를 제공한다. 즉, 본 발명은 2종류 이상의 DNA 단편과, RecA 패밀리 재조합 효소 활성을 갖는 단백질을 함유하는 반응 용액을 조제하고, 상기 반응 용액중에서, 상기 2종류 이상의 DNA 단편을 염기서열이 상동인 영역끼리 또는 염기서열이 상보인 영역끼리 서로 연결시켜 직쇄상 또는 환상의 DNA를 수득하는 DNA 생산 방법이다.

Description

DNA 생산 방법 및 DNA 단편 연결용 키트
본 발명은 2종류 이상의 DNA 단편을 염기서열이 상동인 영역끼리 서로 연결시켜 직쇄상 또는 환상의 DNA를 수득하는 방법 및 이 방법에 이용하는 DNA 단편 연결용 키트에 관한 것이다.
본 출원은 2017년 7월 5일에 출원된 일본 특허출원 2017-132084호 및 2017년 12월 1일에 출원된 일본 특허출원 2017-231732에 기초해 우선권을 주장하고, 그 내용을 여기에 원용한다.
복수의 직쇄상 이중가닥 DNA 단편을 연결해, 직쇄상 또는 환상의 이중가닥 DNA를 생산하는 방법이 있다. 이 방법에 의하면 화학 합성으로는 합성이 곤란한 보다 장쇄의 이중가닥 DNA를 수득할 수 있다. 직쇄상 이중가닥 DNA 단편을 연결하는 방법으로는, 주로, In fusion법(특허 문헌 1 참조)과 Gibson Assembly법(특허 문헌 2 및 특허 문헌 3 참조)이 있다.
In fusion법은, 각 이중가닥 DNA 단편의 말단 15 염기의 상동 서열을 인식해 융합시키는 기능을 갖는 In fusion 효소를 이용해 연결 반응을 행하는 방법이다. 구체적으로는, 우선, PCR를 이용해, 연결시킬 목적의 이중가닥 DNA 단편의 말단에 동일한 염기서열로 이루어지는 상동 영역을 부가한다. 양말단에 15 염기의 상동 영역을 부가한 2개의 이중가닥 DNA 단편끼리를 In fusion 효소와 혼합해 인큐베이션함으로써 연결시킨다.
한편, Gibson Assembly법에서는, 우선, 제1 DNA 분자의 원위 영역과 제2 DNA 분자의 근위 영역을 엑소뉴클레아제(exonuclease) 활성을 갖는 효소로 분해해, 각각의 상동 영역(서로 특이적으로 교잡(hybridization)하기에 충분한 길이의 서열 상동성 영역)을 단일가닥 상태로 한다. 계속해서, 양자를 특이적으로 어닐링(annealing)시켜 연결시킨 후, 갭(gap)이나 닉(nick)을 수복함으로써, 완전한 이중가닥 DNA의 연결체를 얻는다. 예를 들면, 특허 문헌 2에는, 1.6 kbp와 1.4 kbp의 이중가닥 DNA 단편을, 엑소뉴클레아제 활성을 갖는 T4 DNA 폴리메라아제(polymerase)로 분해해 단일가닥 상태로 한 후, RecA 존재하에서 연결시킨 후, dNTP와 DNA 리가아제(ligase)를 첨가하고 T4 DNA 폴리메라아제의 폴리메라아제 활성으로 갭을 매우고 닉을 수복해, 3 kbp의 이중가닥 DNA를 수득한 것이 기재되어 있다.
그 외, RecA를 이용해 직쇄상 이중가닥 DNA 단편을 복수 개 연결시키는 방법으로, 특허 문헌 4에는, RecA 패밀리 재조합 효소 또는 재조합 활성을 갖는 단백질의 존재하에서, 복수의 직쇄상 이중가닥 DNA 단편을 DNA 리가아제와 인큐베이션함으로써, 복수의 직쇄상 이중가닥 DNA 단편이 직렬로 연결된 직쇄상 이중가닥 DNA를 제작하는 방법이 개시되어 있다. 이 방법에서는, RecA 패밀리 재조합 효소 등을 이용함으로써, 직쇄상 이중가닥 DNA 단편내의 양말단의 결합이 억제되고 또한 직쇄상 이중가닥 DNA 단편간의 말단끼리의 결합이 촉진된다.
특허 문헌 1: 미국 특허 제7,575,860호 명세서 특허 문헌 2: 미국 특허 제7,776,532호 명세서 특허 문헌 3: 미국 특허 제8,968,999호 명세서 특허 문헌 4: 일본 특허공개 2016-077180호 공보
In fusion법이나 Gibson Assembly법에서는, 2개의 직쇄상 DNA 단편을 연결시키는 것은 문제 없이 가능했지만, 연결시키는 단편수가 많아질수록 연결 효율이 낮아져, 목적하는 연결체를 얻을 수 없다는 문제가 있다.
본 발명은 2종류 이상의 DNA 단편을 염기서열이 상동인 영역끼리 서로 연결시켜 직쇄상 또는 환상의 DNA를 수득하는 방법 및 이 방법에 이용하는 DNA 단편 연결용 키트를 제공하는 것을 주된 목적으로 한다.
본 발명자들은, 예의 연구한 결과, RecA 패밀리 재조합 효소와 엑소뉴클레아제를 이용함으로써, 2종류 이상의 DNA가 효율적으로 연결된다는 것을 알아내 본 발명을 완성시켰다.
즉, 본 발명에 따른 DNA 생산 방법 및 DNA 단편 연결용 키트는 하기 [1]∼[31]과 같다.
[1] 2종류 이상의 DNA 단편과, RecA 패밀리 재조합 효소 활성을 갖는 단백질을 함유하는 반응 용액을 조제하고,
상기 반응 용액중에서, 상기 2종류 이상의 DNA 단편을 염기서열이 상동인 영역끼리 또는 염기서열이 상보인 영역끼리 서로 연결시켜 직쇄상 또는 환상의 DNA를 수득하는, DNA 생산 방법.
[2] 상기 반응 용액이 엑소뉴클레아제(exonuclease)를 더 함유하는, 상기 [1]의 DNA 생산 방법.
[3] 상기 엑소뉴클레아제가 3'→5' 엑소뉴클레아제인, 상기 [2]의 DNA 생산 방법.
[4] 상기 반응 용액이 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제를더 함유하는, 상기 [1]의 DNA 생산 방법.
[5] 상기 반응 용액이 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제와 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제를 더 함유하는, 상기 [1]의 DNA 생산 방법.
[6] 상기 반응 용액이 뉴클레오시드3인산(nucleoside triphosphate) 또는 디옥시뉴클레오티드3인산(deoxynucleotide triphosphate)의 재생 효소 및 그 기질을 함유하는, 상기 [1]∼[5] 중 어느 하나의 DNA 생산 방법.
[7] 상기 재생 효소가 크레아틴 키나아제(creatine kinase)이고, 상기 기질이 크레아틴인산(creatinephosphoric acid)이거나, 상기 재생 효소가 피루브산 키나아제(pyruvate kinase)이고, 상기 기질이 포스포에놀피루브산(phosphoenolpyruvic acid)이거나, 상기 재생 효소가 아세테이트 키나아제(acetate kinase)이고, 상기 기질이 아세틸인산(acetylphosphoric acid)이거나, 상기 재생 효소가 폴리인산 키나아제(polyphosphate kinase)이고, 상기 기질이 폴리인산(polyphosphoric acid)이거나, 또는 상기 재생 효소가 뉴클레오시드2인산 키나아제(nucleoside diphosphate kinase)이고, 상기 기질이 뉴클레오시드3인산인, 상기 [6]의 DNA 생산 방법.
[8] 상기 2종류 이상의 DNA 단편을 연결시키는 반응의 개시 시점에서의 상기 반응 용액은, 마그네슘 이온원 농도가 0.5∼15 mM이며, 뉴클레오시드3인산 또는 디옥시뉴클레오티드3인산의 농도가 1∼1000 μM인, 상기 [1]∼[7] 중 어느 하나의 DNA 생산 방법.
[9] 상기 2종류 이상의 DNA 단편을 연결시키는 반응을, 25∼48℃의 온도 범위내에서 실시하는, 상기 [1]∼[8] 중 어느 하나의 DNA 생산 방법.
[10] 7개 이상의 DNA 단편을 연결시킨 직쇄상 또는 환상의 DNA를 수득하는, 상기 [1]∼[9] 중 어느 하나의 DNA 생산 방법.
[11] 상기 반응 용액은 염화테트라메틸암모늄 및 디메틸술폭시드로 이루어지는 군으로부터 선택되는 1종 이상을 함유하는, 상기 [1]∼[10] 중 어느 하나의 DNA 생산 방법.
[12] 상기 반응 용액은 폴리에틸렌 글리콜, 알칼리 금속 이온원 및 디티오트레이톨(dithiothreitol)로 이루어지는 군으로부터 선택되는 1종 이상을 함유하는, 상기 [1]∼[11] 중 어느 하나의 DNA 생산 방법.
[13] 상기 RecA 패밀리 재조합 효소 활성을 갖는 단백질이 uvsX이고, 상기 반응 용액은 uvsY를 더 함유하는, 상기 [1]∼[12] 중 어느 하나의 DNA 생산 방법.
[14] 상기 염기서열이 상동인 영역 또는 상기 염기서열이 상보인 영역이 상기 DNA 단편의 말단 또는 그 근방에 존재하는, 상기 [1]∼[13] 중 어느 하나의 DNA 생산 방법.
[15] 상기 염기서열이 상동인 영역 또는 상기 염기서열이 상보인 영역이 10 bp 이상 500 bp 이하의 길이인, 상기 [14]의 DNA 생산 방법.
[16] 상기 2종류 이상의 DNA 단편을 연결시키는 반응의 개시 시점에서의 상기 반응 용액이, 몰 농도가 서로 동일한 2종류 이상의 DNA 단편을 함유하는, 상기 [1]∼[15] 중 어느 하나의 DNA 생산 방법.
[17] 연결에 의해 얻어진 직쇄상 또는 환상의 DNA 중의 갭(gap) 및 닉(nick)을 갭 수복(gap repair) 효소군에 의해 수복하는, 상기 [1]∼[16] 중 어느 하나의 DNA 생산 방법.
[18] 연결에 의해 얻어진 직쇄상 또는 환상의 DNA를 50∼70℃에서 열처리하고, 계속해서 10℃ 이하로 급냉한 후, 갭 수복 효소군에 의해 수복하는, 상기 [17]의 DNA 생산 방법.
[19] 갭 및 닉이 수복된 직쇄상 또는 환상의 이중가닥 DNA를 증폭시키는, 상기 [17] 또는 [18]의 DNA 생산 방법.
[20] 연결에 의해 얻어진 DNA가 직쇄상이고,
상기 직쇄상 DNA를 직접 주형(template)으로 이용해 PCR를 행하는, 상기 [1]∼[16] 중 어느 하나의 DNA 생산 방법.
[21] 연결에 의해 얻어진 DNA가, DnaA 활성을 갖는 효소와 결합 가능한 복제 개시 서열을 포함하는 환상 DNA이고,
상기 환상 DNA와, 환상 DNA의 복제를 촉매하는 제1 효소군과, 오카자키 단편(Okazaki 프라그먼트) 연결 반응을 촉매해, 카테난을 형성하는 2개의 자매 환상 DNA를 합성하는 제2 효소군과, 2개의 자매 환상 DNA의 분리 반응을 촉매하는 제3 효소군과, dNTP를 함유하는 반응 혼합물을 형성하고, 형성한 반응 혼합물을 등온 조건하에서 인큐베이션함으로써, 상기 환상 DNA 중의 갭 및 닉의 수복 및 증폭을 행하는, 상기 [1]∼[16] 중 어느 하나의 DNA 생산 방법.
[22] 연결에 의해 얻어진 환상 DNA를, 미리 50∼70℃에서 열처리하고, 계속해서 10℃ 이하로 급냉한 후에, 상기 반응 혼합물을 형성시키는, 상기 [21]의 DNA 생산 방법.
[23] 연결에 의해 얻어진 직쇄상 또는 환상의 환상 DNA를 미생물에 도입하고, 상기 미생물내에서 상기 환상 DNA 중의 갭 및 닉이 수복된 이중가닥 DNA를 증폭시키는, 상기 [1]∼[16] 중 어느 하나의 DNA 생산 방법.
[24] 2종류 이상의 DNA 단편을 염기서열이 상동인 영역끼리 또는 염기서열이 상보인 영역끼리 서로 연결시켜 직쇄상 또는 환상의 DNA를 수득하기 위한 키트로서,
RecA 패밀리 재조합 효소 활성을 갖는 단백질을 포함하는 DNA 단편 연결용 키트.
[25] 엑소뉴클레아제를 더 포함하는, 상기 [24]의 DNA 단편 연결용 키트.
[26] 상기 엑소뉴클레아제가 3'→5' 엑소뉴클레아제인, 상기 [25]의 DNA 단편 연결용 키트.
[27] 직쇄상 이중가닥 DNA 특이적 엑소뉴클레아제를 더 포함하는, 상기 [24]의 DNA 단편 연결용 키트.
[28] 직쇄상 이중가닥 DNA 특이적 엑소뉴클레아제와 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제를 더 포함하는, 상기 [24]의 DNA 단편 연결용 키트.
[29] 뉴클레오시드3인산 또는 디옥시뉴클레오티드3인산의 재생 효소 및 그 기질을 더 포함하는, 상기 [24]∼[28] 중 어느 하나의 DNA 단편 연결용 키트.
[30] 염화테트라메틸암모늄 및 디메틸술폭시드로 이루어지는 군으로부터 선택되는 1종 이상을 더 포함하는, 상기 [24]∼[29] 중 어느 하나의 DNA 단편 연결용 키트.
[31] 뉴클레오시드3인산, 디옥시뉴클레오티드3인산, 마그네슘 이온원, 알칼리 금속 이온원, 폴리에틸렌 글리콜, 디티오트레이톨 및 완충액으로 이루어지는 군으로부터 선택되는 1종 이상을 더 포함하는, 상기 [24]∼[30] 중 어느 하나의 DNA 단편 연결용 키트.
본 발명에 따른 DNA 생산 방법에 의하면, 복수의 DNA 단편을 효율적으로 연결해 직쇄상 또는 환상의 DNA를 수득할 수 있다.
본 발명에 따른 DNA 단편 연결용 키트에 의하면, 보다 간편하게 상기 DNA 생산 방법을 실시할 수 있고, DNA 단편끼리를 효율적으로 연결시킬 수 있다.
도 1은 본 발명에 따른 DNA 생산 방법의 원리 중, 직쇄상 이중가닥 DNA 단편끼리를 연결하는 형태를 모식적으로 나타낸 도면이다.
도 2는, 실시예 1에서, 7 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 3은, 실시예 2에서, 5 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 4는, 실시예 3에서, 5 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 5는, 실시예 4에서, 7 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 6은, 실시예 5에서, 5 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 7은, 실시예 5에서, 7 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 8은, 실시예 6에서, 7 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 9는, 실시예 7에서, 7 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 10은, 실시예 8에서, 20∼49 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 11은, 실시예 9에서, 25 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 12는, 실시예 10에서, 21 단편 또는 26 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상(a)과, 그 후 RCR 증폭한 반응 혼합물을 아가로스 전기영동해 분리한 밴드의 염색상(b)이다.
도 13은, 실시예 11에서, 26 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상(a)과, 그 후 RCR 증폭한 반응 혼합물을 아가로스 전기영동해 분리한 밴드의 염색상(b)이다.
도 14는, 실시예 12에서, 26 단편 또는 36 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상(a)과, 그 후 RCR 증폭한 반응 혼합물을 아가로스 전기영동해 분리한 밴드의 염색상(b)이다.
도 15은, 실시예 13에서, 본 발명에 따른 연결법(RA)과 NEB법에 의해 26 단편의 연결 반응을 실시한 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상(a)과, 그 후 RCR 증폭한 반응 혼합물을 아가로스 전기영동해 분리한 밴드의 염색상(b)이다.
도 16은, 실시예 14에서, 대장균 게놈 DNA의 Xba I 분해물을 oriC를 포함하는 연결용 단편과 연결해 고리화(cyclization)한 후에 RCR 증폭한 반응 혼합물을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 17은, 실시예 15에서, 크레아틴 키나아제(CK)와 크레아틴인산(CP)으로 이루어지는 ATP 재생계를 포함하는 반응 용액중에서의 10 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 18은, 실시예 16에서, 크레아틴 키나아제와 크레아틴인산으로 이루어지는 ATP 재생계를 포함하는 반응 용액중에서의 10 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 19는, 실시예 17에서, 피루브산 키나아제(PK)와 포스포에놀피루브산(PEP)으로 이루어지는 ATP 재생계를 포함하는 반응 용액중에서의 36 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 20은, 실시예 18에서, 폴리인산 키나아제(PPK)와 폴리인산(PP)으로 이루어지는 ATP 재생계를 포함하는 반응 용액중에서의 10 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 21은, 실시예 19에서, 엑소뉴클레아제 III와 엑소뉴클레아제 I을 모두 함유하는 반응 용액중에서의 10 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 22는, 실시예 20에서, 36 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상(a)과, 그 후 RCR 증폭한 반응 혼합물을 아가로스 전기영동해 분리한 밴드의 염색상(b)이다.
도 23은, 실시예 21에서, 50 단편 또는 36 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상(a)과, 그 후 RCR 증폭한 반응 혼합물을 아가로스 전기영동해 분리한 밴드의 염색상(b)이다.
도 24는, 실시예 21에서, 50 단편의 연결 반응 후 RCR 반응한 반응 용액중의 DNA를 대장균에 도입해, 얻어진 형질 전환체로부터 추출된 DNA를 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 25는, 실시예 21에서, 얻어진 형질 전환체로부터 추출된 DNA를 RCR 증폭해 얻어진 증폭 산물의 효소 분해물을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 26은, 실시예 22에서, 2 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 27은, 실시예 23에서, 엑소뉴클레아제 III와 엑소뉴클레아제 I과 엑소뉴클레아제 T를 함유하는 반응 용액중에서의 10 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 28은, 실시예 24에서, 박테리오파지 RecA 상동체(homologue)인 UvsX를 함유하는 반응 용액중에서의 10 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
도 29는, 실시예 25에서, UvsX와 UvsY를 함유하는 반응 용액중에서의 10 단편의 연결 반응 후의 반응 용액을 아가로스 전기영동해 분리한 밴드의 염색상이다.
<DNA 생산 방법>
본 발명에 따른 DNA 생산 방법은, 서로 염기서열이 상동인 영역(이하, 단순히 '상동 영역'이라고도 한다) 또는 서로 염기서열이 상보인 영역(이하, 단순히 '상보 영역'이라고도 한다)을 갖는 DNA 단편끼리를, 상동 영역끼리 또는 상보 영역끼리 서로 연결시키는 것에 의해, 직쇄상 또는 환상의 DNA를 생산하는 방법이다. 본 발명에 따른 DNA 생산 방법은, RecA 패밀리 재조합 효소 단백질의 존재하에서 연결 반응을 행하기 때문에, 연결 효율이 매우 뛰어나다.
본 발명 및 본원 명세서에 있어서, '염기서열이 상동'이란 '염기서열이 동일'한 것을 의미하고, '염기서열이 상보'란 '염기서열이 서로 상보적'인 것을 의미한다.
구체적으로는, 본 발명에 따른 DNA 생산 방법은, 2종류 이상의 DNA 단편과, RecA 패밀리 재조합 효소 활성을 갖는 단백질(이하, 'RecA 패밀리 재조합 효소 단백질'이라고도 한다)를 함유하는 반응 용액을 조제하고, 상기 반응 용액중에서, 상기 2종류 이상의 DNA 단편을 염기서열이 상동인 영역끼리 또는 상보인 영역끼리 서로 연결시킨다. 이 방법에 의해 직쇄상 또는 환상의 DNA를 얻을 수 있다. 이후, 2개 이상의 DNA 단편이 연결된 직쇄상 또는 환상의 DNA를 '연결체'라고도 한다.
본 발명에 따른 DNA 생산 방법에서는, 연결시키는 DNA 단편은 직쇄상 이중가닥 DNA 단편이라도 되고, 단일가닥 DNA 단편이라도 된다. 즉, 직쇄상 이중가닥 DNA 단편끼리를 연결해도 되고, 직쇄상 이중가닥 DNA 단편과 단일가닥 DNA 단편을 연결해도 되고, 단일가닥 DNA 단편끼리를 연결해도 된다. 1종류 이상의 직쇄상 이중가닥 DNA 단편과 1종류 이상의 단일가닥 DNA 단편을 연결할 수도 있다. 직쇄상 이중가닥 DNA 단편끼리 또는 직쇄상 이중가닥 DNA 단편과 단일가닥 DNA 단편을 연결시키는 경우, 양자는 상동 영역에서 서로 연결된다. 단일가닥 DNA 단편끼리를 연결시키는 경우, 양자는 상보 영역에서 서로 연결된다.
본 발명에 따른 DNA 생산 방법에서 연결시키는 DNA 단편의 적어도 1종류가 직쇄상 이중가닥 DNA 단편인 경우에는, 상기 반응 용액은 엑소뉴클레아제를 더 함유한다.
도 1에 본 발명에 따른 DNA 생산 방법의 원리 중, 직쇄상 이중가닥 DNA 단편끼리를 연결하는 형태를 모식적으로 나타낸다. 우선, 상동 영역(H)을 갖는 직쇄상 이중가닥 DNA 단편(1a)과 직쇄상 이중가닥 DNA 단편(1b)에 대해, 3'→5' 엑소뉴클레아제(2)가 작용해 상동 영역(H)을 단일가닥으로 한다. 단일가닥이 된 상동 영역(H)에, RecA 패밀리 재조합 효소 단백질(3)이 작용해 서로 상보적인 상동 영역(H)끼리가 결합함으로써, 직쇄상 이중가닥 DNA 단편(1a)과 직쇄상 이중가닥 DNA 단편(1b)이 연결된다. 도 1의 우측 도면에 나타낸 바와 같이, 3'→5' 엑소뉴클레아제(2)에 의한 DNA 사슬의 절제는, 직쇄상 이중가닥 DNA 단편(1a)과 직쇄상 이중가닥 DNA 단편(1b)의 어느 한쪽에만 행해져도 무방하다. 예를 들면, 단일가닥 상태가 된 직쇄상 이중가닥 DNA 단편(1a)의 상동 영역(H)이, RecA 패밀리 재조합 효소 단백질(3)의 존재하에서, 이중가닥 상태의 직쇄상 이중가닥 DNA 단편(1b)의 상동 영역(H)에 작용해 양자가 연결된다.
본 발명에 따른 DNA 생산 방법에 있어서, 직쇄상 이중가닥 DNA 단편끼리 또는 직쇄상 이중가닥 DNA 단편과 단일가닥 DNA 단편을 연결시키는 경우, 우선, 이중가닥 DNA 단편을 엑소뉴클레아제에 의해 절제해 상동 영역을 단일가닥화하고, RecA 패밀리 재조합 효소 단백질의 존재하에서 연결 반응을 더 실시한다. 이에 따라, 본 발명에 따른 DNA 생산 방법은 연결 효율이 매우 뛰어나고, 종래는 곤란했던 다수의 직쇄상 이중가닥 DNA 단편을 한번의 반응으로 연결할 수 있다.
본 발명에 따른 DNA 생산 방법에 있어서, 단일가닥 DNA 단편끼리를 연결시키는 경우에는, 각각의 단일가닥 DNA 단편상에서 RecA 패밀리 재조합 효소 단백질이 신속하게 필라멘트를 형성함으로써, 엑소뉴클레아제에 의한 분해가 억제된다. 그 후, 이 RecA 패밀리 재조합 효소 단백질의 작용에 의해 서로 상보적인 상동 영역(H)끼리가 결합함으로써, 단일가닥 DNA 단편끼리가 연결된다.
본 발명에 따른 DNA 생산 방법에서 연결시키는 DNA 단편의 개수로는, 5개(5 단편) 이상이 바람직하고, 7개(7 단편) 이상이 보다 바람직하고, 10개(10 단편) 이상이 더 바람직하며, 20개(20 단편) 이상이라도 된다. 본 발명에 따른 DNA 생산 방법에서 연결시키는 DNA 단편 개수의 상한은 특별히 없지만, 예를 들면 100 단편 이하를 연결시킬 수 있다. 본 발명에 따른 DNA 생산 방법에서는, 반응 조건 등을 최적화함으로써, 예를 들면 50 단편 정도의 직쇄상 이중가닥 DNA 단편을 연결시킬 수도 있다. 본 발명에 따른 DNA 생산 방법에서 연결시키는 DNA 단편은, 모두 다른 종의 DNA 단편끼리를 연결시킬 수 있고, 동종의 DNA 단편을 2 단편 이상 포함하도록 연결시킬 수도 있다.
본 발명에서 연결시키는 2종류 이상의 DNA 단편은, 각각, 다른 DNA 단편 중 적어도 1종류와 연결하기 위한 상동 영역 또는 상보 영역을 포함한다. 본 발명에 따른 DNA 생산 방법에서, 직쇄상 이중가닥 DNA 단편끼리 또는 직쇄상 이중가닥 DNA 단편과 단일가닥 DNA 단편을 연결시키는 경우, 우선, 엑소뉴클레아제에 의해 직쇄상 이중가닥 DNA 단편 중 단일가닥을 절제해 상동 영역을 단일가닥 상태로 한다. 이를 위해, 상동 영역은 직쇄상 이중가닥 DNA 단편의 말단에 존재하고 있는 것이 바람직하지만, 말단의 근방이라도 무방하다. 예를 들면, 상동 영역의 단부 중 직쇄상 이중가닥 DNA 단편의 말단측의 염기가, 이 말단으로부터 300 염기 이내에 있는 것이 바람직하고, 100 염기 이내에 있는 것이 보다 바람직하고, 30 염기 이내에 있는 것이 더 바람직하고, 10 염기 이내에 있는 것이 보다 더 바람직하다. 한편, 단일가닥 DNA 단편끼리를 연결시키는 경우에는, RecA 패밀리 재조합 효소 단백질의 필라멘트에 의해 엑소뉴클레아제에 의한 분해가 억제되고 있기 때문에, 상보 영역은 단일가닥 DNA 단편의 어느 하나에 존재하고 있어도 무방하다.
상동 영역 또는 상보 영역의 염기서열은, 연결시키는 모든 DNA 단편에서 동일한 염기서열로 할 수도 있지만, 원하는 순서로 연결시키기 위해, 연결시키는 DNA 단편의 종류마다 각각 상이한 염기서열로 하는 것이 바람직하다. 예를 들면, 이중가닥 DNA 단편 A와 이중가닥 DNA 단편 B와 이중가닥 DNA 단편 C를 이 순서로 연결시키기 위해서는, 이중가닥 DNA 단편 A의 하류 말단과 이중가닥 DNA 단편 B의 상류 말단에 상동 영역 a를 마련하고, 이중가닥 DNA 단편 B의 하류 말단과 이중가닥 DNA 단편 C의 상류 말단에 상동 영역 b를 마련해 둔다. 이에 따라, 이중가닥 DNA 단편 A와 이중가닥 DNA 단편 B가 상동 영역 a에서 연결되고, 이중가닥 DNA 단편 B와 이중가닥 DNA 단편 C가 상동 영역 b에서 연결되어, 이중가닥 DNA 단편 A와 이중가닥 DNA 단편 B와 이중가닥 DNA 단편 C가 이 순서로 연결된 직쇄상의 DNA를 얻을 수 있다. 이 경우, 이중가닥 DNA 단편 C의 하류 말단과 이중가닥 DNA 단편 A의 상류 말단에 상동 영역 c를 더 마련함으로써, 이중가닥 DNA 단편 A와 이중가닥 DNA 단편 B가 상동 영역 a에서 연결되고, 이중가닥 DNA 단편 B와 이중가닥 DNA 단편 C가 상동 영역 b에서 연결되고, 이중가닥 DNA 단편 C와 이중가닥 DNA 단편 A가 상동 영역 c에서 연결되어, 이중가닥 DNA 단편 A와 이중가닥 DNA 단편 B와 이중가닥 DNA 단편 C가 이 순서로 연결된 환상의 DNA를 얻을 수 있다.
상동 영역 및 상보 영역은, 연결 반응의 반응 용액중에서, 단일가닥끼리가 특이적으로 교잡 가능한 정도의 염기서열이면 되고, 염기쌍(bp) 길이, GC율 등은, 일반적으로 프로브나 프라이머의 설계 방법을 참고하여 적절히 결정할 수 있다. 일반적으로, 비특이적인 교잡를 억제해 목적하는 직쇄상 이중가닥 DNA 단편끼리를 정확하게 연결하기 위해서는, 상동 영역의 염기쌍 길이는 어느 정도의 길이가 필요하지만, 상동 영역의 염기쌍 길이가 너무 길면, 연결 효율이 저하될 우려가 있다. 본 발명에서는, 상동 영역 또는 상보 영역의 염기쌍 길이로는, 10 염기쌍(bp) 이상이 바람직하고, 15 bp 이상이 보다 바람직하고, 20 bp 이상이 더 바람직하다. 또한, 상기 상동 영역 또는 상보 영역의 염기쌍 길이로는, 500 bp 이하가 바람직하고, 300 bp 이하가 보다 바람직하고, 200 bp 이하가 더 바람직하다.
본 발명에 따른 DNA 생산 방법에 있어서, 서로 연결시키는 DNA 단편의 길이는, 특별히 한정되지 않고, 예를 들면 직쇄상 이중가닥 DNA 단편의 경우에는, 50 bp 이상이 바람직하고, 100 bp 이상이 보다 바람직하고, 200 bp 이상이 더 바람직하다. 단일가닥 DNA 단편의 경우에는, 50 염기장(base) 이상이 바람직하고, 100 염기장 이상이 보다 바람직하고, 200 염기장 이상이 더 바람직하다. 본 발명에 따른 DNA 생산 방법에서는, 325 kbp의 이중가닥 DNA 단편도 연결시킬 수 있다. 또한, 연결시키는 DNA 단편의 길이는 종류마다 상이해도 무방하다.
본 발명에 따른 DNA 생산 방법에 있어서, 서로 연결시키는 직쇄상 이중가닥 DNA 단편은, 상동 영역의 전체 영역 또는 그 일부 영역이, 2개의 단일가닥 DNA가 교잡하고 있는 이중가닥 구조이면 된다. 즉, 이 직쇄상 이중가닥 DNA 단편은, 갭이나 닉이 없는 완전한 직쇄상 이중가닥 DNA 단편이라도 되고, 1 또는 복수의 개소가 단일가닥 구조인 직쇄상 DNA 단편이라도 된다. 예를 들면, 연결시키는 직쇄상 이중가닥 DNA 단편은, 평활 말단이라도 되고, 점착 말단이라도 무방하다. 본 발명에 따른 DNA 생산 방법에 의해, 평활 말단의 직쇄상 이중가닥 DNA 단편과 점착 말단의 직쇄상 이중가닥 DNA 단편을 연결시킬 수도 있다.
반응 용액내에 포함시키는 각 DNA 단편의 몰비는, 목적하는 연결체를 구성하는 각 DNA 단편의 분자수의 비에 일치시키는 것이 바람직하다. 연결 반응 개시 시점에서의 반응계내의 DNA 단편의 분자수를 일치시킴으로써, 연결 반응을 보다 효율적으로 실시할 수 있다. 예를 들면, 모두 다른 종의 DNA 단편끼리를 연결시키는 경우에는, 반응 용액에 포함시키는 각 DNA 단편은, 몰 농도가 서로 동일한 것이 바람직하다.
반응 용액내에 포함시키는 DNA 단편의 총량은 특별히 한정되는 것은 아니다. 충분한 양의 연결체가 쉽게 얻어지는 것으로부터, 연결 반응 개시 시점에서 반응 용액내에 포함시키는 DNA 단편의 총농도는 0.01 nM 이상이 바람직하고, 0.1 nM 이상이 보다 바람직하고, 0.3 nM 이상이 더 바람직하다. 연결 효율이 보다 높고, 다단편의 연결에 적합한 것으로부터, 연결 반응 개시 시점에서 반응 용액내에 포함시키는 DNA 단편의 총농도는 100 nM 이하가 바람직하고, 50 nM 이하가 보다 바람직하고, 25 nM 이하가 더 바람직하고, 20 nM 이하가 특히 바람직하다.
본 발명에 따른 DNA 생산 방법에 있어서, 연결 반응에 의해 얻어지는 연결체의 크기는 특별히 한정되지 않는다. 얻어지는 연결체의 크기로는, 예를 들면 1000 염기장 이상이 바람직하고, 5000 염기장 이상이 보다 바람직하고, 10000 염기장 이상이 더 바람직하고, 20000 염기장 이상이 보다 더 바람직하다. 본 발명에 따른 DNA 생산 방법에 의해, 300000 염기장 이상, 바람직하게는 500000 염기장 이상, 보다 바람직하게는 2000000 염기장 이상의 길이의 연결체를 얻을 수도 있다.
본 발명에서 이용되는 엑소뉴클레아제는, 직쇄상 DNA의 3' 말단 또는 5' 말단으로부터 순차적으로 가수분해하는 효소이다. 본 발명에서 이용되는 엑소뉴클레아제로는, 직쇄상 DNA의 3' 말단 또는 5' 말단으로부터 순차적으로 가수분해하는 효소 활성을 갖는 것이라면, 그 종류나 생물학적 유래에 특별히 제한은 없다. 예를 들면, 3' 말단으로부터 순차적으로 가수분해하는 효소(3'→5' 엑소뉴클레아제)로는, 엑소뉴클레아제 III 패밀리형의 AP(apurinic/apyrimidinic) 엔도뉴클레아제(endonuclease) 등의 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제와, DnaQ 슈퍼패밀리 단백질 등의 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제를 들 수 있다. 엑소뉴클레아제 III 패밀리형의 AP 엔도뉴클레아제로는, 예를 들면 엑소뉴클레아제 III(대장균 유래), ExoA(엑소뉴클레아제 III의 고초균(Bacillus subtilis) 상동체), Mth212(엑소뉴클레아제 III의 고세균(Archaebacteria) 상동체), AP 엔도뉴클레아제 I(엑소뉴클레아제 III의 인간 상동체)을 들 수 있다. DnaQ 슈퍼패밀리 단백질로는, 예를 들면 엑소뉴클레아제 I(대장균 유래), 엑소뉴클레아제 T(Exo T)(RNase T로도 알려져 있다), 엑소뉴클레아제 X, DNA 폴리메라아제 III 엡실론 서브유닛(DNA polymerase III epsilon subunit), DNA 폴리메라아제 I, DNA 폴리메라아제 II, T7DNA 폴리메라아제, T4DNA 폴리메라아제, 클레노브 DNA 폴리메라아제 5, Phi29 DNA 폴리메라아제, 리보뉴클레아제 III(RNase D), 올리고리보뉴클레아제(ORN) 등을 들 수 있다. 5' 말단으로부터 순차적으로 가수분해하는 효소(5'→3' 엑소뉴클레아제)로는, λ 엑소뉴클레아제, 엑소뉴클레아제 VIII, T5 엑소뉴클레아제, T7 엑소뉴클레아제 및 RecJ 엑소뉴클레아제 등을 이용할 수 있다.
본 발명에 이용되는 엑소뉴클레아제로는, 직쇄상 이중가닥 DNA 단편 절제의 진행성(processivity)과 RecA 패밀리 재조합 효소 단백질 존재하에서의 연결 효율의 밸런스가 양호하다는 점에서, 3'→5' 엑소뉴클레아제가 바람직하다. 그 중에서도, 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제가 보다 바람직하고, 엑소뉴클레아제 III 패밀리형의 AP 엔도뉴클레아제가 더 바람직하고, 엑소뉴클레아제 III가 특히 바람직하다.
본 발명에서 반응 용액내에 함유시키는 엑소뉴클레아제로는, 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제와 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제의 양쪽 모두인 것이 바람직하다. 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제에 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제를 조합함으로써, 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제를 단독으로 이용한 경우보다 한층 더 연결 효율을 개선시킬 수 있다. 두 3'→5' 엑소뉴클레아제를 병용함으로써 연결 효율이 개선되는 이유는 분명하지 않다. 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제는 3' 돌출 말단을 표적하기 힘든 경우가 많아, 이 3' 돌출 말단이 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제에 의해 분해되는 결과, 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제와 RecA에 의한 연결 반응이 촉진되기 때문이라고 추측된다. 또한, 연결시키는 직쇄상 DNA 단편이, 평활 말단이나 5' 돌출 말단인 경우에도, 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제의 병용에 의해 연결 효율이 개선된다. 이는, 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제와 RecA에 의해 형성된 연결체내에 부차적으로 형성되는 3' 돌출 말단이 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제에 의해 분해되는 결과, 연결 효율이 보다 개선된다고 추측된다. 본 발명에서 반응 용액내에 함유시키는 엑소뉴클레아제로는, 연결 효율이 특히 뛰어난 것으로부터, 엑소뉴클레아제 III 패밀리형의 AP 엔도뉴클레아제와 1종 또는 2종 이상의 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제의 조합인 것이 바람직하고, 엑소뉴클레아제 III 패밀리형의 AP 엔도뉴클레아제와 1종 또는 2종 이상의 DnaQ 슈퍼패밀리 단백질의 조합인 것이 보다 바람직하고, 엑소뉴클레아제 III와 엑소뉴클레아제 I의 조합, 또는 엑소뉴클레아제 III와 엑소뉴클레아제 I과 엑소뉴클레아제 T의 조합이 특히 바람직하다.
본 발명에서 연결 반응을 행하는 반응 용액중에서의 엑소뉴클레아제의 농도로는, 연결 반응 개시 시점에서, 예를 들면 1∼1000 mU/L가 바람직하고, 5∼1000 mU/L가 보다 바람직하고, 5∼500 mU/L가 더 바람직하고, 10∼150 mU/L가 보다 더 바람직하다. 특히, 엑소뉴클레아제가 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제인 경우에는, 연결 반응 개시 시점에서 반응 용액중의 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제의 농도는, 예를 들면 5∼500 mU/L가 바람직하고, 5∼250 mU/L가 보다 바람직하고, 5∼150 mU/L가 더 바람직하고, 10∼150 mU/L가 보다 더 바람직하다. 또한, 엑소뉴클레아제가 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제인 경우에는, 연결 반응 개시 시점에서 반응 용액중의 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제의 농도는, 1∼10000 mU/L가 바람직하고, 100∼5000 mU/L가 보다 바람직하고, 200∼2000 mU/L가 더 바람직하다. 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제와 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제를 병용하는 경우, 연결 반응 개시 시점에서 반응 용액중의 각 엑소뉴클레아제의 농도는 각각 전술한 각 엑소뉴클레아제의 바람직한 농도로 할 수 있다.
본 발명 및 본원 명세서에 있어서, RecA 패밀리 재조합 효소 단백질이란, 단일가닥 상태 또는 이중가닥 상태의 DNA상에서 중합해 필라멘트를 형성하고, ATP(아데노신3인산) 등의 뉴클레오시드3인산에 대한 가수분해 활성을 갖고, 상동 영역을 찾아 상동 재조합을 행하는 기능(RecA 패밀리 재조합 효소 활성)을 갖는 단백질을 의미한다. RecA 패밀리 재조합 효소 단백질로는, 원핵생물 RecA 상동체, 박테리오파지 RecA 상동체, 고세균 RecA 상동체, 진핵생물 RecA 상동체 등을 들 수 있다. 원핵생물 RecA 상동체로는, 대장균 RecA; Thermus thermophiles, Thermus aquaticus 등의 Thermus 속균, Thermococcus 속균, Pyrococcus 속균, Thermotoga 속균 등의 고도호열균(高度好熱菌)에 유래하는 RecA; Deinococcus radiodurans 등의 방사선 내성균에 유래하는 RecA 등을 들 수 있다. 박테리오파지 RecA 상동체로는 T4파지 UvsX 등을 들 수 있고, 고세균 RecA 상동체로는 RadA 등을 들 수 있고, 진핵생물 RecA 상동체로는 Rad51 및 그 패럴로그(paralogue), Dcm1 등을 들 수 있다. 이들 RecA 상동체의 아미노산 서열은 NCBI(http://www.ncbi.nlm.nih.gov/) 등의 데이터베이스로부터 입수할 수 있다.
본 발명에 이용되는 RecA 패밀리 재조합 효소 단백질로는, 야생형 단백질이라도 되고, 야생형 단백질에 1∼30개의 아미노산을 결실, 부가 또는 치환하는 변이를 도입한, RecA 패밀리 재조합 효소 활성을 유지하는 개변체라도 무방하다. 이 개변체로는, 야생형 단백질 중의 상동 영역을 찾는 기능을 항진시키는 아미노산 치환 변이를 도입한 개변체, 야생형 단백질의 N말단 또는 C말단에 각종 태그가 부가된 개변체, 내열성을 향상시킨 개변체(국제 공개공보 제2016/013592호) 등을 들 수 있다. 이 태그로는, 예를 들면 His 태그, HA(hemagglutinin) 태그, Myc 태그 및 Flag 태그 등의 재조합 단백질의 발현 또는 정제에서 범용되는 태그를 이용할 수 있다. 야생형 RecA 패밀리 재조합 효소 단백질이란, 자연계에서 분리된 생물에 유지되고 있는 RecA 패밀리 재조합 효소 단백질의 아미노산 서열과 동일한 아미노산 서열로 이루어지는 단백질을 의미한다.
본 발명에 이용되는 RecA 패밀리 재조합 효소 단백질로는, RecA 패밀리 재조합 효소 활성을 유지하는 개변체가 바람직하다. 이 개변체로는, 예를 들면 대장균 RecA의 203번째의 아미노산 잔기 페닐알라닌을 트립토판으로 치환한 F203W 변이체나, 각종 RecA 상동체 중, 대장균 RecA의 203번째의 페닐알라닌에 상당하는 페닐알라닌을 트립토판으로 치환한 변이체를 들 수 있다.
본 발명에서 연결 반응을 행하는 반응 용액중에서의 RecA 패밀리 재조합 효소 단백질의 양은 특별히 한정되지 않는다. 본 발명에서 연결 반응을 행하는 반응 용액중에서의 RecA 패밀리 재조합 효소 단백질의 농도로는, 연결 반응 개시 시점에서, 예를 들면 0.01∼100 μM이 바람직하고, 0.1∼100 μM이 보다 바람직하고, 0.1∼50 μM이 더 바람직하고, 0.5∼10 μM이 보다 더 바람직하고, 1.0∼5.0 μM이 특히 바람직하다.
RecA 패밀리 재조합 효소 단백질이 RecA 패밀리 재조합 효소 활성을 발휘하기 위해서는, 뉴클레오시드3인산 또는 디옥시뉴클레오티드3인산이 필요하다. 이 때문에, 본 발명에서 연결 반응을 행하는 반응 용액은, 뉴클레오시드3인산 및 디옥시뉴클레오티드3인산의 적어도 하나를 함유한다. 본 발명에서 연결 반응의 반응 용액에 함유시키는 뉴클레오시드3인산으로는, ATP, GTP(구아노신3인산), CTP(시티딘3인산), UTP(우리딘3인산), m5UTP(5-메틸우리딘3인산)로 이루어지는 군으로부터 선택되는 1종 이상을 이용하는 것이 바람직하고, ATP를 이용하는 것이 특히 바람직하다. 본 발명에서 연결 반응의 반응 용액에 함유시키는 디옥시뉴클레오티드3인산으로는, dATP(데옥시아데노신3인산), dGTP(데옥시구아노신3인산, dCTP(데옥시시티딘3인산) 및 dTTP(데옥시티미딘3인산)로 이루어지는 군으로부터 선택되는 1종 이상을 이용하는 것이 바람직하고, dATP를 이용하는 것이 특히 바람직하다. 반응 용액에 함유되는 뉴클레오시드3인산 및 디옥시뉴클레오티드3인산의 총량은, RecA 패밀리 재조합 효소 단백질이 RecA 패밀리 재조합 효소 활성을 발휘하는데 충분한 양이라면 특별히 한정되지 않는다. 본 발명에서 연결 반응을 행하는 반응 용액중에서의 뉴클레오시드3인산 농도 또는 디옥시뉴클레오티드3인산 농도로는, 연결 반응 개시 시점에서, 예를 들면 1 μM 이상이 바람직하고, 10 μM 이상이 보다 바람직하고, 30 μM 이상이 더 바람직하다. 한편, 반응 용액의 뉴클레오시드3인산 농도가 너무 높은 경우에는, 다단편 연결 효율은 오히려 저하될 우려가 있다. 이 때문에, 연결 반응 개시 시점에서 반응 용액의 뉴클레오시드3인산 농도 또는 디옥시뉴클레오티드3인산 농도는, 1000 μM 이하가 바람직하고, 500 μM 이하가 보다 바람직하고, 300 μM 이하가 더 바람직하다.
RecA 패밀리 재조합 효소 단백질이 RecA 패밀리 재조합 효소 활성을 발휘하기 위해서, 그리고 엑소뉴클레아제가 엑소뉴클레아제 활성을 발휘하기 위해서는, 마그네슘 이온(Mg2+)이 필요하다. 이를 위해, 본 발명에서 연결 반응을 행하는 반응 용액은 마그네슘 이온원을 함유한다. 마그네슘 이온원은 반응 용액중에 마그네슘 이온을 제공하는 물질이다. 예를 들면, 아세트산마그네슘[Mg(OAc)2], 염화마그네슘[MgCl2], 황산마그네슘[MgSO4] 등의 마그네슘염을 들 수 있다. 바람직한 마그네슘 이온원은 아세트산마그네슘이다.
본 발명에서 연결 반응을 행하는 반응 용액의 마그네슘 이온원 농도는, RecA 패밀리 재조합 효소 단백질이 RecA 패밀리 재조합 효소 활성을 발휘할 수 있고 또한 엑소뉴클레아제가 엑소뉴클레아제 활성을 발휘할 수 있는 농도라면 되고, 특별히 한정되는 것은 아니다. 연결 반응 개시 시점에서의 반응 용액의 마그네슘 이온원 농도로는, 예를 들면 0.5 mM 이상이 바람직하고, 1 mM 이상이 보다 바람직하다. 한편, 반응 용액의 마그네슘 이온 농도가 너무 높은 경우에는, 엑소뉴클레아제 활성이 너무 강해져 다단편 연결 효율이 오히려 저하될 우려가 있다. 이 때문에, 연결 반응 개시 시점에서의 반응 용액의 마그네슘 이온원 농도로는, 예를 들면 20 mM 이하가 바람직하고, 15 mM 이하가 보다 바람직하고, 12 mM 이하가 더 바람직하고, 10 mM 이하가 보다 더 바람직하다.
본 발명에서 연결 반응을 행하는 반응 용액은, 예를 들면 완충액에, DNA 단편과, RecA 패밀리 재조합 효소 단백질과, 엑소뉴클레아제와, 뉴클레오시드3인산 및 디옥시뉴클레오티드3인산의 적어도 한쪽과, 마그네슘 이온원을 첨가함으로써 조제된다. 완충액으로는, pH 7∼9, 바람직하게는 pH 8에서 이용하는데 적합한 완충액이라면 특별히 제한은 없다. 예를 들면, Tris-HCl, Tris-OAc, Hepes-KOH, 인산 완충액, MOPS-NaOH, Tricine-HCl 등을 들 수 있다. 바람직한 완충액은 Tris-HCl 또는 Tris-OAc이다. 완충액의 농도는 당업자가 적절하게 선택할 수 있어 특별히 한정되지 않지만, Tris-HCl 또는 Tris-OAc의 경우, 예를 들면 10 mM∼100 mM, 바람직하게는 10 mM∼50 mM, 보다 바람직하게는 20 mM의 농도를 선택할 수 있다.
본 발명에서 RecA 패밀리 재조합 효소 단백질로서 UvsX를 이용하는 경우에는, 연결 반응을 행하는 반응 용액에 T4파지 UvsY를 더 함유시키는 것이 바람직하다. UvsY는 T4파지에서의 상동 재조합의 메디에이터이다. T4파지에서는, 우선, 단일가닥 DNA는 먼저 gp32(단일가닥 DNA 결합 단백질)와 결합해 단일가닥 DNA-gp32 복합체가 형성된다. 계속해서, 이 복합체중의 gp32가 uvsX로 치환되도록 하여 단일가닥 DNA와 uvsX가 결합해 상동 재조합이 행해진다. UvsY는 단일가닥 DNA-gp32의 상호작용을 불안정화시키고, 단일가닥 DNA-uvsX의 상호작용을 안정화시킴으로써, 단일가닥 DNA와 uvsX의 결합을 촉진하고, 나아가서는 상동 재조합 반응을 촉진한다(Bleuit et al., Proceedings of the National Academy of Sciences of the United States of America, 2001, vol. 98(15), p. 8298-8305). 본 발명에서도, UvsX에 UvsY를 병용함으로써 연결 효율이 더욱 촉진된다.
본 발명에서 연결 반응을 행하는 반응 용액에는, DNA 단편과, RecA 패밀리 재조합 효소 단백질과, 엑소뉴클레아제와, 뉴클레오시드3인산 및 디옥시뉴클레오티드3인산의 적어도 한쪽과, 마그네슘 이온원 외에, 뉴클레오시드3인산 또는 디옥시뉴클레오티드3인산의 재생 효소와 그 기질을 더 함유하는 것이 바람직하다. 반응 용액중에서 뉴클레오시드3인산 또는 디옥시뉴클레오티드3인산을 재생할 수 있는 것에 의해, 다수의 DNA 단편을 보다 효율적으로 연결시킬 수 있다. 뉴클레오시드3인산 또는 디옥시뉴클레오티드3인산을 재생하기 위한 재생 효소와 그 기질의 조합으로는, 크레아틴 키나아제와 크레아틴인산염의 조합, 피루브산 키나아제와 포스포에놀피루브산의 조합, 아세테이트 키나아제와 아세틸인산의 조합, 폴리인산 키나아제와 폴리인산의 조합, 뉴클레오시드2인산 키나아제와 뉴클레오시드3인산의 조합을 들 수 있다. 뉴클레오시드2인산 키나아제의 기질(인산 공급원)이 되는 뉴클레오시드3인산은, ATP, GTP, CTP, UTP 중 어느 하나라도 무방하다. 그 외에도, 재생 효소로는 미오키나아제(myokinase)를 들 수 있다.
본 발명에서 연결 반응을 행하는 반응 용액중의 뉴클레오시드3인산 재생 효소 및 그 기질의 농도는, 반응 용액중에서 연결 반응시에 뉴클레오시드3인산의 재생이 가능하게 되는 충분한 농도라면 특별히 한정되지 않는다. 예를 들면, 크레아틴 키나아제와 크레아틴인산염을 이용하는 경우, 본 발명에서 연결 반응을 행하는 반응 용액에 함유시키는 크레아틴 키나아제의 농도를 바람직하게는 1∼1000 ng/L, 보다 바람직하게는 5∼1000 ng/L, 더 바람직하게는 5∼500 ng/L, 보다 더 바람직하게는 5∼250 ng/L로 하고, 크레아틴인산염의 농도를 바람직하게는 0.4∼20 mM, 보다 바람직하게는 0.4∼10 mM, 더 바람직하게는 1∼7 mM로 할 수 있다.
다단편을 목적하는 순서로 연결시키는 경우, 상동 영역 또는 상보 영역의 염기서열은, 연결하는 DNA 단편의 조합마다 상이한 것이 바람직하다. 그러나, 동일한 온도 조건하에서는, G(구아닌 염기)와 C(시트신 염기)의 함유율이 높은 상동 영역은 단일가닥으로 2차 구조를 형성하기 쉽다. 한편, A(아데닌 염기)와 T(티민 염기)의 함유율이 높은 상동 영역에서는 교잡 효율이 낮아진다. 이러한 경향에 의해, 연결 효율도 낮아질 우려가 있다. 단일가닥 DNA의 2차 구조 형성을 억제해 특이적 교잡를 촉진함으로써, DNA 단편의 연결을 촉진시킬 수 있다.
따라서, 본 발명에서 연결 반응을 행하는 반응 용액에는, 단일가닥 DNA의 2차 구조 형성을 억제해 특이적 교잡를 촉진하는 물질을 첨가하는 것이 바람직하다. 이 물질로는, 디메틸술폭시드(DMSO), 염화테트라메틸암모늄(TMAC)을 들 수 있다. DMSO는 GC가 풍부한 염기쌍의 2차 구조 형성을 억제하는 작용이 있다. TMAC는 특이적 교잡를 촉진하는 작용이 있다. 본 발명에 있어서, 연결 반응을 행하는 반응 용액에 단일가닥 DNA의 2차 구조 형성을 억제해 특이적 교잡를 촉진하는 물질을 함유시키는 경우, 이 물질의 농도는 해당 물질에 의한 DNA 단편의 연결 촉진 효과가 얻어지는 농도라면 특별히 한정되지 않는다. 예를 들면, 이 물질로서 DMSO를 이용하는 경우, 본 발명에서 연결 반응을 행하는 반응 용액에 함유시키는 DMSO의 농도로는, 5∼30 용량%가 바람직하고, 8∼25 용량%가 보다 바람직하고, 8∼20 용량%가 더 바람직하다. 이 물질로서 TMAC를 이용하는 경우, 본 발명에서 연결 반응을 행하는 반응 용액에 함유시키는 TMAC의 농도로는, 60∼300 mM가 바람직하고, 100∼250 mM가 보다 바람직하고, 100∼200 mM가 더 바람직하다.
본 발명에서 연결 반응을 행하는 반응 용액에는, 고분자 혼잡 효과를 갖는 물질을 더 첨가하는 것이 바람직하다. 고분자 혼잡 효과는 DNA 분자끼리의 상호작용을 증강해, DNA 단편의 연결을 촉진시킬 수 있다. 이러한 물질로는, 폴리에틸렌 글리콜(PEG) 200∼20000, 폴리비닐 알코올(PVA) 200∼20000, 덱스트란 40∼70, 피콜 70, 소혈청 알부민(BSA)을 들 수 있다. 본 발명에서, 연결 반응을 행하는 반응 용액에 고분자 혼잡 효과를 갖는 물질을 함유시키는 경우, 이 물질의 농도는 해당 물질에 의한 DNA 단편의 연결 촉진 효과가 얻어지는 농도라면 특별히 한정되지 않는다. 예를 들면, 이 물질로서 PEG 8000을 이용하는 경우, 본 발명에서 연결 반응을 행하는 반응 용액에 함유시키는 PEG 8000의 농도로는 2∼20 질량%가 바람직하고, 2∼10 질량%가 보다 바람직하고, 4∼6 질량%가 더 바람직하다.
본 발명에서 연결 반응을 행하는 반응 용액에는, 알칼리 금속 이온원을 더 함유시켜도 된다. 알칼리 금속 이온원은, 반응 용액중에 알칼리 금속 이온을 제공하는 물질이다. 본 발명에서 연결 반응을 행하는 반응 용액에 함유시키는 알칼리 금속 이온으로는, 나트륨 이온(Na+) 또는 칼륨 이온(K+)이 바람직하다. 알칼리 금속 이온원으로는, 예를 들면 글루탐산 칼륨[KGlu], 아스파라긴산 칼륨, 염화 칼륨, 아세트산 칼륨[KOAc], 글루탐산 나트륨, 아스파라긴산 나트륨, 염화 나트륨 및 아세트산 나트륨을 들 수 있다. 본 발명에서 연결 반응을 행하는 반응 용액에 함유시키는 알칼리 금속 이온원으로는, 글루탐산 칼륨 또는 아세트산 칼륨이 바람직하고, 특히 다단편의 연결 효율이 개선되는 것으로부터 글루탐산 칼륨이 바람직하다. 연결 반응 개시 시점에서의 반응 용액의 알칼리 금속 이온원 농도로는, 특별히 한정되지 않고, 예를 들면 반응 용액중에 알칼리 금속 이온을 바람직하게는 10 mM 이상, 보다 바람직하게는 30∼300 mM의 범위내, 더 바람직하게는 50∼150 mM의 범위내에서 제공하는 농도로 조정할 수 있다.
본 발명에서 연결 반응을 행하는 반응 용액에는, 환원제를 더 함유시켜도 된다. 환원제로는, 예를 들면 디티오트레이톨(DTT), β-메르캅토에탄올(2-메르캅토에탄올), 트리스(2-카복시에틸)포스핀(TCEP) 및 글루타티온을 들 수 있다. 바람직한 환원제는 DTT이다. 환원제는 반응 용액중에 1.0∼15.0 mM, 바람직하게는 2.0∼10.0 mM 함유되어도 된다.
본 발명에 따른 DNA 생산 방법에 있어서, 연결 반응은, 완충액에, 2종류 이상의 DNA 단편과, RecA 패밀리 재조합 효소 단백질과, 뉴클레오시드3인산과, 마그네슘 이온원과, 필요에 따라, 엑소뉴클레아제와, 뉴클레오시드3인산 재생 효소 및 그 기질의 세트, 단일가닥 DNA의 2차 구조 형성을 억제해 특이적 교잡를 촉진하는 물질, 고분자 혼잡 효과를 갖는 물질, 알칼리 금속 이온원 및 환원제로 이루어지는 군으로부터 선택되는 1종 이상을 함유시켜 조제한 반응 용액을, 이 반응 용액중의 RecA 패밀리 재조합 효소 단백질 및 엑소뉴클레아제가 각각의 효소 활성을 발휘할 수 있는 온도의 등온 조건하에서, 소정 시간 인큐베이션함으로써 실시한다. 연결 반응의 반응 온도로는, 25∼48℃의 온도 범위내인 것이 바람직하고, 27∼45℃의 온도 범위내인 것이 보다 바람직하다. 특히, 상동 영역 또는 상보 영역의 길이가 50 염기 이상인 경우에는, 연결 반응의 반응 온도는 30∼45℃의 온도 범위내인 것이 바람직하고, 37∼45℃의 온도 범위내인 것이 보다 바람직하고, 40∼43℃의 온도 범위내인 것이 더 바람직하다. 한편, 상동 영역 또는 상보 영역의 길이가 50 염기 이하인 경우에는, 연결 반응의 반응 온도는 27∼43℃의 온도 범위내인 것이 바람직하고, 27∼37℃의 온도 범위내인 것이 보다 바람직하고, 27∼33℃의 온도 범위내인 것이 더 바람직하다. 본원 명세서에서 '등온 조건하'란, 반응중에 설정한 온도에 대해 ±3℃ 또는 ±1℃의 온도 범위내로 유지하는 것을 의미한다. 연결 반응의 반응 시간은, 특별히 한정되지 않고, 예를 들면 15분간∼6시간, 바람직하게는 15분간∼2시간으로 할 수 있다.
연결 반응에 의해 얻어진 연결체(직쇄상 또는 환상의 DNA)에는, 도 1에 나타낸 바와 같이, 갭이나 닉이 존재한다. 갭은 이중가닥 DNA에서 1개 또는 복수 개가 연속된 뉴클레오티드가 결여된 상태이고, 닉은 이중가닥 DNA에서 이웃하는 뉴클레오티드 사이의 인산디에스테르 결합이 절단된 상태이다. 따라서, 본 발명에 따른 DNA 생산 방법에서는, 연결 반응 후, 얻어진 연결체내의 갭 및 닉을 갭 수복(gap repair) 효소군과 dNTP에 의해 수복하는 것이 바람직하다. 갭 및 닉을 수복함으로써, 연결체를 완전한 이중가닥 DNA로 할 수 있다.
구체적으로는, 연결 반응 후의 반응 용액에, 갭 수복 효소군과 dNTP를 첨가하고, 갭 수복 효소군이 효소 활성을 발휘할 수 있는 온도의 등온 조건하에서 소정 시간 인큐베이션함으로써, 연결체의 갭 및 닉을 수복할 수 있다. 갭 수복 효소군을 구성하는 효소는, 이중가닥 DNA의 갭 및 닉을 수복할 수 있는 효소군이라면, 그 종류나 생물학적 유래에 특별히 제한은 없다. 갭 수복 효소군으로는, 예를 들면 DNA 폴리메라아제 활성을 갖는 효소와 DNA 리가아제 활성을 갖는 효소를 조합해 사용할 수 있다. DNA 리가아제로서 대장균 유래의 DNA 리가아제를 이용하는 경우, 그 보조인자인 NAD(니코틴아미드 아데닌디뉴클레오티드)가 반응액중에 0.01∼1.0 mM의 범위로 함유된다. 갭 수복 효소군에 의한 처리는, 예를 들면 25∼40℃에서 5∼120분간, 바람직하게는 10∼60분간 행해져도 된다.
dNTP는 dATP, dGTP, dCTP 및 dTTP의 총칭이다. 수복 반응의 반응 개시 시점에 반응 용액중에 함유되는 dNTP의 농도는, 예를 들면 0.01∼1 mM의 범위이면 되고, 바람직하게는 0.05∼1 mM의 범위라도 된다.
갭 및 닉이 수복된 연결체(직쇄상 또는 환상의 DNA)를 더 증폭하는 것도 바람직하다. 갭 및 닉이 수복된 연결체를 증폭하는 방법으로는, 특별히 한정되지 않고, 일반적으로 직쇄상 또는 환상의 DNA를 주형으로 하여 증폭하는 방법으로 증폭할 수 있다.
본 발명에 따른 DNA 생산 방법에 있어서, 연결 반응 후, 갭 및 닉의 수복 반응을 더 실시함으로써 얻어진 연결체가 직쇄상인 경우, 이 연결체는 폴리메라아제 연쇄 반응(PCR)에 의해 증폭하는 것이 바람직하다. PCR은 통상의 방법에 의해 실시할 수 있다.
본 발명에 따른 DNA 생산 방법에 있어서, 연결 반응 후, 갭 및 닉의 수복 반응을 더 실시함으로써 얻어진 연결체가 환상인 경우는, 이 연결체는 회전환 증폭법(RCA: Rolling Circle Amplification)에 의해 증폭하는 것이 바람직하다. RCA는 통상의 방법에 의해 실시할 수 있다.
본 발명에 따른 DNA 생산 방법에 있어서, 연결 반응에 의해 얻어진 연결체가 환상이고, 또한 DnaA 활성을 갖는 효소와 결합 가능한 복제 개시 서열(origin of chromosome(oriC))을 포함하는 경우, 이 연결체는, 복제 사이클 반응(RCR: Replication Cycle Reaction) 증폭법에 의해 증폭하는 것이 바람직하다. 연결 반응에 의해 얻어진 연결체를 그대로 직접, 즉, 갭 및 닉의 수복 반응을 실시하지 않고, 주형으로 하여 RCR 증폭을 실시함으로써, 갭 및 닉이 없는 완전한 이중가닥 DNA의 환상의 연결체를 증폭 산물로서 얻을 수 있다.
복제 개시 서열로는, 예를 들면 대장균, 고초균 등의 세균에 존재하는 공지의 복제 개시 서열을 NCBI 등의 공적인 데이터베이스로부터 입수할 수 있다. 또한, DnaA 활성을 갖는 효소와 결합 가능한 DNA 단편을 클로닝하고, 그 염기서열을 해석함으로써 복제 개시 서열을 얻을 수도 있다.
RCR 증폭법은, 구체적으로는, 주형으로 하는 연결 반응에 의해 얻어진 환상의 연결체와, 환상 DNA의 복제를 촉매하는 제1 효소군과, 오카자키 단편 연결 반응을 촉매해, 카테난을 형성하는 2개의 자매 환상 DNA를 합성하는 제2 효소군과, 2개의 자매 환상 DNA의 분리 반응을 촉매하는 제3 효소군과, dNTP를 함유하는 반응 혼합물을 형성하고, 형성한 반응 혼합물을 인큐베이션함으로써 실시할 수 있다. 카테난을 형성하는 2개의 자매 환상 DNA란, DNA 복제 반응에 의해 합성된 2개의 환상 DNA가 연결된 상태에 있는 것을 말한다.
환상 DNA의 복제를 촉매하는 제1 효소군으로는, 예를 들면 Kaguni JM & Kornberg A. Cell. 1984, 38:183-90에 기재된 효소군을 이용할 수 있다. 구체적으로는, 제1 효소군으로서, 이하: DnaA 활성을 갖는 효소, 1종 이상의 핵상체(nucleoid) 단백질, DNA 자이레이스(DNA gyrase) 활성을 갖는 효소 또는 효소군, 단일가닥 DNA 결합 단백질(single-strand binding protein(SSB)), DnaB형 헬리카제(helicase) 활성을 갖는 효소, DNA 헬리카제 로더(helicase loader) 활성을 갖는 효소, DNA 프리마제(primase) 활성을 갖는 효소, DNA 클램프 활성을 갖는 효소, 및 DNA 폴리메라아제 III 활성을 갖는 효소 또는 효소군으로 이루어지는 군으로부터 선택되는 효소 또는 효소군의 하나 이상, 또는 이들 효소 또는 효소군의 모든 조합을 예시할 수 있다.
DnaA 활성을 갖는 효소로는, 대장균의 개시 단백질인 DnaA와 같은 개시 활성을 갖는 효소라면, 그 생물학적 유래에 특별히 제한은 없지만, 예를 들면 대장균 유래의 DnaA를 바람직하게 이용할 수 있다. 대장균 유래의 DnaA는 단량체로서, 반응 혼합물중에 1 nM∼10 μM의 범위로 함유되어도 되고, 바람직하게는 1 nM∼5 μM, 1 nM∼3 μM, 1 nM∼1.5 μM, 1 nM∼1.0 μM, 1∼500 nM, 50∼200 nM, 50∼150 nM의 범위로 함유되어도 되지만, 이것으로 한정되지 않는다.
핵상체 단백질은 핵상체에 포함되는 단백질을 말한다. 본 발명에 이용하는 1종 이상의 핵상체 단백질은, 대장균의 핵상체 단백질과 같은 활성을 갖는 효소라면, 그 생물학적 유래에 특별히 제한은 없지만, 예를 들면 대장균 유래의 IHF, 즉 IhfA 및/또는 IhfB의 복합체(헤테로다이머 또는 호모다이머)나, 대장균 유래의 HU, 즉 hupA 및 hupB의 복합체를 바람직하게 이용할 수 있다. 대장균 유래의 IHF는 헤테로/호모다이머로서 반응 혼합물중에 5∼400 nM의 범위로 함유되어도 되고, 바람직하게는 5∼200 nM, 5∼100 nM, 5∼50 nM, 10∼50 nM, 10∼40 nM, 10∼30 nM의 범위로 함유되어도 되지만, 이것으로 한정되지 않는다. 대장균 유래의 HU는 반응 혼합물중에 1∼50 nM의 범위로 함유되어도 되고, 바람직하게는 5∼50 nM, 5∼25 nM의 범위로 함유되어도 되지만, 이것으로 한정되지 않는다.
DNA 자이레이스 활성을 갖는 효소 또는 효소군으로는, 대장균의 DNA 자이레이스와 같은 활성을 갖는 효소라면, 그 생물학적 유래에 특별히 제한은 없지만, 예를 들면 대장균 유래의 GyrA 및 GyrB로 이루어지는 복합체를 바람직하게 이용할 수 있다. 대장균 유래의 GyrA 및 GyrB로 이루어지는 복합체는 헤테로테트라머로서 반응 혼합물중에 20∼500 nM의 범위로 함유되어도 되고, 바람직하게는 20∼400 nM, 20∼300 nM, 20∼200 nM, 50∼200 nM, 100∼200 nM의 범위로 함유되어도 되지만, 이것으로 한정되지 않는다.
SSB로는, 대장균의 단일가닥 DNA 결합 단백질과 같은 활성을 갖는 효소라면, 그 생물학적 유래에 특별히 제한은 없지만, 예를 들면 대장균 유래의 SSB를 바람직하게 이용할 수 있다. 대장균 유래의 SSB는 호모테트라머로서 반응 혼합물중에 20∼1000 nM의 범위로 함유되어도 되고, 바람직하게는 20∼500 nM, 20∼300 nM, 20∼200 nM, 50∼500 nM, 50∼400 nM, 50∼300 nM, 50∼200 nM, 50∼150 nM, 100∼500 nM, 100∼400 nM의 범위로 함유되어도 되지만, 이것으로 한정되지 않는다.
DnaB형 헬리카제 활성을 갖는 효소로는, 대장균의 DnaB와 같은 활성을 갖는 효소라면, 그 생물학적 유래에 특별히 제한은 없지만, 예를 들면 대장균 유래의 DnaB를 바람직하게 이용할 수 있다. 대장균 유래의 DnaB는 호모헥사머로서 반응 혼합물중에 5∼200 nM의 범위로 함유되어도 되고, 바람직하게는 5∼100 nM, 5∼50 nM, 5∼30 nM의 범위로 함유되어도 되지만, 이것으로 한정되지 않는다.
DNA 헬리카제 로더 활성을 갖는 효소로는, 대장균의 DnaC와 같은 활성을 갖는 효소라면, 그 생물학적 유래에 특별히 제한은 없지만, 예를 들면 대장균 유래의 DnaC를 바람직하게 이용할 수 있다. 대장균 유래의 DnaC는 호모헥사머로서 반응 혼합물중에 5∼200 nM의 범위로 함유되어도 되고, 바람직하게는 5∼100 nM, 5∼50 nM, 5∼30 nM의 범위로 함유되어도 되지만, 이것으로 한정되지 않는다.
DNA 프리마제 활성을 갖는 효소로는, 대장균의 DnaG와 같은 활성을 갖는 효소라면, 그 생물학적 유래에 특별히 제한은 없지만, 예를 들면 대장균 유래의 DnaG를 바람직하게 이용할 수 있다. 대장균 유래의 DnaG는 단량체로서 반응 혼합물중에 20∼1000 nM의 범위로 함유되어도 되고, 바람직하게는 20∼800 nM, 50∼800 nM, 100∼800 nM, 200∼800 nM, 250∼800 nM, 250∼500 nM, 300∼500 nM의 범위로 함유되어도 되지만, 이것으로 한정되지 않는다.
DNA 클램프 활성을 갖는 효소로는, 대장균의 DnaN과 같은 활성을 갖는 효소라면, 그 생물학적 유래에 특별히 제한은 없지만, 예를 들면 대장균 유래의 DnaN을바람직하게 이용할 수 있다. 대장균 유래의 DnaN은 호모다이머로서 반응 혼합물중에 10∼1000 nM의 범위로 함유되어도 되고, 바람직하게는 10∼800 nM, 10∼500 nM, 20∼500 nM, 20∼200 nM, 30∼200 nM, 30∼100 nM의 범위로 함유되어도 되지만, 이것으로 한정되지 않는다.
DNA 폴리메라아제 III* 활성을 갖는 효소 또는 효소군으로는, 대장균의 DNA 폴리메라아제 III* 복합체와 같은 활성을 갖는 효소 또는 효소군이라면, 그 생물학적 유래에 특별히 제한은 없다. 예를 들면, 대장균 유래의 DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ 및 HolE의 어느 하나를 포함하는 효소군, 바람직하게는 대장균 유래의 DnaX, HolA, HolB, 및 DnaE의 복합체를 포함하는 효소군, 더 바람직하게는 대장균 유래의 DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ 및 HolE의 복합체를 포함하는 효소군을 바람직하게 이용할 수 있다. 대장균 유래의 DNA 폴리메라아제 III* 복합체는 헤테로 다량체로서 반응 혼합물중에 2∼50 nM의 범위로 함유되어도 되고, 바람직하게는 2∼40 nM, 2∼30 nM, 2∼20 nM, 5∼40 nM, 5∼30 nM, 5∼20 nM의 범위로 함유되어도 되지만, 이것으로 한정되지 않는다.
오카자키 단편 연결 반응을 촉매해, 카테난을 형성하는 2개의 자매 환상 DNA를 합성하는 제2 효소군으로는, 예를 들면 DNA 폴리메라아제 I 활성을 갖는 효소, DNA 리가아제 활성을 갖는 효소 및 RNaseH 활성을 갖는 효소로 이루어지는 군으로부터 선택되는 1개 이상의 효소 또는 이들 효소의 조합을 예시할 수 있다.
DNA 폴리메라아제 I 활성을 갖는 효소로는, 대장균의 DNA 폴리메라아제 I과 같은 활성을 갖는 것이라면, 그 생물학적 유래에 특별히 제한은 없지만, 예를 들면 대장균 유래의 DNA 폴리메라아제 I을 바람직하게 이용할 수 있다. 대장균 유래의 DNA 폴리메라아제 I은 단량체로서 반응 혼합물중에 10∼200 nM의 범위로 함유되어도 되고, 바람직하게는 20∼200 nM, 20∼150 nM, 20∼100 nM, 40∼150 nM, 40∼100 nM, 40∼80 nM의 범위로 함유되어도 되지만, 이것으로 한정되지 않는다.
DNA 리가아제 활성을 갖는 효소로는, 대장균의 DNA 리가아제와 같은 활성을 갖는 것이라면, 그 생물학적 유래에 특별히 제한은 없지만, 예를 들면 대장균 유래의 DNA 리가아제 또는 T4파지의 DNA 리가아제를 바람직하게 이용할 수 있다. 대장균 유래의 DNA 리가아제는 단량체로서 반응 혼합물중에 10∼200 nM의 범위로 함유되어도 되고, 바람직하게는 15∼200 nM, 20∼200 nM, 20∼150 nM, 20∼100 nM, 20∼80 nM의 범위로 함유되어도 되지만, 이것으로 한정되지 않는다.
RNaseH 활성을 갖는 효소로는, RNA:DNA 하이브리드의 RNA 사슬을 분해하는 활성을 갖는 것이라면, 그 생물학적 유래에 특별히 제한은 없지만, 예를 들면 대장균 유래의 RNaseH를 바람직하게 이용할 수 있다. 대장균 유래의 RNaseH는 단량체로서 반응 혼합물중에 0.2∼200 nM의 범위로 함유되어도 되고, 바람직하게는 0.2∼200 nM, 0.2∼100 nM, 0.2∼50 nM, 1∼200 nM, 1∼100 nM, 1∼50 nM, 10∼50 nM의 범위로 함유되어도 되지만, 이것으로 한정되지 않는다.
2개의 자매 환상 DNA의 분리 반응을 촉매하는 제3 효소군으로는, 예를 들면 Peng H & Marians KJ. PNAS. 1993, 90: 8571-8575에 기재된 효소군을 이용할 수 있다. 구체적으로는, 제3 효소군으로서 이하: 토포이소머라아제 IV 활성을 갖는 효소, 토포이소머라아제 III 활성을 갖는 효소 및 RecQ형 헬리카제 활성을 갖는 효소로 이루어지는 군으로부터 선택되는 1개 이상의 효소 또는 이들 효소의 조합을 예시할 수 있다.
토포이소머라아제 III 활성을 갖는 효소로는, 대장균의 토포이소머라아제 III와 같은 활성을 갖는 것이라면, 그 생물학적 유래에 특별히 제한은 없지만, 예를 들면 대장균 유래의 토포이소머라아제 III를 바람직하게 이용할 수 있다. 대장균 유래의 토포이소머라아제 III는 단량체로서 반응 혼합물중에 20∼500 nM의 범위로 함유되어도 되고, 바람직하게는 20∼400 nM, 20∼300 nM, 20∼200 nM, 20∼100 nM, 30∼80 nM의 범위로 함유되어도 되지만, 이것으로 한정되지 않는다.
RecQ형 헬리카제 활성을 갖는 효소로는, 대장균의 RecQ와 같은 활성을 갖는 것이라면, 그 생물학적 유래에 특별히 제한은 없지만, 예를 들면 대장균 유래의 RecQ를 바람직하게 이용할 수 있다. 대장균 유래의 RecQ는 단량체로서 반응 혼합물중에 20∼500 nM의 범위로 함유되어도 되고, 바람직하게는 20∼400 nM, 20∼300 nM, 20∼200 nM, 20∼100 nM, 30∼80 nM의 범위로 함유되어도 되지만, 이것으로 한정되지 않는다.
토포이소머라아제 IV 활성을 갖는 효소로는, 대장균의 토포이소머라아제 IV와 같은 활성을 갖는 것이라면, 그 생물학적 유래에 특별히 제한은 없다. 예를 들면, ParC와 ParE의 복합체인 대장균 유래의 토포이소머라아제 IV를 바람직하게 이용할 수 있다. 대장균 유래의 토포이소머라아제 IV는 헤테로테트라머로서 반응 혼합물중에 0.1∼50 nM의 범위로 함유되어도 되고, 바람직하게는 0.1∼40 nM, 0.1∼30 nM, 0.1∼20 nM, 1∼40 nM, 1∼30 nM, 1∼20 nM, 1∼10 nM, 1∼5 nM의 범위로 함유되어도 되지만, 이것으로 한정되지 않는다.
상기 제1, 제2 및 제3 효소군은 시판중인 것을 이용해도 되고, 미생물 등으로부터 추출해, 필요에 따라 정제한 것을 이용해도 된다. 미생물로부터의 효소의 추출 및 정제는 당업자가 이용 가능한 방법을 이용해 적절하게 실시할 수 있다.
상기 제1, 제2 및 제3 효소군으로, 전술한 대장균 유래 효소 외의 것을 이용하는 경우는, 상기 대장균 유래의 효소에 대해 특정된 농도 범위에 대해, 효소 활성 단위로서 상당하는 농도 범위로 이용할 수 있다.
RCR 증폭법에서 반응 혼합물에 함유시키는 dNTP는, 본 발명에 따른 DNA 생산 방법에서 사용되는 것으로서 예로 든 것과 같은 것을 이용할 수 있다.
RCR 증폭법에서 조제되는 반응 혼합물에는, 필요에 따라, 마그네슘 이온원, 알칼리 금속 이온원, ATP를 더 함유시킨다.
RCR 증폭법에서, 반응 개시 시점에서의 반응 혼합물에 함유되는 ATP의 농도는, 예를 들면 0.1∼3 mM의 범위라도 되고, 바람직하게는 0.1∼2 mM, 0.1∼1.5 mM, 0.5∼1.5 mM의 범위라도 된다.
RCR 증폭법에서 반응 혼합물에 함유시키는 마그네슘 이온원은, 본 발명에 따른 DNA 생산 방법에서 사용되는 것으로서 예로 든 것과 같은 것을 이용할 수 있다. RCR 증폭법에서, 반응 개시 시점에서의 반응 혼합물에 함유되는 마그네슘 이온원의 농도는, 예를 들면 마그네슘 이온을 5∼50 mM의 범위로 제공하는 농도라도 된다.
RCR 증폭법에서 반응 혼합물에 함유시키는 알칼리 금속 이온원은, 본 발명에 따른 DNA 생산 방법에서 사용되는 것으로서 예로 든 것과 같은 것을 이용할 수 있다. RCR 증폭법에서, 반응 개시 시점에서의 반응 혼합물에 함유되는 알칼리 금속 이온원의 농도는, 예를 들면 알칼리 금속 이온을 100 mM 이상, 바람직하게는 100∼300 mM의 범위로 제공하는 농도라도 되지만, 이것으로 한정되지 않는다.
RCR 증폭법에서 반응 혼합물에 함유시키는 연결체의 양은 특별히 제한되지 않는다. 예를 들면, 반응 개시 시점에서 연결체를 10 ng/L 이하, 5 ng/L 이하, 1 ng/L 이하, 0.8 ng/L 이하, 0.5 ng/L 이하, 0.3 ng/L 이하의 농도로 반응 혼합물중에 존재시켜도 된다.
조제된 반응 혼합물을 소정 온도의 등온 조건하에서 인큐베이션하는 것에 의해, DnaA 활성을 갖는 효소와 결합 가능한 복제 개시 서열을 포함하는 환상 DNA만이 증폭된다. RCR 증폭에서의 반응 온도는, DNA 복제 반응을 행할 수 있는 것이라면 특별히 제한은 없지만, 예를 들어 DNA 폴리메라아제의 최적 온도인 20∼80℃, 25∼50℃ 또는 25∼40℃의 범위일 수 있다. RCR 증폭에서의 반응 시간은 목적하는 환상 연결체 증폭 산물의 양에 따라 적절하게 설정할 수 있지만, 예를 들면 30분간∼24시간으로 할 수 있다.
RCR 증폭은, 조제된 반응 혼합물을, 30℃ 이상에서의 인큐베이션 및 27℃ 이하에서의 인큐베이션을 반복하는 온도 사이클하에서, 인큐베이션하는 것에 의해서도 실시할 수 있다. 30℃ 이상에서의 인큐베이션은, oriC를 포함하는 환상 DNA의 복제 개시가 가능한 온도 범위이면 특별히 한정되지 않고, 예를 들면 30∼80℃, 30∼50℃, 30∼40℃, 37℃라도 된다. 30℃ 이상에서의 인큐베이션은, 특별히 한정되지 않지만, 1 사이클당 10초∼10분간이라도 된다. 27℃ 이하에서의 인큐베이션은, 복제 개시가 억제되어 DNA의 신장 반응이 진행되는 온도라면 특별히 한정되지 않고, 예를 들면 10∼27℃, 16∼25℃, 24℃라도 된다. 27℃ 이하에서의 인큐베이션은, 특별히 한정되지 않지만, 증폭하는 환상 DNA의 길이에 맞추어 설정하는 것이 바람직하고, 예를 들면 1 사이클에 대해, 1000 염기당 1∼10초간이라도 된다. 온도 사이클의 사이클수는 특별히 한정되지 않지만, 10∼50 사이클, 20∼40 사이클, 25∼35 사이클, 30 사이클이라도 된다.
연결 반응에 의해 얻어진 연결체는, 갭 및 닉의 수복 반응이나, RCR 증폭의 주형으로서 제공되기 전에, 50∼70℃에서 인큐베이션하는 열처리 및 그 후 급냉을 행하는 것이 바람직하다. 열처리 시간은 특별히 한정되지 않고, 예를 들면 1∼15분간, 바람직하게는 2∼10분간으로 할 수 있다. 급냉의 온도는 특별히 한정되지 않고, 예를 들면 10℃ 이하, 바람직하게는 4℃ 이하까지 냉각한다. 급냉시의 냉각 속도로는 50 ℃/min 이상이 바람직하고, 70 ℃/min 이상이 보다 바람직하고, 85 ℃/min 이상이 더 바람직하다. 예를 들면, 열처리 후의 반응 혼합물이 들어 있는 용기를 직접 얼음 위에 가만히 두거나, 또는 4℃ 이하로 조절된 금속 블록에 접촉시킴으로써 급냉할 수 있다.
연결 반응의 종료 직후의 반응 용액중에는 비특이적인 연결에 의해 얻어진 연결체가 포함되어 있다. 이 반응 용액을 열처리·급냉함으로써, 비특이적인 연결을 해소할 수 있다. 이에 따라, 열처리·급냉 후의 연결체를 주형으로 하여 갭 및 닉의 수복 반응이나 RCR 증폭 반응을 행함으로써 비특이적인 산물 생산이 억제되어, 목적하는 연결체의 완전한 이중가닥 DNA를 효율적으로 얻을 수 있다.
본 발명에 따른 DNA 생산 방법에서 연결 반응에 의해 얻어진 직쇄상 또는 환상 연결체의 증폭은, 연결체를 미생물에 도입하는 것에 의해, 이 미생물내에서 해당 미생물이 갖는 효소 등을 이용해 행할 수 있다. 미생물에 도입하는 연결체는, 갭 및 닉의 수복 반응을 행하기 전의 연결체라도 되고, 수복 반응 후의 연결체라도 무방하다. 갭 및 닉을 갖는 연결체를 그대로 미생물에 도입한 경우에도, 갭 및 닉이 없는 완전한 이중가닥 DNA 상태의 연결체를 증폭 산물로서 얻을 수 있다. 연결체를 도입하는 미생물로는, 예를 들면 대장균, 고초균, 방선균, 고세균, 효모, 사상균 등을 들 수 있다. 미생물로의 연결체의 도입은, 전기천공법(electroporation method) 등의 통상의 방법에 의해 행할 수 있다. 증폭된 연결체를 미생물로부터 회수하는 것도 통상의 방법에 의해 실시할 수 있다.
<DNA 단편 연결용 키트>
본 발명에 따른 DNA 단편 연결용 키트는, 2종류 이상의 DNA 단편을 염기서열이 상동인 영역끼리 서로 연결시켜 직쇄상 또는 환상의 DNA를 수득하기 위한 키트로서, RecA 패밀리 재조합 효소 단백질을 포함한다. 직쇄상 이중가닥 DNA 단편을 연결하기 위해 이용되는 경우에는, 이 키트는 엑소뉴클레아제를 더 포함하는 것이 바람직하다. 상기 키트에 구비된 RecA 패밀리 재조합 효소 단백질과 엑소뉴클레아제를, 연결시킬 목적의 2종류 이상의 DNA 단편을 함유하는 용액에 첨가한다. 이에 따라, 본 발명에 따른 DNA 생산 방법을 보다 간편하게 실시할 수 있어, 목적하는 연결체를 용이하게 얻을 수 있다. 상기 키트에 포함되는 RecA 패밀리 재조합 효소 단백질 및 엑소뉴클레아제는, 본 발명에 따른 DNA 생산 방법에서 사용되는 것을 그대로 이용할 수 있다. 상기 키트에 포함되는 엑소뉴클레아제로는, 3'→5' 엑소뉴클레아제가 바람직하고, 적어도 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제를 포함하는 것이 보다 바람직하고, 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제와 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제의 양쪽 모두를 포함하는 것이 더 바람직하다.
본 발명에 따른 DNA 단편 연결용 키트는, 뉴클레오시드3인산 또는 디옥시뉴클레오티드3인산의 재생 효소, 및 그 기질을 더 포함하는 것이 바람직하다. 또한, 본 발명에 따른 DNA 단편 연결용 키트는, 뉴클레오시드3인산, 디옥시뉴클레오티드3인산, 마그네슘 이온원, 알칼리 금속 이온원, 디메틸술폭시드, 염화테트라메틸암모늄, 폴리에틸렌 글리콜, 디티오트레이톨 및 완충액으로 이루어지는 군으로부터 선택되는 1종 이상을 포함할 수도 있다. 이들은 모두 본 발명에 따른 DNA 생산 방법에서 사용되는 것을 그대로 이용할 수 있다.
본 발명에 따른 DNA 단편 연결용 키트는, 상기 키트를 이용해 본 발명에 따른 DNA 생산 방법을 행하기 위한 프로토콜이 기재된 서면을 포함하는 것도 바람직하다. 상기 프로토콜은, 상기 키트를 수용한 용기의 표면에 기재되어 있어도 무방하다.
《실시예》
다음으로, 실시예 등에 의해 본 발명을 더 상세하게 설명한다. 하지만, 본 발명이 이들 예로 한정되는 것은 아니다.
[실시예 1]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, 반응 용액중의 마그네슘 이온원 농도와 ATP 농도의 영향을 조사했다.
연결하는 직쇄상 이중가닥 DNA 단편은, 591 bp의 직쇄상 이중가닥 DNA 단편인 DCW1∼DCW7(서열 번호 1∼서열 번호 7)을 이용했다. 각 직쇄상 이중가닥 DNA 단편의 말단으로부터 60 염기까지의 영역은 상동 영역이다. 즉, DCW1의 532번째에서 591번째까지의 60 염기는 DCW2와의 연결을 위한 상동 영역이며, DCW2의 1번째에서 60번째까지의 60 염기와 동일한 염기서열로 이루어진다. DCW2의 532번째에서 591번째까지의 60 염기는 DCW3과의 연결을 위한 상동 영역이며, DCW3의 1번째에서 60번째까지의 60 염기와 동일한 염기서열로 이루어진다. DCW3의 532번째에서 591번째까지의 60 염기는 DCW4와의 연결을 위한 상동 영역이며, DCW4의 1번째에서 60번째까지의 60 염기와 동일한 염기서열로 이루어진다. DCW4의 532번째에서 591번째까지의 60 염기는 DCW5와의 연결을 위한 상동 영역이며, DCW5의 1번째에서 60번째까지의 60 염기와 동일한 염기서열로 이루어진다. DCW6의 532번째에서 591번째까지의 60 염기는 DCW7과의 연결을 위한 상동 영역이며, DCW7의 1번째에서 60번째까지의 60 염기와 동일한 염기서열로 이루어진다.
RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 야생형(서열 번호 61)을 이용하고, 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를 이용했다.
구체적으로는, 우선, 각 1 nM의 DCW1∼DCW7, 1 μM의 RecA, 40 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM 또는 10 mM의 아세트산마그네슘, 30 μM, 100 μM, 300 μM 또는 1000 μM의 ATP, 4 mM의 크레아틴인산, 20 ng/L의 크레아틴 키나아제, 50 mM의 글루탐산 칼륨, 150 mM의 TMAC, 5 질량%의 PEG 8000, 10 용량%의 DMSO로 이루어지는 반응 용액을 조제했다. 계속해서, 이들 반응 용액을 42℃에서 2시간 인큐베이션해 연결 반응을 실시했다. 반응 종료 후의 반응 용액 1 μL를 아가로스 전기영동해 분리한 밴드를 SYBR(등록상표) Green 염색했다.
염색 결과를 도 2에 나타낸다. 도면에서, '500 bp'는 500 bp에서 5 kbp까지를 500 bp 간격의 밴드(합계 10개)로 이루어지는 DNA 래더마커(ladder marker)를 영동한 레인을 나타내고, 'Input'은 각 1 nM의 DCW1∼DCW7을 함유하는 용액 1 μL를 영동한 레인을 나타낸다. 또한, 도면에서 '7 frag'는 DCW1∼DCW7의 7 단편이 모두 연결된 연결체의 밴드를 나타낸다.
아세트산마그네슘이 1 mM인 반응 용액에 있어서는, ATP 농도가 30 μM인 반응 용액에서는 거의 연결체가 관찰되지 않았지만, ATP 농도가 100 μM, 300 μM, 1000 μM인 반응 용액에서는 2 단편의 연결체로부터 7 단편의 연결체까지 합계 6종의 연결체의 밴드가 관찰되었다. ATP 농도 100 μM, 300 μM, 1000 μM의 반응 용액의 결과를 비교하면, ATP 농도가 100 μM인 반응 용액이 7 단편 모두가 연결된 연결체의 양이 가장 많고, 또한 미연결 단편의 밴드가 검출되지 않았다. 이에 대해, ATP 농도가 1000 μM인 반응 용액에서는, 7 단편의 연결체의 밴드가 매우 얇고, 미연결 단편도 많이 잔존하고 있었다. 한편, 아세트산마그네슘이 10 mM인 반응 용액에 있어서는, ATP 농도가 30 μM과 100 μM인 반응 용액에서는 2 단편의 연결체로부터 7 단편의 연결체까지 합계 6종의 연결체의 밴드가 관찰되었다. 한편, ATP 농도가 300 μM과 1000 μM인 반응 용액에서는, 2 단편의 연결체로부터 4 단편의 연결체의 밴드까지는 확인할 수 있었지만, 5 단편 이상의 연결체의 밴드는 확인할 수 없고, 미연결 단편도 많이 잔존하고 있었다. 모든 샘플 가운데, 7 단편 연결체의 생산량이 가장 많았던 것은, 아세트산마그네슘이 1 mM, ATP가 100 μM인 반응 용액이었다. 이들 결과로부터, 다단편을 연결하기 위해서는 반응 용액의 마그네슘 이온 농도와 ATP 농도의 밸런스가 중요하다는 점, ATP 농도가 너무 높으면 오히려 연결 반응이 저해되는 경우가 있다는 점을 알 수 있었다.
[실시예 2]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, 반응 용액중의 PEG 8000 농도와 ATP 재생계의 영향을 조사했다.
연결하는 직쇄상 이중가닥 DNA 단편은, 3100 bp 또는 2650 bp의 직쇄상 이중가닥 DNA 단편인 Lter1∼Lter5(서열 번호 54∼서열 번호 58)를 이용했다. 각 직쇄상 이중가닥 DNA 단편의 말단으로부터 60 염기까지의 영역은 상동 영역이다. 즉, Lter1의 3041번째에서 3100번째까지의 60 염기는 Lter2와의 연결을 위한 상동 영역이며, Lter2의 1번째에서 60번째까지의 60 염기와 동일한 염기서열로 이루어진다. Lter2의 3041번째에서 3100번째까지의 60 염기는 Lter3과의 연결을 위한 상동 영역이며, Lter3의 1번째에서 60번째까지의 60 염기와 동일한 염기서열로 이루어진다. Lter3의 3041번째에서 3100번째까지의 60 염기는 Lter4와의 연결을 위한 상동 영역이며, Lter4의 1번째에서 60번째까지의 60 염기와 동일한 염기서열로 이루어진다. Lter4의 3041번째에서 3100번째까지의 60 염기는 Lter5와의 연결을 위한 상동 영역이며, Lter5의 1번째에서 60번째까지의 60 염기와 동일한 염기서열로 이루어진다.
RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 F203W 변이체를 이용하고, 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를 이용했다. ATP 재생 효소로는 크레아틴 키나아제를, 그 기질로는 크레아틴인산을 각각 이용했다.
구체적으로는, 우선, 각 0.03 nM의 Lter1∼Lter5, 1 μM의 RecA의 F203W 변이체, 40 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 10 mM의 아세트산마그네슘, 100 μM의 ATP, 4 mM의 크레아틴인산, 20 ng/L의 크레아틴 키나아제, 150 mM의 아세트산 칼륨, 0 질량%, 2 질량%, 5 질량% 또는 10 질량%의 PEG 8000로 이루어지는 반응 용액을 조제했다. 이와는 별도로, 크레아틴인산과 크레아틴 키나아제를 함유하지 않는 것 외에는 동일하게 하여 반응 용액을 조제했다. 계속해서, 이들 반응 용액을 30℃에서 30분간 인큐베이션해 연결 반응을 실시했다. 반응 종료 후의 반응 용액 4 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 3에 나타낸다. 도면에서, '5 frag'는 Lter1∼Lter5의 5 단편이 모두 연결된 연결체의 밴드를 나타낸다. 크레아틴인산과 크레아틴 키나아제를 함유하지 않는 반응 용액에 있어서는, PEG 8000의 농도가 0 질량%인 반응 용액에서는 2 단편 연결체와 3 단편 연결체의 밴드를 확인할 수 있었지만, 4 단편 이상의 연결체의 밴드는 확인할 수 없었다. 이에 대해, PEG 8000의 농도를 높게 하면 4 단편과 5 단편의 연결체의 밴드도 확인할 수 있었다. 한편, 크레아틴인산과 크레아틴 키나아제를 함유시킨 반응 용액에 있어서는, PEG 8000의 농도가 0 질량%인 반응 용액에서는 2 단편 연결체와 3 단편 연결체와 4 단편 연결체의 밴드를 확인할 수 있었지만, 5 단편의 연결체의 밴드는 확인할 수 없었다. 이에 대해, PEG 농도를 높게 하면, 5 단편의 연결체의 밴드도 확인할 수 있었다. PEG 8000의 농도가 0 질량%인 반응 용액을 비교한 결과로부터, ATP 재생계를 포함하는 반응 용액이 다단편의 연결체를 보다 얻기 쉽다는 것을 알 수 있었다. 또한, 크레아틴인산과 크레아틴 키나아제를 함유하지 않는 반응 용액과 양자를 함유하고 있는 반응 용액 모두에서, PEG 무첨가의 반응 용액보다 PEG를 첨가한 반응 용액에서 5 단편 연결체의 생산량이 많아지고 있었다. 이것으로부터, PEG에 의해 연결이 촉진되는 것을 알 수 있었다. 모든 샘플에 있어서, 미연결의 단편이 적고 또한 5 단편 연결체의 양이 가장 많았던 것은, 크레아틴인산과 크레아틴 키나아제를 함유하면서 PEG 8000이 5 질량%인 반응 용액이었다.
[실시예 3]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, 반응 용액중의 DMSO 농도의 영향을 조사했다.
연결하는 직쇄상 이중가닥 DNA 단편은, DCW1∼DCW5(서열 번호 1∼서열 번호 5)를 이용했다. 또한, RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 F203W 변이체를 이용하고, 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를 이용했다.
구체적으로는, 우선, 각 1 nM의 DCW1∼DCW5, 1 μM의 RecA의 F203W 변이체, 40 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 10 mM의 아세트산마그네슘, 100 μM의 ATP, 150 mM의 아세트산 칼륨, 5 질량%의 PEG 8000, 및 0 용량%, 1 용량%, 3 용량% 또는 10 용량%의 DMSO로 이루어지는 반응 용액을 조제했다. 계속해서, 이들 반응 용액을 30℃에서 30분간 인큐베이션해 연결 반응을 실시했다. 반응 종료 후의 반응 용액 2 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 4의 (a)에 나타낸다. 도면에서, 'MK3'는 DNA 래더마커를 영동한 레인을 나타내고, 'Input'은 각 1 nM의 DCW1∼DCW5를 함유하는 용액 2 μL를 영동한 레인을 나타낸다. 이 결과, 연결 반응을 실시한 모든 샘플에서, 5 단편 전부가 연결된 연결체의 밴드가 확인되었지만, DMSO 농도가 10 용량%인 반응 용액에서는 그 외의 반응 용액보다 분명하게 5 단편 연결체의 양이 많았다.
계속해서, DMSO 농도를 0 용량%, 10 용량%, 20 용량% 또는 40 용량%로 한 것 외에는 동일하게 하여 반응 용액을 조제하고, 이들 반응 용액을 30℃에서 30분간 인큐베이션해 연결 반응을 실시했다. 반응 종료 후의 반응 용액 2 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 4의 (b)에 나타낸다. 도면에서, '500 bp ladder'는 실시예 1에서 이용한 DNA 래더마커를 영동한 레인을 나타내고, 'Input'은 도 4의 (a)와 동일하다. 이 결과, DMSO 농도가 10 용량% 또는 20 용량%인 반응 용액에서는, DMSO를 첨가하지 않은 반응 용액보다 5 단편 전부가 연결된 연결체의 생산량이 분명히 증대되고 있었지만, DNSO 농도가 40 용량%인 반응 용액에서는 연결체의 밴드를 확인할 수 없고 연결이 저해되고 있었다. 이들 결과로부터, DMSO를 5 용량% 이상 함유시키는 것에 의해 연결 반응이 촉진되지만, DMSO 농도가 너무 높으면 반대로 연결 반응이 저해되는 것을 알 수 있었다.
[실시예 4]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, 반응 용액중의 TMAC 농도의 영향을 조사했다.
연결하는 직쇄상 이중가닥 DNA 단편은, DCW1∼DCW7(서열 번호 1∼서열 번호 7)을 이용했다. 또한, RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 F203W 변이체를 이용하고, 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를 이용했다.
구체적으로는, 우선, 각 1 nM의 DCW1∼DCW7, 1 μM의 RecA의 F203W 변이체, 40 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 10 mM의 아세트산마그네슘, 100 μM의 ATP, 4 mM의 크레아틴인산, 20 ng/L의 크레아틴 키나아제, 150 mM의 글루탐산 칼륨, 5 질량%의 PEG 8000, 10 용량%의 DMSO, 및 0 mM, 15 mM, 30 mM, 60 mM 또는 100 mM의 TMAC로 이루어지는 반응 용액을 조제했다. 계속해서, 이들 반응 용액을 37℃에서 2시간 인큐베이션해 연결 반응을 실시했다. 반응 종료 후의 반응 용액 1.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 5의 (a)에 나타낸다. 도면에서, '500 bp ladder'는 실시예 1에서 이용한 DNA 래더마커를 영동한 레인을 나타내고, 'Input'은 각 1 nM의 DCW1∼DCW7을 함유하는 용액 1 μL를 영동한 레인을 나타낸다. 이 결과, 연결 반응을 실시한 모든 샘플에서, 7 단편 전부가 연결된 연결체의 밴드가 확인되었다. 특히, TMAC 농도가 100 mM인 반응 용액에서는, 그 외의 반응 용액보다 7 단편 연결체의 양이 분명하게 많았다.
계속해서, TMAC의 농도를 60 mM, 100 mM, 150 mM, 200 mM 또는 250 mM로 하고, 글루탐산 칼륨의 농도를 50 mM로 한 것 외에는 동일하게 하여 반응 용액을 조제하고, 이들 반응 용액을 42℃에서 2시간 인큐베이션해 연결 반응을 실시했다. 반응 종료 후의 반응 용액 1.9 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 5의 (b)에 나타낸다. 이 결과, TMAC 농도가 100 mM∼200 mM인 반응 용액에서는, TMAC 농도가 60 mM인 반응 용액보다 7 단편 연결체의 양이 분명히 많아, 연결 효율이 개선되고 있었다. 7 단편 연결체의 양이 가장 많았던 것은 TMAC 농도가 150 mM인 반응 용액이었다. 한편, TMAC 농도가 250 mM인 반응 용액에서는, 7 단편 연결체의 양이 TMAC 농도가 60 mM인 반응 용액보다 적고, 미연결 단편의 잔존량이 많았다. 이들 결과로부터, TMAC를 100∼200 mM 함유시키는 것에 의해, 연결 반응을 촉진할 수 있는 것을 알 수 있었다.
[실시예 5]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, 반응 용액중의 알칼리 금속 이온원의 영향을 조사했다.
연결하는 직쇄상 이중가닥 DNA 단편은 DCW1∼DCW7 또는 DCW1∼DCW5를 이용했다. 또한, RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 F203W 변이체를 이용하고, 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를 이용했다.
구체적으로는, 우선, 각 1 nM의 DCW1∼DCW5, 1 μM의 RecA의 F203W 변이체, 40 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 10 mM의 아세트산마그네슘, 100 μM의 ATP, 4 mM의 크레아틴인산, 20 ng/L의 크레아틴 키나아제, 0 mM, 50 mM, 75 mM, 100 mM, 125 mM 또는 150 mM의 아세트산 칼륨, 5 질량%의 PEG 8000, 및 10 용량%의 DMSO로 이루어지는 반응 용액을 조제했다. 또한, 아세트산 칼륨을 대신해 150 mM의 글루탐산 칼륨을 함유시킨 것 외에는 동일하게 하여 반응 용액을 조제했다. 계속해서, 이들 반응 용액을 30℃에서 2시간 인큐베이션해 연결 반응을 실시했다. 반응 종료 후의 반응 용액 2 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 6에 나타낸다. 알칼리 금속 이온원을 함유시키지 않은 반응 용액에서는, 5 단편 전체 연결체의 밴드는 확인할 수 없었지만, 아세트산 칼륨 또는 글루탐산 칼륨을 함유시킨 반응 용액에서는 모두 5 단편 전체 연결체의 밴드를 확인할 수 있었다. 특히, 글루탐산 칼륨을 함유시킨 반응 용액에서는, 아세트산 칼륨을 함유시킨 반응 용액보다 미연결 단편의 밴드가 얇았던 것으로부터, 아세트산 칼륨보다 글루탐산 칼륨이 연결 효율을 개선하는 효과가 더 높은 것으로 추측되었다.
계속해서, 연결하는 직쇄상 이중가닥 DNA 단편으로서 DCW1∼DCW7을 이용해 각 1 nM의 DCW1∼DCW7을 배합하고, 알칼리 금속 이온원으로서 글루탐산 칼륨을 이용해 글루탐산 칼륨의 농도를 50 mM 또는 150 mM로 한 것 외에는 동일하게 하여 반응 용액을 조제했다. 이들 반응 용액을 37℃, 42℃ 또는 45℃에서 1시간 인큐베이션해 연결 반응을 실시했다. 반응 종료 후의 반응 용액 1 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 7에 나타낸다. 도면에서, '500 bp ladder'는 실시예 1에서 이용한 DNA 래더마커를 영동한 레인을 나타내고, 'Input'은 각 1 nM의 DCW1∼DCW7을 함유하는 용액 1 μL를 영동한 레인을 나타낸다. 이 결과, 반응 온도 37℃와 42℃의 모두에서, 글루탐산 칼륨 농도가 50 mM인 반응 용액이 150 mM인 반응 용액보다 연결 효율이 높고, 7 단편 전체의 연결체의 밴드를 확인할 수 있었다. 이들 결과로부터, 글루탐산 칼륨 농도가 너무 높으면 오히려 연결 반응이 저해되는 경우가 있는 것을 알 수 있었다. 또한, 45℃에서 인큐베이션한 반응 용액에서는, 글루탐산 칼륨 농도가 50 mM이라도 7 단편 연결체의 밴드를 확인할 수 없었다. 7 단편 연결체의 양이 가장 많았던 것은, 글루탐산 칼륨 농도가 50 mM이고 42℃에서 인큐베이션한 반응 용액이었다.
[실시예 6]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, 반응 용액중의 각 직쇄상 이중가닥 DNA 단편의 몰비의 영향을 조사했다.
연결하는 직쇄상 이중가닥 DNA 단편은 DCW1∼DCW7을 이용했다. 또한, RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 F203W 변이체를 이용하고, 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를 이용했다.
구체적으로는, 우선, 각 1 nM의 DCW1∼DCW7, 1 μM의 RecA의 F203W 변이체, 40 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 10 mM의 아세트산마그네슘, 100 μM의 ATP, 4 mM의 크레아틴인산, 20 ng/L의 크레아틴 키나아제, 50 mM의 글루탐산 칼륨, 5 질량%의 PEG 8000 및 10 용량%의 DMSO로 이루어지는 반응 용액을 조제했다. 또한, DCW3만 2 nM이 되도록 함유시킨 것 외에는 동일하게 하여 반응 용액을 조제했다. 계속해서, 이들 반응 용액을 42℃에서 2시간 인큐베이션해 연결 반응을 실시했다. 반응 종료 후의 반응 용액 1 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 8에 나타낸다. 도면에서, '500 bp ladder'는 실시예 1에서 이용한 DNA 래더마커를 영동한 레인을 나타내고, 'Input'은 각 1 nM의 DCW1∼DCW7을 함유하는 용액 1 μL를 영동한 레인을 나타낸다. 또한, 'Equal'은 DCW1∼DCW7을 모두 1 nM씩 함유시킨 반응 용액을 영동한 레인을 나타낸다. '2-fold excess 3rd 프라그먼트'는 DCW1∼7 가운데 DCW3만을 2 nM, 그 외는 모두 1 nM씩 함유시킨 반응 용액을 영동한 레인을 나타낸다. 이 결과, 모든 반응 용액에서 7 단편의 연결체가 확인되었지만, DCW3만을 2 배량(몰) 함유시킨 반응 용액에서는 7 단편의 연결체의 양이 감소하고, 3 단편의 연결체와 5 단편의 연결체의 양이 증가했다. 이는, DCW3의 과잉에 의해, DCW1∼DCW3이 연결된 연결체와 DCW3∼DCW7이 연결된 연결체가 증가했기 때문이라고 추측된다. 이들 결과로부터, 연결되는 각 단편의 몰비가 등량이 되도록 반응 용액을 조제함으로써, 보다 다단편의 연결 효율이 개선되는 것을 알 수 있었다.
[실시예 7]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, 반응 용액중의 3'→5' 엑소뉴클레아제의 농도와 반응 시간의 영향을 조사했다.
연결하는 직쇄상 이중가닥 DNA 단편은 DCW1∼DCW7을 이용했다. 또한, RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 야생형을 이용하고, 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를 이용했다.
구체적으로는, 우선, 각 1 nM의 DCW1∼DCW7, 1 μM의 대장균 RecA의 야생형, 20 mU/L, 40 mU/L, 80 mU/L, 120 mU/L 또는 160 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 100 μM의 ATP, 4 mM의 크레아틴인산, 20 ng/L의 크레아틴 키나아제, 50 mM의 글루탐산 칼륨, 150 mM의 TMAC, 5 질량%의 PEG 8000 및 10 용량%의 DMSO로 이루어지는 반응 용액을 조제했다. 계속해서, 이들 반응 용액을 42℃에서 15분간, 30분간 또는 60분간 인큐베이션해 연결 반응을 실시했다. 반응 종료 후의 반응 용액 1 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 9에 나타낸다. 도면에서, '500 bp ladder'는 실시예 1에서 이용한 DNA 래더마커를 영동한 레인을 나타내고, 'Input'은 각 1 nM의 DCW1∼DCW7을 함유하는 용액 1 μL를 영동한 레인을 나타낸다. 이 결과, 엑소뉴클레아제 III 농도가 20 mU/L의 반응 용액에서는, 인큐베이션 시간이 60분이라도 연결체는 거의 형성되지 않았다. 이에 대해, 엑소뉴클레아제 III 농도가 40 mU/L인 반응 용액에서는, 인큐베이션 시간이 30분일 때는 연결체가 거의 형성되지 않았지만, 인큐베이션 시간이 60분일 때는 7 단편 전부의 연결체가 형성되고 있었다. 또한, 엑소뉴클레아제 III 농도가 80∼160 mU/L인 반응 용액에서는, 인큐베이션 시간이 15분간이라도 7 단편 전부의 연결체가 형성되고 있었다. 7 단편 연결체의 양이 가장 많아 다단편의 연결 효율이 가장 양호했던 것은, 엑소뉴클레아제 III 농도가 80 mU/L이면서 30분간 인큐베이션한 반응 용액이었다.
[실시예 8]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, 반응 용액중의 직쇄상 이중가닥 DNA 단편의 농도의 영향을 조사했다.
연결하는 직쇄상 이중가닥 DNA 단편은, DCW1∼DCW49(서열 번호 1∼서열 번호 49)를 이용했다. DCW1∼DCW7과 마찬가지로, DCW8∼DCW49의 각각의 말단으로부터 60 염기까지의 영역은 상동 영역이다. 또한, RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 야생형을 이용하고, 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를 이용했다.
구체적으로는, 우선, 각 1 nM 또는 각 0.5 nM의 직쇄상 이중가닥 DNA 단편, 1 μM의 대장균 RecA의 야생형, 80 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 100 μM의 ATP, 4 mM의 크레아틴인산, 20 ng/L의 크레아틴 키나아제, 50 mM의 글루탐산 칼륨, 150 mM의 TMAC, 5 질량%의 PEG 8000 및 10 용량%의 DMSO로 이루어지는 반응 용액을 조제했다. 각 1 nM의 DCW1∼DCW20을 함유시킨 반응 용액은 직쇄상 이중가닥 DNA 단편의 총량이 20 nM(7. 8ng/L)이었다. 각 1 nM의 DCW1∼DCW25를 함유시킨 반응 용액은 직쇄상 이중가닥 DNA 단편의 총량이 25 nM(9. 8ng/L)이었다. 각 1 nM의 DCW1∼DCW30을 함유시킨 반응 용액은 직쇄상 이중가닥 DNA 단편의 총량이 30 nM(11.7ng/L)이었다. 각 1 nM의 DCW1∼DCW40을 함유시킨 반응 용액은 직쇄상 이중가닥 DNA 단편의 총량이 40 nM(15.6ng/L)이었다. 각 1 nM의 DCW1∼DCW49를 함유시킨 반응 용액은 직쇄상 이중가닥 DNA 단편의 총량이 49 nM(19. 1ng/L)이었다. 각 0.5 nM의 DCW1∼DCW49를 함유시킨 반응 용액은 직쇄상 이중가닥 DNA 단편의 총량이 24.5 nM(9. 6ng/L)이었다. 계속해서, 이들 반응 용액을 42℃에서 30분간 인큐베이션해 연결 반응을 실시했다. 반응 종료 후의 반응 용액에 대해 다음의 용량을 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다. 각 1 nM의 DCW1∼DCW20을 이용한 반응 용액은 1.25 μL, 각 1 nM의 DCW1∼DCW25를 이용한 반응 용액은 1 μL, 각 1 nM의 DCW1∼DCW30을 이용한 반응 용액은 0.83 μL, 각 1 nM의 DCW1∼DCW40을 이용한 반응 용액은 0.63 μL, 각 1 nM의 DCW1∼DCW49를 이용한 반응 용액은 0.51 μL, 각 0.5 nM의 DCW1∼DCW49를 이용한 반응 용액은 1.02 μL였다.
염색 결과를 도 10에 나타낸다. 각각의 직쇄상 이중가닥 DNA 단편을 1 nM씩 함유시킨 반응 용액에서는, 함유시킨 단편수가 많아질수록, 즉, 반응 용액중의 직쇄상 이중가닥 DNA 단편의 총량이 많아질수록, 다단편의 연결체가 형성되기 어려워지고 있었다. 또한, DCW1∼DCW49를 함유시킨 반응 용액끼리를 비교한 결과, 1 nM씩 함유시킨 반응 용액보다 0.5 nM씩 함유시킨 반응 용액이 다단편의 연결체가 더 얻어지고 있었다. 이들 결과로부터, 반응 용액중의 직쇄상 이중가닥 DNA 단편의 총량이 너무 많아지면 연결 효율이 저해될 우려가 있다는 것이 시사되었다.
[실시예 9]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, RecA 패밀리 재조합 효소 단백질의 종류의 영향을 조사했다.
연결하는 직쇄상 이중가닥 DNA 단편은 DCW1∼DCW25(서열 번호 1∼서열 번호 25)를 이용했다. 또한, RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 야생형 또는 F203W 변이체를 이용하고, 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를 이용했다.
구체적으로는, 우선, 각 1 nM의 DCW1∼DCW25, 0.5 μM, 0.75 μM, 1 μM, 1.25 μM 또는 1.5 μM의 대장균 RecA의 야생형 또는 F203W 변이체, 80 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 100 μM의 ATP, 4 mM의 크레아틴인산, 20 ng/L의 크레아틴 키나아제, 50 mM의 글루탐산 칼륨, 150 mM의 TMAC, 5 질량%의 PEG 8000 및 10 용량%의 DMSO로 이루어지는 반응 용액을 조제했다. 계속해서, 이들 반응 용액을 42℃에서 30분간 인큐베이션해 연결 반응을 실시한 후, 65℃에서 20분간 인큐베이션했다. 65℃에서의 인큐베이션 종료 후, 얼음 위에서 급냉한 반응 용액 1.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 11에 나타낸다. 도면에서, '500 bp ladder'는 실시예 1에서 이용한 DNA 래더마커를 영동한 레인을 나타내고, 'Input'은 각 1 nM의 DCW1∼DCW25를 함유하는 용액 1.5 μL를 영동한 레인을 나타낸다. 이 결과, 야생형과 F203W 변이체의 모두에서, RecA의 함유량 의존적으로 다단편 연결체의 생산량이 많아지고 있었다. 또한, 야생형의 RecA를 함유시킨 반응 용액보다 F203W 변이체를 함유시킨 반응 용액이, 다단편 연결체의 생산량이 많아 연결 효율이 높았다.
[실시예 10]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하여 환상의 연결체를 형성하고, 이것을 RCR 증폭했다.
연결하는 직쇄상 이중가닥 DNA 단편으로는, 우선, DCW1∼DCW20(서열 번호 1∼서열 번호 20)과, oriC 및 oriC에 대해 각각 외향으로 삽입된 한 쌍의 ter 서열을 포함하는 Cm-oriC(DCW20)(서열 번호 50)의 세트를 이용했다. ter 서열은 방향 특이적으로 복제를 정지시키는 기능을 갖는 단백질 Tus가 결합하는 서열이다. ter 서열에 대해 'oriC에 대해 외향으로 삽입'이란, ter 서열에 결합해 복제를 저해하는 활성을 갖는 단백질 조합의 작용에 의해, oriC로부터 바깥쪽을 향하는 방향의 복제에 대해서는 복제를 허용하는 한편, oriC를 향해 들어오는 방향의 복제에 대해서는 복제를 허용하지 않고 정지하는 방향으로 ter 서열을 삽입하는 것을 의미한다. Cm-oriC(DCW20)는 1298 bp의 직쇄상 이중가닥 DNA 단편이고, 1번째에서 60번째까지의 60 염기는 DCW20과의 연결을 위한 상동 영역이며, DCW20의 532번째에서 591번째까지의 60 염기와 동일한 염기서열로 이루어진다. 또한, Cm-oriC(DCW20)의 1239번째에서 1298번째까지의 60 염기는 DCW1과의 연결을 위한 상동 영역이며, DCW1의 1번째에서 60번째까지의 60 염기와 동일한 염기서열로 이루어진다. 즉, DCW1∼DCW20 및 Cm-oriC(DCW20)의 21 단편이 모두 연결되면 환상 DNA가 얻어진다.
연결하는 직쇄상 이중가닥 DNA 단편으로는, 그 외에, DCW1∼DCW25(서열 번호 1∼서열 번호 25)와 oriC를 포함하는 Cm-oriC(DCW25)(서열 번호 51)의 세트를 이용했다. Cm-oriC(DCW25)는 1298 bp의 직쇄상 이중가닥 DNA 단편이고, 1번째에서 60번째까지의 60 염기는 DCW25와의 연결을 위한 상동 영역이며, DCW25의 532번째에서 591번째까지의 60 염기와 동일한 염기서열로 이루어진다. 또한, Cm-oriC(DCW25)의 1239번째에서 1298번째까지의 60 염기는 DCW1과의 연결을 위한 상동 영역이며, DCW1의 1번째에서 60번째까지의 60 염기와 동일한 염기서열로 이루어진다. 즉, DCW1∼DCW25 및 Cm-oriC(DCW25)의 26 단편이 모두 연결되면 환상 DNA가 얻어진다.
RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 F203W 변이체를 이용하고, 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를 이용했다. 또한, RCR 증폭 반응액으로는 표 1에 나타내는 조성의 반응용 혼합물에 60 nM의 Tus를 함유하는 혼합액을 이용했다. Tus는 Tus의 대장균 발현주로부터, 어피니티 칼럼크로마토그래피 및 겔 여과 칼럼크로마토그래피를 포함하는 공정으로 정제해 조제했다.
Figure pct00001
표 1에서, SSB는 대장균 유래 SSB, IHF는 대장균 유래 IhfA 및 IhfB의 복합체, DnaG는 대장균 유래 DnaG, DnaN는 대장균 유래 DnaN, Pol III* 는 대장균 유래 DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ 및 HolE로 이루어지는 복합체인 DNA 폴리메라아제 III* 복합체, DnaB는 대장균 유래 DnaB, DnaC는 대장균 유래 DnaC, DnaA는 대장균 유래 DnaA, RNaseH는 대장균 유래 RNaseH, Ligase는 대장균 유래 DNA 리가아제, Pol I는 대장균 유래 DNA 폴리메라아제 I, GyrA는 대장균 유래 GyrA, GyrB는 대장균 유래 GyrB, Topo IV는 대장균 유래 ParC 및 ParE의 복합체, Topo III는 대장균 유래 토포이소머라아제 III, RecQ는 대장균 유래 RecQ를 나타낸다.
SSB는, SSB의 대장균 발현주로부터, 황산암모늄 침전 및 이온 교환 칼럼크로마토그래피를 포함하는 공정으로 정제해 조제했다.
IHF는, IhfA 및 IhfB의 대장균 공발현주로부터, 황산암모늄 침전 및 어피니티 칼럼크로마토그래피를 포함하는 공정으로 정제해 조제했다.
DnaG는, DnaG의 대장균 발현주로부터, 황산암모늄 침전, 음이온 교환 칼럼크로마토그래피 및 겔 여과 칼럼크로마토그래피를 포함하는 공정으로 정제해 조제했다.
DnaN은, DnaN의 대장균 발현주로부터, 황산암모늄 침전 및 음이온 교환 칼럼크로마토그래피를 포함하는 공정으로 정제해 조제했다.
Pol III*는, DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ 및 HolE의 대장균 공발현주로부터, 황산암모늄 침전, 어피니티 칼럼크로마토그래피 및 겔 여과 칼럼크로마토그래피를 포함하는 공정으로 정제해 조제했다.
DnaB 및 DnaC는, DnaB 및 DnaC의 대장균 공발현주로부터, 황산암모늄 침전, 어피니티 칼럼크로마토그래피 및 겔 여과 칼럼크로마토그래피를 포함하는 공정으로 정제해 조제했다.
DnaA는, DnaA의 대장균 발현주로부터, 황산암모늄 침전, 투석 침전 및 겔 여과 칼럼크로마토그래피를 포함하는 공정으로 정제해 조제했다.
GyrA 및 GyrB는, GyrA의 대장균 발현주와 GyrB의 대장균 발현주의 혼합물로부터, 황산암모늄 침전, 어피니티 칼럼크로마토그래피 및 겔 여과 칼럼크로마토그래피를 포함하는 공정으로 정제해 조제했다.
Topo IV는, ParC의 대장균 발현주와 ParE의 대장균 발현주의 혼합물로부터, 황산암모늄 침전, 어피니티 칼럼크로마토그래피 및 겔 여과 칼럼크로마토그래피를 포함하는 공정으로 정제해 조제했다.
Topo III는, Topo III의 대장균 발현주로부터, 황산암모늄 침전 및 어피니티 칼럼크로마토그래피를 포함하는 공정으로 정제해 조제했다.
RecQ는, RecQ의 대장균 발현주로부터, 황산암모늄 침전, 어피니티 칼럼크로마토그래피 및 겔 여과 칼럼크로마토그래피를 포함하는 공정으로 정제해 조제했다.
RNaseH, Ligase, Pol I은, 시판중인 대장균 유래의 효소를 이용했다(다카라 바이오(TAKARA bio) 제품).
구체적으로는, 우선, 2.5 nM 또는 5 nM의 직쇄상 이중가닥 DNA 단편 세트, 1 μM의 RecA의 F203W 변이체, 80 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 100 μM의 ATP, 4 mM의 크레아틴인산, 20 ng/L의 크레아틴 키나아제, 50 mM의 글루탐산 칼륨, 5 질량%의 PEG 8000 및 10 용량%의 DMSO로 이루어지는 반응 용액을 조제했다. 직쇄상 이중가닥 DNA 단편 세트로는, 상기 DCW1∼DCW20 및 Cm-oriC(DCW20)를 모두 등몰씩 함유하는 세트, 또는 DCW1∼DCW25 및 Cm-oriC(DCW25)를 모두 등몰씩 함유하는 세트를 이용했다. 계속해서, 이들 반응 용액을 42℃에서 30분간 인큐베이션해 연결 반응을 실시한 후, 65℃에서 20분간 인큐베이션해 열처리하고, 그 후 얼음 위에서 급냉했다. 열처리·급냉 후의 반응 용액에 대해, 2.5 nM의 직쇄상 이중가닥 DNA 단편 세트를 포함하는 것은 1 μL, 5 nM의 직쇄상 이중가닥 DNA 단편 세트를 포함하는 것은 0.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 12의 (a)에 나타낸다. 도면에서, '1-20'은 DCW1∼DCW20 및 Cm-oriC(DCW20)를 모두 등몰씩 함유하는 직쇄상 이중가닥 DNA 단편 세트를 함유하는 반응 용액을 영동한 레인을 나타낸다. '1-25'는 DCW1∼DCW25 및 Cm-oriC(DCW25)를 모두 등몰씩 함유하는 직쇄상 이중가닥 DNA 단편 세트를 함유하는 반응 용액을 영동한 레인을 나타낸다. 이 결과, 모든 반응 용액중에 여러 가지 크기의 연결체가 포함되어 있는 것이 확인되었다.
계속해서, 열처리·급냉 후의 반응 용액 0.5 μL를, RCR 증폭 반응액 4.5 μL에 첨가해 반응 혼합물을 조제했다. 이 반응 혼합물을 30℃에서 13시간 인큐베이션함으로써 RCR 증폭 반응을 실시했다. 반응 종료 후의 반응 혼합물 1 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 12의 (b)에 나타낸다. 도면에서, '1-20'과 '1-25'는 도 12의 (a)와 같다. 이 결과, DCW1∼DCW20 및 Cm-oriC(DCW20)의 세트를 연결시킨 반응 용액의 RCR 증폭물의 레인에는, 21 단편의 환상 연결체의 슈퍼코일의 밴드(도면에서 '21 frag supercoil')가 관찰되었다. DCW1∼DCW25 및 Cm-oriC(DCW25)의 세트를 연결시킨 반응 용액의 RCR 증폭물의 레인에는, 26 단편의 환상 연결체의 슈퍼코일의 밴드(도면에서 '26 frag supercoil')가 관찰되었다. 또한, 연결 반응 후의 반응 용액(도 12의 (a))에서는 다수의 밴드가 검출된 것에 비해, RCR 증폭 후의 반응 혼합물(도 12의 (b))에서는 몇 개의 밴드만 검출된 것으로부터, 환상의 연결체만이 RCR 증폭에 의해 증폭되었던 것을 확인할 수 있었다.
[실시예 11]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하여 환상의 연결체를 형성하고, 이것을 RCR 증폭하는 방법에서 RCR 증폭전의 열처리·급냉의 영향을 조사했다.
연결하는 직쇄상 이중가닥 DNA 단편으로는, 실시예 10에서 이용한 'DCW1∼DCW25 및 Cm-oriC(DCW25)를 모두 등몰씩 함유하는 직쇄상 이중가닥 DNA 단편 세트'(20 nM의 직쇄상 이중가닥 DNA 단편 세트)를 이용했다. RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 F203W 변이체를 이용하고, 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를 이용했다. 또한, RCR 증폭 반응액으로는 표 1에 나타낸 조성의 반응용 혼합물에 60 nM의 Tus를 함유하는 혼합액을 이용했다.
구체적으로는, 우선, 20 nM의 직쇄상 이중가닥 DNA 단편 세트, 1.5 μM의 RecA의 F203W 변이체, 80 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 100 μM의 ATP, 4 mM의 크레아틴인산, 20 ng/L의 크레아틴 키나아제, 50 mM의 글루탐산 칼륨, 150 mM의 TMAC, 5 질량%의 PEG 8000 및 10 용량%의 DMSO로 이루어지는 반응 용액을 조제했다. 계속해서, 이 반응 용액을, 42℃에서 30분간 인큐베이션해 연결 반응을 실시한 후, 50℃ 또는 65℃에서 2분간 인큐베이션해 열처리하고, 그 후 얼음 위에서 급냉했다. 급냉 후의 반응 용액 1.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 13의 (a)에 나타낸다. 도면에서, '500 bp ladder'는 실시예 1에서 이용한 DNA 래더마커를 영동한 레인을 나타내고, 'Input'은 20 nM의 직쇄상 이중가닥 DNA 단편 세트를 함유하는 용액 1.5 μL를 영동한 레인을 나타낸다. 또한, '-'는 연결 반응 후 열처리를 실시하지 않은 반응 용액을 영동한 레인을 나타낸다. '50℃'는 50℃에서 2분간 인큐베이션해 열처리한 반응 용액을 영동한 레인을 나타낸다. '65℃'는 65℃에서 2분간 인큐베이션해 열처리한 반응 용액을 영동한 레인을 나타낸다. 도 13의 (a)에 나타낸 바와 같이, 열처리를 실시하지 않은 반응 용액에서는, 영동되지 않고 스미어(smear)한 밴드가 되었던 것에 비해, 열처리 후의 반응 용액에서는 스미어 밴드의 대부분이 해소되고 있었다.
계속해서, 열처리·급냉 후의 반응 용액 0.5 μL를 RCR 증폭 반응액 4.5 μL에 첨가해 반응 혼합물을 조제했다. 이 반응 혼합물을 30℃에서 13시간 인큐베이션함으로써 RCR 증폭 반응을 실시했다. 대조로서, 65℃의 열처리·급냉 후의 반응 용액 0.5 μL를 10 mM의 Tris-HCl(pH 8.0), 1 mM의 EDTA로 이루어지는 TE 용액 4.5 μL에 첨가해 증폭전 용액으로 했다. 증폭전 용액 및 반응 종료 후의 반응 혼합물 1 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 13의 (b)에 나타낸다. 도면에서, 'MK3'은 DNA 래더마커를 영동한 레인을 나타낸다. 이 결과, 연결 반응에 의해 환상 연결체가 형성된 반응 용액을 RCR 증폭한 반응 혼합물에서는, 26 단편의 환상 연결체의 슈퍼코일의 밴드(도면에서 '25 frag scDNA')가 관찰되었다(도 13의 (b)에서 '-', '50℃', '65℃'). 증폭전 용액(도 13의 (b)에서 'Input')에서는 밴드가 관찰되지 않았다. 열처리를 실시하지 않은 반응 혼합물('-')에서는, 26 단편의 환상 연결체의 슈퍼코일의 밴드보다 영동 거리가 긴 부분에 2개의 넓은 밴드가 관찰되었지만, 50℃에서 열처리한 반응 혼합물('50℃')에서는 이들 밴드가 얇아지고, 65℃에서 열처리한 반응 혼합물('65℃')에서는 이러한 밴드는 검출되지 않았다. 이들 결과로부터, 26 단편의 환상 연결체의 슈퍼코일의 밴드보다 영동 거리가 긴 밴드는 비특이적 연결에 의해 생긴 환상 연결체의 증폭 산물이며, RCR 증폭전에 열처리·급냉을 실시하는 것에 의해 이와 같은 비특이적인 증폭 산물을 억제할 수 있는 것을 알 수 있었다.
[실시예 12]
26종류 또는 36종류의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하여 환상의 연결체를 형성하고, 이것을 RCR 증폭했다.
연결하는 직쇄상 이중가닥 DNA 단편으로는, DCW1∼DCW25(서열 번호 1∼서열 번호 25)와 oriC를 포함하는 Km-oriC(DCW25)(서열 번호 52)의 세트를 이용했다. Km-oriC(DCW25)는 1509 bp의 직쇄상 이중가닥 DNA 단편이고, 1번째에서 60번째까지의 60 염기는 DCW25와의 연결을 위한 상동 영역이며, DCW25의 532번째에서 591번째까지의 60 염기와 동일한 염기서열로 이루어진다. 또한, Km-oriC(DCW25)의 1450번째에서 1509번째까지의 60 염기는 DCW1과의 연결을 위한 상동 영역이며, DCW1의 1번째에서 60번째까지의 60 염기와 동일한 염기서열로 이루어진다. 즉, DCW1∼DCW25 및 Km-oriC(DCW25)의 26 단편이 모두 연결되면 환상 DNA가 얻어진다.
연결하는 직쇄상 이중가닥 DNA 단편으로는, 그 외에, DCW1∼DCW35(서열 번호 1∼서열 번호 35)와 oriC 및 oriC에 대해 각각 외향으로 삽입된 한 쌍의 ter 서열을 포함하는 Km-oriC(DCW35)(서열 번호 53)의 세트를 이용했다. Km-oriC(DCW35)는 1509 bp의 직쇄상 이중가닥 DNA 단편이고, 1번째에서 60번째까지의 60 염기는 DCW35와의 연결을 위한 상동 영역이며, DCW35의 532번째에서 591번째까지의 60 염기와 동일한 염기서열로 이루어진다. 또한, Km-oriC(DCW35)의 1450번째에서 1509번째까지의 60 염기는 DCW1과의 연결을 위한 상동 영역이며, DCW1의 1번째에서 60번째까지의 60 염기와 동일한 염기서열로 이루어진다. 즉, DCW1∼DCW35 및 Km-oriC(DCW35)의 36 단편이 모두 연결되면 환상 DNA가 얻어진다.
RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 F203W 변이체를 이용하고, 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를 이용했다. 또한, RCR 증폭 반응액으로는 표 1에 나타낸 조성의 반응용 혼합물에 60 nM의 Tus를 함유하는 혼합액을 이용했다.
구체적으로는, 우선, 20 nM의 직쇄상 이중가닥 DNA 단편 세트, 1.5 μM의 RecA의 F203W 변이체, 80 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 100 μM의 ATP, 4 mM의 크레아틴인산, 20 ng/L의 크레아틴 키나아제, 50 mM의 글루탐산 칼륨, 150 mM의 TMAC, 5 질량%의 PEG 8000 및 10 용량%의 DMSO로 이루어지는 반응 용액을 조제했다. 직쇄상 이중가닥 DNA 단편 세트로는, 상기 DCW1∼DCW25 및 Km-oriC(DCW25)를 모두 등몰씩 함유하는 세트, 또는 DCW1∼DCW35 및 Km-oriC(DCW35)를 모두 등몰씩 함유하는 세트를 이용했다. 계속해서, 이 반응 용액을 42℃에서 30분간 인큐베이션해 연결 반응을 실시한 후, 65℃에서 5분간 인큐베이션해 열처리하고, 그 후 얼음 위에서 급냉했다. 급냉 후의 반응 용액 1.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 14의 (a)에 나타낸다. 도면에서, 'Input'은 20 nM의 직쇄상 이중가닥 DNA 단편 세트를 함유하는 용액 1.5 μL를 영동한 레인을 나타낸다. 또한, 'DCW1-25 Km-oriC'는 상기 DCW1∼DCW25 및 Km-oriC(DCW25)를 모두 등몰씩 함유하는 세트를 함유시킨 반응 용액을 영동한 레인을 나타낸다. 'DCW1-35 Km-oriC'는 상기 DCW1∼DCW35 및 Km-oriC(DCW35)를 모두 등몰씩 함유하는 세트를 함유시킨 반응 용액을 영동한 레인을 나타낸다. 도 14의 (a)에 나타낸 바와 같이, 어떤 직쇄상 이중가닥 DNA 단편 세트를 이용한 경우에도, 연결 반응에 의해 다단편의 연결체가 얻어졌다.
계속해서, 열처리·급냉 후의 반응 용액 0.5 μL를 RCR 증폭 반응액 4.5 μL에 첨가해 반응 혼합물을 조제했다. 이 반응 혼합물을 30℃에서 16시간 인큐베이션함으로써 RCR 증폭 반응을 실시했다. 계속해서, 각 RCR 증폭 반응물 0.5 μL를 각각, 표 1에 나타낸 반응용 혼합물로부터 효소군만을 제외한 것(반응 버퍼) 4.5 μL에 희석한 후, 30℃에서 30분간 재인큐베이션을 실시했다. 희석 후의 재인큐베이션 처리는, 산물중의 증폭 중간체의 복제 신장이나 분리 반응을 촉진해, 최종 산물인 슈퍼코일 DNA의 생산량을 높이는 효과가 있다. 대조로서, DCW1∼DCW25를 이용해 연결 반응 및 열처리·급냉을 실시한 반응 용액 0.5 μL를, 10 mM의 Tris-HCl(pH 8.0), 1 mM의 EDTA로 이루어지는 TE 용액 4.5 μL에 첨가해 증폭전 용액을 조제했다. 증폭전 용액 및 재인큐베이션 종료 후의 반응 혼합물 2.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 14의 (b)에 나타낸다. 이 결과, 26 단편의 직쇄상 이중가닥 DNA 단편 세트를 연결 후에 RCR 증폭한 반응 혼합물에서는, 26 단편의 환상 연결체의 슈퍼코일의 밴드(도면에서 '26 단편 scDNA')가 관찰되었다(도 14의 (b)에서 'DCW1-25 Km-oriC'). 36 단편의 직쇄상 이중가닥 DNA 단편 세트를 연결 후에 RCR 증폭한 반응 혼합물에서는, 36 단편의 환상 연결체의 슈퍼코일의 밴드(도면에서 '36 단편 scDNA')가 관찰되었다(도 14의 (b)에서 'DCW1-35 Km-oriC'). 증폭전 용액(도 14의 (b)에서 'Input')에서는 밴드가 관찰되지 않았다. 이들 결과로부터, 본 발명에 의해, 36 단편이라고 하는 다단편의 환상 연결체가 얻어지는 것, 이 환상 연결체는 RCR 증폭에 의해 증폭할 수 있는 것이 확인되었다. 단, 36 단편의 연결 반응물이 26 단편의 연결 반응물보다, RCR 증폭에 의한 비특이적 증폭 산물이 많았다.
[실시예 13]
Gibson Assembly법(특허 문헌 3)을 이용해 복수의 이중가닥 DNA 단편을 연결하는 방법에 이용하는 키트 'NEBuilder HiFi DNA 어셈블리'(NEB 제품)이 시판중이다. 이 키트에서는, 말단에 15∼20 염기의 상동 영역이 있는 2종류 이상의 직쇄상 이중가닥 DNA 단편을, 5'→3' 엑소뉴클레아제, DNA 폴리메라아제 및 DNA 리가아제를 함유하는 상기 키트에 포함된 혼합 용액(Master mix)에 첨가해, 50℃에서 15∼60분간 인큐베이션하는 방법(NEB법)에 의해 연결한다.
RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결 반응을 실시하는 본 발명에 따른 DNA 생산 방법과, NEB법의 연결 효율을 비교했다.
연결하는 직쇄상 이중가닥 DNA 단편으로는, 실시예 12에서 이용한 DCW1∼DCW25 및 Km-oriC(DCW25)를 모두 등몰씩 함유하는 세트를 이용했다. RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 F203W 변이체를 이용하고, 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를 이용했다. 또한, RCR 증폭 반응액으로는 표 1에 나타낸 조성의 반응용 혼합물에 60 nM의 Tus를 함유하는 혼합액을 이용했다.
구체적으로는, 우선, 본 발명에 따른 방법(RA법)으로, 20 nM 또는 60 nM의 직쇄상 이중가닥 DNA 단편 세트, 1.5 μM의 RecA의 F203W 변이체, 80 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 100 μM의 ATP, 4 mM의 크레아틴인산, 20 ng/L의 크레아틴 키나아제, 50 mM의 글루탐산 칼륨, 150 mM의 TMAC, 5 질량%의 PEG 8000 및 10 용량%의 DMSO로 이루어지는 반응 용액을 조제했다. 계속해서, 이 반응 용액을 42℃에서 30분간 인큐베이션해 연결 반응을 실시한 후, 65℃에서 5분간 인큐베이션해 열처리하고, 그 후 얼음 위에서 급냉했다. 급냉 후의 반응 용액 1.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
또한, NEB법으로, 상기 키트에 포함된 2×Master mix를 2배 희석한 용액에 20 nM 또는 60 nM의 직쇄상 이중가닥 DNA 단편 세트를 혼합한 반응 용액을 조제하고, 이 반응 용액을 50℃에서 60분간 인큐베이션해 연결 반응을 실시했다. 연결 반응 후의 반응 용액 1.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 15의 (a)에 나타낸다. 도면에서, 'Input'은 20 nM의 직쇄상 이중가닥 DNA 단편 세트를 함유하는 용액 1.5 μL를 영동한 레인을 나타낸다. 또한, 'RA'는 본 발명에 따른 방법(RA법)으로 조제된 반응 용액을 영동한 레인을 나타내, 'NEB'는 NEB법으로 조제한 반응 용액을 영동한 레인을 나타낸다. 도 15의 (a)에 나타낸 바와 같이, 직쇄상 이중가닥 DNA 단편 세트의 함유량이 20 nM과 60 nM인 경우 모두에서, RA법으로 연결 반응을 실시한 반응 용액에서는 꽤 많은 수의 단편이 연결된 연결체가 얻어졌다. 이에 대해, NEB법으로 연결 반응을 실시한 반응 용액에서는, 2∼3 단편의 연결체만 얻어졌다.
계속해서, 각 반응 용액 0.5 μL를 RCR 증폭 반응액 4.5 μL에 첨가해 반응 혼합물을 조제했다. 이 반응 혼합물을 30℃에서 16시간 인큐베이션함으로써 RCR 증폭 반응을 실시했다. 계속해서, 각 RCR 증폭 반응물 0.5 μL를 각각, 표 1에 나타낸 반응용 혼합물로부터 효소군만을 제외한 것(반응 버퍼) 4.5 μL에 희석한 후, 30℃에서 30분간 재인큐베이션를 실시했다. 재인큐베이션 종료 후의 반응 혼합물 2.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 15의 (b)에 나타낸다. 이 결과, 본 발명에 따른 방법(RA법)으로 연결 반응을 실시한 반응 용액을 RCR 증폭한 반응 혼합물(도면에서 'RA')에는, 26 단편이 모두 연결된 환상 연결체의 증폭 산물의 밴드가 검출되었다(도면에서 '25 frag Supercoil'). 한편, NEB법으로 연결 반응을 실시한 반응 용액을 RCR 증폭한 반응 혼합물(도면에서 'NEB')에는 26 단편의 환상 연결체의 증폭 산물의 밴드가 검출되지 않아, NEB법에서는 26 단편을 연결시킬 수 없었다. 또한, 모든 반응 혼합물에서, 비특이적인 회전환형 복제의 진행에 의해 연쇄 동일 서열 (concatemer)이 된 산물이나, 복제 후에 미분리인 채로 남은 환상 DNA 다량체 산물(카테난)이 아가로스 겔 전기 영동의 분리 한계의 위치에 검출되었다(도면에서 'Multimer').
[실시예 14]
장쇄 게놈의 단편끼리를 연결해 환상 연결체를 형성한 후, RCR 증폭으로 증폭시켰다.
장쇄 게놈의 단편으로 대장균주(DGF-298WΔ100::revΔ234::SC)의 게놈 DNA의 Xba I 분해물(15 단편, DGF-298/XbaI)을 이용하고, 그 중 325 kbp의 게놈 단편(325 k게놈 단편)과 220 kbp의 게놈 단편(220 k게놈 단편)을 각각 oriC를 포함하는 연결용 단편(Cm-oriC 단편)과 연결시켜 환상으로 했다. 325 k게놈 단편을 고리화(cyclization)하는 연결용 단편으로는, oriC를 포함하고, 또한, 상류 말단에 325 k게놈 단편의 하류 말단과의 상동 영역이 있고(즉, 상류 말단의 60 염기가 325 k게놈 단편의 하류 말단의 60 염기와 동일한 염기서열로 이루어지고), 하류 말단에 325 k게놈 단편의 상류 말단과의 상동 영역이 있는(즉, 하류 말단의 60 염기가 325 k게놈 단편의 상류 말단의 60 염기와 동일한 염기서열로 이루어지는), 1298 bp의 직쇄상 이중가닥 DNA 단편(Cm-oriC/325 k단편, 서열 번호 59)을 이용했다. 220 k게놈 단편을 고리화하는 연결용 단편으로는, oriC를 포함하고, 또한, 상류 말단에 220 k게놈 단편의 하류 말단과의 상동 영역이 있고(즉, 상류 말단의 60 염기가 220 k게놈 단편의 하류 말단의 60 염기와 동일한 염기서열로 이루어지고), 하류 말단에 220 k게놈 단편의 상류 말단과의 상동 영역이 있는(즉, 하류 말단의 60 염기가 220 k게놈 단편의 상류 말단의 60 염기와 동일한 염기서열로 이루어지는), 1298 bp의 직쇄상 이중가닥 DNA 단편(Cm-oriC/220 k단편, 서열 번호 60)을 이용했다. 또한, RCR 증폭 반응액으로서 표 1에 나타낸 조성의 반응용 혼합물을 이용했다.
구체적으로는, 대장균 게놈 DNA의 Xba I 분해물(DGF-298/XbaI, 4.8 ng/L)과, 연결 대상 게놈 단편인 325 k게놈 단편과의 상동 영역을 갖는 Cm-oriC/325 k단편(240 pM)을, RA 반응액[20 mM Tris-HCl(pH 8.0), 4 mM DTT, 150 mM KOAc, 10 mM Mg(OAc)2, 100 μM ATP, 5 질량% PEG 8000, 40 mU/L 엑소뉴클레아제 III, 1 μM 대장균 RecA의 F203W 변이체](5 μL)에 첨가해, 30℃에서 60분간 인큐베이션해 연결 반응을 실시했다. 얻어진 RA 산물 0.5 μL를 RCR 증폭 반응액(4.5 μL)에 첨가하고, 온도 사이클(37℃에서 1분, 계속해서 24℃에서 30분간을 1 사이클로 하여, 이것을 40 사이클 반복했다)을 이용한 증폭 반응을 실시했다. 연결 대상 게놈 단편을 220 kbp로 하고, Cm-oriC/325 k단편 대신 Cm-oriC/220 k단편을 이용해 동일하게 연결 반응을 실시한 후, RCR 증폭을 실시했다. 대조로서, 200 kbp의 환상 oriC 플라스미드에 대해 마찬가지로 RCR 증폭을 실시했다. 325 k게놈 단편 연결 산물의 RCR 증폭 반응액에는, 장쇄 DNA 안정화를 위해 50 μM 디에틸렌 트리아민 펜타아세트산을 첨가했다.
반응 종료 후의 반응 혼합물 1 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다. 염색 결과를 도 16에 나타낸다. 도면에서, '220 kb'는 연결 대상 게놈 단편을 220 kbp로 한 반응에서 얻어진 증폭 산물을 영동한 레인을 나타낸다. '325 kb'는 연결 대상 게놈 단편을 325 kbp로 한 반응에서 얻어진 증폭 산물을 영동한 레인을 나타낸다. '200 kb(RCR Control)'는 200 kbp의 환상 oriC 플라스미드를 그대로 증폭해 얻어진 산물을 영동한 레인을 나타낸다. 이 결과, 연결 대상 게놈 단편을 220 kbp로 한 반응에서는 220 kbp의 환상 연결체의 슈퍼코일이, 연결 대상 게놈 단편을 325 kbp로 한 반응에서는 325 kbp의 환상 연결체의 슈퍼코일이, 각각 검출되었다. 이들 결과로부터, 본 발명에 따른 DNA 생산 방법에 의해, 325 kbp의 장쇄의 이중가닥 DNA 단편도 고리화할 수 있는 것이 확인되었다.
[실시예 15]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, 크레아틴 키나아제와 크레아틴인산으로 이루어지는 ATP 재생 경로를 포함하는 반응 용액중의 크레아틴인산 농도의 영향을 조사했다.
연결하는 직쇄상 이중가닥 DNA 단편은, DCW1∼DCW10(서열 번호 1∼서열 번호 10)을 이용했다. 또한, RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 F203W 변이체를 이용하고, 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를 이용했다.
구체적으로는, 우선, 각 2 nM의 DCW1∼DCW10, 1.5 μM의 RecA의 F203W 변이체, 80 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 50 mM의 글루탐산 칼륨, 100 μM의 ATP, 150 mM의 TMAC, 5 질량%의 PEG 8000, 10 용량%의 DMSO, 20 ng/L의 크레아틴 키나아제, 및, 0 mM(무첨가), 0.1 mM, 0.4 mM, 1 mM, 4 mM 또는 10 mM의 크레아틴인산으로 이루어지는 반응 용액을 조제했다. 계속해서, 이들 반응 용액을 42℃에서 30분간 인큐베이션해 연결 반응을 실시한 후, 65℃에서 2분간 인큐베이션해 열처리하고, 그 후 얼음 위에서 급냉했다. 열처리·급냉 후의 반응 용액중 1.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 17에 나타낸다. 도면에서, 'Input'은 각 2 nM의 DCW1∼DCW10을 함유하는 용액 2 μL를 영동한 레인을 나타낸다. 이 결과, 연결 반응을 실시한 샘플 중, 크레아틴인산 농도가 0.4∼10 mM인 샘플에서 10 단편 전부가 연결된 연결체의 밴드가 확인되었다. 특히, 크레아틴인산 농도가 1 mM 또는 4 mM인 샘플은 10 단편의 연결체의 양이 많고, 그 중에서도 4 mM인 샘플은 2∼9 단편의 연결체의 양도 많아, 연결 효율이 뛰어난 것을 알 수 있었다.
[실시예 16]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, 크레아틴 키나아제와 크레아틴인산으로 이루어지는 ATP 재생 경로를 포함하는 반응 용액중의 크레아틴 키나아제 농도의 영향을 조사했다.
연결하는 직쇄상 이중가닥 DNA 단편은, DCW1∼DCW10(서열 번호 1∼서열 번호 10)을 이용했다. 또한, RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 F203W 변이체를 이용하고, 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를 이용했다.
구체적으로는, 우선, 각 2 nM의 DCW1∼DCW10, 1.5 μM의 RecA의 F203W 변이체, 80 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 50 mM의 글루탐산 칼륨, 100 μM의 ATP, 150 mM의 TMAC, 5 질량%의 PEG 8000, 10 용량%의 DMSO, 4 mM의 크레아틴인산, 및, 0 ng/L(무첨가), 5 ng/L, 20 ng/L, 50 ng/L 또는 200 ng/L의 크레아틴 키나아제로 이루어지는 반응 용액을 조제했다. 계속해서, 이들 반응 용액을 42℃에서 30분간 인큐베이션해 연결 반응을 실시한 후, 65℃에서 2분간 인큐베이션해 열처리하고, 그 후 얼음 위에서 급냉했다. 열처리·급냉 후의 반응 용액중 1.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 18에 나타낸다. 도면에서, 'Input'은 각 2 nM의 DCW1∼DCW10을 함유하는 용액 2 μL를 영동한 레인을 나타내고, 'Buffer'는 크레아틴 키나아제 무첨가(0 ng/L)의 샘플을 영동한 레인을 나타낸다. 이 결과, 연결 반응을 실시한 샘플 중, 크레아틴 키나아제를 첨가한 모든 샘플에서 10 단편 전부가 연결된 연결체의 밴드가 확인되었다.
[실시예 17]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, 피루브산 키나아제와 포스포에놀피루브산으로 이루어지는 ATP 재생계의 영향을 조사했다.
연결하는 직쇄상 이중가닥 DNA 단편은, DCW1∼DCW35(서열 번호 1∼서열 번호 35)와 oriC 및 oriC에 대해 각각 외향으로 삽입된 한 쌍의 ter 서열을 포함하는 Km-oriC(DCW35)(서열 번호 53)의 세트를 이용했다. 또한, RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 F203W 변이체를 이용하고, 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를 이용했다.
구체적으로는, 우선, 각 0.6 nM의 DCW1∼DCW35 및 Km-oriC(DCW35), 1.5 μM의 RecA의 F203W 변이체, 80 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 50 mM의 글루탐산 칼륨, 100 μM의 ATP, 150 mM의 TMAC, 5 질량%의 PEG 8000, 10 용량%의 DMSO, 2 mM의 포스포에놀피루브산, 및, 10 ng/L, 32 ng/L 또는 100 ng/L의 피루브산 키나아제로 이루어지는 반응 용액을 조제했다. 또한, 비교 대상으로, 2 mM의 포스포에놀피루브산을 대신해 2 mM의 크레아틴인산을, 피루브산 키나아제를 대신해 20 ng/L의 크레아틴 키나아제를 혼합한 것 외에는 동일하게 하여 조제한 반응 용액과, 포스포에놀피루브산과 피루브산 키나아제를 함유하지 않는 것 외에는 동일하게 하여 조제한 반응 용액도 조제했다. 계속해서, 이들 반응 용액을 42℃에서 30분간 인큐베이션해 연결 반응을 실시한 후, 65℃에서 2분간 인큐베이션해 열처리하고, 그 후 얼음 위에서 급냉했다. 열처리·급냉 후의 반응 용액중 1.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 19에 나타낸다. 도면에서, 'Input'은 각 0.6 nM의 DCW1∼DCW35 및 Km-oriC(DCW35)를 함유하는 용액 2 μL를 영동한 레인을 나타낸다. '-ATP regeneration'은 포스포에놀피루브산과 피루브산 키나아제를 함유하지 않는 샘플을 영동한 레인을 나타낸다. 'CP 2 mM, CK 20 ng/L'는 크레아틴인산과 크레아틴 키나아제를 함유하는 샘플을 영동한 레인을 나타낸다. 'PEP 2 mM'은 포스포에놀피루브산과 각 농도의 피루브산 키나아제를 함유하는 샘플을 영동한 레인을 나타낸다. 이 결과, 2 mM의 포스포에놀피루브산과 100 ng/L의 피루브산 키나아제로 이루어지는 ATP 재생계를 포함하는 샘플에서는, 크레아틴인산과 크레아틴 키나아제로 이루어지는 ATP 재생계를 포함하는 샘플과 마찬가지로, 다단편이 연결된 연결체의 밴드가 확인되었다.
[실시예 18]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, 폴리인산 키나아제와 폴리인산으로 이루어지는 ATP 재생계의 영향을 조사했다.
연결하는 직쇄상 이중가닥 DNA 단편은 DCW1∼DCW10(서열 번호 1∼서열 번호 10)을 이용했다. 또한, RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 F203W 변이체를 이용하고, 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를 이용했다.
구체적으로는, 우선, 각 2 nM의 DCW1∼DCW10, 1 μM의 RecA의 야생형, 80 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 50 mM의 글루탐산 칼륨, 100 μM의 ATP, 150 mM의 TMAC, 5 질량%의 PEG 8000, 10 용량%의 DMSO, 및, 20 ng/L의 폴리인산 키나아제와, 1 mM, 4 mM 또는 10 mM의 폴리인산과, 20 ng/L, 60 ng/L 또는 150 ng/L의 폴리인산 키나아제로 이루어지는 반응 용액을 조제했다. 계속해서, 이들 반응 용액을 42℃에서 30분간 인큐베이션해 연결 반응을 실시한 후, 65℃에서 2분간 인큐베이션해 열처리하고, 그 후 얼음 위에서 급냉했다. 열처리·급냉 후의 반응 용액중 1.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 20에 나타낸다. 도면에서, 'Input'은 각 2 nM의 DCW1∼DCW10을 함유하는 용액 2 μL를 영동한 레인을 나타낸다. 이 결과, 연결 반응을 실시한 샘플 중, 60 ng/L의 폴리인산 키나아제와 1 mM의 폴리인산을 첨가한 샘플에서 10 단편 전부가 연결된 연결체의 밴드가 확인되었다.
[실시예 19]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제와 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제를 병용 하는 효과를 조사했다.
연결하는 직쇄상 이중가닥 DNA 단편은, DCW1∼DCW10(서열 번호 1∼서열 번호 10)을 이용했다. 또한, RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 야생형을 이용하고, 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를, 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 I을 각각 이용했다.
구체적으로는, 우선, 각 1 nM의 DCW1∼DCW10, 1 μM의 RecA의 야생형, 80 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 50 mM의 글루탐산 칼륨, 100 μM의 ATP, 150 mM의 TMAC, 5 질량%의 PEG 8000, 10 용량%의 DMSO, 20 ng/L의 크레아틴 키나아제, 4 mM의 크레아틴인산, 및, 0 U/L(무첨가), 0.1 U/L, 0.3 U/L 또는 1 U/L의 엑소뉴클레아제 I으로 이루어지는 반응 용액을 조제했다. 계속해서, 이들 반응 용액을 42℃에서 30분간 인큐베이션해 연결 반응을 실시한 후, 65℃에서 2분간 인큐베이션해 열처리하고, 그 후 얼음 위에서 급냉했다. 열처리·급냉 후의 반응 용액중 1.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 21에 나타낸다. 도면에서, 'Input'은 각 1 nM의 DCW1∼DCW10을 함유하는 용액 2 μL를 영동한 레인을 나타낸다. 이 결과, 연결 반응을 실시한 모든 샘플에서 10 단편 전부가 연결된 연결체의 밴드가 확인되었다. 또한, 10 단편 전부가 연결된 연결체의 양은 엑소뉴클레아제 I의 첨가량 의존적으로 많아지고 있었다. 이들 결과로부터, 엑소뉴클레아제 I의 첨가에 의해 엑소뉴클레아제 III와 RecA에 의한 연결 반응이 촉진되는 것이 판명되었다.
[실시예 20]
36종류의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질, 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제 및 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제를 이용해 연결하여 환상의 연결체를 형성하고, 이것을 RCR 증폭했다.
연결하는 직쇄상 이중가닥 DNA 단편은, DCW1∼DCW35(서열 번호 1∼서열 번호 35)와 oriC 및 oriC에 대해 각각 외향으로 삽입된 한 쌍의 ter 서열을 포함하는 Km-oriC(DCW35)(서열 번호 53)의 세트를 이용했다. 또한, RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 야생형을 이용하고, 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를, 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 I을 각각 이용했다. 또한, RCR 증폭 반응액으로는 표 1에 나타낸 조성의 반응용 혼합물에 60 nM의 Tus를 함유하는 혼합액을 이용했다.
구체적으로는, 우선, 각 0.6 nM의 DCW1∼DCW35 및 Km-oriC(DCW35), 1 μM의 RecA의 야생형, 80 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 50 mM의 글루탐산 칼륨, 100 μM의 ATP, 150 mM의 TMAC, 5 질량%의 PEG 8000, 10 용량%의 DMSO, 20 ng/L의 크레아틴 키나아제, 4 mM의 크레아틴인산, 및, 0 U/L(무첨가), 0.3 U/L 또는 1 U/L의 엑소뉴클레아제 I으로 이루어지는 반응 용액을 조제했다. 계속해서, 이들 반응 용액을 42℃에서 30분간 인큐베이션해 연결 반응을 실시한 후, 65℃에서 2분간 인큐베이션해 열처리하고, 그 후 얼음 위에서 급냉했다. 열처리·급냉 후의 반응 용액중 1.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 22의 (a)에 나타낸다. 도면에서, 'Input'은 각 0.6 nM의 DCW1∼DCW35 및 Km-oriC(DCW35)를 함유하는 용액 2 μL를 영동한 레인을 나타낸다. 도 22의 (a)에 나타낸 바와 같이, 모든 샘플에서 다단편의 연결체가 확인되었다. 또한, 엑소뉴클레아제 I의 첨가량이 많은 샘플일수록 더 많은 수의 단편의 연결체의 양이 많았다.
계속해서, 열처리·급냉 후의 반응 용액 0.5 μL를, RCR 증폭 반응액 4.5 μL에 첨가해 반응 혼합물을 조제했다. 이 반응 혼합물을 30℃에서 16시간 인큐베이션함으로써 RCR 증폭 반응을 실시했다. 계속해서, 각 RCR 증폭 반응물 1 μL를 각각, 표 1에 나타낸 반응용 혼합물로부터 효소군만을 제외한 것(반응 버퍼) 4μL에 희석한 후 30℃에서 30분간 재인큐베이션를 실시했다. 재인큐베이션 종료 후의 반응 혼합물 2.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 22의 (b)에 나타낸다. 이 결과, 엑소뉴클레아제 I을 첨가한 샘플에서는, 36 단편의 환상 연결체의 슈퍼코일의 밴드(도면에서 '36 단편 scDNA')가 관찰된(도면에서 '36 frag. Supercoil'). 한편, 엑소뉴클레아제 I을 첨가하지 않은 샘플에서는 이 밴드가 관찰되지 않았다. 이 결과로부터, RecA와 엑소뉴클레아제 III에 의한 연결 반응이 엑소뉴클레아제 I의 첨가에 의해 연결 효율이 촉진된 결과, 36 단편 모두가 연결된 환상 연결체가 얻어진 것을 알 수 있었다.
[실시예 21]
50종류의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질, 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제 및 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제를 이용해 연결하여 환상의 연결체를 형성하고, 이것을 RCR 증폭했다.
연결하는 직쇄상 이중가닥 DNA 단편은, DCW1∼DCW49(서열 번호 1∼서열 번호 49)와 oriC 및 oriC에 대해 각각 외향으로 삽입된 한 쌍의 ter 서열을 포함하는 Km-oriC(DCW49)(서열 번호 62)의 세트를 이용했다. Km-oriC(DCW49)는 1509 bp의 직쇄상 이중가닥 DNA 단편이고, 1번째에서 60번째까지의 60 염기는 DCW49와의 연결을 위한 상동 영역이며, DCW49의 532번째에서 591번째까지의 60 염기와 동일한 염기서열로 이루어진다. 또한, Km-oriC(DCW49)의 1450번째에서 1509번째까지의 60 염기는 DCW1과의 연결을 위한 상동 영역이며, DCW1의 1번째에서 60번째까지의 60 염기와 동일한 염기서열로 이루어진다. 즉, DCW1∼DCW49 및 Km-oriC(DCW49)의 50 단편이 모두 연결되면 환상 DNA가 얻어진다.
또한, 양성 대조로서, DCW1∼DCW35(서열 번호 1∼서열 번호 35)와 oriC 및 oriC에 대해 각각 외향으로 삽입된 한 쌍의 ter 서열을 포함하는 Km-oriC(DCW35)의 세트도 이용했다. 또한, RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 야생형을 이용하고, 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를, 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 I를 각각 이용했다. 또한, RCR 증폭 반응액으로는 표 1에 나타낸 조성의 반응용 혼합물에 60 nM의 Tus를 함유하는 혼합액을 이용했다.
구체적으로는, 우선, 각 0.6 nM의 DCW1∼DCW49 및 Km-oriC(DCW49), 1 μM의 RecA의 야생형, 80 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 50 mM의 글루탐산 칼륨, 100 μM의 ATP, 150 mM의 TMAC, 5 질량%의 PEG 8000, 10 용량%의 DMSO, 20 ng/L의 크레아틴 키나아제, 4 mM의 크레아틴인산, 및 0.3 U/L의 엑소뉴클레아제 I으로 이루어지는 반응 용액을 조제했다. 또한, 각 0.6 nM의 DCW1∼DCW49 및 Km-oriC(DCW49)를 대신해, 각 0.6 nM의 DCW1∼DCW35 및 Km-oriC(DCW35)를 혼합한 것 외에는 동일하게 하여 조제한 반응 용액도 준비했다. 계속해서, 이들 반응 용액을 42℃에서 30분간 인큐베이션해 연결 반응을 실시한 후, 65℃에서 2분간 인큐베이션해 열처리하고, 그 후 얼음 위에서 급냉했다. 열처리·급냉 후의 반응 용액중 1.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 23의 (a)에 나타낸다. 도면에서, 'DCW1-35 Km-oriC 20 nM (8.8 ng/mL)' 중 'Input'은 각 0.6 nM의 DCW1∼DCW35 및 Km-oriC(DCW35)를 함유하는 용액 1.5 μL를 영동한 레인을 나타내고, 'RA'는 각 0.6 nM의 DCW1∼DCW35 및 Km-oriC(DCW35)를 함유시킨 반응 용액을 영동한 레인을 나타낸다. 'DCW1-49 Km-oriC 30 nM (12.1 ng/mL)' 중 'Input'은 각 0.6 nM의 DCW1∼DCW49 및 Km-oriC(DCW49)를 함유하는 용액 1.5 μL를 영동한 레인을 나타내고, 'RA'는 각 0.6 nM의 DCW1∼DCW49 및 Km-oriC(DCW49)를 함유시킨 반응 용액을 영동한 레인을 나타낸다. 이 결과, DCW1∼DCW35 및 Km-oriC(DCW35)를 이용한 샘플과 DCW1∼DCW49 및 Km-oriC(DCW49)를 이용한 샘플 모두에서 다단편의 연결체가 확인되었다.
계속해서, 열처리·급냉 후의 반응 용액 0.5 μL를 RCR 증폭 반응액 4.5 μL에 첨가해 반응 혼합물을 조제했다. 이 반응 혼합물을 30℃에서 16시간 인큐베이션함으로써 RCR 증폭 반응을 실시했다. 계속해서, 각 RCR 증폭 반응물 1 μL를 각각, 표 1에 나타낸 반응용 혼합물로부터 효소군만을 제외한 것(반응 버퍼) 4μL에 희석한 후 30℃에서 30분간 재인큐베이션을 실시했다. 재인큐베이션 종료 후의 반응 혼합물 2.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 23의 (b)에 나타낸다. 도면에서, 'MK3'는 DNA 래더마커를 영동한 레인을 나타낸다. 이 결과, 실시예 20에서 확인된 바와 같이, DCW1∼DCW35 및 Km-oriC(DCW35)를 이용한 샘플에서는, 36 단편이 연결된 환상 연결체가 얻어지고, 이 증폭 산물이 확인되었다. 한편, DCW1∼DCW49 및 Km-oriC(DCW49)를 이용한 샘플에서는, 50 단편이 연결된 환상 연결체의 밴드가 기대되는 위치에 얇은 밴드가 확인되었다.
계속해서, DCW1∼DCW49 및 Km-oriC(DCW49)를 포함하는 반응 용액의 연결 반응 및 그 후의 RCR 증폭 반응 후의 반응 용액에 포함되는 DNA(50 단편이 연결된 환상 연결체의 증폭 산물)를 단리하고, 그 DNA의 염기서열 구조를 조사했다.
구체적으로는, RCR 반응 후의 용액 1 μL에 9 μL의 TE 버퍼(10 mM의 Tris-HCl(pH 8.0), 1 mM의 EDTA를 함유하는 용액)을 첨가해, 얻어진 희석액 1 μL를 대장균 수용성 세포(E. coli HST08 Premium Electro-Cells, 다카라 바이오 제품)를 함유하는 용액 50 μL에 혼합하고, 얻어진 혼합액에 대해 전기천공법을 실시해 형질 전환했다. 얻어진 형질 전환체의 콜로니 12개를 50 μg/mL의 카나마이신을 함유하는 20 mL의 LB 액체 배지에서 하룻밤 배양해, 각각의 배양액에서 증식한 대장균의 세포내에 유지된 플라스미드 DNA를 추출했다. 얻어진 DNA 추출액의 260 nm 파장의 흡광도를 측정해 DNA 농도의 산출을 실시하고, 산출된 DNA 농도를 기초로, 15 ng분의 추출 DNA를 0.5 질량%의 아가로스로 이루어지는 겔을 이용해 전기 영동해 분리한 밴드를 SYBR Green 염색했다.
이 결과, 12개의 콜로니 중 3개(No. 6, 8, 10)에서는, 50 단편의 연결체의 증폭 산물(갭이나 닉이 없는 이중가닥 환상 DNA)의 밴드가 검출되었다. 계속해서, 이 3개의 콜로니와 50 단편의 연결체의 증폭 산물의 밴드를 확인할 수 없었던 콜로니(No. 12)에 대해, 15 ng분의 추출 DNA를 1 질량%의 아가로스로 이루어지는 겔을 이용해 전기 영동해 분리한 밴드를 SYBR Green 염색했다. 염색 결과를 도 24에 나타낸다. 도면에서, 'MK3'은 DNA 래더마커를 영동한 레인을 나타내고, 'RCR'은 RCR 반응 후의 용액을 영동한 레인을 나타낸다. 또한, 'genome'은 대장균의 게놈 DNA의 밴드를 나타내고, '*'는 50 단편의 연결체의 증폭 산물의 밴드를 나타낸다. 도 24에 나타낸 바와 같이, No. 6, 8, 10의 콜로니를 구성하는 형질 전환체에서는, 대장균의 게놈 DNA와 50 단편의 연결체의 증폭 산물의 밴드만 검출되었다.
계속해서, No. 6, 8, 10의 콜로니의 형질 전환체로부터 얻어진, 50 단편이 연결된 환상 연결체로 상정되는 표적 DNA의 서열 구조에 대해 조사했다. 이 50 단편의 환상 연결체는, 그 염기서열로부터, 제한 효소 PciI으로 분해하면, 10,849 bp, 8,121 bp, 4,771 bp 및 3,694 bp의 총 4 단편이 얻어지고, 제한 효소 NcoI으로 분해하면, 11,308 bp, 7,741 bp, 4,407 bp, 2,599 bp, 1,123 bp 및 257 bp의 총 6 단편이 얻어진다. 따라서, 각 형질 전환체로부터 얻어진 환상 연결체로 상정되는 표적 DNA를 PciI 또는 NcoI으로 분해해, 그 밴드 패턴을 조사했다.
구체적으로는, 0.03 ng/L의 추출 DNA 0.5 μL를 RCR 증폭 반응액 4.5 μL에 첨가해 반응 용액을 조제했다. 이 반응 용액을 30℃에서 16시간 인큐베이션함으로써 RCR 증폭 반응을 실시했다. 계속해서, 각 RCR 증폭 반응물 5 μL를 각각 RCR 반응 버퍼(표 1의 반응 버퍼) 20 μL에 희석한 후, 30℃에서 30분간 재인큐베이션을 실시했다. 재인큐베이션 종료 후의 반응 혼합물 25 μL를, 50 mM의 Tris-HCl(pH 8.0), 50 mM의 EDTA, 0.2 질량%의 도데실 황산나트륨, 100 μg/mL의 프로나제 K, 10 질량%의 글리세롤, 0.2 질량%의 브로모페놀 블루를 함유하는 용액 25 μL에 첨가하고, 37℃에서 30분간 인큐베이션해 RCR 반응 단백질군을 분해했다. 인큐베이션 후의 용액에 등량의 PCI 용액(TE 포화 페놀:클로로포름:이소아밀알코올=25:24:1)을 첨가하고, 볼텍스 믹서를 이용해 격렬하게 혼합한 후, 12000 rpm으로 1분간 원심분리를 실시했다. 분리 후의 수층을, MF(상표)-Membrane Filters(Filter Type: 0.05 μM VMWP, 머크(Merck) 제품)를 이용해 TE 버퍼로 투석했다. 투석 후의 DNA 용액의 DNA 농도를, 이 DNA 용액의 260 nm의 파장의 흡광도에 기초해 산출했다. 40 ng의 투석 후 DNA, 1×의 NEBuffer 3, 및 0.1 질량% BSA를 함유하는 용액 4.5 μL를 조정하고, 그 용액에 10 U/L의 제한 효소 PciI(다카라 바이오 제품), 10 U/L의 제한 효소 NcoI(뉴잉글랜드 바이오랩스(New England Biolabs) 제품) 또는 물을 0.5 μL 첨가해 37℃에서 30분간 인큐베이션했다. 인큐베이션 후의 반응 용액 2.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 25에 나타낸다. 도면에서, 'MK3' 및 'MK2'는 각각 DNA 래더마커를 영동한 레인을 나타내고, 'RCR product'는 RCR 반응 후의 용액을 영동한 레인을 나타낸다. '6', '8', '10'은, 각각, No. 6, 8, 10 콜로니의 형질 전환체의 추출 DNA의 RCR 증폭 반응물을 영동한 레인을 나타낸다. '-'은 효소 처리하지 않은 샘플을 영동한 레인을 나타낸다. 이 결과, No. 6, 8, 10의 형질 전환체에 포함되어 있는 환상 DNA는, PciI과 NcoI 분해물의 밴드 패턴으로부터, 목적하는 50 단편을 연결한 환상 연결체인 것이 확인되었다.
[실시예 22]
상동 영역이 3' 돌출 말단 또는 그 근방에 존재하는 DNA 단편을 포함하는 직쇄상 이중가닥 DNA 단편을, RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제와 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제를 병용하는 효과를 조사했다.
연결하는 직쇄상 이중가닥 DNA 단편은, pUC4K SceI을 제한 효소 PI-SceI으로 분해한, 말단이 3' 돌출 말단인 직쇄상 이중가닥 DNA 단편(pUC4K SceI 프라그먼트)과, 이 직쇄상 이중가닥 DNA 단편과 연결해 환상의 연결체를 구성하도록 설계한 직쇄상 이중가닥 DNA 단편(Km-oriC PI-SceI)을 이용했다. pUC4K SceI은, pUC4K 플라스미드를 주형으로, 프라이머 페어(CTATGCGGCATCAGAGCAG(서열 번호 63) 및 GTTAAGCCAGCCCCGACAC(서열 번호 64))를 이용해 PCR 증폭한 4 kbp의 단편과 500 bp의 PI-SceI 프라그먼트(서열 번호 65)를, RA에 의해 연결 고리화해 조제한 플라스미드이다. 또한, Km-oriC PI-SceI은, Km-oriC(DCW35) 단편을 주형으로 프라이머 페어(tgcgtaagcggggcacatttcattacctctttctccgcacGCTCTGCCAGTGTTACAACC(서열 번호 66) 및 taatgtatactatacgaagttattatctatgtcgggtgcTAACGCGGTATGAAAATGGAT(서열 번호 67))를 이용해 증폭한 PCR 단편이다.
또한, RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 F203W 변이체를 이용하고, 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를, 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 I를 각각 이용했다.
구체적으로는, 우선, 각 1.28 nM의 pUC4K SceI 프라그먼트 및 Km-oriC PI-SceI, 1.5 μM의 RecA의 F203W 변이체, 80 mU/L의 엑소뉴클레아제 III, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 50 mM의 글루탐산 칼륨, 100 μM의 ATP, 150 mM의 TMAC, 5 질량%의 PEG 8000, 10 용량%의 DMSO, 4 mM의 크레아틴인산, 20 ng/L의 크레아틴 키나아제, 및, 0 U/L(무첨가), 0.3 U/L, 0.6 U/L 또는 1 U/L의 엑소뉴클레아제 I으로 이루어지는 반응 용액을 조제했다. 계속해서, 이들 반응 용액을 42℃에서 60분간 인큐베이션해 연결 반응을 실시한 후, 65℃에서 5분간 인큐베이션해 열처리하고, 그 후 얼음 위에서 급냉했다. 열처리·급냉 후의 반응 용액중 1.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 26에 나타낸다. 도면에서, 'Input'은 각 1.28 nM의 pUC4K SceI 프라그먼트 및 Km-oriC PI-SceI을 함유하는 용액 2 μL를 영동한 레인을 나타낸다. 도면에서, 'pUC4K SceI'이 pUC4K SceI 프라그먼트의 밴드, 'Km-oriC'가 Km-oriC PI-SceI의 밴드, 'Assembly product'가 pUC4K SceI 프라그먼트와 Km-oriC PI-SceI이 연결된 연결체의 밴드이다. 이 결과, 엑소뉴클레아제 I의 첨가량이 많은 샘플일수록 보다 다량의 연결체가 얻어졌다. 이는, 엑소뉴클레아제 III는 3' 돌출 말단을 표적으로 하기 어렵지만, 엑소뉴클레아제 I이 3' 돌출 말단을 분해해 엑소뉴클레아제 III가 표적으로 하기 쉬운 5' 돌출 말단으로 하기 때문에, 연결 효율이 높아지기 때문이라고 생각된다.
[실시예 23]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제와 2종류의 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제를 병용하는 효과를 조사했다.
연결하는 직쇄상 이중가닥 DNA 단편은, DCW34∼DCW43(서열 번호 34∼서열 번호 43)을 이용했다. 또한, RecA 패밀리 재조합 효소 단백질로는 대장균 RecA의 야생형을 이용하고, 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 III를, 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제로는 엑소뉴클레아제 I 및 엑소뉴클레아제 T를 각각 이용했다.
구체적으로는, 우선, 각 1 nM의 DCW34∼DCW43, 1 μM의 RecA의 야생형, 80 mU/L의 엑소뉴클레아제 III, 1 U/L의 엑소뉴클레아제 I, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 50 mM의 글루탐산 칼륨, 100 μM의 ATP, 150 mM의 TMAC, 5 질량%의 PEG 8000, 10 용량%의 DMSO, 20 ng/L의 크레아틴 키나아제, 4 mM의 크레아틴인산, 및, 0 U/L(무첨가), 0.05 U/L, 0.15 U/L 또는 0.5 U/L의 엑소뉴클레아제 T로 이루어지는 반응 용액을 조제했다. 계속해서, 이들 반응 용액을 42℃에서 30분간 인큐베이션해 연결 반응을 실시한 후, 65℃에서 2분간 인큐베이션해 열처리하고, 그 후 얼음 위에서 급냉했다. 열처리·급냉 후의 반응 용액중 1.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 27에 나타낸다. 이 결과, 연결 반응을 실시한 모든 샘플에서 10 단편 전부가 연결된 연결체의 밴드가 확인되었다. 또한, 2∼9 단편이 연결된 연결체의 양은, 엑소뉴클레아제 T의 첨가량 의존적으로 적어지고 있었다. 이들 결과로부터, 엑소뉴클레아제 I 및 엑소뉴클레아제 T의 첨가에 의해 다수의 연결 단편의 연결 반응이 촉진되는 것이 판명되었다.
[실시예 24]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 RecA 패밀리 재조합 효소 단백질과 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, RecA 패밀리 재조합 효소 단백질로 박테리오파지 RecA 상동체인 T4파지 UvsX를 이용했다. 연결하는 직쇄상 이중가닥 DNA 단편은 DCW34∼DCW43(서열 번호 34∼서열 번호 43)을 이용했다.
구체적으로는, 우선, 각 1 nM의 DCW34∼DCW43, 8, 30 또는 80 mU/L의 엑소뉴클레아제 III, 1 U/L의 엑소뉴클레아제 I, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 50 mM의 글루탐산 칼륨, 100 μM의 ATP, 150 mM의 TMAC, 5 질량%의 PEG 8000, 10 용량%의 DMSO, 20 ng/L의 크레아틴 키나아제, 4 mM의 크레아틴인산, 및, 0 μM(무첨가), 1 μM 또는 3 μM의 UvsX, 또는 1 μM의 RecA의 야생형(대조)으로 이루어지는 반응 용액을 조제했다. 계속해서, 이들 반응 용액을 42℃에서 30분간 인큐베이션해 연결 반응을 실시한 후, 65℃에서 2분간 인큐베이션해 열처리하고, 그 후 얼음 위에서 급냉했다. 열처리·급냉 후의 반응 용액중 1.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 28에 나타낸다. 도면에서, 'Input'은 각 1 nM의 DCW34∼DCW43을 함유하는 용액 2 μL를 영동한 레인을 나타낸다. 이 결과, 1 μM 또는 3 μM의 UvsX와 80 mU/L의 엑소뉴클레아제 III의 존재하에서 연결 반응을 실시한 샘플에서는, 1 μM의 RecA의 야생형과 80 mU/L의 엑소뉴클레아제 III의 존재하에서 연결 반응을 실시한 샘플과 마찬가지로, 10 단편 전부가 연결된 연결체의 밴드가 확인되었다. 이들 결과로부터, 박테리오파지 RecA 상동체인 UvsX를 이용한 경우에도, RecA를 이용한 경우와 마찬가지로 높은 연결 효율로 연결 반응을 실시할 수 있는 것이 확인되었다.
[실시예 25]
2종류 이상의 직쇄상 이중가닥 DNA 단편을 UvsX와 3'→5' 엑소뉴클레아제를 이용해 연결하는 반응에서, T4파지 UvsY를 병용하는 효과를 조사했다. 연결하는 직쇄상 이중가닥 DNA 단편은 DCW34∼DCW43(서열 번호 34∼서열 번호 43)을 이용했다.
구체적으로는, 우선, 각 1 nM의 DCW34∼DCW43, 3 μM의 UvsX, 60 mU/L의 엑소뉴클레아제 III, 1 U/L의 엑소뉴클레아제 I, 20 mM의 Tris-HCl(pH 8.0), 4 mM의 DTT, 1 mM의 아세트산마그네슘, 50 mM의 글루탐산 칼륨, 100 μM의 ATP, 150 mM의 TMAC, 5 질량%의 PEG 8000, 10 용량%의 DMSO, 20 ng/L의 크레아틴 키나아제, 4 mM의 크레아틴인산, 및, 0 μM(무첨가), 0.1 μM, 0.3 μM 또는 1 μM의 UvsY로 이루어지는 반응 용액을 조제했다. 계속해서, 이들 반응 용액을 42℃에서 30분간 인큐베이션해 연결 반응을 실시한 후, 65℃에서 2분간 인큐베이션해 열처리하고, 그 후 얼음 위에서 급냉했다. 열처리·급냉 후의 반응 용액중 1.5 μL를 아가로스 전기영동해 분리한 밴드를 SYBR Green 염색했다.
염색 결과를 도 29에 나타낸다. 이 결과, 연결 반응을 실시한 모든 샘플에서 10 단편 전부가 연결된 연결체의 밴드가 확인되었다. UvsY의 첨가량 의존적으로 10 단편 전부가 연결된 연결체의 양이 많아지고, 2∼9 단편이 연결된 연결체의 양은 적어지고 있었다. 이들 결과로부터, UvsX와 UvsY를 병용함으로써 엑소뉴클레아제 III와 UvsX에 의한 연결 반응이 촉진되는 것이 판명되었다.
1a, 1b…직쇄상 이중가닥 DNA 단편
H…상동 영역
2…3'→5' 엑소뉴클레아제
3…RecA 패밀리 재조합 효소 단백질
SEQUENCE LISTING <110> Japan Science and Technology Agency <120> PC-25879 <130> Method for producing DNA fragment and kit for linking DNA fragments <160> 67 <210> 1 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW1 <400> 1 ttctaaaacc gtgactgcgg atatcccgat tgtgggggat gctcgccagg tcctcgaaca 60 aatgcttgaa ctcttgtcgc aagaatccgc ccatcaacca ctggatgaga tccgcgactg 120 gtggcagcaa attgaacagt ggcgcgctcg tcagtgcctg aaatatgaca ctcacagtga 180 aaagattaaa ccgcaggcgg tgatcgagac tctttggcgg ttgacgaagg gagacgctta 240 cgtgacgtcc gatgtcgggc agcaccagat gtttgctgca ctttattatc cattcgacaa 300 accgcgtcgc tggatcaatt ccggtggcct cggcacgatg ggttttggtt tacctgcggc 360 actgggcgtc aaaatggcgt tgccagaaga aaccgtggtt tgcgtcactg gcgacggcag 420 tattcagatg aacatccagg aactgtctac cgcgttgcaa tacgagttgc ccgtactggt 480 ggtgaatctc aataaccgct atctggggat ggtgaagcag tggcaggaca tgatctattc 540 cggccgtcat tcacaatctt atatgcaatc gctacccgat ttcgtccgtc t 591 <210> 2 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW2 <400> 2 gatctattcc ggccgtcatt cacaatctta tatgcaatcg ctacccgatt tcgtccgtct 60 ggcggaagcc tatgggcatg tcgggatcca gatttctcat ccgcatgagc tggaaagcaa 120 acttagcgag gcgctggaac aggtgcgcaa taatcgcctg gtgtttgttg atgttaccgt 180 cgatggcagc gagcacgtct acccgatgca gattcgcggg ggcggaatgg atgaaatgtg 240 gttaagcaaa acggagagaa cctgattatg cgccggatat tatcagtctt actcgaaaat 300 gaatcaggcg cgttatcccg cgtgattggc cttttttccc agcgtggcta caacattgaa 360 agcctgaccg ttgcgccaac cgacgatccg acattatcgc gtatgaccat ccagaccgtg 420 ggcgatgaaa aagtacttga gcagatcgaa aagcaattac acaaactggt cgatgtcttg 480 cgcgtgagtg agttggggca gggcgcgcat gttgagcggg aaatcatgct ggtgaaaatt 540 caggccagcg gttacgggcg tgacgaagtg aaacgtaata cggaaatatt c 591 <210> 3 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW3 <400> 3 gtgaaaattc aggccagcgg ttacgggcgt gacgaagtga aacgtaatac ggaaatattc 60 cgtgggcaaa ttatcgatgt cacaccctcg ctttataccg ttcaattagc aggcaccagc 120 ggtaagcttg atgcattttt agcatcgatt cgcgatgtgg cgaaaattgt ggaggttgct 180 cgctctggtg tggtcggact ttcgcgcggc gataaaataa tgcgttgaga atgatctcaa 240 tgcgcaattt acagcccaac atgtcacgtt gggctttttt tgcgaaatca gtgggaacct 300 ggaataaaag cagttgccgc agttaatttt ctgcgcttag atgttaatga atttaaccca 360 taccagtaca atggctatgg tttttacatt ttacgcaagg ggcaattgtg aaactggatg 420 aaatcgctcg gctggcggga gtgtcgcgga ccactgcaag ctatgttatt aacggcaaag 480 cgaagcaata ccgtgtgagc gacaaaaccg ttgaaaaagt catggctgtg gtgcgtgagc 540 acaattacca cccgaacgcc gtggcagctg ggcttcgtgc tggacgcaca c 591 <210> 4 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW4 <400> 4 tgcgtgagca caattaccac ccgaacgccg tggcagctgg gcttcgtgct ggacgcacac 60 gttctattgg tcttgtgatc cccgatctgg agaacaccag ctatacccgc atcgctaact 120 atcttgaacg ccaggcgcgg caacggggtt atcaactgct gattgcctgc tcagaagatc 180 agccagacaa cgaaatgcgg tgcattgagc accttttaca gcgtcaggtt gatgccatta 240 ttgtttcgac gtcgttgcct cctgagcatc ctttttatca acgctgggct aacgacccgt 300 tcccgattgt cgcgctggac cgcgccctcg atcgtgaaca cttcaccagc gtggttggtg 360 ccgatcagga tgatgccgaa atgctggcgg aagagttacg taagtttccc gccgagacgg 420 tgctttatct tggtgcgcta ccggagcttt ctgtcagctt cctgcgtgaa caaggtttcc 480 gtactgcctg gaaagatgat ccgcgcgaag tgcatttcct gtatgccaac agctatgagc 540 gggaggcggc tgcccagtta ttcgaaaaat ggctggaaac gcatccgatg c 591 <210> 5 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW5 <400> 5 gctatgagcg ggaggcggct gcccagttat tcgaaaaatg gctggaaacg catccgatgc 60 cgcaggcgct gttcacaacg tcgtttgcgt tgttgcaagg agtgatggat gtcacgctgc 120 gtcgcgacgg caaactgcct tctgacctgg caattgccac ctttggcgat aacgaactgc 180 tcgacttctt acagtgtccg gtgctggcag tggctcaacg tcaccgcgat gtcgcagagc 240 gtgtgctgga gattgtcctg gcaagcctgg acgaaccgcg taagccaaaa cctggtttaa 300 cgcgcattaa acgtaatctc tatcgccgcg gcgtgctcag ccgtagctaa gccgcgaaca 360 aaaatacgcg ccaggtgaat ttccctctgg cgcgtagagt acgggactgg acatcaatat 420 gcttaaagta aataagacta ttcctgacta ttattgataa atgcttttaa acccgcccgt 480 taattaactc accagctgaa attcacaata attaagtgat atcgacagcg cgtttttgca 540 ttattttgtt acatgcggcg atgaattgcc gatttaacaa acacttttct t 591 <210> 6 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW6 <400> 6 gtttttgcat tattttgtta catgcggcga tgaattgccg atttaacaaa cacttttctt 60 tgcttttgcg caaacccgct ggcatcaagc gccacacaga cgtaacaagg actgttaacc 120 ggggaagata tgtcctaaaa tgccgctcgc gtcgcaaact gacactttat atttgctgtg 180 gaaaatagtg agtcatttta aaacggtgat gacgatgagg gattttttct tacagctatt 240 cataacgtta atttgcttcg cacgttggac gtaaaataaa caacgctgat attagccgta 300 aacatcgggt tttttacctc ggtatgcctt gtgactggct tgacaagctt ttcctcagct 360 ccgtaaactc ctttcagtgg gaaattgtgg ggcaaagtgg gaataagggg tgaggctggc 420 atgttccggg gagcaacgtt agtcaatctc gacagcaaag ggcgcttatc agtgcctacc 480 cgttatcggg aacagctgct tgagaacgct gccggtcaaa tggtttgcac cattgacatt 540 tatcacccgt gcctgctgct ttaccccctg cctgaatggg aaattatcga g 591 <210> 7 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW7 <400> 7 attgacattt atcacccgtg cctgctgctt taccccctgc ctgaatggga aattatcgag 60 caaaaattat cgcgtctgtc gagcatgaac ccggttgagc gccgtgtgca gcgcctactg 120 ttaggtcatg ccagcgaatg tcagatggat ggcgcaggtc gattgttaat cgcgccagta 180 ctgcggcaac atgccgggct gacaaaagaa gtgatgctgg ttggacagtt caacaagttt 240 gagctgtggg atgaaacaac ctggcatcaa caggtcaagg aagatatcga cgcagagcag 300 ttggctaccg gagacttatc ggagcgactg caggacttgt ctctataaaa tgatggaaaa 360 ctataaacat actacggtgc tgctggatga agccgttaat ggcctcaata tccgtcctga 420 tggcatctac attgatggga cttttggtcg cggtggtcac tcacgtctga tcctctcgca 480 gcttggcgaa gaggggcgtt tgctggcgat cgatcgcgac ccgcaggcta tcgccgttgc 540 gaagactatt gatgatccgc gcttctccat catccacgga cctttctccg c 591 <210> 8 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW8 <400> 8 cgccgttgcg aagactattg atgatccgcg cttctccatc atccacggac ctttctccgc 60 gctgggcgaa tacgttgccg agcgcgatct tatcggcaag atcgacggca ttctcctcga 120 tcttggcgtc tcttcaccgc aacttgatga tgctgaacgt ggcttttcct ttatgcgcga 180 tggtccgctg gacatgcgta tggacccaac ccgtgggcag tcagccgctg aatggctaca 240 aaccgcagaa gaagccgata tcgcctgggt attgaaaacc tatggtgaag agcgttttgc 300 caaacgcatt gcccgcgcca ttgtcgagcg taaccgcgaa cagccgatga cccgcaccaa 360 agaactggcg gaagtcgtgg ctgctgcaac gccggtgaaa gataagttta aacatcccgc 420 gacccgtacc ttccaggcgg tgcgcatttg ggtaaacagt gaactggagg agatagagca 480 ggcgctaaaa agctcgctca acgtgctggc cccgggtggg cggctttcga tcatcagctt 540 ccactcgctg gaagaccgta ttgtgaaacg ttttatgcgt gaaaacagcc g 591 <210> 9 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW9 <400> 9 catcagcttc cactcgctgg aagaccgtat tgtgaaacgt tttatgcgtg aaaacagccg 60 cggtccgcaa gttccggcag ggttaccgat gactgaagag cagctcaaaa aactgggtgg 120 ccgtcagctg cgagcactag gcaagttaat gccgggcgaa gaagaggtgg ctgagaaccc 180 tcgtgcccgt agttcagttc tgcgtattgc agagaggacg aatgcatgat cagcagagtg 240 acagaagctc taagcaaagt taaaggatcg atgggaagcc acgagcgcca tgcattgcct 300 ggtgttatcg gtgacgatct tttgcgattt gggaagctgc cactctgcct gttcatttgc 360 attattttga cggcggtgac tgtggtaacc acggcgcacc atacccgttt actgaccgct 420 cagcgcgaac aactggtgct ggagcgagat gctttagaca ttgaatggcg caacctgatc 480 cttgaagaga atgcgctcgg cgaccatagc cgggtggaaa ggatcgccac ggaaaagctg 540 caaatgcagc atgttgatcc gtcacaagaa aatatcgtag tgcaaaaata a 591 <210> 10 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW10 <400> 10 gaaaagctgc aaatgcagca tgttgatccg tcacaagaaa atatcgtagt gcaaaaataa 60 ggataaacgc gacgcatgaa agcagcggcg aaaacgcaga aaccaaaacg tcaggaagaa 120 catgccaact ttatcagttg gcgttttgcg ttgttatgcg gctgtattct cctggcgctg 180 gcttttctgc tcggacgcgt agcgtggtta caagttatct ccccggatat gctggtgaaa 240 gagggcgaca tgcgttctct tcgcgttcag caagtttcca cctcccgcgg catgattact 300 gaccgttctg gtcgcccgtt agcggtgagc gtgccggtaa aagcgatttg ggctgacccg 360 aaagaagtgc atgacgctgg cggtatcagc gtcggtgacc gctggaaggc gctggctaac 420 gcgctcaata ttccgctgga tcagctttca gcccgcatta acgccaaccc gaaagggcgc 480 tttatttatc tggcgcgtca ggtgaaccct gacatggcgg actacatcaa aaaactgaaa 540 ctgccgggga ttcatctgcg tgaagagtct cgccgttact atccgtccgg c 591 <210> 11 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW11 <400> 11 aaactgaaac tgccggggat tcatctgcgt gaagagtctc gccgttacta tccgtccggc 60 gaagtgactg ctcacctcat cggctttact aacgtcgata gtcaagggat tgagggcgtt 120 gagaagagtt tcgataaatg gcttaccggg cagccgggtg agcgcattgt gcgtaaagac 180 cgctatggtc gcgtaattga agatatttct tctactgaca gccaggcagc gcacaacctg 240 gcgctgagta ttgatgaacg cctgcaggcg ctggtttatc gcgaactgaa caacgcggtg 300 gcctttaaca aggctgaatc tggtagcgcc gtgctggtgg atgtcaacac cggtgaagtg 360 ctggcgatgg ctaacagccc gtcatacaac cctaacaatc tgagcggcac gccgaaagag 420 gcgatgcgta accgtaccat caccgacgtg tttgaaccgg gctcaacggt taaaccgatg 480 gtggtaatga ccgcgttgca acgtggcgtg gtgcgggaaa actcggtact caataccatt 540 ccttatcgaa ttaacggcca cgaaatcaaa gacgtggcac gctacagcga a 591 <210> 12 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW12 <400> 12 aataccattc cttatcgaat taacggccac gaaatcaaag acgtggcacg ctacagcgaa 60 ttaaccctga ccggggtatt acagaagtcg agtaacgtcg gtgtttccaa gctggcgtta 120 gcgatgccgt cctcagcgtt agtagatact tactcacgtt ttggactggg aaaagcgacc 180 aatttggggt tggtcggaga acgcagtggc ttatatcctc aaaaacaacg gtggtctgac 240 atagagaggg ccaccttctc tttcggctac gggctaatgg taacaccatt acagttagcg 300 cgagtctacg caactatcgg cagctacggc atttatcgcc cactgtcgat taccaaagtt 360 gaccccccgg ttcccggtga acgtgtcttc ccggaatcca ttgtccgcac tgtggtgcat 420 atgatggaaa gcgtggcgct accaggcggc ggcggcgtga aggcggcgat taaaggctat 480 cgtatcgcca ttaaaaccgg taccgcgaaa aaggtcgggc cggacggtcg ctacatcaat 540 aaatatattg cttataccgc aggcgttgcg cctgcgagtc agccgcgctt c 591 <210> 13 <211> 571 <212> DNA <213> Artificial Sequence <220> <223> DCW13b <400> 13 taaatatatt gcttataccg caggcgttgc gcctgcgagt cagccgcgct tcgcgctggt 60 tgttgttatc aacgatccgc aggcgggtaa atactacggc ggcgccgttt ccgcgccggt 120 ctttggtgcc atcatgggcg gcgtattgcg taccatgaac atcgagccgg atgcgctgac 180 aacgggcgat aaaaatgaat ttgtgattaa tcaaggcgag gggacaggtg gcagatcgta 240 atttgcgcga ccttcttgct ccgtgggtgc cagacgcacc ttcgcgagca ctgcgagaga 300 tgacactcga cagccgtgtg gctgcggcgg gcgatctctt tgtagctgta gtaggtcatc 360 aggcggacgg gcgtcgatat atcccgcagg cgatagcgca aggtgtggct gccattattg 420 cagaggcgaa agatgaggcg accgatggtg aaatccgtga aatgcacggc gtaccggtca 480 tctatctcag ccagctcaac gagcgtttat ctgcactggc gggccgcttt taccatgaac 540 cctctgacaa tttacgtctc gtgggcgtaa c 571 <210> 14 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW14 <400> 14 ccgcttttac catgaaccct ctgacaattt acgtctcgtg ggcgtaacgg gcaccaacgg 60 caaaaccacg actacccagc tgttggcgca gtggagccaa ctgcttggcg aaatcagcgc 120 ggtaatgggc accgttggta acggcctgct ggggaaagtg atcccgacag aaaatacaac 180 cggttcggca gtcgatgttc agcatgagct ggcggggctg gtggatcagg gcgcgacgtt 240 ttgcgcaatg gaagtttcct cccacgggct ggtacagcac cgtgtggcgg cattgaaatt 300 tgcggcgtcg gtctttacca acttaagccg cgatcacctt gattatcatg gtgatatgga 360 acactacgaa gccgcgaaat ggctgcttta ttctgagcat cattgcggtc aggcgattat 420 taacgccgac gatgaagtgg gccgccgctg gctggcaaaa ctgccggacg cggttgcggt 480 atcaatggaa gatcatatta atccgaactg tcacggacgc tggttgaaag cgaccgaagt 540 gaactatcac gacagcggtg cgacgattcg ctttagctca agttggggcg a 591 <210> 15 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW15 <400> 15 gaccgaagtg aactatcacg acagcggtgc gacgattcgc tttagctcaa gttggggcga 60 tggcgaaatt gaaagccatc tgatgggcgc ttttaacgtc agcaacctgc tgctcgcgct 120 ggcgacactg ttggcactcg gctatccact ggctgatctg ctgaaaaccg ccgcgcgtct 180 gcaaccggtt tgcggacgta tggaagtgtt cactgcgcca ggcaaaccga cggtggtggt 240 ggattacgcg catacgccgg atgcactgga aaaagcctta caggcggcgc gtctgcactg 300 tgcgggcaag ctgtggtgtg tctttggctg tggtggcgat cgcgataaag gtaagcgtcc 360 actgatgggc gcaattgccg aagagtttgc tgacgtggcg gtggtgacgg acgataaccc 420 gcgtaccgaa gaaccgcgtg ccatcatcaa cgatattctg gcgggaatgt tagatgccgg 480 acatgccaaa gtgatggaag gccgtgctga agcggtgact tgcgccgtta tgcaggctaa 540 agagaatgat gtggtactgg tcgcgggcaa aggccatgaa gattaccaga t 591 <210> 16 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW16 <400> 16 gcaggctaaa gagaatgatg tggtactggt cgcgggcaaa ggccatgaag attaccagat 60 tgttggcaat cagcgtctgg actactccga tcgcgtcacg gtggcgcgtc tgctgggggt 120 gattgcatga ttagcgtaac ccttagccaa cttaccgaca ttctcaacgg tgaactgcaa 180 ggtgcagata tcacccttga tgctgtaacc actgataccc gaaaactgac gccgggctgc 240 ctgtttgttg ccctgaaagg cgaacgtttt gatgcccacg attttgccga ccaggcgaaa 300 gctggcggcg caggcgcact actggttagc cgtccgctgg acatcgacct gccgcagtta 360 atcgtcaagg atacgcgtct ggcgtttggt gaactggctg catgggttcg ccagcaagtt 420 ccggcgcgcg tggttgctct gacggggtcc tccggcaaaa cctccgttaa agagatgacg 480 gcggcgattt taagccagtg cggcaacacg ctttatacgg caggcaatct caacaacgac 540 atcggtgtac cgatgacgct gttgcgctta acgccggaat acgattacgc a 591 <210> 17 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW17 <400> 17 aacaacgaca tcggtgtacc gatgacgctg ttgcgcttaa cgccggaata cgattacgca 60 gttattgaac ttggcgcgaa ccatcagggc gaaatagcct ggactgtgag tctgactcgc 120 ccggaagctg cgctggtcaa caacctggca gcggcgcatc tggaaggttt tggctcgctt 180 gcgggtgtcg cgaaagcgaa aggtgaaatc tttagcggcc tgccggaaaa cggtatcgcc 240 attatgaacg ccgacaacaa cgactggctg aactggcaga gcgtaattgg ctcacgcaaa 300 gtgtggcgtt tctcacccaa tgccgccaac agcgatttca ccgccaccaa tatccatgtg 360 acctcgcacg gtacggaatt taccctacaa accccaaccg gtagcgtcga tgttctgctg 420 ccgttgccgg ggcgtcacaa tattgcgaat gcgctggcag ccgctgcgct ctccatgtcc 480 gtgggcgcaa cgcttgatgc tatcaaagcg gggctggcaa atctgaaagc tgttccaggc 540 cgtctgttcc ccatccaact ggcagaaaac cagttgctgc tcgacgactc c 591 <210> 18 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW18 <400> 18 gttccaggcc gtctgttccc catccaactg gcagaaaacc agttgctgct cgacgactcc 60 tacaacgcca atgtcggttc aatgactgca gcagtccagg tactggctga aatgccgggc 120 taccgcgtgc tggtggtggg cgatatggcg gaactgggcg ctgaaagcga agcctgccat 180 gtacaggtgg gcgaggcggc aaaagctgct ggtattgacc gcgtgttaag cgtgggtaaa 240 caaagccatg ctatcagcac cgccagcggc gttggcgaac attttgctga taaaactgcg 300 ttaattacgc gtcttaaatt actgattgct gagcaacagg taattacgat tttagttaag 360 ggttcacgta gtgccgccat ggaagaggta gtacgcgctt tacaggagaa tgggacatgt 420 tagtttggct ggccgaacat ttggtcaaat attattccgg ctttaacgtc ttttcctatc 480 tgacgtttcg cgccatcgtc agcctgctga ccgcgctgtt catctcattg tggatgggcc 540 cgcgtatgat tgctcatttg caaaaacttt cctttggtca ggtggtgcgt a 591 <210> 19 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW19 <400> 19 ggatgggccc gcgtatgatt gctcatttgc aaaaactttc ctttggtcag gtggtgcgta 60 acgacggtcc tgaatcacac ttcagcaagc gcggtacgcc gaccatgggc gggattatga 120 tcctgacggc gattgtgatc tccgtactgc tgtgggctta cccgtccaat ccgtacgtct 180 ggtgcgtgtt ggtggtgctg gtaggttacg gtgttattgg ctttgttgat gattatcgca 240 aagtggtgcg taaagacacc aaagggttga tcgctcgttg gaagtatttc tggatgtcgg 300 tcattgcgct gggtgtcgcc ttcgccctgt accttgccgg caaagacacg cccgcaacgc 360 agctggtggt cccattcttt aaagatgtga tgccgcagct ggggctgttc tacattctgc 420 tggcttactt cgtcattgtg ggtactggca acgcggtaaa cctgaccgat ggtctcgacg 480 gcctggcaat tatgccgacc gtatttgtcg ccggtggttt tgcgctggtg gcgtgggcga 540 ccggcaatat gaactttgcc agctacttgc atataccgta tctgcgacac g 591 <210> 20 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW20 <400> 20 cgtgggcgac cggcaatatg aactttgcca gctacttgca tataccgtat ctgcgacacg 60 ccggggaact ggttattgtc tgtaccgcga tagtcggggc aggactgggc ttcctgtggt 120 ttaacaccta tccggcgcag gtctttatgg gcgatgtagg ttcgctggcg ttaggtggtg 180 cgttaggcat tatcgccgta ctgctacgtc aggaattcct gctggtgatt atggggggcg 240 tgttcgtggt agaaacgctt tctgtcatcc tgcaggtcgg ctcctttaaa ctgcgcggac 300 aacgtatttt ccgcatggca ccgattcatc accactatga actgaaaggc tggccggaac 360 cgcgcgtcat tgtgcgtttc tggattattt cgctgatgct ggttctgatt ggtctggcaa 420 cgctgaaggt acgttaatca tggctgatta tcagggtaaa aatgtcgtca ttatcggcct 480 gggcctcacc gggctttcct gcgtggactt tttcctcgct cgcggtgtga cgccgcgcgt 540 tatggatacg cgtatgacac cgcctggcct ggataaatta cccgaagccg t 591 <210> 21 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW21 <400> 21 gccgcgcgtt atggatacgc gtatgacacc gcctggcctg gataaattac ccgaagccgt 60 agaacgccac acgggcagtc tgaatgatga atggctgatg gcggcagatc tgattgtcgc 120 cagtcccggt attgcactgg cgcatccatc cttaagcgct gccgctgatg ccggaatcga 180 aatcgttggc gatatcgagc tgttctgtcg cgaagcacaa gcaccgattg tggcgattac 240 cggttctaac ggcaaaagca cggtcaccac gctagtgggt gaaatggcga aagcggcggg 300 ggttaacgtt ggtgtgggtg gcaatattgg cctgcctgcg ttgatgctac tggatgatga 360 gtgtgaactg tacgtgctgg aactgtcgag cttccagctg gaaaccacct ccagcttaca 420 ggcggtagca gcgaccattc tgaacgtgac tgaagatcat atggatcgct atccgtttgg 480 tttacaacag tatcgtgcag caaaactgcg catttacgaa aacgcgaaag tttgcgtggt 540 taatgctgat gatgccttaa caatgccgat tcgcggtgcg gatgaacgct g 591 <210> 22 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW22 <400> 22 ttgcgtggtt aatgctgatg atgccttaac aatgccgatt cgcggtgcgg atgaacgctg 60 cgtcagcttt ggcgtcaaca tgggtgacta tcacctgaat catcagcagg gcgaaacctg 120 gctgcgggtt aaaggcgaga aagtgctgaa tgtgaaagag atgaaacttt ccgggcagca 180 taactacacc aatgcgctgg cggcgctggc gctggcagat gctgcagggt taccgcgtgc 240 cagcagcctg aaagcgttaa ccacattcac tggtctgccg catcgctttg aagttgtgct 300 ggagcataac ggcgtacgtt ggattaacga ttcgaaagcg accaacgtcg gcagtacgga 360 agcggcgctg aatggcctgc acgtagacgg cacactgcat ttgttgctgg gtggcgatgg 420 taaatcggcg gactttagcc cactggcgcg ttacctgaat ggcgataacg tacgtctgta 480 ttgtttcggt cgtgacggcg cgcagctggc ggcgctacgc ccggaagtgg cagaacaaac 540 cgaaactatg gaacaggcga tgcgcttgct ggctccgcgt gttcagccgg g 591 <210> 23 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW23 <400> 23 agaacaaacc gaaactatgg aacaggcgat gcgcttgctg gctccgcgtg ttcagccggg 60 cgatatggtt ctgctctccc cagcctgtgc cagccttgat cagttcaaga actttgaaca 120 acgaggcaat gagtttgccc gtctggcgaa ggagttaggt tgatgcgttt atctctccct 180 cgcctgaaaa tgccgcgcct gccaggattc agtatcctgg tctggatctc cacggcgcta 240 aagggctggg tgatgggctc gcgggaaaaa gataccgaca gcctgatcat gtacgatcgc 300 accttactgt ggctgacctt cggcctcgcg gcgattggct ttatcatggt gacctcggcg 360 tcaatgccca tagggcaacg cttaaccaac gatccgttct tcttcgcgaa gcgtgatggt 420 gtctatctga ttttggcgtt tattctggcg atcattacgc tgcgtctgcc gatggagttc 480 tggcaacgct acagtgccac gatgctgctc ggatctatca tcctgctgat gatcgtcctg 540 gtagtgggta gctcggttaa aggggcatcg cgttggatcg atctcggttt g 591 <210> 24 <211> 589 <212> DNA <213> Artificial Sequence <220> <223> DCW24b <400> 24 atcgtcctgg tagtgggtag ctcggttaaa ggggcatcgc gttggatcga tctcggtttg 60 ctgcgtatcc agcctgcgga gctgacaaaa ctgtcgctgt tttgctatat cgccaactat 120 ctggtgcgta aaggcgacga agtacgtaat aacctgcgcg gcttcctgaa accgatgggc 180 gtgattctgg tgttggcagt gttactgctg gcacagccag accttggtac ggtggtggtg 240 ttgtttgtga ctacgctggc gatgttgttc ctggcgggag cgaaattgtg gcagttcatt 300 gccattatcg gtatgggcat ttcagcggtt gtgttgctga tactcgccga accgtaccgt 360 atccgccgtg ttaccgcatt ctggaacccg tgggaagatc cctttggcag cggctatcag 420 ttaacgcaat cgctgatggc gtttggtcgc ggcgaacttt gggggcaagg tttaggtaac 480 tcggtacaaa aactggagta tctgccggaa gcgcacactg actttatttt cgccattatc 540 ggcgaagaac tggggtatgt cggtgtggtg ctggcacttt taatggtat 589 <210> 25 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW25 <400> 25 gccattatcg gcgaagaact ggggtatgtc ggtgtggtgc tggcactttt aatggtattc 60 ttcgtcgctt ttcgcgcgat gtcgattggc cgtaaagcat tagaaattga ccaccgtttt 120 tccggttttc tcgcctgttc tattggcatc tggtttagct tccaggcgct ggttaacgta 180 ggcgcggcgg cggggatgtt accgaccaaa ggtctgacat tgccgctgat cagttacggt 240 ggttcgagct tactgattat gtcgacagcc atcatgatgc tgttgcgtat tgattatgaa 300 acgcgtctgg agaaagcgca ggcgtttgta cgaggttcac gatgagtggt caaggaaagc 360 gattaatggt gatggcaggc ggaaccggtg gacatgtatt cccgggactg gcggttgcgc 420 accatctaat ggctcagggt tggcaagttc gctggctggg gactgccgac cgtatggaag 480 cggacttagt gccaaaacat ggcatcgaaa ttgatttcat tcgtatctct ggtctgcgtg 540 gaaaaggtat aaaagcactg atagctgccc cgctgcgtat cttcaacgcc t 591 <210> 26 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW26 <400> 26 gtctgcgtgg aaaaggtata aaagcactga tagctgcccc gctgcgtatc ttcaacgcct 60 ggcgtcaggc gcgggcgatt atgaaagcgt acaaacctga cgtggtgctc ggtatgggag 120 gctacgtgtc aggtccaggt ggtctggccg cgtggtcgtt aggcattccg gttgtacttc 180 atgaacaaaa cggtattgcg ggcttaacca ataaatggct ggcgaagatt gccaccaaag 240 tgatgcaggc gtttccaggt gctttcccta atgcggaagt agtgggtaac ccggtgcgta 300 ccgatgtgtt ggcgctgccg ttgccgcagc aacgtttggc tggacgtgaa ggtccggttc 360 gtgtgctggt agtgggtggt tctcagggcg cacgcattct taaccagaca atgccgcagg 420 ttgctgcgaa actgggtgat tcagtcacta tctggcatca gagcggcaaa ggttcgcaac 480 aatccgttga acaggcgtat gccgaagcgg ggcaaccgca gcataaagtg acggaattta 540 ttgatgatat ggcggcggcg tatgcgtggg cggatgtcgt cgtttgccgc t 591 <210> 27 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW27 <400> 27 cggaatttat tgatgatatg gcggcggcgt atgcgtgggc ggatgtcgtc gtttgccgct 60 ccggtgcgtt aacggtgagt gaaatcgccg cggcaggact accggcgttg tttgtgccgt 120 ttcaacataa agaccgccag caatactgga atgcgctacc gctggaaaaa gcgggcgcag 180 ccaaaattat cgagcagcca cagcttagcg tggatgctgt cgccaacacc ctggccgggt 240 ggtcgcgaga aaccttatta accatggcag aacgcgcccg cgctgcatcc attccggatg 300 ccaccgagcg agtggcaaat gaagtgagcc gggttgcccg ggcgtaattg tagcgatgcc 360 ttttgcatcg tatgaattta agaagttaat ggcgtaaaga atgaatacac aacaattggc 420 aaaactgcgt tccatcgtgc ccgaaatgcg tcgcgttcgg cacatacatt ttgtcggcat 480 tggtggtgcc ggtatgggcg gtattgccga agttctggcc aatgaaggtt atcagatcag 540 tggttccgat ttagcgccaa atccggtcac gcagcagtta atgaatctgg g 591 <210> 28 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW28 <400> 28 tcagatcagt ggttccgatt tagcgccaaa tccggtcacg cagcagttaa tgaatctggg 60 tgcgacgatt tatttcaacc atcgcccgga aaacgtacgt gatgccagcg tggtcgttgt 120 ttccagcgcg atttctgccg ataacccgga aattgtcgcc gctcatgaag cgcgtattcc 180 ggtgatccgt cgtgccgaaa tgctggctga gttaatgcgt tttcgtcatg gcatcgccat 240 tgccggaacg cacggcaaaa cgacaaccac cgcgatggtt tccagcatct acgcagaagc 300 ggggctcgac ccaaccttcg ttaacggcgg gctggtaaaa gcggcggggg ttcatgcgcg 360 tttggggcat ggtcggtacc tgattgccga agcagatgag agtgatgcat cgttcctgca 420 tctgcaaccg atggtggcga ttgtcaccaa tatcgaagcc gaccacatgg atacctacca 480 gggcgacttt gagaatttaa aacagacttt tattaatttt ctgcacaacc tgccgtttta 540 cggtcgtgcg gtgatgtgtg ttgatgatcc ggtgatccgc gaattgttac c 591 <210> 29 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW29 <400> 29 gccgttttac ggtcgtgcgg tgatgtgtgt tgatgatccg gtgatccgcg aattgttacc 60 gcgagtgggg cgtcagacca cgacttacgg cttcagcgaa gatgccgacg tgcgtgtaga 120 agattatcag cagattggcc cgcaggggca ctttacgctg ctgcgccagg acaaagagcc 180 gatgcgcgtc accctgaatg cgccaggtcg tcataacgcg ctgaacgccg cagctgcggt 240 tgcggttgct acggaagagg gcattgacga cgaggctatt ttgcgggcgc ttgaaagctt 300 ccaggggact ggtcgccgtt ttgatttcct cggtgaattc ccgctggagc cagtgaatgg 360 taaaagcggt acggcaatgc tggtcgatga ctacggccac cacccgacgg aagtggacgc 420 caccattaaa gcggcgcgcg caggctggcc ggataaaaac ctggtaatgc tgtttcagcc 480 gcaccgtttt acccgtacgc gcgacctgta tgatgatttc gccaatgtgc tgacgcaggt 540 tgataccctg ttgatgctgg aagtgtatcc ggctggcgaa gcgccaattc c 591 <210> 30 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW30 <400> 30 gacgcaggtt gataccctgt tgatgctgga agtgtatccg gctggcgaag cgccaattcc 60 gggagcggac agccgttcgc tgtgtcgcac aattcgtgga cgtgggaaaa ttgatcccat 120 tctggtgccg gatccggcgc gggtagccga gatgctggca ccggtattaa ccggtaacga 180 cctgattctc gttcaggggg ctggtaatat tggaaaaatt gcccgttctt tagctgaaat 240 caaactgaag ccgcaaactc cggaggaaga acaacatgac tgataaaatc gcggtcctgt 300 tgggtgggac ctccgctgag cgggaagttt ctctgaattc tggcgcagcg gtgttagccg 360 gactgcgtga aggcggtatt gacgcgtatc ctgtcgaccc gaaagaagtc gacgtgacgc 420 aactgaagtc gatgggcttt cagaaagtgt ttatcgcgct acacggtcgc ggcggtgaag 480 atggtacgct gcaggggatg ctcgagctga tgggcttgcc ttataccgga agcggagtga 540 tggcatctgc gctttcaatg gataaactac gcagcaaact tctatggcaa g 591 <210> 31 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW31 <400> 31 gcggagtgat ggcatctgcg ctttcaatgg ataaactacg cagcaaactt ctatggcaag 60 gtgccggttt accggtcgcg ccgtgggtag cgttaacccg cgcagagttt gaaaaaggcc 120 tgagcgataa gcagttagca gaaatttctg ctctgggttt gccggttatc gttaagccga 180 gccgcgaagg ttccagtgtg ggaatgtcaa aagtagtagc agaaaatgct ctacaagatg 240 cattaagatt ggcatttcag cacgatgaag aagtattgat tgaaaaatgg ctaagtgggc 300 cggagttcac ggttgcgata ctcggtgaag aaattttacc gtcaatacgt attcaaccgt 360 ccggaacctt ctatgattat gaggcgaagt atctctctga tgagacacag tatttctgcc 420 ccgcaggtct ggaagcgtca caagaggcca atttgcaggc attagtgctg aaagcatgga 480 cgacgttagg ttgcaaagga tggggacgta ttgacgttat gctggacagc gatggacagt 540 tttatctgct ggaagccaat acctcaccgg gtatgaccag ccacagcctg g 591 <210> 32 <211> 579 <212> DNA <213> Artificial Sequence <220> <223> DCW32b <400> 32 atggacagtt ttatctgctg gaagccaata cctcaccggg tatgaccagc cacagcctgg 60 tgccgatggc ggcacgtcag gcaggtatga gcttctcgca gttggtagta cgaattctgg 120 aactggcgga ctaatatgtc gcaggctgct ctgaacacgc gaaacagcga agaagaggtt 180 tcttctcgcc gcaataatgg aacgcgtctg gcggggatcc ttttcctgct gaccgtttta 240 acgacagtgt tggtgagcgg ctgggtcgtg ttgggctgga tggaagatgc gcaacgcctg 300 ccgctctcaa agctggtgtt gaccggtgaa cgccattaca cacgtaatga cgatatccgg 360 cagtcgatcc tggcattggg tgagccgggt acctttatga cccaggatgt caacatcatc 420 cagacgcaaa tagaacaacg cctgccgtgg attaagcagg tgagcgtcag aaagcagtgg 480 cctgatgaat tgaagattca tctggttgaa tatgtgccga ttgcgcggtg gaatgatcaa 540 catatggtag acgcggaagg aaataccttc agcgtgccg 579 <210> 33 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW33 <400> 33 aatgatcaac atatggtaga cgcggaagga aataccttca gcgtgccgcc agaacgcacc 60 agcaagcagg tgcttccaat gctgtatggc ccggaaggca gcgccaatga agtgttgcag 120 ggctatcgcg aaatggggca gatgctggca aaggacagat ttactctgaa ggaagcggcg 180 atgaccgcgc ggcgttcctg gcagttgacg ctgaataacg atattaagct caatcttggc 240 cggggcgata cgatgaaacg tttggctcgc tttgtagaac tttatccggt tttacagcag 300 caggcgcaaa ccgatggcaa acggattagc tacgttgatt tgcgttatga ctctggagcg 360 gcagtaggct gggcgccctt gccgccagag gaatctactc agcaacaaaa tcaggcacag 420 gcagaacaac aatgatcaag gcgacggaca gaaaactggt agtaggactg gagattggta 480 ccgcgaaggt tgccgcttta gtaggggaag ttctgcccga cggtatggtc aatatcattg 540 gcgtgggcag ctgcccgtcg cgtggtatgg ataaaggcgg ggtgaacgac c 591 <210> 34 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW34 <400> 34 atatcattgg cgtgggcagc tgcccgtcgc gtggtatgga taaaggcggg gtgaacgacc 60 tcgaatccgt ggtcaagtgc gtacaacgcg ccattgacca ggcagaattg atggcagatt 120 gtcagatctc ttcggtatat ctggcgcttt ctggtaagca catcagctgc cagaatgaaa 180 ttggtatggt gcctatttct gaagaagaag tgacgcaaga agatgtggaa aacgtcgtcc 240 ataccgcgaa atcggtgcgt gtgcgcgatg agcatcgtgt gctgcatgtg atcccgcaag 300 agtatgcgat tgactatcag gaagggatca agaatccggt aggactttcg ggcgtgcgga 360 tgcaggcaaa agtgcacctg atcacatgtc acaacgatat ggcgaaaaac atcgtcaaag 420 cggttgaacg ttgtgggctg aaagttgacc aactgatatt tgccggactg gcatcaagtt 480 attcggtatt gacggaagat gaacgtgaac tgggtgtctg cgtcgtcgat atcggtggtg 540 gtacaatgga tatcgccgtt tataccggtg gggcattgcg ccacactaag g 591 <210> 35 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW35 <400> 35 tcggtggtgg tacaatggat atcgccgttt ataccggtgg ggcattgcgc cacactaagg 60 taattcctta tgctggcaat gtcgtgacca gtgatatcgc ttacgccttt ggcacgccgc 120 caagcgacgc cgaagcgatt aaagttcgcc acggttgtgc gctgggttcc atcgttggaa 180 aagatgagag cgtggaagtg ccgagcgtag gtggtcgtcc gccacggagt ctgcaacgtc 240 agacactggc agaggtgatc gagccgcgct ataccgagct gctcaacctg gtcaacgaag 300 agatattgca gttgcaggaa aagcttcgcc aacaaggggt taaacatcac ctggcggcag 360 gcattgtatt aaccggtggc gcagcgcaga tcgaaggtct tgcagcctgt gctcagcgcg 420 tgtttcatac gcaagtgcgt atcggcgcgc cgctgaacat taccggttta acggattatg 480 ctcaggagcc gtattattcg acggcggtgg gattgcttca ctatgggaaa gagtcacatc 540 ttaacggtga agctgaagta gaaaaacgtg ttacagcatc agttggctcg t 591 <210> 36 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW36 <400> 36 agtcacatct taacggtgaa gctgaagtag aaaaacgtgt tacagcatca gttggctcgt 60 ggatcaagcg actcaatagt tggctgcgaa aagagtttta atttttatga ggccgacgat 120 gattacggcc tcaggcgaca ggcacaaatc ggagagaaac tatgtttgaa ccaatggaac 180 ttaccaatga cgcggtgatt aaagtcatcg gcgtcggcgg cggcggcggt aatgctgttg 240 aacacatggt gcgcgagcgc attgaaggtg ttgaattctt cgcggtaaat accgatgcac 300 aagcgctgcg taaaacagcg gttggacaga cgattcaaat cggtagcggt atcaccaaag 360 gactgggcgc tggcgctaat ccagaagttg gccgcaatgc ggctgatgag gatcgcgatg 420 cattgcgtgc ggcgctggaa ggtgcagaca tggtctttat tgctgcgggt atgggtggtg 480 gtaccggtac aggtgcagca ccagtcgtcg ctgaagtggc aaaagatttg ggtatcctga 540 ccgttgctgt cgtcactaag cctttcaact ttgaaggcaa gaagcgtatg g 591 <210> 37 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW37 <400> 37 gtatcctgac cgttgctgtc gtcactaagc ctttcaactt tgaaggcaag aagcgtatgg 60 cattcgcgga gcaggggatc actgaactgt ccaagcatgt ggactctctg atcactatcc 120 cgaacgacaa actgctgaaa gttctgggcc gcggtatctc cctgctggat gcgtttggcg 180 cagcgaacga tgtactgaaa ggcgctgtgc aaggtatcgc tgaactgatt actcgtccgg 240 gtttgatgaa cgtggacttt gcagacgtac gcaccgtaat gtctgagatg ggctacgcaa 300 tgatgggttc tggcgtggcg agcggtgaag accgtgcgga agaagctgct gaaatggcta 360 tctcttctcc gctgctggaa gatatcgacc tgtctggcgc gcgcggcgtg ctggttaaca 420 tcacggcggg cttcgacctg cgtctggatg agttcgaaac ggtaggtaac accatccgtg 480 catttgcttc cgacaacgcg actgtggtta tcggtacttc tcttgacccg gatatgaatg 540 acgagctgcg cgtaaccgtt gttgcgacag gtatcggcat ggacaaacgt c 591 <210> 38 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW38 <400> 38 atatgaatga cgagctgcgc gtaaccgttg ttgcgacagg tatcggcatg gacaaacgtc 60 ctgaaatcac tctggtgacc aataagcagg ttcagcagcc agtgatggat cgctaccagc 120 agcatgggat ggctccgctg acccaggagc agaagccggt tgctaaagtc gtgaatgaca 180 atgcgccgca aactgcgaaa gagccggatt atctggatat cccagcattc ctgcgtaagc 240 aagctgatta agaattgact ggaatttggg tttcgaggct ctttgtgcta aactggcccg 300 ccgaatgtat agtacacttc ggttggatag gtaatttggc gagataatac gatgatcaaa 360 caaaggacac ttaaacgtat cgttcaggcg acgggtgtcg gtttacatac cggcaagaaa 420 gtcaccctga cgttacgccc tgcgccggcc aacaccgggg tcatctatcg tcgcaccgac 480 ttgaatccac cggtagattt cccggccgat gccaaatctg tgcgtgatac catgctctgt 540 acgtgtctgg tcaacgagca tgatgtacgg atttcaaccg tagagcacct c 591 <210> 39 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW39 <400> 39 atgctctgta cgtgtctggt caacgagcat gatgtacgga tttcaaccgt agagcacctc 60 aatgctgctc tcgcgggctt gggcatcgat aacattgtta tcgaagttaa cgcgccggaa 120 atcccgatca tggacggcag cgccgctccg tttgtatacc tgctgcttga cgccggtatc 180 gacgagttga actgcgccaa aaaatttgtt cgcatcaaag agactgttcg tgtcgaagat 240 ggcgataagt gggctgaatt taagccgtac aatggttttt cgctggattt caccatcgat 300 tttaaccatc cggctattga ttccagcaac cagcgctatg cgatgaactt ctccgctgat 360 gcgtttatgc gccagatcag ccgtgcgcgt acgttcggtt tcatgcgtga tatcgaatat 420 ctgcagtccc gtggtttgtg cctgggcggc agcttcgatt gtgccatcgt tgttgacgat 480 tatcgcgtac tgaacgaaga cggcctgcgt tttgaagacg aatttgtgcg tcacaaaatg 540 ctcgatgcga tcggtgactt gttcatgtgt ggtcacaata ttattggtgc a 591 <210> 40 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW40 <400> 40 cacaaaatgc tcgatgcgat cggtgacttg ttcatgtgtg gtcacaatat tattggtgca 60 tttaccgctt ataaatccgg tcatgcactg aataacaaac tgctgcaggc tgtcctggcg 120 aaacaggaag cctgggaata tgtgaccttc caggacgacg cagaactgcc gttggccttc 180 aaagcgcctt cagctgtact ggcataacga catttatact gtcgtataaa attcgactgg 240 caaatctggc actctctccg gccaggtgaa ccagtcgttt ttttttgaat tttataagag 300 ctataaaaaa cggtgcgaac gctgttttct taagcacttt tccgcacaac ttatcttcat 360 tcgtgctgtg gactgcaggc tttaatgata agatttgtgc gctaaatacg tttgaatatg 420 atcgggatgg caataacgtg agtggaatac tgacgcgctg gcgacagttt ggtaaacgct 480 acttctggcc gcatctctta ttagggatgg ttgcggcgag tttaggtttg cctgcgctca 540 gcaacgccgc cgaaccaaac gcgcccgcaa aagcgacaac ccgcaaccac g 591 <210> 41 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW41 <400> 41 ctgcgctcag caacgccgcc gaaccaaacg cgcccgcaaa agcgacaacc cgcaaccacg 60 agccttcagc caaagttaac tttggtcaat tggccttgct ggaagcgaac acacgccgcc 120 cgaattcgaa ctattccgtt gattactggc atcaacatgc cattcgcacg gtaatccgtc 180 atctttcttt cgcaatggca ccgcaaacac tgcccgttgc tgaagaatct ttgcctcttc 240 aggcgcaaca tcttgcatta ctggatacgc tcagcgcgct gctgacccag gaaggcacgc 300 cgtctgaaaa gggttatcgc attgattatg cgcattttac cccacaagca aaattcagca 360 cgcccgtctg gataagccag gcgcaaggca tccgtgctgg ccctcaacgc ctcacctaac 420 aacaataaac ctttacttca ttttattaac tccgcaacgc ggggcgtttg agattttatt 480 atgctaatca aattgttaac taaagttttc ggtagtcgta acgatcgcac cctgcgccgg 540 atgcgcaaag tggtcaacat catcaatgcc atggaaccgg agatggaaaa a 591 <210> 42 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW42 <400> 42 ctgcgccgga tgcgcaaagt ggtcaacatc atcaatgcca tggaaccgga gatggaaaaa 60 ctctccgacg aagaactgaa agggaaaacc gcagagtttc gtgcacgtct ggaaaaaggc 120 gaagtgctgg aaaatctgat cccggaagct ttcgccgtgg tacgtgaggc aagtaagcgc 180 gtctttggta tgcgtcactt cgacgttcag ttactcggcg gtatggttct taacgaacgc 240 tgcatcgccg aaatgcgtac cggtgaagga aaaaccctga ccgcaacgct gcctgcttac 300 ctgaacgcac taaccggtaa aggcgtgcac gtagttaccg tcaacgacta cctggcgcaa 360 cgtgacgccg aaaacaaccg tccgctgttt gaattccttg gcctgactgt cggtatcaac 420 ctgccgggca tgccagcacc ggcaaagcgc gaagcttacg cagctgacat cacttacggt 480 acgaacaacg aatacggctt tgactacctg cgcgacaaca tggcgttcag ccctgaagaa 540 cgtgtacagc gtaaactgca ctatgcgctg gtggacgaag tggactccat c 591 <210> 43 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW43 <400> 43 cctgaagaac gtgtacagcg taaactgcac tatgcgctgg tggacgaagt ggactccatc 60 ctgatcgatg aagcgcgtac accgctgatc atttccggcc cggcagaaga cagctcggaa 120 atgtataaac gcgtgaataa aattattccg cacctgatcc gtcaggaaaa agaagactcc 180 gaaaccttcc agggcgaagg ccacttctcg gtggacgaaa aatctcgcca ggtgaacctg 240 accgaacgtg gtctggtgct gattgaagaa ctgctggtga aagagggcat catggatgaa 300 ggggagtctc tgtactctcc ggccaacatc atgctgatgc accacgtaac ggcggcgctg 360 cgcgctcatg cgctgtttac ccgtgacgtc gactacatcg ttaaagatgg tgaagttatc 420 atcgttgacg aacacaccgg tcgtaccatg cagggccgtc gctggtccga tggtctgcac 480 caggctgtgg aagcgaaaga aggtgtgcag atccagaacg aaaaccaaac gctggcttcg 540 atcaccttcc agaactactt ccgtctgtat gaaaaactgg cggggatgac c 591 <210> 44 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW44 <400> 44 ctggcttcga tcaccttcca gaactacttc cgtctgtatg aaaaactggc ggggatgacc 60 ggtactgctg ataccgaagc tttcgaattt agctcaatct acaagctgga taccgtcgtt 120 gttccgacca accgtccaat gattcgtaaa gatctgccgg acctggtcta catgactgaa 180 gcggaaaaaa ttcaggcgat cattgaagat atcaaagaac gtactgcgaa aggccagccg 240 gtgctggtgg gtactatctc catcgaaaaa tcggagctgg tgtcaaacga actgaccaaa 300 gccggtatta agcacaacgt cctgaacgcc aaattccacg ccaacgaagc ggcgattgtt 360 gctcaggcag gttatccggc tgcggtgact atcgcgacca atatggcggg tcgtggtaca 420 gatattgtgc tcggtggtag ctggcaggca gaagttgccg cgctggaaaa tccgaccgca 480 gagcaaattg aaaaaattaa agccgactgg caggtacgtc acgatgcggt actggaagca 540 ggtggcctgc atatcatcgg taccgagcgt cacgaatccc gtcgtatcga t 591 <210> 45 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW45 <400> 45 ctggaagcag gtggcctgca tatcatcggt accgagcgtc acgaatcccg tcgtatcgat 60 aaccagttgc gcggtcgttc tggtcgtcag ggggatgctg gttcttcccg tttctacctg 120 tcgatggaag atgcgctgat gcgtattttt gcttccgacc gagtatccgg catgatgcgt 180 aaactgggta tgaagccagg cgaagccatt gaacacccgt gggtgactaa agcgattgcc 240 aacgcccagc gtaaagttga aagccgtaac ttcgacattc gtaagcaact gctggaatat 300 gatgacgtgg ctaacgatca gcgtcgcgcc atttactccc agcgtaacga actgttggat 360 gtcagcgatg tgagcgaaac cattaacagc attcgtgaag atgtgttcaa agcgaccatt 420 gatgcctaca ttccaccaca gtcgctggaa gaaatgtggg atattccggg gctgcaggaa 480 cgtctgaaga acgatttcga cctcgatttg ccaattgccg agtggctgga taaagaacca 540 gaactgcatg aagagacgct gcgtgagcgc attctggcgc agtccatcga a 591 <210> 46 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> DCW46 <400> 46 aaagaaccag aactgcatga agagacgctg cgtgagcgca ttctggcgca gtccatcgaa 60 gtgtatcagc gtaaagaaga agtggttggt gctgagatga tgcgtcactt cgagaaaggc 120 gtcatgctgc aaacgcttga ctccctgtgg aaagagcacc tggcagcgat ggactatctg 180 cgtcagggta tccacctgcg tggctacgca cagaaagatc cgaagcagga atacaaacgt 240 gaatcgttct ccatgtttgc agcgatgctg gagtcgttga aatatgaagt tatcagtacg 300 ctgagcaaag ttcaggtacg tatgcctgaa gaggttgagg agctggaaca acagcgtcgt 360 atggaagccg agcgtttagc gcaaatgcag cagcttagcc atcaggatga cgactctgca 420 gccgcagctg cactggcggc gcaaaccgga gagcgcaaag taggacgtaa cgatccttgc 480 ccgtgcggtt ctggtaaaaa atacaagcag tgccatggcc gcctgcaata aaagctaact 540 gttgaagtaa aaggtgcagg attctgcgcc ttttttatag gtttaagaca a 591 <210> 47 <211> 575 <212> DNA <213> Artificial Sequence <220> <223> DCW47b <400> 47 gctaactgtt gaagtaaaag gtgcaggatt ctgcgccttt tttataggtt taagacaatg 60 aaaaagctgc aaattgcggt aggtattatt cgcaacgaga acaatgaaat ctttataacg 120 cgtcgcgcag cagatgcgca catggcgaat aaactggagt ttcccggcgg taaaattgaa 180 atgggtgaaa cgccggaaca ggcggtggtg cgtgaacttc aggaagaagt cgggattacc 240 ccccaacatt tttcgctatt tgaaaaactg gaatatgaat tcccggacag gcatataaca 300 ctgtggtttt ggctggtcga acgctgggaa ggggagccgt ggggtaaaga agggcaaccc 360 ggtgagtgga tgtcgctggt cggtcttaat gccgatgatt ttccgccagc caatgaaccg 420 gtaattgcga agcttaaacg tctgtaggtc agataaggcg ttttcgccgc atccgacatt 480 cgcacacgat gcctgatgcg acgctggcgc gtcttatcag gcctaaaggg atttctaact 540 cattgataaa tttgtttttg taggtcggat aaggc 575 <210> 48 <211> 559 <212> DNA <213> Artificial Sequence <220> <223> DCW48b <400> 48 tttgtttttg taggtcggat aaggcgttca cgccgcatcc gacatttgca caagatgcct 60 gatgcgacgc tgtccgcgtc ttatcaggcc tacgtgcggc atcagacaaa tgtcactgct 120 ttggttcttc gctccagtca tcgctttcgg aaagatcgcc actgctgggg attcgttttt 180 cttcagcagc ccattctccg aggtcgatca gctgacaacg tttggagcaa aatggccgaa 240 acgggctgat ttcaccccac accaccgttt tcccgcaggt tgggcaattc accgtaatag 300 tttctgacat ttttactcct tagcaacagg ccagttcgaa atccagacgt tccggtacct 360 gtccgttttc agtgtccagc ggcataaaac gaatggcaaa acggctctta tgtccggaaa 420 tttgcggata aagctgtgaa tcgagcgaca gattcaggcg cagcaagtcg gcatcgccac 480 cgttatcctg ataaaaacca ttcaggctgg tttgtttacg gaagggggcc gactggcgaa 540 ttaaatccag caccatggt 559 <210> 49 <211> 558 <212> DNA <213> Artificial Sequence <220> <223> DCW49 <400> 49 tttgtttacg gaagggggcc gactggcgaa ttaaatccag caccatggta agtgcctggg 60 tgagcgggtt caggctggca atccaggttt ctacctggct gtcgcgctgc gcctggggta 120 gatgcagcca aatgtgcaat gtaggtaaat caaagctgca acagccgcct gggatgctca 180 gtcgctgacg caccagagca atcaaacgat cttcacgcag aaattgcccg atacgcggcg 240 cggaaattaa tacgctcccc gccgctttta actgctgaat taatgcttca atacggctct 300 ggtccacgcc aggcacgcca atccaggtct ggagtttacg ttgctgccgg tcaagttctt 360 tcaacagctc agtgcggact tcgccgcgct cgaaaacatc cagtaattca ctgacattac 420 ggaagaaatg cagcgcgcca gcgtggtcaa cgatgggtaa attaacggtg agttgctgaa 480 tcaaaaactc aatgcgcagc catgtacgca ttttttcatt tagtggatgt tcaaaaagga 540 cctgggtctg cattacgg 558 <210> 50 <211> 1298 <212> DNA <213> Artificial Sequence <220> <223> Cm-oriC (DCW20) <400> 50 gccgcgcgtt atggatacgc gtatgacacc gcctggcctg gataaattac ccgaagccgt 60 gtcggcttga gaaagacctg agtatgttgt aactaaaggt gcgcataatg tatattatgt 120 taaatggatc ctgggtatta aaaagaagat ctatttattt agagatctgt tctattgtga 180 tctcttatta ggatcgcact gccctgtgga taacaaggat ccggctttta agatcaacaa 240 cctggaaagg atcattaact gtgaatgatc ggtgatcctg gaccgtataa gctgggatca 300 gaatgagggg ttatacacaa ctcaaaaact gaacaacagt tgttctttgg ataactaccg 360 gttgatccaa gcttcctgac agagttatcc acagtagatc gcacgatctg tataacttcg 420 tatagcatac attatacgaa gttatcttta gttacaacat actccattct tctgccggat 480 cttcttacgc cccgccctgc cactcatcgc agtactgttg taattcatta agcattctgc 540 cgacatggaa gccatcacag acggcatgat gaacctgaat cgccagcggc atcagcacct 600 tgtcgccttg cgtataatat ttgcccatgg tgaaaacggg ggcgaagaag ttgtccatat 660 tggccacgtt taaatcaaaa ctggtgaaac tcacccaggg attggctgag acgaaaaaca 720 tattctcaat aaacccttta gggaaatagg ccaggttttc accgtaacac gccacatctt 780 gcgaatatat gtgtagaaac tgccggaaat cgtcgtggta ttcactccag agcgatgaaa 840 acgtttcagt ttgctcatgg aaaacggtgt aacaagggtg aacactatcc catatcacca 900 gctcaccgtc tttcattgcc atacggaatt ccggatgagc attcatcagg cgggcaagaa 960 tgtgaataaa ggccggataa aacttgtgct tatttttctt tacggtcttt aaaaaggccg 1020 taatatccag ctgaacggtc tggttatagg tacattgagc aactgactga aatgcctcaa 1080 aatgttcttt acgatgccat tgggatatat caacggtggt atatccagtg atttttttct 1140 ccattttagc ttccttagct cctgaaaatc tcgataactc aaaaaatacg cccggtagtg 1200 atcttatttc attatggtga aagttggaac ctcttacgtt ctaaaaccgt gactgcggat 1260 atcccgattg tgggggatgc tcgccaggtc ctcgaaca 1298 <210> 51 <211> 1298 <212> DNA <213> Artificial Sequence <220> <223> Cm-oriC (DCW25) <400> 51 gtctgcgtgg aaaaggtata aaagcactga tagctgcccc gctgcgtatc ttcaacgcct 60 gtcggcttga gaaagacctg agtatgttgt aactaaaggt gcgcataatg tatattatgt 120 taaatggatc ctgggtatta aaaagaagat ctatttattt agagatctgt tctattgtga 180 tctcttatta ggatcgcact gccctgtgga taacaaggat ccggctttta agatcaacaa 240 cctggaaagg atcattaact gtgaatgatc ggtgatcctg gaccgtataa gctgggatca 300 gaatgagggg ttatacacaa ctcaaaaact gaacaacagt tgttctttgg ataactaccg 360 gttgatccaa gcttcctgac agagttatcc acagtagatc gcacgatctg tataacttcg 420 tatagcatac attatacgaa gttatcttta gttacaacat actccattct tctgccggat 480 cttcttacgc cccgccctgc cactcatcgc agtactgttg taattcatta agcattctgc 540 cgacatggaa gccatcacag acggcatgat gaacctgaat cgccagcggc atcagcacct 600 tgtcgccttg cgtataatat ttgcccatgg tgaaaacggg ggcgaagaag ttgtccatat 660 tggccacgtt taaatcaaaa ctggtgaaac tcacccaggg attggctgag acgaaaaaca 720 tattctcaat aaacccttta gggaaatagg ccaggttttc accgtaacac gccacatctt 780 gcgaatatat gtgtagaaac tgccggaaat cgtcgtggta ttcactccag agcgatgaaa 840 acgtttcagt ttgctcatgg aaaacggtgt aacaagggtg aacactatcc catatcacca 900 gctcaccgtc tttcattgcc atacggaatt ccggatgagc attcatcagg cgggcaagaa 960 tgtgaataaa ggccggataa aacttgtgct tatttttctt tacggtcttt aaaaaggccg 1020 taatatccag ctgaacggtc tggttatagg tacattgagc aactgactga aatgcctcaa 1080 aatgttcttt acgatgccat tgggatatat caacggtggt atatccagtg atttttttct 1140 ccattttagc ttccttagct cctgaaaatc tcgataactc aaaaaatacg cccggtagtg 1200 atcttatttc attatggtga aagttggaac ctcttacgtt ctaaaaccgt gactgcggat 1260 atcccgattg tgggggatgc tcgccaggtc ctcgaaca 1298 <210> 52 <211> 1509 <212> DNA <213> Artificial Sequence <220> <223> Km-oriC (DCW25) <400> 52 gtctgcgtgg aaaaggtata aaagcactga tagctgcccc gctgcgtatc ttcaacgcct 60 gtcggcttga gaaagacctg agtatgttgt aactaaaggt gcgcataatg tatattatgt 120 taaatggatc ctgggtatta aaaagaagat ctatttattt agagatctgt tctattgtga 180 tctcttatta ggatcgcact gccctgtgga taacaaggat ccggctttta agatcaacaa 240 cctggaaagg atcattaact gtgaatgatc ggtgatcctg gaccgtataa gctgggatca 300 gaatgagggg ttatacacaa ctcaaaaact gaacaacagt tgttctttgg ataactaccg 360 gttgatccaa gcttcctgac agagttatcc acagtagatc gcacgatctg tataacttcg 420 tatagcatac attatacgaa gttatcttta gttacaacat actccattct tctgccggat 480 cttcgggaaa gccacgttgt gtctcaaaat ctctgatgtt acattgcaca agataaaaat 540 atatcatcat gaacaataaa actgtctgct tacataaaca gtaatacaag gggtgttatg 600 agccatattc aacgggaaac gtcttgctcg aggccgcgat taaattccaa catggatgct 660 gatttatatg ggtataaatg ggctcgcgat aatgtcgggc aatcaggtgc gacaatctat 720 cgattgtatg ggaagcccga tgcgccagag ttgtttctga aacatggcaa aggtagcgtt 780 gccaatgatg ttacagatga gatggtcaga ctaaactggc tgacggaatt tatgcctctt 840 ccgaccatca agcattttat ccgtactcct gatgatgcat ggttactcac cactgcgatc 900 cccgggaaaa cagcattcca ggtattagaa gaatatcctg attcaggtga aaatattgtt 960 gatgcgctgg cagtgttcct gcgccggttg cattcgattc ctgtttgtaa ttgtcctttt 1020 aacagcgatc gcgtatttcg tctcgctcag gcgcaatcac gaatgaataa cggtttggtt 1080 gatgcgagtg attttgatga cgagcgtaat ggctggcctg ttgaacaagt ctggaaagaa 1140 atgcataagc ttttgccatt ctcaccggat tcagtcgtca ctcatggtga tttctcactt 1200 gataacctta tttttgacga ggggaaatta ataggttgta ttgatgttgg acgagtcgga 1260 atcgcagacc gataccagga tcttgccatc ctatggaact gcctcggtga gttttctcct 1320 tcattacaga aacggctttt tcaaaaatat ggtattgata atcctgatat gaataaattg 1380 cagtttcatt tgatgctcga tgagtttttc taatcagaat tggttaattg gttgtaacac 1440 tggcagagct tctaaaaccg tgactgcgga tatcccgatt gtgggggatg ctcgccaggt 1500 cctcgaaca 1509 <210> 53 <211> 1509 <212> DNA <213> Artificial Sequence <220> <223> Km-oriC (DCW35) <400> 53 agtcacatct taacggtgaa gctgaagtag aaaaacgtgt tacagcatca gttggctcgt 60 gtcggcttga gaaagacctg agtatgttgt aactaaaggt gcgcataatg tatattatgt 120 taaatggatc ctgggtatta aaaagaagat ctatttattt agagatctgt tctattgtga 180 tctcttatta ggatcgcact gccctgtgga taacaaggat ccggctttta agatcaacaa 240 cctggaaagg atcattaact gtgaatgatc ggtgatcctg gaccgtataa gctgggatca 300 gaatgagggg ttatacacaa ctcaaaaact gaacaacagt tgttctttgg ataactaccg 360 gttgatccaa gcttcctgac agagttatcc acagtagatc gcacgatctg tataacttcg 420 tatagcatac attatacgaa gttatcttta gttacaacat actccattct tctgccggat 480 cttcgggaaa gccacgttgt gtctcaaaat ctctgatgtt acattgcaca agataaaaat 540 atatcatcat gaacaataaa actgtctgct tacataaaca gtaatacaag gggtgttatg 600 agccatattc aacgggaaac gtcttgctcg aggccgcgat taaattccaa catggatgct 660 gatttatatg ggtataaatg ggctcgcgat aatgtcgggc aatcaggtgc gacaatctat 720 cgattgtatg ggaagcccga tgcgccagag ttgtttctga aacatggcaa aggtagcgtt 780 gccaatgatg ttacagatga gatggtcaga ctaaactggc tgacggaatt tatgcctctt 840 ccgaccatca agcattttat ccgtactcct gatgatgcat ggttactcac cactgcgatc 900 cccgggaaaa cagcattcca ggtattagaa gaatatcctg attcaggtga aaatattgtt 960 gatgcgctgg cagtgttcct gcgccggttg cattcgattc ctgtttgtaa ttgtcctttt 1020 aacagcgatc gcgtatttcg tctcgctcag gcgcaatcac gaatgaataa cggtttggtt 1080 gatgcgagtg attttgatga cgagcgtaat ggctggcctg ttgaacaagt ctggaaagaa 1140 atgcataagc ttttgccatt ctcaccggat tcagtcgtca ctcatggtga tttctcactt 1200 gataacctta tttttgacga ggggaaatta ataggttgta ttgatgttgg acgagtcgga 1260 atcgcagacc gataccagga tcttgccatc ctatggaact gcctcggtga gttttctcct 1320 tcattacaga aacggctttt tcaaaaatat ggtattgata atcctgatat gaataaattg 1380 cagtttcatt tgatgctcga tgagtttttc taatcagaat tggttaattg gttgtaacac 1440 tggcagagct tctaaaaccg tgactgcgga tatcccgatt gtgggggatg ctcgccaggt 1500 cctcgaaca 1509 <210> 54 <211> 3100 <212> DNA <213> Artificial Sequence <220> <223> Lter1 <400> 54 aatagaaaac tgccagtgcg caacctgtac cggttcatgc aatttaaaca gacaaatcgg 60 tctgccattg atcatatttt ctgacaaaag ctcgccacac tgttcaaacc cgcgacgcca 120 gcgttcagca gtggcgtttt gatggcaacg caaagaaatg tgatcggcag tcagcggagt 180 gatattcaac cccagacggc gggaaagttc atctaatgcg tggataaatc gcggtaaatc 240 cgatgcaata tcctgcagct cgtcgataga ttgccagttc gccataatca ctcttcgtct 300 ttcagtaaaa gcgttaattt accctgttgc cctgtgccaa ccaaccgctg atttcacgcc 360 gcttctgatg caatagtgaa aacggcaata cgccacgcgc acgttgctga cgaaaacagc 420 catttgcagt atactcccgc cctaatttct ttaactggtg cgggcaattt ttgctcgctt 480 catcaatgta aggtattccg gtgaatattc aggctcttct ctcagaaaaa gtccgtcagg 540 ccatgattgc ggcaggcgcg cctgcggatt gcgaaccgca ggttcgtcag tcagcaaaag 600 ttcagttcgg cgactatcag gctaacggca tgatggcagt tgctaaaaaa ctgggtatgg 660 caccgcgaca attagcagag caggtgctga ctcatctgga tcttaacggt atcgccagca 720 aagttgagat cgccggtcca ggctttatca acattttcct tgatccggca ttcctggctg 780 aacatgttca gcaggcgctg gcgtccgatc gtctcggtgt tgctacgcca gaaaaacaga 840 ccattgtggt tgactactct gcgccaaacg tggcgaaaga gatgcatgtc ggtcacctgc 900 gctctaccat tattggtgac gcagcagtgc gtactctgga gttcctcggt cacaaagtga 960 ttcgcgcaaa ccacgtcggc gactggggca ctcagttcgg tatgctgatt gcatggctgg 1020 aaaagcagca gcaggaaaac gccggtgaaa tggagctggc tgaccttgaa ggtttctacc 1080 gcgatgcgaa aaagcattac gatgaagatg aagagttcgc cgagcgcgca cgtaactacg 1140 tggtaaaact gcaaagcggt gacgaatatt tccgcgagat gtggcgcaaa ctggtcgaca 1200 tcaccatgac gcagaaccag atcacctacg atcgtctcaa cgtgacgctg acccgtgatg 1260 acgtgatggg cgaaagcctc tacaacccga tgctgccagg aattgtggcg gatctcaaag 1320 ccaaaggtct ggcagtagaa agcgaagggg cgaccgtcgt attccttgat gagtttaaaa 1380 acaaggaagg cgaaccgatg ggcgtgatca ttcagaagaa agatggcggc tatctctaca 1440 ccaccactga tatcgcctgt gcgaaatatc gttatgaaac actgcatgcc gatcgcgtgc 1500 tgtattacat cgactcccgt cagcatcaac acctgatgca ggcatgggcg atcgtccgta 1560 aagcaggcta tgtaccggaa tccgtaccgc tggaacacca catgttcggc atgatgctgg 1620 gtaaagacgg caaaccgttc aaaacccgcg cgggtggtac agtgaaactg gccgatctgc 1680 tggatgaagc cctggaacgt gcacgccgtc tggtggcaga aaagaacccg gatatgccag 1740 ccgacgagct ggaaaaactg gctaacgcgg ttggtattgg tgcggtgaaa tatgcggatc 1800 tctccaaaaa ccgcaccacg gactacatct tcgactggga caacatgctg gcgtttgagg 1860 gtaataccgc gccatacatg cagtatgcat acacgcgtgt attgtccgtg ttccgtaaag 1920 cagaaattga cgaagagcaa ctggctgcag ctccggttat catccgtgaa gatcgtgaag 1980 cgcaactggc agctcgcctg ctgcagtttg aagaaaccct caccgtggtt gcccgtgaag 2040 gcacgccgca tgtaatgtgt gcttacctgt acgatctggc cggtctgttc tctggcttct 2100 acgagcactg cccgatcctc agcgcagaaa acgaagaagt gcgtaacagc cgtctaaaac 2160 tggcacaact gacggcgaag acgctgaagc tgggtctgga tacgctgggt attgagactg 2220 tagagcgtat gtaatcgatt tttcgtgaga gtgaagcctg atcatgacct ggcaaagcag 2280 aaagcacaat cctcaggcgg gttaccgggt caaaggtggt cgtccggcgc tggtggtggt 2340 gtttctctgt ggtattgctg tgattggcgt gcaatttttg attgcggcag ggttgttacc 2400 agaagtgggg tgatcagata gcctcaaatt ccttattggg tgccagaatt aacgctgaca 2460 cccaatttgg cctcttaatg caggcagcac tgcttaaatt tcttaccact accgcacggg 2520 caaggatcgt tacgccccgg tttctcttct gctttgatcg gttgctgaac agctttttcc 2580 tgcggatgcg ccatccagta cgcatgtaga tcaagcgccg ccagtcgaat ggcatctacg 2640 ctctcttcaa acgcttctgg cgacatcttt tctacccgct cgaagttttc ctcagtaccg 2700 tgcagcgcaa tcgcctccag cgctggtttt aacgaatcgg gcaacgttga ccagtcagaa 2760 agtgccacgc cccgcatata gccaaagcac cactcctcaa caatcgtcag ctcgctgcca 2820 tcaacttctc gcaagccgaa taacggctca aactgctccg ggaattcgtt cagacgctct 2880 gcggtatcgg ccatatgttg aaaagccaga ttcataaagc gcgtcatctc tttctctgac 2940 gcccagcgcg gcacatagtc agccccaccc cacacggcaa ccagccactg ttccggttca 3000 atctcttgcg gagaactcaa caccgccgtc aataaaccgt ccagctccgc cacatcaagg 3060 atggcgtggt cagtgttgta tttggtcaga atatcgtcca 3100 <210> 55 <211> 3100 <212> DNA <213> Artificial Sequence <220> <223> Lter2 <400> 55 ccagctccgc cacatcaagg atggcgtggt cagtgttgta tttggtcaga atatcgtcca 60 gccattccaa ctcactttcg tttaacggtc ccgttttcat acgcttttcc ttgtggatct 120 caactcgcca gcacctatct tacatgccgg tccgtatcag agatactttt tgagtggctt 180 tgctggtgat taaaaattaa ggagggtgta acgacaagtt gcaggcacaa aaaaaccacc 240 cgaaggtggt ttcacgacac tgcttattgc tttgatttta ttcttatctt tcccatggta 300 cccggagcgg gacttgaacc cgcacagcgc gaacgccgag ggattttaaa tcccttgtgt 360 ctaccgattc caccatccgg gctcgggaag aaagtggagg cgcgttccgg agtcgaaccg 420 gactagacgg atttgcaatc cgctacataa ccgctttgtt aacgcgccaa attcttcagg 480 cctttcagcc agacatccgc ttgacgccga tgtcttttaa actggagcgg gaaacgagac 540 tcgaactcgc gaccccgacc ttggcaaggt cgtgctctac caactgagct attcccgcat 600 tcatcaagca atcagttaat cacttgattt tattatcgtc tggcaatcag tgccgccgtt 660 cgatgcgttg cattctactt acctggcgcg atgagtcaac gatatttttc accacttttg 720 atcgtttgct gaaaattacg ccgaaacgat cactgatcaa gcaaatctgc acgcgcagcg 780 ctcaaatatt gcaacattga ccacagagtc agtaccgcag ccacaaagaa aagtgcaata 840 ccggcgtact caacccaaat gttcggacgc cacagcagcc atgccaacgc caccatctgg 900 gcagtggttt tcactttccc aatccaggag acggccacgc tactgcgttt acccaactcc 960 gccatccatt cgcgtagcgc agaaataata atttcacggg cgatcatcgt tgccgccggt 1020 aatgtcaccc accagctgtg ataatgctcg gttaccagca ccatggcgat agccacgaga 1080 actttatctg ccacagggtc aaggaaagca ccaaaccggg tactctggtt ccagcggcgt 1140 gccagaaaac catcgaacca gtcagtcacc gccgcgacgc agaaaatgag cgcggcggca 1200 aacggcgacc aggtgacagg cagataaaag accaatacaa agaatgggat aaggatgaca 1260 cggaacagtg taagcaacgt agggatatta aattgcataa tgacgggtaa ctatctgttg 1320 tcagtaagat tacccctatg ttgctacaga gacatcaatg tttcaacgac cagaagatct 1380 tttctgccag accttgcgaa atacccggca cttttaatcg tgggctgttt gcttccttgg 1440 gcggatacga gttttattat cgtcttaatg atttccacat attaaaagca agtatgcttt 1500 caaaacacaa ttataaaaaa tcccgccaac aatataagtt tttataaaat taaatataag 1560 attatggctt tagaatattt ttatttctaa tagacgagat ttttcctgtt atgatataat 1620 atgctgaatt aacacatgtt aacgatttac cagtaatgta aataaatttt cgaggagatc 1680 attccagtgg gacgtaaatg ggccaatatt gttgctaaaa aaacggctaa agacggtgca 1740 acgtctaaaa tttatgcaaa attcggtgta gaaatctatg ctgctgctaa acaaggtgaa 1800 cccgatccag aattaaacac atctttaaaa ttcgttattg aacgtgcaaa gcaggcacaa 1860 gttccaaagc acgttattga taaagcaatt gataaagcca aaggcggcgg agatgaaacg 1920 ttcgtgcagg gacgttatga aggctttggt cctaatggct caatgattat cgccgagaca 1980 ttgacttcaa atgttaaccg tacgattgct aacgttcgca caattttcaa taaaaaaggc 2040 ggcaatatcg gagcggcagg ttctgtcagc tatatgtttg acaatacggg tgtgattgta 2100 tttaaaggga cagaccctga ccatattttt gaaattttac ttgaagctga agttgatgtt 2160 cgtgatgtga ctgaagaaga aggtaacatt gttatttata ctgaacctac tgaccttcat 2220 aaaggaatcg cggctctaaa agcagctgga atcactgagt tctcaacaac agaattagaa 2280 atgattgctc aatctgaagt tgagctttcc ccagaagatt tagaaatctt tgaagggctt 2340 gttgatgccc ttgaagatga cgacgatgta caaaaagttt atcataacgt cgcaaatctc 2400 taattatctt ttaaagaaat ctgtctttac ggcagatttc tttaatctca tataattctt 2460 ataaaaaata taatattcaa ctcgtcatat tgattatacc cccccgttcc cagagaaata 2520 atatttatta aaattccagt tcttcttttt ctgattacag aaggcaaagt ggcaattacg 2580 catagtttcc cgataaagac gcgatagcga catcccgcat aaggcatttt tctctttatc 2640 tttgtacggt acttcatgga acagagtttt tgaccttgcg aatcgtgatg tctgttgggg 2700 agggacaatt tgctcactga agcgtgagac tcgattaagc gcacgaaaca cagaaatcaa 2760 aaaacccggt cactttttta caaggtaacc gggtaaaaat aatttttatt ttttaactgt 2820 tttgagactc atagagatgt ctcaaaacta aaatttggct cctctgactg gactcgaacc 2880 agtgacatac ggattaacag tccgccgttc taccgactga actacagagg aatcgtgaga 2940 acgaggcgaa tattagcgat gcccacccac aatgtcaaag cctgtttttt aaatttgaaa 3000 tcgtttgctg aaataatctg cattttgtcg tttattccga cacaactggc tttttttcac 3060 acttttgcgg ctcgggtcga gggtatttcc atagccaacg 3100 <210> 56 <211> 3100 <212> DNA <213> Artificial Sequence <220> <223> Lter3 <400> 56 cacaactggc tttttttcac acttttgcgg ctcgggtcga gggtatttcc atagccaacg 60 tccagtaacc attcgccagt aaaacagcac ggcccgcaca gcccagtcgg caaacattcc 120 catccagaca ccaaccacac cccagccaag catgattccc agcacataac cgactacaac 180 ccgacaaccc cacatgctca acatcgaaac ccacatggcg taacgggcat cacgagcacc 240 tttaaatcca gcgggtagca cccatgaggc ggaccaaata ggcataaata aagcatttag 300 ccaaatcaga atcacaacga catgtttaac ctgtggatcc tgggtgtaaa acgatgccat 360 aaccccggca aagggagccg ttagccaggc gatggccgtt aatccaagag tggaaagcca 420 gaacacatgc cgcaactgaa tctctgcttg cgctatctgc cctaccccca accttcggcc 480 tgtaatgatc gtagaagcag agccgagcgc acttccgggt aagttgataa gagccgcaat 540 tgaaaacgcg ataaaatttc cggcaataac actggtcccc atcccggcaa cgaacatttg 600 ggttaataac cgaccactgg taaataacac tgattcgaca ctcgcgggaa taccaatccc 660 catgacttcc cagataatgc taaaattcag cggtttaaaa tagctcttta acgaaatcct 720 tagcgcagga ttaaaaccaa tcgccagcac ccacaaaatt gcaactgcgc caatataacg 780 agaaatggtt aaacccagcc ctgccccgac aaatcccagt cccggccagg agaaaaggcc 840 gtaaatcaat atgccgctaa taataatatt aagaatattc aggctaccgt taatcaatag 900 cggtattttc gtattccctg caccacgaag tgccccgcta ccaataagag tgatggcagc 960 tgctggataa ctgagtaccg tcagctccag ataagtcaac gccagtgctt taacttctgt 1020 cgtggcatca cccgcgacga aatcaataat ttgttcgcca aaatgatgaa taagcgttgc 1080 caacagtacg gcaaacaacg tcatgatcac caatgactgc cgcgtcgcca ccctcgctcg 1140 tcgtcgatcc cgcttaccga gactaaatgc cacaacgaca gtagtaccaa gatcgatagc 1200 agcaaaaaaa gccataatga ccatattgaa gctgtccgcc aatcccacgc cggccatcgc 1260 atcttttccc agccagctga ccagaaaagt gctcagaacc cccatcaaca ggacacaggc 1320 attctccatg aagataggaa cagcaagcgg ggttatctcg cgccagaaca acactttgta 1380 gctcttgcgt ttagcgtgcc agcgagtgcc gtgaacaacc tggcgtaaag cagaggagat 1440 attcaaagcc gaccttaatt gcagaaagtg aaaccacatt tcaaataatg agggagaatc 1500 agcaaagctg caaagatttt cgccaacaaa ttgtctgcaa atgcaacaaa ctgttgatag 1560 aaacggcaaa cagttgggga atttaaaaat cgggtttgac aaaagatttt tcgccgttaa 1620 gatgtgcctc aacaacgatt cctctgtagt tcagtcggta gaacggcgga ctgttaatcc 1680 gtatgtcact ggttcgagtc cagtcagagg agccaaattc ctgaaaagcc cgcttttata 1740 gcgggatttt tgctatatct gataatcaat ttcctcttca ctgctttcca tcacctgccg 1800 cttgatatcc tcaactgaca gtcctgcatt acaaagttcc agaaagcgcc agacatagtt 1860 acgctgaagt tgtcctcgct tcagtcccaa ccagacagta ttagcatcaa aaagatgccg 1920 cgtatccagg cggattaaat tctcttcctc ttgttcgcca ctggattgct cggcaactaa 1980 tccgatccca agcccaagag caacataggt tttaatgaca tcagaatcct gcgcacttaa 2040 tacaatatct gccagcaaac ctttgcgggc aaatgcgtca tcaatacgtg agcgccccgt 2100 aatcccctgt cggtaagtga ttaacggcca cttcgctatt gattccagcg tcaatggtga 2160 aatttgcgtc aagggatgat cgtgtggaac aagcaaacta tggtgccaac gaaaccacgg 2220 gaaggcgacg agctgcgggt cattactcaa acgctcgctg gcgataccaa tatcagcttc 2280 gccattttgc aacaatgtcg caatttcctg tggcgtcccc tggattagct cgagccgaac 2340 ctccgggaaa agttcgcgaa aagctttaat gacctctggc aagctataac gtgcctgagt 2400 atgcgtcgtt gcaatagtga gaacgccaga cgtatcgttg gtaaacaggt ctgcaagccg 2460 acgaacatta ctggcttcat tcagaatacg ttctgcaatg accagtaatg ctttgcccgg 2520 ttcagtcatg cccagcagtc gcttacctcg tcgaacaaat atttcgatgc caagttcatc 2580 ctccagttcc cgaatatgac ggctgacgcc tgactgtgag gtaaaaagca tattcgcaac 2640 ctctgtcagg ttgtaatcct gacgtgcagc ctcgcggatt atctttagtt gttggaaatt 2700 cacggtaaac tccgggcagt tcagatttcc cgttattgtt aaagtctaat gcccggcata 2760 acaaataata aaaacccgca tcttattcca tcccgatata acacttagct caccaattgc 2820 cactgccttt tttccatcac tggagaacta atcactgaca ttaacaactc tttcactgcc 2880 tgtgcctgtg gcgataagtt cgctctggcg ggtaaattta atgacaaaga gagactcatg 2940 gaaggagtgg taatgcgtga catccaccca tttactgcgc cacataacga acgcgcggcc 3000 gattcgggta atactgcaac gcccatgccg ctggcaatcg ctgcggtaag cgtggcaata 3060 gactcaattt caccaataac ttttgccgtg agtcgccgta 3100 <210> 57 <211> 3100 <212> DNA <213> Artificial Sequence <220> <223> Lter4 <400> 57 ctgcggtaag cgtggcaata gactcaattt caccaataac ttttgccgtg agtcgccgta 60 gggaaaaagc ctcatcaaca cgaagtctaa tagcactgta atcactgggg agaaagaggt 120 tcatttgcgc aatagcattc acatcaacgc tttgccccgg gcaatcttga gttcctacca 180 gaaaaagatc ttctttcagc aaagcctgac tggatacacc agccacaggg gaatgctcat 240 aaatcaccgc catatcgagt tggtgattta tcaatttttc gttaagcact gcaccactat 300 tttcatgaag atagataacg atctccggaa attcagcgcg aaccgcctgt aataagggca 360 tggtgatgga tgacgcagcg gttcctggtg caaagccaat cgagacttgc cccgataatg 420 cctgaccaac gttatgcacc gccagttggg cctgttcaca ctgacgtaaa atggcccgcg 480 catgggtata gagaattttt ccggcgtctg ttggtgtaac gccccgcttt gtacggatca 540 aaagttgttg atttaactca ccttccagtg tggcaacctg ctggctgagc gctggttgtg 600 cgatatgcaa tacttcagca gcctgggtca ggctaccaat atctacaatt tttacgaagt 660 atttcaggcg tctgaagttc atgttgcctc cggtttttaa gaatcggccc aagtgccgcc 720 attacttaca accagattgc aagatgcttg ccagttttat tttggtgttg atgtacaagc 780 taaccaactg tcaaataaga gattatgata gattcgtcat ttgctccttt aatcagctgt 840 cgcgttcccc tgccctataa aaggagggta tgcaccacga tggttcatta cccaataaga 900 ttgaaagctc accactttgt tgaaattgac agcaaacaaa caaaaaaatg catttcaccc 960 tttgacatca ccatgcactg ccattaatat gcgccccgtt cacacgattc ctctgtagtt 1020 cagtcggtag aacggcggac tgttaatccg tatgtcactg gttcgagtcc agtcagagga 1080 gccaaattca aaaaagcctg ctttctagca ggctttttgc tttctaatta ccaacgctct 1140 taaaacatct gtcttgaacc agaactaatt tgcacaggca ttcccgatcg acgttgcaac 1200 gcagcatttg cgcgatttac atcaacttct tgcccgttga taaacgcccg caaagatggg 1260 gttaccggca atggcacttt tcggtcagac tcatattctg cacgattgcg cgacaatggc 1320 tcatgaactt ccagccagtt cgagccatct ggttcagtgg tgtattttac tggctggtcg 1380 ataatttgca cacgcgtccc aacaggaaca ttatcaaaca gatatttgat atcgtcattg 1440 cgcagacgaa tacagccctg acttacccgg agcccaatac caaaattggc attggtacca 1500 tggatggcat acaacctgcc aatataaatc gcgtacagcc ccatgggatt atcggggccc 1560 gcaggaacaa atgcgggcaa actctcccct cgtttcgcat attcgcgccg agtgttcggc 1620 gttggcgtcc aggttggagc ttcttgttta cgttcaacgg tagtcaccca gttacgcggg 1680 gtttctcgcc cagcctggcc gataccaata ggaaagactt ccacagtatt actgtctggt 1740 gggtagtaat aaagacgcat ctcagcgacg ttaacaacaa tccctttacg aacagtgtcg 1800 ggcaaaatca gttgctgcgg aatggtgagt tgcgagccag acttcggcaa aaaaacatca 1860 gcgcccgggt tcgcttccag catgttactt aacccttgcc cgtattgtgc ggcaaaagtc 1920 tccagcggct gggtattgtg atcaggaaca gttacagtaa acgactgccc cactaaacgg 1980 ctaccctctg gaggtaatgg ataagttacc gccaggctag tatggctggc aaaaagcaga 2040 gcaaatgagc aaagaatatt tacacgacgc atcatgtccc tttcctatgt cgcgaaagct 2100 atccgttaag tatagctttt atcagacttt tcgtttttaa ctgttcaaat cagaagtcgt 2160 attccccggt agaacattgt tcgttcatcc cgactccttt tttgtataga taaaccatca 2220 gctgatagtt tacctgaaga atatagagaa gtacttactt aacattttcc catttggtac 2280 tatctaaccc cttttcacta ttaagaagta atgcctacta tgactcaagt cgcgaagaaa 2340 attctggtga cgtgcgcact gccgtacgct aacggctcaa tccacctcgg ccatatgctg 2400 gagcacatcc aggctgatgt ctgggtccgt taccagcgaa tgcgcggcca cgaggtcaac 2460 ttcatctgcg ccgacgatgc ccacggtaca ccgatcatgc tgaaagctca gcagcttggt 2520 atcaccccgg agcagatgat tggcgaaatg agtcaggagc atcagactga tttcgcaggc 2580 tttaacatca gctatgacaa ctatcactcg acgcacagcg aagagaaccg ccagttgtca 2640 gaacttatct actctcgcct gaaagaaaac ggttttatta aaaaccgcac catctctcag 2700 ctgtacgatc cggaaaaagg catgttcctg ccggaccgtt ttgtgaaagg cacctgcccg 2760 aaatgtaaat ccccggatca atacggcgat aactgcgaag tctgcggcgc gacctacagc 2820 ccgactgaac tgatcgagcc gaaatcggtg gtttctggcg ctacgccggt aatgcgtgat 2880 tctgaacact tcttctttga tctgccctct ttcagcgaaa tgttgcaggc atggacccgc 2940 agcggtgcgt tgcaggagca ggtggcaaat aaaatgcagg agtggtttga atctggcctg 3000 caacagtggg atatctcccg cgacgcccct tacttcggtt ttgaaattcc gaacgcgccg 3060 ggcaaatatt tctacgtctg gctggacgca ccgattggct 3100 <210> 58 <211> 2650 <212> DNA <213> Artificial Sequence <220> <223> Lter5 <400> 58 ttgaaattcc gaacgcgccg ggcaaatatt tctacgtctg gctggacgca ccgattggct 60 acatgggttc tttcaagaat ctgtgcgaca agcgcggcga cagcgtaagc ttcgatgaat 120 actggaagaa agactccacc gccgagctgt accacttcat cggtaaagat attgtttact 180 tccacagcct gttctggcct gccatgctgg aaggcagcaa cttccgcaag ccgtccaacc 240 tgtttgttca tggctatgtg acggtgaacg gcgcaaagat gtccaagtct cgcggcacct 300 ttattaaagc cagcacctgg ctgaatcatt ttgacgcaga cagcctgcgt tactactaca 360 ctgcgaaact ctcttcgcgc attgatgata tcgatctcaa cctggaagat ttcgttcagc 420 gtgtgaatgc cgatatcgtt aacaaagtgg ttaacctggc ctcccgtaat gcgggcttta 480 tcaacaagcg ttttgacggc gtgctggcaa gcgaactggc tgacccgcag ttgtacaaaa 540 ccttcactga tgccgctgaa gtgattggtg aagcgtggga aagccgtgaa tttggtaaag 600 ccgtgcgcga aatcatggcg ctggctgatc tggctaaccg ctatgtcgat gaacaggctc 660 cgtgggtggt ggcgaaacag gaaggccgcg atgccgacct gcaggcaatt tgctcaatgg 720 gcatcaacct gttccgcgtg ctgatgactt acctgaagcc ggtactgccg aaactgaccg 780 agcgtgcaga agcattcctc aatacggaac tgacctggga tggtatccag caaccgctgc 840 tgggccacaa agtgaatccg ttcaaggcgc tgtataaccg catcgatatg aggcaggttg 900 aagcactggt ggaagcctct aaagaagaag taaaagccgc tgccgcgccg gtaactggcc 960 cgctggcaga tgatccgatt caggaaacca tcacctttga cgacttcgct aaagttgacc 1020 tgcgcgtggc gctgattgaa aacgcagagt ttgttgaagg ttctgacaaa ctgctgcgcc 1080 tgacgctgga tctcggcggt gaaaaacgca atgtcttctc cggtattcgt tctgcttacc 1140 cggatccgca ggcactgatt ggtcgtcaca ccattatggt ggctaacctg gcaccacgta 1200 aaatgcgctt cggtatctct gaaggcatgg tgatggctgc cggtcctggc gggaaagata 1260 ttttcctgct aagcccggat gccggtgcta aaccgggtca tcaggtgaaa taatccccct 1320 tcaaggcgct gcatcgacag cgccttttct ttataaattc ctaaagttgt tttcttgcga 1380 ttttgtctct ctctaacccg cataaaatcg agcgtgacgt tgcgctccat ggttcctgcc 1440 ttttaatcag ttgtgatgac gcacagcgcg cagaaactcg tggcgcgtat tctgactgga 1500 tttgaacaat ccaccaagag aggtcgttgt cgtggcactg gttgcatcgc ggatgccacg 1560 cgccttcacg cagtaatgca ccgcgtcgat cgagacagcc acgttattgg tgcccagcag 1620 cgtttgtagc gcaataagaa tttgctgcgt cagacgttcc tgcacctgcg gacgctgggc 1680 aaagaactgc acaatgcggt taatttttga cagaccgatc accgaatctt tcgggatata 1740 ggccaccgtc gctttgccat cgatggtaac aaaatggtgt tcacaggtgc tggtcagagt 1800 gatatcgcgc acggtgacca tttcatcgac cttcattttg ttttcaatga gggtgatttt 1860 cgggaaattg gcgtaatcca gaccggagaa aatttcatcg acatacattt tagcgatgcg 1920 atgcggcgtt tccatcaaac tgtcatcagc caggtcgaga ttcagcagct gcatgatttc 1980 ggtcatatga ccagcaataa ggcttttgcg cgtttcgtta tccatttcat gcacgggcgg 2040 gcgcagcggt gtttccagtc ctcgcgcaac taacgcttca tgaaccaggg ccgcttcttt 2100 actgagtgat ggcatttatg atttctcctg caggtgtgac gcctccgccc tgcgtggggg 2160 caaagttatt aagctgattt acagcctgat tattgtgcgt gaggcggcgc acataatcca 2220 gtattcacag cgataattat tgtaattgcc gctgcctttc atcagcagat gttaaaacat 2280 cgttatgcaa atacggaagt gaaagttact cacagcacat tgaataaacg gtatgatgaa 2340 gaaattgcaa acaacacaac aaggagccac gcatggaaat gctcgaagag caccgctgtt 2400 ttgaaggctg gcagcaacgc tggcgacacg actccagtac cttaaactgc ccgatgacgt 2460 tcagtatctt tctccctcca cctcgtgatc acactccgcc accagtgctg tactggcttt 2520 ccggattaac ctgcaatgac gagaacttca ccaccaaggc gggtgcccag cgggtagcgg 2580 cggaactggg gattgtactg gtgatgccag acaccagccc gcgcggcgaa aaggttgcca 2640 acgacgatgg 2650 <210> 59 <211> 1298 <212> DNA <213> Artificial Sequence <220> <223> Cm-oriC/325k fragment <400> 59 tattggtaac cagaccggca ttttacgtaa tgaaccaggc atcctttctc ccacaaatat 60 cgtaagaggt tccaactttc accataatga aataagatca ctaccgggcg tattttttga 120 gttatcgaga ttttcaggag ctaaggaagc taaaatggag aaaaaaatca ctggatatac 180 caccgttgat atatcccaat ggcatcgtaa agaacatttt gaggcatttc agtcagttgc 240 tcaatgtacc tataaccaga ccgttcagct ggatattacg gcctttttaa agaccgtaaa 300 gaaaaataag cacaagtttt atccggcctt tattcacatt cttgcccgcc tgatgaatgc 360 tcatccggaa ttccgtatgg caatgaaaga cggtgagctg gtgatatggg atagtgttca 420 cccttgttac accgttttcc atgagcaaac tgaaacgttt tcatcgctct ggagtgaata 480 ccacgacgat ttccggcagt ttctacacat atattcgcaa gatgtggcgt gttacggtga 540 aaacctggcc tatttcccta aagggtttat tgagaatatg tttttcgtct cagccaatcc 600 ctgggtgagt ttcaccagtt ttgatttaaa cgtggccaat atggacaact tcttcgcccc 660 cgttttcacc atgggcaaat attatacgca aggcgacaag gtgctgatgc cgctggcgat 720 tcaggttcat catgccgtct gtgatggctt ccatgtcggc agaatgctta atgaattaca 780 acagtactgc gatgagtggc agggcggggc gtaagaagat ccggcagaag aatggagtat 840 gttgtaacta aagataactt cgtataatgt atgctatacg aagttataca gatcgtgcga 900 tctactgtgg ataactctgt caggaagctt ggatcaaccg gtagttatcc aaagaacaac 960 tgttgttcag tttttgagtt gtgtataacc cctcattctg atcccagctt atacggtcca 1020 ggatcaccga tcattcacag ttaatgatcc tttccaggtt gttgatctta aaagccggat 1080 ccttgttatc cacagggcag tgcgatccta ataagagatc acaatagaac agatctctaa 1140 ataaatagat cttcttttta atacccagga tccatttaac ataatataca ttatgcgcac 1200 ctttagttac aacatactca ggtctttctc aagccgacct agagaataaa tttatattga 1260 ttaaatgaat gtatatttca aattgatttt gtttgtta 1298 <210> 60 <211> 1298 <212> DNA <213> Artificial Sequence <220> <223> Cm-oriC/220k fragment <400> 60 caaaactgac ataaatctcc agagatgtgt tcaggagtta gaaagattat ttcttctatt 60 cgtaagaggt tccaactttc accataatga aataagatca ctaccgggcg tattttttga 120 gttatcgaga ttttcaggag ctaaggaagc taaaatggag aaaaaaatca ctggatatac 180 caccgttgat atatcccaat ggcatcgtaa agaacatttt gaggcatttc agtcagttgc 240 tcaatgtacc tataaccaga ccgttcagct ggatattacg gcctttttaa agaccgtaaa 300 gaaaaataag cacaagtttt atccggcctt tattcacatt cttgcccgcc tgatgaatgc 360 tcatccggaa ttccgtatgg caatgaaaga cggtgagctg gtgatatggg atagtgttca 420 cccttgttac accgttttcc atgagcaaac tgaaacgttt tcatcgctct ggagtgaata 480 ccacgacgat ttccggcagt ttctacacat atattcgcaa gatgtggcgt gttacggtga 540 aaacctggcc tatttcccta aagggtttat tgagaatatg tttttcgtct cagccaatcc 600 ctgggtgagt ttcaccagtt ttgatttaaa cgtggccaat atggacaact tcttcgcccc 660 cgttttcacc atgggcaaat attatacgca aggcgacaag gtgctgatgc cgctggcgat 720 tcaggttcat catgccgtct gtgatggctt ccatgtcggc agaatgctta atgaattaca 780 acagtactgc gatgagtggc agggcggggc gtaagaagat ccggcagaag aatggagtat 840 gttgtaacta aagataactt cgtataatgt atgctatacg aagttataca gatcgtgcga 900 tctactgtgg ataactctgt caggaagctt ggatcaaccg gtagttatcc aaagaacaac 960 tgttgttcag tttttgagtt gtgtataacc cctcattctg atcccagctt atacggtcca 1020 ggatcaccga tcattcacag ttaatgatcc tttccaggtt gttgatctta aaagccggat 1080 ccttgttatc cacagggcag tgcgatccta ataagagatc acaatagaac agatctctaa 1140 ataaatagat cttcttttta atacccagga tccatttaac ataatataca ttatgcgcac 1200 ctttagttac aacatactca ggtctttctc aagccgacct agaagcgatc actgctgggt 1260 tacctgtttt aacaacagcg gtatgtgggt acgcgcat 1298 <210> 61 <211> 353 <212> PRT <213> Escherichia coli <220> <223> RecA <400> 61 Met Ala Ile Asp Glu Asn Lys Gln Lys Ala Leu Ala Ala Ala Leu Gly 1 5 10 15 Gln Ile Glu Lys Gln Phe Gly Lys Gly Ser Ile Met Arg Leu Gly Glu 20 25 30 Asp Arg Ser Met Asp Val Glu Thr Ile Ser Thr Gly Ser Leu Ser Leu 35 40 45 Asp Ile Ala Leu Gly Ala Gly Gly Leu Pro Met Gly Arg Ile Val Glu 50 55 60 Ile Tyr Gly Pro Glu Ser Ser Gly Lys Thr Thr Leu Thr Leu Gln Val 65 70 75 80 Ile Ala Ala Ala Gln Arg Glu Gly Lys Thr Cys Ala Phe Ile Asp Ala 85 90 95 Glu His Ala Leu Asp Pro Ile Tyr Ala Arg Lys Leu Gly Val Asp Ile 100 105 110 Asp Asn Leu Leu Cys Ser Gln Pro Asp Thr Gly Glu Gln Ala Leu Glu 115 120 125 Ile Cys Asp Ala Leu Ala Arg Ser Gly Ala Val Asp Val Ile Val Val 130 135 140 Asp Ser Val Ala Ala Leu Thr Pro Lys Ala Glu Ile Glu Gly Glu Ile 145 150 155 160 Gly Asp Ser His Met Gly Leu Ala Ala Arg Met Met Ser Gln Ala Met 165 170 175 Arg Lys Leu Ala Gly Asn Leu Lys Gln Ser Asn Thr Leu Leu Ile Phe 180 185 190 Ile Asn Gln Ile Arg Met Lys Ile Gly Val Met Phe Gly Asn Pro Glu 195 200 205 Thr Thr Thr Gly Gly Asn Ala Leu Lys Phe Tyr Ala Ser Val Arg Leu 210 215 220 Asp Ile Arg Arg Ile Gly Ala Val Lys Glu Gly Glu Asn Val Val Gly 225 230 235 240 Ser Glu Thr Arg Val Lys Val Val Lys Asn Lys Ile Ala Ala Pro Phe 245 250 255 Lys Gln Ala Glu Phe Gln Ile Leu Tyr Gly Glu Gly Ile Asn Phe Tyr 260 265 270 Gly Glu Leu Val Asp Leu Gly Val Lys Glu Lys Leu Ile Glu Lys Ala 275 280 285 Gly Ala Trp Tyr Ser Tyr Lys Gly Glu Lys Ile Gly Gln Gly Lys Ala 290 295 300 Asn Ala Thr Ala Trp Leu Lys Asp Asn Pro Glu Thr Ala Lys Glu Ile 305 310 315 320 Glu Lys Lys Val Arg Glu Leu Leu Leu Ser Asn Pro Asn Ser Thr Pro 325 330 335 Asp Phe Ser Val Asp Asp Ser Glu Gly Val Ala Glu Thr Asn Glu Asp 340 345 350 Phe <210> 62 <211> 1509 <212> DNA <213> Artificial Sequence <220> <223> Km-oriC (DCW49) <400> 62 agtcacatct taacggtgaa gctgaagtag aaaaacgtgt tacagcatca gttggctcgt 60 gtcggcttga gaaagacctg agtatgttgt aactaaaggt gcgcataatg tatattatgt 120 taaatggatc ctgggtatta aaaagaagat ctatttattt agagatctgt tctattgtga 180 tctcttatta ggatcgcact gccctgtgga taacaaggat ccggctttta agatcaacaa 240 cctggaaagg atcattaact gtgaatgatc ggtgatcctg gaccgtataa gctgggatca 300 gaatgagggg ttatacacaa ctcaaaaact gaacaacagt tgttctttgg ataactaccg 360 gttgatccaa gcttcctgac agagttatcc acagtagatc gcacgatctg tataacttcg 420 tatagcatac attatacgaa gttatcttta gttacaacat actccattct tctgccggat 480 cttcgggaaa gccacgttgt gtctcaaaat ctctgatgtt acattgcaca agataaaaat 540 atatcatcat gaacaataaa actgtctgct tacataaaca gtaatacaag gggtgttatg 600 agccatattc aacgggaaac gtcttgctcg aggccgcgat taaattccaa catggatgct 660 gatttatatg ggtataaatg ggctcgcgat aatgtcgggc aatcaggtgc gacaatctat 720 cgattgtatg ggaagcccga tgcgccagag ttgtttctga aacatggcaa aggtagcgtt 780 gccaatgatg ttacagatga gatggtcaga ctaaactggc tgacggaatt tatgcctctt 840 ccgaccatca agcattttat ccgtactcct gatgatgcat ggttactcac cactgcgatc 900 cccgggaaaa cagcattcca ggtattagaa gaatatcctg attcaggtga aaatattgtt 960 gatgcgctgg cagtgttcct gcgccggttg cattcgattc ctgtttgtaa ttgtcctttt 1020 aacagcgatc gcgtatttcg tctcgctcag gcgcaatcac gaatgaataa cggtttggtt 1080 gatgcgagtg attttgatga cgagcgtaat ggctggcctg ttgaacaagt ctggaaagaa 1140 atgcataagc ttttgccatt ctcaccggat tcagtcgtca ctcatggtga tttctcactt 1200 gataacctta tttttgacga ggggaaatta ataggttgta ttgatgttgg acgagtcgga 1260 atcgcagacc gataccagga tcttgccatc ctatggaact gcctcggtga gttttctcct 1320 tcattacaga aacggctttt tcaaaaatat ggtattgata atcctgatat gaataaattg 1380 cagtttcatt tgatgctcga tgagtttttc taatcagaat tggttaattg gttgtaacac 1440 tggcagagct tctaaaaccg tgactgcgga tatcccgatt gtgggggatg ctcgccaggt 1500 cctcgaaca 1509 <210> 63 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 63 ctatgcggca tcagagcag 19 <210> 64 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 64 gttaagccag ccccgacac 19 <210> 65 <211> 500 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 65 cgcgtcagcg ggtgttggcg ggtgtcgggg ctggcttaac agtactgcga tgagtggcag 60 ggcggggcgt aattttttta aggcagttat tggtgccctt aaacgcctgg ttgctacgcc 120 tgaataagtg ataataagcg gatgaatggc agaaattcga tgataagctg tcaaacatga 180 gaattggtcg acggcgcgcc aaagcttgca tgcctgcagc cgcgtaacct ggcaaaatcg 240 gttacggttg agtaataaat ggatgccctg cgtaagcggg gcacatttca ttacctcttt 300 ctccgcaccc gacatagata ataacttcgt atagtataca ttatacgaag ttatctagta 360 gacttaatta aggatcgatc cggcgcgcca atagtcatgc cccgcgccca ccggaaggag 420 ctgactgggt tgaaggctct caagggcatc ggtcgagctt ctatgcggca tcagagcaga 480 ttgtactgag agtgcaccat 500 <210> 66 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 66 tgcgtaagcg gggcacattt cattacctct ttctccgcac gctctgccag tgttacaacc 60 <210> 67 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 67 taatgtatac tatacgaagt tattatctat gtcgggtgct aacgcggtat gaaaatggat 60

Claims (31)

  1. 2종류 이상의 DNA 단편과, RecA 패밀리 재조합 효소 활성을 갖는 단백질을 함유하는 반응 용액을 조제하고,
    상기 반응 용액중에서, 상기 2종류 이상의 DNA 단편을 염기서열이 상동인 영역끼리 또는 염기서열이 상보인 영역끼리 서로 연결시켜 직쇄상 또는 환상의 DNA를 수득하는, DNA 생산 방법.
  2. 제1항에 있어서,
    상기 반응 용액이 엑소뉴클레아제를 더 함유하는, DNA 생산 방법.
  3. 제2항에 있어서,
    상기 엑소뉴클레아제가 3'→5' 엑소뉴클레아제인, DNA 생산 방법.
  4. 제1항에 있어서,
    상기 반응 용액이 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제를 더 함유하는, DNA 생산 방법.
  5. 제1항에 있어서,
    상기 반응 용액이 직쇄상 이중가닥 DNA 특이적 3'→5' 엑소뉴클레아제와 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제를 더 함유하는, DNA 생산 방법.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 반응 용액이 뉴클레오시드3인산 또는 디옥시뉴클레오티드3인산의 재생 효소 및 그 기질을 함유하는, DNA 생산 방법.
  7. 제6항에 있어서,
    상기 재생 효소가 크레아틴 키나아제이고, 상기 기질이 크레아틴인산이거나,
    상기 재생 효소가 피루브산 키나아제이고, 상기 기질이 포스포에놀피루브산이거나,
    상기 재생 효소가 아세테이트 키나아제이고, 상기 기질이 아세틸인산이거나,
    상기 재생 효소가 폴리인산 키나아제이고, 상기 기질이 폴리인산이거나,
    상기 재생 효소가 뉴클레오시드2인산 키나아제이고, 상기 기질이 뉴클레오시드3인산인, DNA 생산 방법.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 2종류 이상의 DNA 단편을 연결시키는 반응의 개시 시점에서의 상기 반응 용액은, 마그네슘 이온원 농도가 0.5∼15 mM이고, 뉴클레오시드3인산 또는 디옥시뉴클레오티드3인산의 농도가 1∼1000 μM인, DNA 생산 방법.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 2종류 이상의 DNA 단편을 연결시키는 반응을, 25∼48℃의 온도 범위내에서 실시하는, DNA 생산 방법.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    7개 이상의 DNA 단편을 연결시킨 직쇄상 또는 환상의 DNA를 수득하는, DNA 생산 방법.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서,
    상기 반응 용액은, 염화테트라메틸암모늄 및 디메틸술폭시드로 이루어지는 군으로부터 선택되는 1종 이상을 함유하는, DNA 생산 방법.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서,
    상기 반응 용액은, 폴리에틸렌 글리콜, 알칼리 금속 이온원 및 디티오트레이톨로 이루어지는 군으로부터 선택되는 1종 이상을 함유하는, DNA 생산 방법.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서,
    상기 RecA 패밀리 재조합 효소 활성을 갖는 단백질이 uvsX이고, 상기 반응 용액은 uvsY를 더 함유하는, DNA 생산 방법.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서,
    상기 염기서열이 상동인 영역 또는 상기 염기서열이 상보인 영역이, 상기 DNA 단편의 말단 또는 그 근방에 존재하는, DNA 생산 방법.
  15. 제14항에 있어서,
    상기 염기서열이 상동인 영역 또는 상기 염기서열이 상보인 영역이, 10 bp 이상 500 bp 이하의 길이인, DNA 생산 방법.
  16. 제1항 내지 제15항 중 어느 한 항에 있어서,
    상기 2종류 이상의 DNA 단편을 연결시키는 반응의 개시 시점에서의 상기 반응 용액이, 몰 농도가 서로 동일한 2종류 이상의 DNA 단편을 함유하는, DNA 생산 방법.
  17. 제1항 내지 제16항 중 어느 한 항에 있어서,
    연결에 의해 얻어진 직쇄상 또는 환상의 DNA 중의 갭 및 닉을 갭 수복 효소군에 의해 수복하는, DNA 생산 방법.
  18. 제17항에 있어서,
    연결에 의해 얻어진 직쇄상 또는 환상의 DNA를 50∼70℃에서 열처리하고, 계속해서 10℃ 이하로 급냉한 후, 갭 수복 효소군에 의해 수복하는, DNA 생산 방법.
  19. 제17항 또는 제18항에 있어서,
    갭 및 닉이 수복된 직쇄상 또는 환상의 이중가닥 DNA를 증폭시키는, DNA 생산 방법.
  20. 제1항 내지 제16항 중 어느 한 항에 있어서,
    연결에 의해 얻어진 DNA가 직쇄상이고,
    상기 직쇄상 DNA를 직접 주형으로 이용해 PCR를 행하는, DNA 생산 방법.
  21. 제1항 내지 제16항 중 어느 한 항에 있어서,
    연결에 의해 얻어진 DNA가, DnaA 활성을 갖는 효소와 결합 가능한 복제 개시 서열을 포함하는 환상 DNA이고,
    상기 환상 DNA와 환상 DNA의 복제를 촉매하는 제1 효소군과, 오카자키 단편 연결 반응을 촉매해, 카테난을 형성하는 2개의 자매 환상 DNA를 합성하는 제2 효소군과, 2개의 자매 환상 DNA의 분리 반응을 촉매하는 제3 효소군과, dNTP를 함유하는 반응 혼합물을 형성하고, 형성한 반응 혼합물을 등온 조건하에서 인큐베이션함으로써, 상기 환상 DNA 중의 갭 및 닉의 수복 및 증폭을 행하는, DNA 생산 방법.
  22. 제21항에 있어서,
    연결에 의해 얻어진 DNA를, 미리 50∼70℃에서 열처리하고, 계속해서 10℃ 이하로 급냉한 후에 상기 반응 혼합물을 형성시키는, DNA 생산 방법.
  23. 제1항 내지 제16항 중 어느 한 항에 있어서,
    연결에 의해 얻어진 직쇄상 또는 환상의 DNA를 미생물에 도입하고, 상기 미생물내에서, 상기 DNA 중의 갭 및 닉이 수복된 이중가닥 DNA를 증폭시키는, DNA 생산 방법.
  24. 2종류 이상의 DNA 단편을 염기서열이 상동인 영역끼리 또는 염기서열이 상보인 영역끼리 서로 연결시켜 직쇄상 또는 환상의 DNA를 수득하기 위한 키트로서,
    RecA 패밀리 재조합 효소 활성을 갖는 단백질을 포함하는 DNA 단편 연결용 키트.
  25. 제24항에 있어서,
    엑소뉴클레아제를 더 포함하는, DNA 단편 연결용 키트.
  26. 제25항에 있어서,
    상기 엑소뉴클레아제가 3'→5' 엑소뉴클레아제인, DNA 단편 연결용 키트.
  27. 제24항에 있어서,
    직쇄상 이중가닥 DNA 특이적 엑소뉴클레아제를 더 포함하는, DNA 단편 연결용 키트.
  28. 제24항에 있어서,
    직쇄상 이중가닥 DNA 특이적 엑소뉴클레아제와 단일가닥 DNA 특이적 3'→5' 엑소뉴클레아제를 더 포함하는, DNA 단편 연결용 키트.
  29. 제24항 내지 제28항 중 어느 한 항에 있어서,
    뉴클레오시드3인산 또는 디옥시뉴클레오티드3인산의 재생 효소, 및 그 기질을 더 포함하는, DNA 단편 연결용 키트.
  30. 제24항 내지 제29항 중 어느 한 항에 있어서,
    염화테트라메틸암모늄 및 디메틸술폭시드로 이루어지는 군으로부터 선택되는 1종 이상을 더 포함하는, DNA 단편 연결용 키트.
  31. 제24항 내지 제30항 중 어느 한 항에 있어서,
    뉴클레오시드3인산, 디옥시뉴클레오티드3인산, 마그네슘 이온원, 알칼리 금속 이온원, 폴리에틸렌 글리콜, 디티오트레이톨 및 완충액으로 이루어지는 군으로부터 선택되는 1종 이상을 더 포함하는, DNA 단편 연결용 키트.
KR1020207002744A 2017-07-05 2018-07-05 Dna 생산 방법 및 dna 단편 연결용 키트 KR102278495B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JPJP-P-2017-132084 2017-07-05
JP2017132084 2017-07-05
JPJP-P-2017-231732 2017-12-01
JP2017231732 2017-12-01
PCT/JP2018/025528 WO2019009361A1 (ja) 2017-07-05 2018-07-05 Dnaの産生方法及びdna断片連結用キット

Publications (2)

Publication Number Publication Date
KR20200026914A true KR20200026914A (ko) 2020-03-11
KR102278495B1 KR102278495B1 (ko) 2021-07-15

Family

ID=64950147

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207002744A KR102278495B1 (ko) 2017-07-05 2018-07-05 Dna 생산 방법 및 dna 단편 연결용 키트

Country Status (13)

Country Link
US (1) US20200224207A1 (ko)
EP (1) EP3650543B1 (ko)
JP (1) JP6701450B2 (ko)
KR (1) KR102278495B1 (ko)
CN (1) CN111183222B (ko)
AU (2) AU2018297861C9 (ko)
BR (1) BR112019028221A2 (ko)
CA (1) CA3068615C (ko)
ES (1) ES2954507T3 (ko)
IL (1) IL271750A (ko)
RU (1) RU2769465C2 (ko)
SG (1) SG11201913478XA (ko)
WO (1) WO2019009361A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021001473A2 (pt) 2018-07-30 2021-04-27 OriCiro Genomics, Inc. método para edição de dna num sistema livre de células
EP4123026A1 (en) * 2020-02-14 2023-01-25 Public University Corporation Yokohama City University Nucleic acid construct, and therapeutic or diagnostic agent for mismatch repair deficient cancers comprising nucleic acid construct
US20220025460A1 (en) * 2020-07-21 2022-01-27 The University Of Tokyo Method and kit for determining neuromuscular disease in subject
US11990184B2 (en) * 2020-09-24 2024-05-21 Seagate Technology Llc DNA backbone editing for DNA data storage
CN114606575A (zh) * 2020-12-03 2022-06-10 广东菲鹏生物有限公司 组合物及文库构建方法
JPWO2023038145A1 (ko) * 2021-09-13 2023-03-16
CN115820666B (zh) * 2022-09-30 2023-07-11 华南农业大学 一种菊叶薯蓣DcW5基因及其在耐干旱胁迫和耐盐胁迫中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001017172A (ja) * 1999-07-02 2001-01-23 Aisin Seiki Co Ltd 二本鎖dna断片の末端での連結
JP2004275032A (ja) * 2003-03-13 2004-10-07 Aisin Cosmos R & D Co Ltd 部分的なdna鎖の相同的組換えによる遺伝子除去方法および遺伝子取得方法
US20070037196A1 (en) * 2005-08-11 2007-02-15 The J. Craig Venter Institute, Inc. Method for in vitro recombination
US7575860B2 (en) 2000-03-07 2009-08-18 Evans David H DNA joining method
US8968999B2 (en) 2008-02-15 2015-03-03 Synthetic Genomics, Inc. Methods for in vitro joining and combinatorial assembly of nucleic acid molecules
JP2016077180A (ja) 2014-10-10 2016-05-16 国立研究開発法人理化学研究所 RecA組換え酵素および組換え活性をもつ蛋白質を用いた直鎖二重鎖DNA多量体形成技術
WO2016080424A1 (ja) * 2014-11-18 2016-05-26 国立研究開発法人 科学技術振興機構 環状dnaの増幅方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273881A (en) * 1990-05-07 1993-12-28 Daikin Industries, Ltd. Diagnostic applications of double D-loop formation
US5556772A (en) * 1993-12-08 1996-09-17 Stratagene Polymerase compositions and uses thereof
DK0999275T3 (da) * 1998-10-12 2005-05-30 Roche Diagnostics Gmbh Deoxynucleosidkinase fra insektceller til syntese af nucleosid-monophosphater
EP1155124A2 (en) * 1999-02-22 2001-11-21 European Molecular Biology Laboratory In vitro translation system
US20030228616A1 (en) * 1999-10-29 2003-12-11 Stratagene DNA polymerase mutants with reverse transcriptase activity
AU2002324941A1 (en) * 2001-09-07 2003-03-24 The Regents Of The University Of California Method of generating a transgenic livestock animal
US20070292954A1 (en) * 2006-04-21 2007-12-20 The Brigham And Women's Hospital, Inc. Generation of recombinant DNA by sequence-and ligation-independent cloning
WO2008035205A2 (en) * 2006-05-04 2008-03-27 Asm Scientific, Inc. Recombinase polymerase amplification
EP3360974A1 (en) * 2009-06-05 2018-08-15 Alere San Diego, Inc. Recombinase polymerase amplification reagents
US9315857B2 (en) * 2009-12-15 2016-04-19 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse label-tags
EP3978620A1 (en) * 2011-04-07 2022-04-06 Abbott Diagnostics Scarborough, Inc. Monitoring recombinase polymerase amplification mixtures
JP6387722B2 (ja) 2014-07-24 2018-09-12 アイシン精機株式会社 改変型の耐熱性RecAタンパク質、該タンパク質をコードする核酸分子、該タンパク質を用いた核酸の増幅方法、及び核酸増幅用キット
JP6647054B2 (ja) 2016-01-26 2020-02-14 株式会社東芝 画像形成装置
JP7011599B2 (ja) * 2016-04-06 2022-02-10 グリーンライト バイオサイエンシーズ インコーポレーテッド リボ核酸の無細胞的生産
CN110603331A (zh) * 2017-05-01 2019-12-20 株式会社钟化 利用了atp的物质的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001017172A (ja) * 1999-07-02 2001-01-23 Aisin Seiki Co Ltd 二本鎖dna断片の末端での連結
US7575860B2 (en) 2000-03-07 2009-08-18 Evans David H DNA joining method
JP2004275032A (ja) * 2003-03-13 2004-10-07 Aisin Cosmos R & D Co Ltd 部分的なdna鎖の相同的組換えによる遺伝子除去方法および遺伝子取得方法
US20070037196A1 (en) * 2005-08-11 2007-02-15 The J. Craig Venter Institute, Inc. Method for in vitro recombination
US7776532B2 (en) 2005-08-11 2010-08-17 Synthetic Genomics, Inc. Method for in vitro recombination
US8968999B2 (en) 2008-02-15 2015-03-03 Synthetic Genomics, Inc. Methods for in vitro joining and combinatorial assembly of nucleic acid molecules
JP2016077180A (ja) 2014-10-10 2016-05-16 国立研究開発法人理化学研究所 RecA組換え酵素および組換え活性をもつ蛋白質を用いた直鎖二重鎖DNA多量体形成技術
WO2016080424A1 (ja) * 2014-11-18 2016-05-26 国立研究開発法人 科学技術振興機構 環状dnaの増幅方法

Also Published As

Publication number Publication date
CN111183222B (zh) 2023-12-12
WO2019009361A1 (ja) 2019-01-10
ES2954507T3 (es) 2023-11-22
AU2018297861B2 (en) 2022-05-12
RU2769465C2 (ru) 2022-04-01
BR112019028221A2 (pt) 2020-07-07
RU2020104038A (ru) 2021-08-05
EP3650543A4 (en) 2021-03-31
AU2022204663A1 (en) 2022-07-21
RU2020104038A3 (ko) 2021-08-05
EP3650543B1 (en) 2023-06-07
AU2018297861C9 (en) 2022-12-08
KR102278495B1 (ko) 2021-07-15
JPWO2019009361A1 (ja) 2020-05-21
AU2018297861A1 (en) 2020-01-30
IL271750A (en) 2020-02-27
CN111183222A (zh) 2020-05-19
US20200224207A1 (en) 2020-07-16
SG11201913478XA (en) 2020-01-30
JP6701450B2 (ja) 2020-05-27
EP3650543A1 (en) 2020-05-13
CA3068615C (en) 2023-09-05
CA3068615A1 (en) 2019-01-10
AU2018297861C1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
KR102278495B1 (ko) Dna 생산 방법 및 dna 단편 연결용 키트
CN109844134B (zh) 闭合线性dna的生产
EP2610352B1 (en) Template-independent ligation of single-stranded DNA
AU2019315179B2 (en) Method for editing dna in cell-free system
US11685940B2 (en) Method of replicating or amplifying circular DNA
WO2004027056A2 (en) Methods of use for thermostable rna ligases
US20050069991A1 (en) Method for plasmid preparation by conversion of open circular plasmid to supercoiled plasmid
US20040191871A1 (en) Method for plasmid preparation by conversion of open circular plasmid
WO2023038145A1 (ja) 環状dnaの製造方法
US20050084938A1 (en) Method for plasmid preparation by conversion of open circular plasmid to supercoiled plasmid
US20050255563A1 (en) Method for plasmid preparation by conversion of open circular plasmid to supercoiled plasmid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant