KR20200003839A - 전파 측정 시스템 - Google Patents

전파 측정 시스템 Download PDF

Info

Publication number
KR20200003839A
KR20200003839A KR1020197034375A KR20197034375A KR20200003839A KR 20200003839 A KR20200003839 A KR 20200003839A KR 1020197034375 A KR1020197034375 A KR 1020197034375A KR 20197034375 A KR20197034375 A KR 20197034375A KR 20200003839 A KR20200003839 A KR 20200003839A
Authority
KR
South Korea
Prior art keywords
data
power transmission
radio wave
time
unit
Prior art date
Application number
KR1020197034375A
Other languages
English (en)
Other versions
KR102157525B1 (ko
Inventor
유키히로 혼마
마호 사토
마나부 사와
Original Assignee
미쓰비시덴키 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쓰비시덴키 가부시키가이샤 filed Critical 미쓰비시덴키 가부시키가이샤
Priority claimed from PCT/JP2018/015092 external-priority patent/WO2018221022A1/ja
Publication of KR20200003839A publication Critical patent/KR20200003839A/ko
Application granted granted Critical
Publication of KR102157525B1 publication Critical patent/KR102157525B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0871Complete apparatus or systems; circuits, e.g. receivers or amplifiers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/23Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of transmitting antennas, e.g. directional array antennas or Yagi antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • B64C2201/066
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F3/00Ground installations specially adapted for captive aircraft
    • B64F3/02Ground installations specially adapted for captive aircraft with means for supplying electricity to aircraft during flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency
    • Y02T50/53

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Transmitters (AREA)
  • Traffic Control Systems (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

전파가 반사되는 환경에서 안테나의 방사 패턴을 측정하는 경우, 멀티 패스의 영향으로 높은 정밀도로 측정하는 것은 어렵다. 상공 방향으로 전파(2)를 방사하고 있는 피계측 안테나(30)의 상공에서 이동 또는 정지하는 공중 이동체(3)와, 공중 이동체의 시각 부가 위치를 측정하는 위치 측정부(18H)를 구비한다. 공중 이동체(3)에는, 전파(2)를 수신하는 계측용 안테나(14)와, 계측용 안테나(14)가 수신하는 전파(2)의 진폭 및 위상의 적어도 어느 하나를 포함하는 시각 부가 수신 전파 데이터(73H)를 계측하는 전파 계측부(15)가 탑재되어 있다. 또한, 수신 전파 데이터(73H)와, 수신 전파 데이터(73H)를 계측한 시점에서의 공중 이동체(3)의 위치인 계측점 데이터(74H)를 피계측 안테나(30)에 대한 상대적인 위치로서 나타낸 전파원 상대 위치 데이터(78)를 포함하는 방사 전파 데이터(71)를 생성하는 빔 형상 데이터 생성부(21)를 구비한다.

Description

전파 측정 시스템, 무선 송전 장치 및 공중 이동체로의 송전 시스템
본 발명은, 안테나가 방사하는 전파를 계측하는 전파 측정 시스템, 혹은 전파에 의해 무선으로 전력을 송전하는 무선 송전 장치 및 공중 이동체로의 송전 시스템에 관한 것이다.
복수의 소자 안테나로부터 방사되는 마이크로파를 제어하는 것에 의해 송전 마이크로파 빔의 방향을 제어하여 송전하는 시스템이 개발되어 있다(비특허문헌 1 참조). 이 시스템은, 마이크로파 등의 주파수 대역의 전파를 이용하여 먼 곳에 전력을 송전하는 것을 목적으로 하여 개발되어 있다. 이 시스템에서는, 빔 제어에는 진폭 모노펄스법과 소자 전계 벡터 회전법(Rotating Element Electric Field Vector (REV) Method, REV법)을 이용하고 있다. 진폭 모노펄스법과 REV법을 이용함으로써, 마이크로파를 이용한 고효율의 무선 전력 전송이 실현되고 있다. 수전측으로부터 송전 마이크로파의 송신 방향을 가이드하는 파일럿 신호를 송신하고, 진폭 모노펄스법에 의해 파일럿 신호의 도래 방향을 각 송전 패널에서 검지하고, 그 방향으로 마이크로파를 방사한다. REV법에 의해, 각 송전 패널 사이의 단차에 상당하는 광로 길이를 검지하여 보정한다. 송전하는 마이크로파의 빔 방향이나 방사 패턴은, 모니터 안테나를 2차원으로 이동 가능한 XY 스캐너에 장착하여, 전파가 방사되는 에리어를 스캔함으로써 측정되고 있다.
수중 환경 하에서 이동체에 급전하는 급전 시스템으로서, 급전되는 이동체를 전자계 에너지가 커지는 방향으로 이끌어 무선 급전을 받는 급전 위치에 유도하는 기술이 제안되어 있다(특허문헌 1 참조). 특허문헌 1에서는, 송전을 위한 안테나를 통신에도 사용하는 것이 제안되어 있다. 특허문헌 1의 도 11에서는 송신 안테나(11-1)의 안에 통신 기능(150)이 있고, 도 12에서는 수신 안테나(21-1)의 안에 통신 기능(250)이 있도록 그려져 있다. 그러나, 송전을 위한 안테나를 통신에도 사용하는 구체적인 구성은, 특허문헌 1에는 기술되어 있지 않다.
특허문헌 1 : 일본 특허 공개 2016-127678
비특허문헌 1 : 마키노 카츠미 외 : "SSPS의 실현을 향한 높은 정밀도의 마이크로파 빔 방향 제어 장치의 개발과 그 기술 실증 시험", 전자 정보 통신 학회 기보, SANE 2015-22, pp. 37-42, June 2015.
전파가 반사되는 환경에서는, 멀티 패스의 영향이 있다. 그 때문에, 안테나의 방사 패턴을 높은 정밀도로 측정하는 것은 어렵다. 또한, 높은 정밀도의 안테나 방사 패턴을 측정하는 경우는, 전파가 반사되기 어려운 전파 암실의 환경에서 측정된다. 그러나, 전파 암실의 환경에 있어서도, 적지만 멀티 패스의 영향을 받는다. 그 때문에, 필요한 정밀도로 측정할 수 없는 일이 있다. 또한, 공중 이동체에 송전하는 무선 송전 장치에 있어서, 공중 이동체가 존재하는 방향으로 높은 정밀도로 전파를 방사할 수 없어, 무선 송전의 효율이 저하한다고 하는 과제가 있다.
본 발명은, 상기와 같은 문제를 해결하기 위해, 드론 등의 공중 이동체를 이용하여, 높은 정밀도로 안테나가 방사하는 전파를 측정하는 전파 계측 시스템, 및 공중 이동체에 송전하는 안테나로부터 방사되는 전파를 종래보다 높은 정밀도로 제어하는 무선 송전 장치 및 공중 이동체로의 송전 시스템을 얻는 것을 목적으로 한다.
본 발명과 관련되는 전파 측정 시스템은, 상공 방향으로 전파를 방사하고 있는 피계측 안테나의 상공에서 이동 또는 정지하는 공중 이동체와, 공중 이동체의 위치를 측정하고, 공중 이동체의 위치를 나타내는 계측점 데이터를 생성하는 위치 측정부와, 계측점 데이터를 생성한 시점의 시각 데이터를 계측점 데이터에 부가하여 시각 부가 계측점 데이터를 생성하는 계측점 데이터 시각 부가부를 구비한다. 공중 이동체에는, 전파를 수신하는 계측용 안테나와, 계측용 안테나가 수신하는 전파의 진폭 및 위상의 적어도 어느 하나를 포함하는 수신 전파 데이터를 계측하는 전파 계측부와, 계측점 데이터에 부가되는 시각 데이터와 동기가 취하여진 시각 데이터를 출력하는 이동체 시각 장치와, 수신 전파 데이터가 계측된 시점에 이동체 시각 장치가 출력하는 시각 데이터를 수신 전파 데이터에 부가하여 시각 부가 수신 전파 데이터를 생성하는 수신 전파 데이터 시각 부가부가 탑재되어 있다. 또한, 시각 부가 수신 전파 데이터 및 시각 부가 계측점 데이터에 부가된 시각 데이터로부터 판단한 수신 전파 데이터를 계측한 시점에서의 계측점 데이터를 피계측 안테나에 대한 상대적인 위치로서 나타낸 전파원 상대 위치 데이터와, 수신 전파 데이터를 포함하는 방사 전파 데이터를 생성하는 방사 전파 데이터 생성부를 구비한다.
본 발명과 관련되는 무선 송전 장치는, 방사하는 전파로 전력을 송전하는 지향 방향을 변경할 수 있는 송전 안테나와, 송전 대상인 공중 이동체가 존재하는 방향인 방사 방향을 결정하는 방사 방향 결정부와, 방사 방향으로 송전 안테나의 지향 방향을 향하게 하는 지향 방향 변경부와, 송전 안테나로부터 전파로서 송신되는 송신 신호를 생성하는 송신 신호 생성부를 구비한 것이다.
본 발명과 관련되는 공중 이동체로의 송전 시스템은, 무선 송전 장치와, 무선 송전 장치를 제어하는 송전 제어 장치와, 지상에 설치되어 시각 데이터를 출력하는 지상 시각 장치와, 공중 이동체와, REV법 해석부를 구비한다.
무선 송전 장치는, 방사하는 전파로 전력을 송전하는 지향 방향을 변경할 수 있는 송전 안테나와, 송전 대상인 공중 이동체가 존재하는 방향인 방사 방향을 결정하는 방사 방향 결정부와, 방사 방향으로 송전 안테나의 지향 방향을 향하게 하는 지향 방향 변경부와, 송전 안테나로부터 전파로서 송신되는 송신 신호를 생성하는 송신 신호 생성부를 구비한다. 송전 안테나는, 전파를 방사하는 복수의 소자 안테나와, 결정된 개수의 소자 안테나마다 마련된, 송신 신호의 위상을 변화시키는 이상기 및 송신 신호를 증폭하는 증폭기를 갖는 복수의 소자 모듈을 갖는 페이즈드 어레이 안테나이다. 지향 방향 변경부는, 이상기의 이상량을 제어함으로써 송전 안테나의 지향 방향을 변경한다.
공중 이동체는, 수전 안테나, 계측용 안테나, 전파 계측부, 이동체 시각 장치, 수신 전파 데이터 시각 부가부 및 이동체 통신부를 탑재한다. 수전 안테나 및 송전 안테나는, 무선 송전 장치가 방사하는 전파를 수신한다. 전파 계측부는, 계측용 안테나가 수신하는 전파의 진폭인 전계 강도를 포함하는 수신 전파 데이터를 계측한다. 이동체 시각 장치는, 지상 시각 장치와 동기가 취하여진 시각 데이터를 출력한다. 수신 전파 데이터 시각 부가부는, 수신 전파 데이터가 계측된 시점에 이동체 시각 장치가 출력하는 시각 데이터를 수신 전파 데이터에 부가하여 시각 부가 수신 전파 데이터를 생성한다. 이동체 통신부는, 송전 제어 장치와 통신한다.
REV법 해석부는, 1개의 소자 모듈이 출력하는 송신 신호가 공급되는 소자 안테나가 방사하는 전파가 계측용 안테나의 위치에 생성하는 소자 전계 벡터의 위상인 소자 전계 위상을 구하는 REV법을 실행하기 위해, 적어도 일부의 소자 안테나가 전파를 방사하는 상태에서 일부의 이상기인 조작 이상기의 이상량을 변화시키는 것을 반복하는 위상 조작 패턴을 규정하는 REV법 시나리오를 실행 중에 전파 계측부가 계측하는 시각 부가 수신 전파 데이터인 REV법 실행시 전파 데이터 및 REV법 시나리오에 근거하여, 소자 모듈마다 소자 전계 위상을 구한다.
송전 제어 장치는, 이동체 통신부와 통신하는 송전 제어 통신부, REV법 시나리오에 근거하여 무선 송전 장치를 제어하는 REV법 실행부를 갖는다.
지향 방향 변경부는, 소자 모듈마다의 소자 전계 위상에 근거하여, 소자 모듈의 위상의 기준을 맞춘 상태에서 방사 방향으로 송전 안테나의 지향 방향을 향하게 한다.
본 발명과 관련되는 전파 측정 시스템에 의하면, 높은 정밀도로 피계측 안테나가 방사하는 전파를 측정할 수 있다.
본 발명과 관련되는 무선 송전 장치에 의하면, 종래보다 높은 정밀도로 공중 이동체가 존재하는 방향으로 전파를 방사할 수 있어, 무선 송전의 효율을 종래보다 개선할 수 있다.
본 발명과 관련되는 공중 이동체로의 송전 시스템에 의하면, 실제로 공중 이동체에 송전하는 상황에서 REV법을 실행할 수 있어, 종래보다 높은 정밀도로 공중 이동체가 존재하는 방향으로 전파를 방사할 수 있어, 무선 송전의 효율을 종래보다 개선할 수 있다.
도 1은 본 발명의 실시의 형태 1과 관련되는 공중 이동체를 이용한 전파 측정 시스템의 개념도이다.
도 2는 실시의 형태 1과 관련되는 공중 이동체를 이용한 전파 측정 시스템의 구성도이다.
도 3은 실시의 형태 1과 관련되는 전파 계측 시스템을 구성하는 공중 이동체의 전원 계통의 구성을 설명하는 블록도이다.
도 4는 실시의 형태 1과 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 전파의 방사 패턴을 측정하는 수순을 설명하는 플로차트이다.
도 5는 실시의 형태 1과 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 전파의 방사 패턴을 측정하는 다른 수순을 설명하는 플로차트이다.
도 6은 본 발명의 실시의 형태 2와 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 개념도이다.
도 7은 실시의 형태 2와 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다.
도 8은 실시의 형태 2와 관련되는 무선 송전 장치에 의해 송전되는 전력을 수전하는 공중 이동체의 전원 계통의 구성을 설명하는 블록도이다.
도 9는 실시의 형태 2와 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 수순을 설명하는 플로차트이다.
도 10은 본 발명의 실시의 형태 3과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다.
도 11은 실시의 형태 3과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 수순을 설명하는 플로차트이다.
도 12는 본 발명의 실시의 형태 4와 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다.
도 13은 실시의 형태 4와 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에 있어서 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 전파의 방사 패턴을 측정하는 수순을 설명하는 플로차트이다.
도 14는 본 발명의 실시의 형태 5와 관련되는 공중 이동체를 이용한 전파 측정 시스템의 구성도이다.
도 15는 실시의 형태 5와 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 전파의 방사 패턴을 측정하는 수순을 설명하는 플로차트이다.
도 16은 본 발명의 실시의 형태 6과 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다.
도 17은 실시의 형태 6과 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의해 송전되는 전력을 수전하는 공중 이동체의 전원 계통의 구성을 설명하는 블록도이다.
도 18은 본 발명의 실시의 형태 7과 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다.
도 19는 본 발명의 실시의 형태 8과 관련되는 공중 이동체를 이용한 전파 측정 시스템의 개념도이다.
도 20은 실시의 형태 8과 관련되는 공중 이동체를 이용한 전파 측정 시스템의 구성도이다.
도 21은 실시의 형태 8과 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 전파의 방사 패턴을 측정하는 수순을 설명하는 플로차트이다.
도 22는 본 발명의 실시의 형태 9와 관련되는 공중 이동체를 이용한 전파 측정 시스템의 구성도이다.
도 23은 실시의 형태 9와 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 측정계 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다.
도 24는 실시의 형태 9와 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 전파의 방사 패턴을 측정하는 수순을 설명하는 플로차트이다.
도 25는 실시의 형태 9와 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 전파의 방사 패턴을 측정하는 다른 수순을 설명하는 플로차트이다.
도 26은 본 발명의 실시의 형태 10과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다.
도 27은 실시의 형태 10과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다.
도 28은 실시의 형태 10과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 수순을 설명하는 플로차트이다.
도 29는 실시의 형태 10과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서 REV법에 의해 각 소자 안테나가 방사하는 전파의 소자 전계 벡터를 계산하는 수순을 설명하는 플로차트이다.
도 30은 본 발명의 실시의 형태 11과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다.
도 31은 실시의 형태 11과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다.
도 32는 실시의 형태 11과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 수순을 설명하는 플로차트이다.
도 33은 본 발명의 실시의 형태 12와 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다.
도 34는 실시의 형태 12와 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에 있어서 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 전파의 방사 패턴을 측정하는 수순을 설명하는 플로차트이다.
도 35는 본 발명의 실시의 형태 13과 관련되는 공중 이동체를 이용한 전파 측정 시스템의 구성도이다.
도 36은 실시의 형태 13과 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 측정계 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다.
도 37은 실시의 형태 13과 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 전파의 방사 패턴을 측정하는 수순을 설명하는 플로차트이다.
도 38은 본 발명의 실시의 형태 14와 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다.
도 39는 실시의 형태 14와 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 측정계 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다.
도 40은 실시의 형태 14와 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다.
도 41은 본 발명의 실시의 형태 15와 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다.
도 42는 실시의 형태 15와 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 측정계 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다.
도 43은 본 발명의 실시의 형태 16과 관련되는 공중 이동체를 이용한 전파 측정 시스템의 구성도이다.
도 44는 실시의 형태 16과 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 측정계 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다.
도 45는 실시의 형태 16과 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 전파의 방사 패턴을 측정하는 수순을 설명하는 플로차트이다.
도 46은 실시의 형태 17과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다.
도 47은 실시의 형태 17과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 수순을 설명하는 플로차트이다.
도 48은 실시의 형태 18과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다.
도 49는 실시의 형태 18과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 수순을 설명하는 플로차트이다.
도 50은 실시의 형태 18과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서 REV법에 의해 각 소자 안테나가 방사하는 전파의 소자 전계 벡터를 계산하는 수순을 설명하는 플로차트이다.
도 51은 실시의 형태 19와 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다.
도 52는 실시의 형태 19와 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 수순을 설명하는 플로차트이다.
도 53은 실시의 형태 19와 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서 REV법에 의해 각 소자 안테나가 방사하는 전파의 소자 전계 벡터를 계산하는 수순을 설명하는 플로차트이다.
도 54는 실시의 형태 20과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다.
도 55는 실시의 형태 20과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 수순을 설명하는 플로차트이다.
실시의 형태 1.
실시의 형태 1과 관련되는 전파 측정 시스템의 구성에 대하여, 도 1과 도 2를 이용하여 설명한다. 도 1은 본 발명의 실시의 형태 1과 관련되는 공중 이동체를 이용한 전파 측정 시스템의 개념도이다. 도 2는 실시의 형태 1과 관련되는 공중 이동체를 이용한 전파 측정 시스템의 구성도이다. 공중 이동체를 이용한 전파 측정 시스템에 의한 무선 송전 장치가 방사하는 전파의 측정은, 옥외 등의 전파 환경이 좋은 장소에서 실시된다.
복수(도 1의 예에서는 4대)의 송전 장치(1)에서, 옥외에서 상공 방향으로 송전 전파(2)를 방사한다. 송전 장치(1)는, 방사하는 전파에 의해 전력을 송전하는 송전 안테나를 갖는 무선 송전 장치이다. 송전 장치(1)의 상공의 공간에 형성되는 송전 전파(2)에 의한 전계 및 자계의 2차원 및 3차원의 강도 분포(방사 패턴, 전파의 형상 또는 빔 형상이라고 부른다)는, 드론(3)을 사용하여 계측한다. 또, 드론이란, 원격 조작이나 자동 제어에 의해 비행(공중 이동)할 수 있는 무인 항공기의 총칭이다. 드론(3)은, 사람 또는 컴퓨터에 의해 이동체 지령 장치(4)를 통해서 제어된다.
드론(3)은, 비행 제어 장치(5), 기내 통신 안테나(6), 무선 모뎀(7), 드론 전원 시스템(8)을 갖는다. 비행 제어 장치(5)는, 공중을 이동 또는 정지하기 위해 드론(3)이 갖는 기구를 제어한다. 기내 통신 안테나(6)는, 통신을 위한 전파를 송신 및 수신한다. 무선 모뎀(7)은, 기내 통신 안테나(6)를 사용하여 통신한다. 드론 전원 시스템(8)은, 드론(3)이 비행, 통신 및 전파의 빔 형상을 계측할 때에 사용하는 전력을 관리한다. 드론(3)이 공중을 이동 또는 정지하기 위한 기구를 대표하는 것으로서, 도면에는 동력원이 되는 구동 모터(9)를 표시한다. 이동체 지령 장치(4)는, 드론(3)과 통신할 수 있도록, 무선 모뎀(10) 및 통신 안테나(11)를 갖는다. 이들 장치는, 드론(3) 및 이동체 지령 장치(4)가 통상 구비하는 것이다. 이동체 지령 장치(4)가 갖는 무선 모뎀(10) 및 통신 안테나(11)와, 드론(3)이 갖는 기내 통신 안테나(6) 및 무선 모뎀(7)은, 이동체 통신계(12)를 구성한다. 이동체 통신계(12)에 의해, 드론(3)은 제어된다.
또한, 드론(3)에는, 송전 전파(2)가 형성하는 빔 형상을 나타내는 빔 형상 데이터(71)를 계측하기 위한 탑재 장치(13)가 탑재되어 있다. 탑재 장치(13)는, 모니터 안테나(14), 검파기(15), 기내 제어 장치(16), 및 데이터 기억 장치(17)를 갖는다. 모니터 안테나(14)는, 송전 전파(2)를 수신한다. 모니터 안테나(14)는, 송전 장치(1)가 방사하는 전파를 수신하는 계측용 안테나이다. 검파기(15)는, 모니터 안테나(14)가 수신한 전파를 검파하여 전파의 위상이나 진폭을 계측한다. 기내 제어 장치(16)는, 검파기(15)를 제어하고 측정한 검파 데이터(73)를 관리한다. 데이터 기억 장치(17)는, 검파 데이터(73) 등을 기억하는 기억 장치이다. 탑재 장치에 포함되는 기기나 장치 및 기내 제어 장치에서 실행되는 처리를 나타내는 기능부 등은, 드론에 탑재된다.
검파기(15)에서 검파 데이터(73)를 계측하는 것 등을 위한 계측 커맨드(72)는, 이동체 지령 장치(4)로부터 이동체 통신계(12) 및 비행 제어 장치(5)를 거쳐서, 기내 제어 장치(16)에 보내어진다. 기내 제어 장치(16)는, 계측 커맨드(72)에 의한 지시에 따라 검파기(15)를 제어한다.
검파 데이터(73)에는, 송전 전파(2)의 진폭 및 위상의 어느 한쪽 또는 양쪽이 적어도 포함된다. 검파 데이터(73)는, 모니터 안테나(14)가 수신하는 송전 전파(2)의 진폭 및 위상을 포함하는 수신 전파 데이터이다. 검파기(15)는, 수신 전파 데이터를 계측하는 전파 계측부이다.
기내 제어 장치(16)와 비행 제어 장치(5)의 사이는 유선 또는 근거리 무선으로 연결되어, 쌍방향으로 데이터 및 커맨드의 송수신이 가능하다. 드론(3)에는, 드론(3)의 위치를 측위하는 GPS(Global Positioning System) 수신기 등의 측위 센서(18)가 구비된다. 측위 센서(18)가 계측한 위치 데이터(74)는, 비행 제어 장치(5)를 거쳐서 기내 제어 장치(16)에 보내어진다. 검파 데이터(73)는, 검파 데이터(73)를 계측한 시점, 즉 전파를 수신한 시점의 드론(3)의 위치를 나타내는 위치 데이터(74)와 세트로 한 위치 부가 검파 데이터(70)를 포함하는 측정 데이터(77)가, 데이터 기억 장치(17)에 기억된다. 위치 데이터(74)는, 검파 데이터(73)를 계측한 시점의 드론(3)의 위치인 계측점 데이터이다. 위치 부가 검파 데이터(70)를, 전파 측정 데이터라고도 부른다. 데이터 기억 장치(17)에 기억된 측정 데이터(77)는, 드론(3)이 착륙한 후에, 측정계 제어 장치(21)에 입력된다.
측정 데이터(77)는, 이동체 통신계(12)를 거쳐서 측정계 제어 장치(21)에 송신되더라도 좋다. 도 2에서는, 이동체 통신계(12)를 거쳐서 측정계 제어 장치(21)에 송신되는 측정 데이터(77) 등의 데이터의 흐름도 나타내고 있다.
이동체 지령 장치(4)는, 계측 커맨드(72) 및 비행 커맨드(75)를, 이동체 통신계(12)에 의해 드론(3)을 향해 송신한다. 계측 커맨드(72)는, 탑재 장치(13)를 제어하는 커맨드이다. 비행 커맨드(75)는, 드론(3)의 비행을 제어하기 위한 커맨드이다. 커맨드란, 기기가 어떻게 동작할지를 지시하는 지령이다. 커맨드를 수신한 기기 혹은 그 제어 장치는, 커맨드로부터 제어 신호를 생성하고, 제어 신호에 의해 기기를 제어한다.
도 3을 참조하여, 드론 전원 시스템(8)의 구성을 설명한다. 도 3은 실시의 형태 1과 관련되는 전파 계측 시스템을 구성하는 공중 이동체의 전원 계통의 구성을 설명하는 블록도이다. 드론 전원 시스템(8)은, 축전 유닛(19)과, 부하측 컨버터(20a, 20b, 20c)를 갖는다. 축전 유닛(19)은, 외부로부터 공급된 직류 전력을 저장한다. 부하측 컨버터(20a, 20b, 20c)는, 축전 유닛(19)에 저장된 직류 전력을 부하 설비가 필요로 하는 전압으로 변환하여 부하 설비에 급전하는 DC-DC 컨버터이다. 부하 설비란, 탑재 장치(13), 비행 제어 장치(5), 무선 모뎀(7) 및 구동 모터(9) 등이다. 부하측 컨버터(20a)는, 변환한 직류 전력을 탑재 장치(13)에 공급한다. 부하측 컨버터(20b)는, 변환한 직류 전력을 비행 제어 장치(5) 및 무선 모뎀(7)에 급전한다. 부하측 컨버터(20c)는, 구동 모터(9)에 급전한다. 또, 탑재 장치(13)에 포함되는 기기가 복수의 전원 전압을 필요로 하는 경우는, 전압마다 복수의 부하측 컨버터를 마련한다. 비행 제어 장치(5) 및 무선 모뎀(7)이 상이한 전원 전압이 필요한 경우는, 각각 다른 부하측 컨버터로부터 급전한다. 또한, 예컨대 탑재 장치(13)와 무선 모뎀(7)이 동일한 전원 전압으로 사용되는 경우는, 동일한 부하측 컨버터로부터 급전하더라도 좋다. 드론(3)이 비행할 수 없게 될 확률을 작게 하기 위해, 복수의 구동 모터(9) 및 복수의 부하측 컨버터(20c)를 마련하더라도 좋다.
송전 장치(1)가 방사하는 송전 전파(2)를 계측하는 전파 측정 시스템은, 탑재 장치(13)를 탑재한 드론(3)과, 드론(3)을 제어하는 이동체 지령 장치(4)와, 탑재 장치(13)에 포함되는 전파 측정용의 기기를 제어하는 측정계 제어 장치(21)를 갖고 구성된다.
송전 장치(1)는, 송신 신호 생성부(23)와, 1개의 1단계 모듈(24)과, 분배 회로(25)와, 복수 개의 2단계 모듈(26)과, 2단계 모듈(26)마다 마련된 소자 안테나(27)를 갖는다. 송전 제어 장치(22)는 송전 제어 신호(76)를 송전 장치(1)에 보낸다. 송전 제어 신호(76)에 의해, 송전 장치(1)가 송전할지 여부, 어떠한 빔 형상 및 방향으로 송전할지 등을 제어한다. 송신 신호 생성부(23)는, 각 소자 안테나(27)가 전파로서 방사하는 결정된 주파수의 송신 신호를 생성한다. 송신 신호 생성부(23)가 출력하는 송신 신호는, 1단계 모듈(24)에 입력된다. 1단계 모듈(24)에서 증폭 및 위상이 조정된 송신 신호는, 분배 회로(25)에서 분배되어 2단계 모듈(26)에 입력된다. 2단계 모듈(26)에서 증폭 및 위상이 조정된 송신 신호는, 소자 안테나(27)로부터 송전 전파(2)로서 공간에 방사된다. 송신 신호 생성부(23), 1단계 모듈(24) 및 2단계 모듈(26)은, 송전 제어 신호(76)에 의해 제어된다. 1단계 모듈(24) 또는 2단계 모듈(26)을, 소자 모듈이라고 부른다.
1단계 모듈(24)과 2단계 모듈(26)은, 동일한 구성이다. 1단계 모듈(24) 및 2단계 모듈(26)의 각각은, 이상기(28)와, 증폭기(29)를 갖는다. 이상기(28)는, 송신 신호의 위상을 지령치만큼 변화시킨다. 이상기(28)는, 위상의 분해능을 결정하는 비트 수로 정해지는 위상 회전의 피치 폭으로 이산적으로 위상을 변화시킨다. 예컨대 5비트 이상기의 경우는, 360°/25=11.25°의 피치 폭으로 위상을 회전시킨다. 이상기(28)는, 연속적으로 위상을 변화시키는 것이더라도 좋다. 1단계 모듈(24)의 이상기(28)는, 송전 장치(1)에 속하는 복수의 소자 안테나(27)의 위상을 일률적으로 변경할 수 있다. 증폭기(29)는, 송신 신호를 증폭한다.
1개의 송전 장치(1)에 있어서, 각 소자 안테나(27)는 매트릭스 형상으로 배치되어 있다. 또한, 4개의 송전 장치(1)는 서로 인접하도록 매트릭스 형상으로 배치되어 있다. 따라서, 모든 소자 안테나(27)는 매트릭스 형상으로 배치된다.
1개의 송전 장치(1)는, 방사하는 전파의 위상을 제어할 수 있는 복수의 소자 안테나(27)를 갖는 페이즈드 어레이 안테나이다. 또한, 4개의 송전 장치(1)의 집합을 1개의 페이즈드 어레이 안테나(30)로 생각할 수도 있다. 이 실시의 형태 1의 전파 계측 시스템에서는, 페이즈드 어레이 안테나(30)가 방사하는 전파의 빔 형상을 계측한다. 다시 말해, 페이즈드 어레이 안테나(30)가, 빔 형상을 계측하는 대상이 되는 안테나인 피계측 안테나이다. 1개의 송전 장치(1)를 송전 유닛으로 생각하고, 복수 개의 송전 장치(1)의 집합체를 송전 장치로 생각할 수도 있다. 송전 장치(1)는, 복수의 소자 안테나(27)를 복수의 그룹으로 나눈 경우의 1개의 그룹에 대응한다.
동작을 설명한다. 도 4는 실시의 형태 1과 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 전파의 방사 패턴을 측정하는 수순을 설명하는 플로차트이다. 스텝 S01에서, 드론(3)의 이동 패턴을 결정한다. 이동 패턴으로서는, 송전 전파(2)가 방사되는 방향에 수직인 커트면 상에서 2차원적으로 주사하는 패턴으로 한다. 커트면을 송전 장치(1)로부터의 거리가 상이한 복수의 위치에 설정하여, 3차원적으로 전파를 측정한다.
스텝 S02에서, 비행 커맨드(75)를 이동체 통신계(12)에 의해 드론(3)에 보내고, 드론(3)을 이동 패턴 중의 초기 위치로 이동시켜, 정지시킨다. 스텝 S03에서, 송전 장치(1)가 송전을 개시한다. S02와 S03을, 교환하더라도 좋다.
스텝 S04에서, 이동체 통신계(12)에 의해 전해진 계측 커맨드(72)에 따라, 모니터 안테나(14)가 수신하는 송전 전파(2)의 진폭 및 위상을 포함하는 검파 데이터(73)를 측정한다. 동시에 측위 센서(18)가 드론(3)의 위치를 측정한다. 스텝 S05에서, 측정한 검파 데이터(73)와 위치 데이터(74)의 세트인 위치 부가 검파 데이터(70)를, 데이터 기억 장치(17)에 기억시킨다. 스텝 S06에서, 검파 데이터(73)를 아직 측정하지 않은 측정 위치가 있는지 여부를 체크한다. 검파 데이터(73)를 측정하지 않은 측정 위치가 있는 경우(S06에서 예)는, 스텝 S07에서, 비행 커맨드(75)를 이동체 통신계(12)에 의해 드론(3)에 보내고, 드론(3)을 다음의 측정 위치로 이동시켜 정지시킨다. 그리고, 스텝 S04로 돌아간다.
검파 데이터(73)를 측정하지 않은 측정 위치가 존재하지 않는 경우(S06에서 아니오)는, 드론(3)을 지상에 착륙시킨다. 구체적으로는, 스텝 S08에서, 비행 커맨드(75)를 이동체 통신계(12)에 의해 드론(3)에 보내고, 드론(3)을 지상에서 정지시키고, 그 구동 모터(9)를 정지시킨다. 스텝 S09에서, 데이터 기억 장치(17)로부터 위치 부가 검파 데이터(70)를 취득하고, 측정계 제어 장치(21)에 입력한다. 측정계 제어 장치(21)에서는, 스텝 S10에서 송전 장치(1)를 기준으로 하는 상대 위치 데이터(78)로, 위치 데이터(74)를 변환한다. 스텝 S11에서, 검파 데이터(73)를 상대 위치 데이터(78)에 대응지은 빔 형상 데이터(71)를 생성한다. 도 4에 나타내는 플로차트에서의 드론(3)의 동작은, 축전 유닛(19)에 저장된 전력을 사용함으로써 이루어진다. 또, 지상이란 지면의 위뿐만 아니라, 빌딩이나 탑 등의 지상에 설치된 구조물의 위도 포함한다.
드론(3)이 커트면 상을 2차원적으로 주사하므로, 송전 전파(2)의 2차원의 방사 패턴(빔 형상)을 높은 정밀도로 측정할 수 있다. 또한, 드론(3)이 수직 방향의 고도를 바꾸어 송전 전파(2)를 측정함으로써, 3차원적인 송전 전파(2)의 방사 패턴을 측정할 수 있다.
송전 장치(1)를 기준으로 하는 상대 위치로 변환한 위치 데이터(74)를, 상대 위치 데이터(78)라고 부른다. 상대 위치 데이터(78)는, 위치 데이터(74)를 송전 장치(1)에 대한 상대적인 위치로서 나타낸 전파원 상대 위치 데이터이다. 빔 형상 데이터(71)는, 검파 데이터(73)와 전파원 상대 위치 데이터를 포함하는 방사 전파 데이터이다. 측정계 제어 장치(21)는, 방사 전파 데이터를 생성하는 방사 전파 데이터 생성부이다. 측정계 제어 장치(21)가, 방사 전파 데이터 생성부를 갖는다고 생각하더라도 좋다. 다른 장치가 방사 전파 데이터 생성부인 경우도, 다른 장치가 방사 전파 데이터 생성부를 갖는다고 생각하더라도 좋다.
드론(3)의 송전 장치(1)에 대한 상대적인 위치를 계산하기 위해, 미리 측위 센서(18)가 측위하는 위도, 경도, 고도 등의 좌표계에서의 송전 장치(1)의 위치를 측정하여, 기억하여 둔다. 기억한 송전 장치(1)의 위치를 드론(3)의 위치 데이터(74)로부터 감산함으로써, 상대 위치 데이터(78)를 생성한다. 송전 장치(1)에도 측위 센서를 마련하여, 측위 센서의 계측치를 감산함으로써 상대 위치를 계산하더라도 좋다.
기내 제어 장치, 데이터 기억 장치 혹은 다른 처리 장치에 송전 장치의 위치를 기억시켜 두고, 기내 제어 장치 혹은 다른 처리 장치에서, 위치 데이터를 상대 위치 데이터로 변환하더라도 좋다. 그리고, 기내 제어 장치 혹은 다른 처리 장치에서 검파 데이터와 상대 위치 데이터를 포함하는 방사 전파 데이터를 작성하더라도 좋다. 그 경우에는, 기내 제어 장치 혹은 다른 처리 장치가 방사 전파 데이터 생성부가 된다. 기내 제어 장치에서 방사 전파 데이터를 작성하는 경우에는, 이하와 같이 된다. 미리 측정한 송전 장치(1)의 위치를 드론(3)이 갖는 기억 장치에 기억시켜 둔다. 기내 제어 장치에서, 위치 데이터(74)를 상대 위치 데이터(78)로 변환하고, 검파 데이터(73)를 상대 위치 데이터(78)에 대응지은 빔 형상 데이터(71A)를 생성한다. 빔 형상 데이터(71A)는, 동일한 시각의 검파 데이터(73)와 상대 위치 데이터(78)를 조합한 위치 부가 검파 데이터(70A)이기도 하다. 위치 부가 검파 데이터(70A)를, 전파 측정 데이터라고도 부른다.
전파 측정 시스템에서는, 송전 장치(1)로부터 송전 전파(2)를 상공을 향해 방사한다. 전파 측정 시스템은, 공중 이동체인 드론(3)을 사용하여, 송전 장치(1)의 상공에서의 송전 전파(2)의 빔 형상 데이터(71)를 측정한다. 그렇게 함으로써, 반사의 영향을 적게 하여 송전 장치(1)의 송전 전파(2)의 빔 형상 데이터(71)를 정밀하게 측정할 수 있다.
도 4에서는, 드론(3)을 정지시켜 검파 데이터(73)를 계측했지만, 이동시키면서 검파 데이터(73)를 계측하더라도 좋다. 드론(3)을 어떻게 비행 또는 정지할지를 이동체 지령 장치(4)로부터 비행 커맨드(75)를 송신하여 제어했지만, 드론(3)에 기억시킨 프로그램에 따라 동작함으로써 드론(3)이 자율적으로 비행 또는 정지하도록 하더라도 좋다. 드론(3)에 기억되는 프로그램은, 드론(3)이 결정된 비행 루트를 비행 및 정지하도록 하는 프로그램이다.
위치 부가 검파 데이터(70)를 포함하는 측정 데이터(77)를, 드론(3)이 비행 중에 통신으로 측정계 제어 장치(21)에 송신하도록 하더라도 좋다. 그 경우의 수순을 설명하는 플로차트를 도 5에 나타낸다.
도 5에 대하여, 도 4와는 상이한 점을 설명한다. 스텝 S05A에서, 측정한 위치 부가 검파 데이터(70)를 포함하는 측정 데이터(77)는, 기내 제어 장치(16)로부터 비행 제어 장치(5)에 보내어진다. 또한 측정 데이터(77)는, 이동체 통신계(12) 및 이동체 지령 장치(4)를 거쳐서, 측정계 제어 장치(21)에 보내어진다. 스텝 S12에서, 측정계 제어 장치(21)에서는, 측정 데이터(77)에 포함되는 위치 부가 검파 데이터(70)를, 그 내부에 갖는 비휘발성 기억 장치에 기억시킨다. 스텝 S05A 및 스텝 S12가 있으므로, 드론(3)이 갖는 데이터 기억 장치(17)로부터 위치 부가 검파 데이터(70)를 취득하는 스텝 S09는, 플로차트로부터 삭제하고 있다. 그 때문에, 스텝 S08의 실행 후에는, 스텝 S10으로 진행한다.
도 5에 나타내는 수순으로도, 송전 장치(1)의 빔 형상 데이터(71)를 정밀하게 계측할 수 있다.
드론(3)으로부터 위치 부가 검파 데이터(70)가 아닌 검파 데이터(73)를 송신하고, 지상으로부터 계측한 드론(3)의 위치 데이터(74)와 검파 데이터(73)를 측정계 제어 장치(21)가 조합하여 위치 부가 검파 데이터(70)를 생성하더라도 좋다. 드론(3)은, 적어도 검파 데이터(73)를 측정계 제어 장치(21)에 송신하면 된다.
전파 계측 시스템은, 무선 송전 장치가 아닌 다른 용도의 안테나가 방사하는 전파의 빔 형상을 계측할 수도 있다. 무선 송전 장치로서는, 이 명세서에서 나타내는 것과는 상이한 것이더라도 좋다. 다른 무선 송전 장치 또는 다른 용도의 안테나가 방사하는 전파의 빔 형상을 계측하는 경우에는, 빔 형상을 계측하는 대상이 되는 안테나인 피계측 안테나로부터 상공 방향으로 전파를 방사시킨다. 전파를 방사하고 있는 피계측 안테나의 상공에서, 드론 등의 공중 이동체를 정지 및 이동시킨다. 공중 이동체의 위치는, GPS 등의 측위 센서인 위치 측정부에 의해 측정한다. 공중 이동체에는, 전파를 수신하는 계측용 안테나와, 계측용 안테나에서 수신한 전파의 진폭과 위상을 포함하는 수신 전파 데이터를 계측하는 검파기 등을 탑재한다. 수신 전파 데이터와, 수신 전파 데이터를 계측한 시점에서의 공중 이동체의 위치인 계측점 데이터로부터 빔 형상 데이터를 생성한다. 또, 빔 형상 데이터에서는, 피계측 안테나를 기준으로 하는 상대 위치로서 계측점 데이터를 표현한다.
드론(3)을 사용하는 대신에, 송전 장치(1)의 상공의 결정된 위치에 모니터 안테나를 고정하더라도 좋다. 단, 모니터 안테나를 고정하기 위한 구조 부재에서 전파가 반사나 차폐되므로, 측정되는 전파의 위상이나 진폭은 정밀도가 나빠질 가능성이 있다.
전파 측정을 옥외 등 전파 환경이 좋은 장소에서 행하는 것에 의해, 지면의 반사 등의 멀티 패스의 영향을 받지 않고, 피계측 안테나의 빔 형상을 계측할 수 있다. 또, 영향을 받지 않는다는 것은, 받는 영향이 충분히 작은 것을 의미한다. 또한, 다양한 데이터나 커맨드 등의 송신에는, 드론을 제어하기 위해 준비되어 있는 이동체 통신계를 이용한다. 그 때문에, 빔 형상의 측정이나 무선 송전을 실시하는데 있어서 필요한 통신을 위해, 드론에 새로운 하드웨어를 추가하는 것은 불필요하다. 이 때문에, 탑재 장치를 경량으로 할 수 있고, 또한 낮은 소비 전력으로, 전파 계측이 가능하게 된다.
측정계 제어 장치(21), 송전 제어 장치(22), 기내 제어 장치(16) 및 비행 제어 장치(5)는, 범용 계산기 또는 전용 계산기로 전용 프로그램을 실행시킴으로써 실현한다. 범용 계산기 또는 전용 계산기는, 프로그램을 실행하는 CPU(Central Processing Unit) 등의 연산 처리부와 메모리부를 갖는다. 메모리부는, 휘발성 또는 비휘발성의 메모리 및/또는 하드디스크이다. 메모리부에는, 측정계 제어 장치(21), 송전 제어 장치(22), 기내 제어 장치(16) 및 비행 제어 장치(5)의 어느 하나에서 동작시키기 위한 프로그램이 기억된다. 또한, 메모리부에는, 처리의 과정 및/또는 처리 결과의 데이터를 기억한다. 기내 제어 장치(16)의 메모리부는, 데이터 기억 장치(17)와 겸용하더라도 좋다. 측정계 제어 장치(21) 및 송전 제어 장치(22)를 1개의 계산기로 실현하더라도 좋다. 또한, 기내 제어 장치(16) 및 비행 제어 장치(5)를 1개의 계산기로 실현하더라도 좋다.
이상은, 다른 실시의 형태에도 적용된다.
실시의 형태 2.
실시의 형태 2와 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성에 대하여, 도 6과 도 7을 이용하여 설명한다. 도 6은 본 발명의 실시의 형태 2와 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 개념도이다. 도 7은 실시의 형태 2와 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다.
도 6과 도 7에 관하여, 도 1 및 도 2와는 상이한 점을 설명한다. 드론(3A)은, 파일럿 송신기(32)와, 파일럿 송신 안테나(33)와, 송전 전파(2)를 수신하는 1대 또는 복수 대의 수전 안테나(34)와, 드론 전원 시스템(8A)을 갖는다. 파일럿 송신기(32)는, 송전 장치(1A)에 송전 방향을 지시하기 위한 파일럿 신호(31)를 생성한다. 파일럿 송신 안테나(33)는, 파일럿 신호(31)를 송전 장치(1A)를 향해 방사한다. 드론 전원 시스템(8A)은, 수전 안테나(34)가 수신한 전파로부터 얻어지는 전력을 저장 및 이용한다.
드론(3A), 즉 비행 제어 장치(5A)와 이동체 지령 장치(4A)는, 측정계 제어 장치(21A)에 측정 데이터(77)를 송신하지 않는다. 도 7에서는, 드론(3A)이 모니터 안테나(14)와 검파기(15)를 갖도록 도시하고 있지만, 모니터 안테나(14)와 검파기(15)를 갖지 않더라도 좋다. 데이터 기억 장치(17A)는, 실시의 형태 1의 경우의 데이터 기억 장치(17)와 달리, 파일럿 송신기에 관한 데이터 등을 기억하고, 전파 측정 시스템에서 필요한 데이터는 기억하지 않는다.
실시의 형태 1과 마찬가지로, 모니터 안테나(14)에서 송전 전파(2)를 수신하고, 검파기(15)가 전파의 위상이나 진폭을 계측하더라도 좋다. 모니터 안테나(14) 및 검파기(15)에서 전파를 계측하는 경우는, 실시의 형태 2는, 공중 이동체로의 송전 시스템 및 전파 계측 시스템이다. 드론이 갖는 데이터 기억 장치 및 기내 제어 장치는, 전파 계측 시스템을 구성하는 경우에는, 실시의 형태 1의 경우와 마찬가지의 구성도 갖는다.
파일럿 송신기(32)는, 파일럿 송신기 제어 커맨드(79)에 따라, 측정계 제어 장치(21A)에 의해 제어된다. 파일럿 송신기 제어 커맨드(79)는, 이동체 지령 장치(4) 및 이동체 통신계(12)를 거쳐서, 측정계 제어 장치(21A)로부터 기내 제어 장치(16A)에 송신된다.
파일럿 송신기 제어 커맨드(79)를 송신하기 위해, 송전 개시 전에 소자 전계 벡터 회전법(Rotating Element Electric Field Vector (REV) Method, REV법)을 실행하기 위해, 측정계 제어 장치(21A)와 송전 제어 장치(22A)는 서로 통신 및 데이터의 송수신이 가능하다. 또한, 도 7에 부호를 나타내고 있지 않지만, REV법을 실행하기 위한 커맨드가, 송전 제어 장치(22A)로부터 측정계 제어 장치(21A)를 경유하여 기내 제어 장치(16A)에 송신된다. 기내 제어 장치(16A)로부터는 측정한 수신 전력의 데이터가, 송전 제어 장치(22A)에 송신된다. 또, 송전 제어 장치(22A)와 기내 제어 장치(16A)가, 측정계 제어 장치(21A)를 거치지 않고 통신하더라도 좋다.
도 8을 참조하여, 드론 전원 시스템(8A)의 구성을 설명한다. 도 8은 실시의 형태 2와 관련되는 무선 송전 장치에 의해 송전되는 전력을 수전하는 공중 이동체의 전원 계통의 구성을 설명하는 블록도이다. 도 3과 비교하여, 도 8에 나타내는 드론 전원 시스템(8A)은, 정류기(35)와 정류측 컨버터(36)가 추가되어 있다. 정류기(35)는, 수전 안테나(34)에서 수신한 전파로부터 생성되는 수신 신호를 정류하여 직류로 한다. 정류측 컨버터(36)는, 정류기(35)에서 정류한 직류 전력의 전압을 변경한다. 축전 유닛(19)은, 정류측 컨버터(36)가 출력하는 직류 전력을 저장한다.
실시의 형태 2의 드론 전원 시스템(8A)에서는, 수전 안테나(34), 정류기(35) 및 정류측 컨버터(36)를 추가하고 있다. 그렇게 함으로써, 축전 유닛(19)에 비행 개시 전에 저장되어 있던 전력에 더하여, 비행 중에 수전 안테나(34)에서 수전한 전력을 이용할 수 있다. 그 때문에, 드론(3A)은, 드론(3)과 비교하여 공중을 이동 또는 정지할 수 있는 시간을 보다 길게 할 수 있다. 드론(3A)을 예컨대 전파 계측에 사용하는 경우에는, 전파를 계측할 수 있는 시간을 보다 길게 할 수 있다. 시간을 길게 함으로써, 예컨대, 송전 전파(2)의 빔 형상 데이터(71)에 있어서의 계측점의 공간 밀도를 향상시킬 수 있다.
드론이 복수의 축전 유닛을 구비하고, 비행 중에 수전 안테나(34)에서 수전한 전력은 일부의 축전 유닛에 저장하도록 하더라도 좋다. 드론 또는 검파기의 적어도 어느 하나가, 비행 중에 수전한 전력이 저장되는 축전 유닛의 전력을 이용하도록 하더라도 좋다.
송전 장치(1A)는, 파일럿 신호(31)를 수신하는 파일럿 수신 안테나(37)를 갖는다. 파일럿 수신 안테나(37)는, 예컨대 도 6에 나타내는 바와 같이, 송전 장치(1A)에 있어서 매트릭스 형상으로 배치한 소자 안테나(27)의 중앙부에 배치한다. 또한, 도래 방향 검출 장치(38)가 추가되어 있다. 도래 방향 검출 장치(38)는, 복수의 송전 장치(1A)가 각각 갖는 파일럿 수신 안테나(37)가 수신하는 파일럿 신호(31)가 입력되어, 예컨대 모노펄스법에 의해 파일럿 신호(31)의 도래 방향을 결정한다. 도래 방향은, 송전 장치(1A)로부터 보아 파일럿 신호(31)가 도래하는 방향이다. 도래 방향 검출 장치(38)가 검출한 도래 방향 데이터(80)는, 송전 제어 장치(22A)에 입력된다. 송전 제어 장치(22A)는, 도래 방향 데이터(80)에 의해 나타내어지는 도래 방향을 향하는 방향으로 송전 전파(2)를 방사하도록 송전 장치(1A)를 제어한다. 다시 말해, 송전 전파(2)가 방사되는 방향인 방사 방향은, 도래 방향을 180도 반전시킨 방향이다.
파일럿 신호(31)는, 도래 방향 혹은 존재 방향을 알리기 위해 드론(3A)이 발하는 방향 신호이다. 존재 방향이란, 송전 장치(1A)로부터 본 드론(3A)이 존재하는 방향이다. 존재 방향과 도래 방향은, 서로 역방향의 방향이다. 드론(3A)에 탑재된 파일럿 송신기(32) 및 파일럿 송신 안테나(33)는, 방향 신호를 송신하는 방향 신호 송신부이다. 지상에 설치된 송전 장치(1A)가 갖는 파일럿 수신 안테나(37)는, 방향 신호를 수신하는 방향 신호 수신부이다. 파일럿 송신기(32), 파일럿 송신 안테나(33) 및 파일럿 수신 안테나(37)는, 방향 신호를 송신 및 수신하는 방향 신호 송수신부이다.
이 실시의 형태 2에서는, 페이즈드 어레이 안테나(30)는, 방사하는 전파로 전력을 송전하는 지향 방향을 변경할 수 있는 송전 안테나로서 기능한다. 드론(3A)이, 송전 대상의 공중 이동체이다. 도래 방향 검출 장치(38)는, 송전 장치(1A)로부터 보아 드론(3A)이 존재하는 방향인 방사 방향을 결정하는 방사 방향 결정부이다. 송전 제어 장치(22A)는, 방사 방향으로 페이즈드 어레이 안테나(30)의 지향 방향을 향하게 하는 지향 방향 변경부이다.
동작을 설명한다. 도 9는 실시의 형태 2와 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 수순을 설명하는 플로차트이다. 우선, 스텝 S21에서, 드론(3A)을 송전 장치(1A)의 상공의 결정된 위치에 정지시킨다.
스텝 S22에서, 송전 장치(1A)마다 복수의 2단계 모듈(26)의 각각에 대응하는 소자 안테나(27)가 전파를 방사한다. 소자 안테나(27)가 방사하는 전파는, 드론(3A)이 갖는 모니터 안테나(14)에서 수신된다. 각 소자 안테나(27)가 방사하는 전파가 모니터 안테나(14)의 위치에 생성하는 소자 전계 벡터의 사이의 위상차를, REV법에 의해 측정한다. REV법은, 2단계 모듈(26)의 어느 1개가 방사하는 전파의 위상을 변화시켜, 모니터 안테나(14)에서 수신되는 전파의 전계 벡터의 진폭(전계 강도)의 변화를 계측한다. 계측된 전계 강도인 검파 데이터(73)는, 이동체 통신계(12) 및 측정계 제어 장치(21)를 거쳐서, 송전 제어 장치(22)에 보내어진다. 송전 제어 장치(22)는, 수신한 검파 데이터(73)에 의해 전해진 전계 벡터의 진폭의 변화로부터, 각 2단계 모듈(26)에 대응하는 소자 안테나(27)가 방사하는 전파의 소자 전계 벡터와, 모든 소자 안테나(27)가 방사하는 전파를 합성한 전파의 전계 벡터의 위상차를 산출한다. 또, 각 소자 안테나(27)가 생성하는 소자 전계 벡터의 사이의 위상차는, 송전 장치(1A)의 내부에서의 경로 길이의 차이나, 각 소자 안테나(27)와 모니터 안테나(14)의 거리의 차이 등에 의해 발생한다.
스텝 S23에서는, 각 송전 장치(1A)가 갖는 복수의 2단계 모듈(26)의 사이의 계측된 위상차를 고려하여, 각 2단계 모듈(26)이 갖는 이상기(28)에 위상 오프셋 값을 설정한다. 위상 오프셋 값이란, 외부로부터 주어지는 위상 지령치로부터 감산하는 값이다. 이상기(28)는, 위상 지령치로부터 위상 오프셋 값을 감산한 양만큼 위상을 변화시킨다. 그 때문에, 실제로 이상기(28)가 출력하는 송신 신호에서의 위상의 변화량은, 위상 지령치로부터 위상 오프셋 값을 뺀 값이다. 위상 지령치로부터 위상 오프셋 값을 감산함으로써, 각 2단계 모듈(26)에 동일한 위상 지령치가 주어지는 경우에, 각 2단계 모듈(26)이 동일한 위상의 전파를 방사할 수 있게 된다.
스텝 S24에서, 복수의 송전 장치(1A)의 각각이 방사하고 모니터 안테나(14)에서 수신되어 생성되는 전계 벡터의 사이의 위상차를, 각 송전 장치(1A)가 갖는 1단계 모듈(24)의 위상을 변화시켜 REV법에 의해 측정한다. 이 REV법에서는, 각 송전 장치(1A)에서의 1단계 모듈(24)까지의 경로 길이의 차이나 각 송전 장치(1A)로부터 모니터 안테나(14)까지의 거리의 차이에 의한, 각 송전 장치(1A)가 생성하는 전계 벡터의 사이의 위상차가 계측된다. 스텝 S25에서는, 각 송전 장치(1A)가 방사하는 전파의 사이의 계측된 위상차를 고려하여, 각 송전 장치(1A)의 1단계 모듈(24)이 갖는 이상기(28)의 위상 오프셋 값을 설정한다.
S21로부터 S25의 처리에서, 각 송전 장치(1A)의 내부에서의 경로 길이의 차이 등에 의한 1단계 모듈(24) 또는 2단계 모듈(26)마다의 위상 오프셋 값을 미리 계측하고, 그들을 고려하여 각 이상기(28)의 위상 지령치를 결정한다. 그 때문에, 각 소자 안테나(27)로부터 방사되는 전파를, 위상의 기준이 맞추어진 값으로 할 수 있다. 또, S21로부터 S25는, 송전 장치(1A)를 최초로 사용하기 전에 실시한다. 1단계 모듈(24) 또는 2단계 모듈(26)인 소자 모듈을 교환한 경우에도, 교환한 소자 모듈의 위상 오프셋 값을 구한다.
스텝 S26에서, 드론(3A)의 파일럿 송신 안테나(33)가 파일럿 신호(31)를 송신한다. 스텝 S27에서, 송전 장치(1A)가 갖는 파일럿 수신 안테나(37)가 파일럿 신호(31)를 수신한다. 스텝 S28에서, 도래 방향 검출 장치(38)가 파일럿 신호(31)의 도래 방향 데이터(80)를 결정한다. 스텝 S29에서, 도래 방향 데이터(80)가 나타내는 도래 방향을 향하는 방향을 방사 방향으로 하여 송전 전파(2)를 송신할 수 있도록, 송전 제어 장치(22A)가 각 송전 장치(1A)의 소자 모듈의 각각에 대한 위상 및 진폭의 지령치를 산출한다. 송전 제어 신호(76)가, 소자 모듈마다의 위상 및 진폭의 지령치이다. 각 2단계 모듈(26)의 소자 안테나(27)가 위상이 조정된 전파를 방사함으로써, 방사 방향으로 방사되는 전파를 강하게 할 수 있다. 또한, 각 소자 안테나(27)가 방사하는 전파의 진폭을 조정함으로써, 빔 형상을 보다 바람직한 것으로 할 수 있다. 이들에 의해, 송전 장치(1A)가 방사 방향으로 고효율로 송전하는 것이 가능하게 된다.
스텝 S30에서, 각 송전 장치(1A)의 1단계 모듈(24) 및 각 2단계 모듈(26)이 송전 제어 신호(76)에 따라 위상 및 진폭을 조정한 송신 신호를 생성하고, 각각 대응하는 소자 안테나(27)로부터 송전 전파(2)로서 방사한다.
스텝 S26~S30과 병행하여, 스텝 S31에서, 드론(3A)이 갖는 수전 안테나(34)에서 송전 전파(2)를 수신하고, 정류기(35) 및 정류측 컨버터(36)가 정류 및 변환한 직류 전력을 축전 유닛(19)에 축전한다.
S26~S30 및 S31은, 결정된 주기로 주기적으로 실행한다. S30 및 S31의 실행 후에는, S26 및 S31의 앞으로 돌아간다. 1주기의 길이는, 상정하는 최대의 이동 속도로 드론(3)이 이동하는 경우에도, 전회에 계산한 도래 방향과 현재의 도래 방향의 차이를 허용할 수 있는 범위 내가 되도록 결정한다.
드론(3A)으로부터 파일럿 신호(31)를 송신하고, 파일럿 신호(31)가 도래하는 방향으로 송전 장치(1A)가 송전 전파(2)를 방사하므로, 드론(3A)의 수전 안테나(34)가 효율적으로 송전 전파(2)를 수전할 수 있다.
도 9에 나타내는 S30에서 방사시키는 송전 전파(2)의 빔 형상이, 상정한 빔 형상으로 실제로 되어 있는지 여부를 검증할 수 있다. 그 때문에, 각 소자 안테나(27)에 대한 위상 지령치 및 진폭 지령치를 고정한 상태에서 방사하는 전파 빔의 빔 형상을, 예컨대 도 1 및 도 2에 나타내는 전파 측정 시스템을 사용하여 계측할 수 있다. 그 경우에는, 실시의 형태 2와 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템은, 공중 이동체를 이용한 전파 측정 시스템이기도 하게 된다.
전파 측정 시스템으로서는, 드론(3A)을 사용하는 대신에, 송전 장치(1A)의 상공의 결정된 위치에 모니터 안테나를 고정하더라도 좋다. 단, 모니터 안테나를 고정하기 위한 구조 부재에서 전파가 반사나 차폐되므로, 측정되는 전파의 위상이나 진폭은 정밀도가 나빠질 가능성이 있다.
송전 전파의 제어 및 공중 이동체로의 전파를 이용한 무선 송전을 옥외 등 전파 환경이 좋은 장소에서 행하는 것에 의해, 지면의 반사 등의 멀티 패스의 영향을 받지 않게 된다. 그 때문에, 전파에 의한 무선 송전을 종래보다 높은 정밀도로 실시할 수 있다. 또한, 다양한 데이터나 커맨드 등의 송신은, 드론을 제어하기 위해 준비되어 있는 이동체 통신계를 이용하므로, 무선 송전을 실시하는데 있어서 필요한 통신을 위해, 드론에 새로운 하드웨어를 추가하는 것은 불필요하다. 이 때문에, 탑재 장치를 경량으로 할 수 있고, 또한 낮은 소비 전력으로, 드론으로의 무선 송전이 가능하게 된다.
페이즈드 어레이 안테나가 아닌, 지향 방향을 기계적으로 변경하는 송전 안테나를 갖는 무선 송전 장치를 사용하여 공중 이동체에 송전하도록 하더라도 좋다. 공중 이동체가 존재하는 방향을 파일럿 신호 이외의 수단으로 무선 송전 장치에 전하도록 하더라도 좋다. 방사하는 전파로 전력을 송전하는 지향 방향을 변경할 수 있는 송전 안테나와, 송전 대상인 공중 이동체가 존재하는 방향인 방사 방향을 결정하는 방사 방향 결정부와, 방사 방향으로 송전 안테나의 지향 방향을 향하게 하는 지향 방향 변경부와, 송전 안테나로부터 전파로서 송신되는 송신 신호를 생성하는 송신 신호 생성부를 구비하는 무선 송전 장치이면, 어떠한 것이더라도, 종래보다 높은 정밀도로 공중 이동체가 존재하는 방향으로 전파를 방사할 수 있어, 무선 송전의 효율을 종래보다 개선할 수 있다. 또, 방사 방향 결정부인 도래 방향 검출 장치(38)는, 송전 장치(1A)와는 떨어진 위치에 설치되는 경우가 있지만, 무선 송전 장치에 포함한다.
드론 등의 공중 이동체를 사용하여 REV법을 실행함으로써, 실제로 공중 이동체에 송전하는 상황에서 REV법을 실행할 수 있다. 그 때문에, REV법을 정밀하게 실행할 수 있고, 공중 이동체로의 송전 때에 공중 이동체가 존재하는 방향으로 정밀하게 전파를 방사할 수 있다. 다시 말해, 종래보다 높은 정밀도로 공중 이동체가 존재하는 방향으로 전파를 방사할 수 있어, 무선 송전의 효율을 종래보다 개선할 수 있다.
전파 측정 시스템으로서 사용하지 않는 경우는, 측정계 제어 장치(21A)는 불필요하다. 측정계 제어 장치(21A)가 존재하지 않는 경우는, REV법을 실행하기 위한 커맨드와 측정한 수신 전력의 데이터는, 송전 제어 장치(22A)가 이동체 지령 장치(4A) 및 이동체 통신계(12)를 거쳐서 송수신한다. 또, 도 7에는, REV법을 실행하기 위한 커맨드와 측정한 수신 전력의 데이터의 흐름은 도시하고 있지 않다.
REV법을 실행할 때에, 드론에 탑재한 계측용 안테나가 아닌, 지상에 고정된 안테나를 이용하더라도 좋다. 그 경우에는, 드론은, REV법을 실행하기 위한 기능을 갖지 않는다. 드론이 계측용 안테나를 구비하지 않고, 검파기를 수전 안테나에 접속하여, 수전 안테나가 수신하는 전파의 전계 강도를 검파기가 계측하더라도 좋다. 다시 말해, 수전 안테나를 계측용 안테나로서도 사용하더라도 좋다.
이상은, 다른 실시의 형태에도 적용된다.
실시의 형태 3.
실시의 형태 3은, 파일럿 신호 대신에 공중 이동체의 위치 데이터를 송전 장치에 송신함으로써, 송전 장치가 공중 이동체로 향하여 송전하도록 실시의 형태 2를 변경한 경우이다. 본 발명의 실시의 형태 3과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성에 대하여, 도 10을 이용하여 설명한다. 도 10은 본 발명의 실시의 형태 3과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다.
도 10에 관하여, 실시의 형태 2의 경우의 도 7과는 상이한 점을 설명한다. 송전 장치(1)는, 실시의 형태 1의 경우와 동일하다. 송전 장치(1)는, 파일럿 수신 안테나(37)를 갖지 않는다. 또한, 도래 방향 검출 장치(38)도 존재하지 않는다. 드론(3B)은, 파일럿 송신기(31) 및 파일럿 송신 안테나(33)를 갖지 않는다. 드론(3B)은, 측위 센서(18)를 갖는다. 측위 센서(18)가 계측하는 위치 데이터(74)는, 기내 제어 장치(16B), 비행 제어 장치(5B), 이동체 통신계(12) 및 이동체 지령 장치(44)를 경유하여 측정계 제어 장치(21B)에 송신된다. 위치 데이터(74)는, 데이터 기억 장치(17B)에도 기억된다. 또, 측위 센서(18)는, 비행 제어 장치(5B)와 접속하더라도 좋다. 그 경우에는, 위치 데이터(74)는, 비행 제어 장치(5B), 이동체 통신계(12), 이동체 지령 장치(4B) 및 측정계 제어 장치(21B)를 경유하여 송전 제어 장치(22B)에 송신된다.
측위 센서(18)는, 드론(3B)의 위치인 이동체 위치를 측정하는 위치 측정부이다. 송전 제어 장치(22B)는, 위치 데이터(74)로부터 송전 장치(1)를 기준으로 하여 드론(3B)의 위치로 향하는 방향을 방사 방향으로서 결정하는 방사 방향 결정부이다. 결정한 방사 방향은, 방사 방향 데이터(81)로서 기억한다. 송전 제어 장치(22B)는, 방사 방향 데이터(81)로 나타내어지는 방사 방향을 향해 송전할 수 있도록 1단계 모듈(24) 및 2단계 모듈(26)의 각각에 대한 위상 및 진폭의 지령치(송전 제어 신호(76))를 결정한다. 송전 제어 장치(22B)는, 송전 제어 신호(76)에 의해 송전 장치(1)를 제어한다. 또, 송전 제어 장치의 적어도 일부와 송전 장치를 합한 것을, 무선 송전 장치로 생각할 수도 있다.
동작을 설명한다. 도 11은 실시의 형태 3과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 수순을 설명하는 플로차트이다. 도 11에 대하여, 실시의 형태 2의 경우의 도 9와는 상이한 점을 설명한다. 스텝 S26~S28을, 스텝 S32~S35로 변경하고 있다. 스텝 S32에서, 측위 센서(18)로 드론(3B)이 존재하는 3차원 위치를 측위한다. 스텝 S33에서, 측위한 위치 데이터(74)를 이동체 통신계(12)에 의해 이동체 지령 장치(4B)를 향해 송신한다. 스텝 S34에서, 송전 제어 장치(22B)는, 송전 제어 장치(22B)를 거쳐서 이동체 지령 장치(4B)로부터 위치 데이터(74)를 취득한다. 스텝 S35에서, 측정계 제어 장치(21B)는, 위치 데이터(74)를 송전 장치(1)에 대한 상대 위치로 변환하고, 방사 방향을 구한다. 또한, 스텝 S29A에서, 송전 제어 장치(22B)가 각 송전 장치(1A)의 1단계 모듈(24) 및 2단계 모듈(26)의 각각에 대한 위상 및 진폭을 지령하는 송전 제어 신호(76)를 산출한다. 송전 제어 신호(76)는, 드론(3B)의 송전 장치(1)에 대한 상대 위치로부터 정해지는 방사 방향을 향해 송전 장치(1)가 송전 전파(2)를 송신할 수 있도록 산출된다.
드론(3B)의 위치 데이터(74)를 드론(3B)으로부터 송신하고, 위치 데이터(74)로부터 구한 드론(3B)이 존재하는 방향으로 송전 전파(2)를 방사한다. 그 때문에, 드론(3B)의 수전 안테나(34)가 효율적으로 송전 전파(2)를 수전할 수 있다. 또, 드론(3B)이 존재하는 방향으로 송전 전파(2)를 방사하는 것에 더하여, 드론(3B)이 존재하는 위치에서 송전 전파(2)의 빔 폭이 작아지는 송전 제어 신호(76)를 생성하도록 하더라도 좋다.
이상은, 다른 실시의 형태에도 적용된다.
실시의 형태 4.
실시의 형태 4는, 공중 이동체인 드론이 무선 송전 장치로부터 전력의 공급을 받으면서, 무선 송전 장치가 방사하는 송전 전파의 빔 형상 데이터를 계측하는 경우이다. 드론이 무선 송전 장치로부터 전력의 공급을 받으므로, 실시의 형태 4와 관련되는 공중 이동체를 이용한 전파 측정 시스템은, 무선 송전 장치에 의한 공중 이동체로의 송전 시스템이기도 하다. 본 발명의 실시의 형태 4와 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성에 대하여, 도 12를 이용하여 설명한다. 도 12는 본 발명의 실시의 형태 4와 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다.
도 12에 대하여, 실시의 형태 1의 경우의 도 2와는 상이한 점을 설명한다. 드론(3C)은, 실시의 형태 2와 마찬가지의 수전 안테나(34) 및 드론 전원 시스템(8A)을 갖도록, 실시의 형태 1의 드론(3)을 변경하고 있다. 송전 장치(1)는, 실시의 형태 1에서의 것과 동일하다.
동작을 설명한다. 도 13은 실시의 형태 4와 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 전파의 방사 패턴을 측정하는 수순을 설명하는 플로차트이다. 도 13에 대하여, 실시의 형태 1의 경우의 도 4와는 상이한 점을 설명한다. S04~S07과 병행하여, 스텝 S13 및 S14에서, 수전 안테나(34)에서 송전 전파(2)를 수신하고, 수신한 송전 전파(2)를 정류기(35)가 정류한 전력을 축전 유닛(19)에 축전한다. S13은, S04 및 S05와 병행하여 동작한다. S14는, S07과 병행하여 동작한다.
송전 장치(1)의 빔 형상을 계측하므로, 실시의 형태 2 등과는 달리, 송전 제어 장치(22A)는 드론(3C)이 존재하는 위치에 따라 빔의 방향을 변경하지는 않는다.
드론(3C)이 송전 전파(2)에 의해 전력의 공급을 받으면서, 송전 장치(1)의 상공에서 이동 또는 정지한다. 그 때문에, 빔 형상(71)을 계측하는데 실시의 형태 1의 경우보다 긴 시간을 요하는 경우에도, 드론(3C)을 사용하여 송전 전파(2)의 빔 형상 데이터(71)를 계측할 수 있다.
실시의 형태 5.
실시의 형태 5는, 이동체 통신계에 더하여, 기내 제어 장치와 측정계 제어 장치의 사이에서, 전파 측정에 관한 계측 커맨드와 검파 데이터를 통신하는 통신계를 갖도록, 실시의 형태 1을 변경한 경우이다. 본 발명의 실시의 형태 5와 관련되는 공중 이동체를 이용한 전파 측정 시스템의 구성에 대하여, 도 14를 이용하여 설명한다. 도 14는 본 발명의 실시의 형태 5와 관련되는 공중 이동체를 이용한 전파 측정 시스템의 구성도이다. 또, 실시의 형태 4 혹은 다른 구성의 전파 측정 시스템 및 공중 이동체로의 송전 시스템을 변경하더라도 좋다.
실시의 형태 5의 드론(3D)에는, 송전 통신계(39)와, 파일럿 통신계(40)를 추가하고 있다. 측정계 제어 장치(21C)는, 송전 통신계(39)에 의해 드론(3D)에 탑재된 탑재 장치(13D)에 계측 커맨드(72)를 송신한다. 탑재 장치(13D)는, 파일럿 통신계(40)에 의해 검파 데이터(73)를 측정계 제어 장치(21C)에 송신한다. 측위 센서(18)는, 기내 제어 장치(16D)에 위치 데이터(74)를 보낸다. 데이터 기억 장치(17D)는, 송전 통신계(39) 및 파일럿 통신계(40)를 사용하고 있는지 여부를 나타내는 데이터를 기억한다.
송전 통신계(39)는, 송전 장치(1B)가 갖는 1단계 모듈(24A), 2단계 모듈(26A) 및 소자 안테나(27)와, 드론(3D)에 탑재된 모니터 안테나(14) 및 검파기(15A)를 갖고 구성된다. 1단계 모듈(24A) 및 2단계 모듈(26A)에, 계측 커맨드(72)를 표현하는 0 또는 1의 신호열에 따라, 송전 전파(2A)를 방사한다/하지 않는다를 전환하는 펄스 변조 스위치(41)를 추가하고 있다. 다시 말해, 송전 전파(2A)를 검파 데이터(73)에 의해 펄스 변조함으로써, 계측 커맨드(72)를 송신한다. 검파기(15A)는, 수신하는 송전 전파(2A)의 수신 또는 비수신으로부터 계측 커맨드(72)를 복조한다. 또, 펄스 변조가 아닌, 진폭 변조, 혹은 BPSK(Binary Phase Shift Keying) 등의 위상 변조 등에 의해 계측 커맨드(72)를 변조 및 복조하더라도 좋다.
측정계 제어 장치(21C)에는, 통신계 전환 스위치(42)를 추가하고 있다. 통신계 전환 스위치(42)는, 이동체 지령 장치(4C)와 송전 제어 장치(22C)의 어느 쪽에 계측 커맨드(72)를 송신할지를 전환한다. 다시 말해, 통신계 전환 스위치(42)는, 이동체 통신계(12) 및 송전 통신계(39)의 어느 쪽을 사용할지를 전환한다. 또, 소프트웨어로 계측 커맨드(72)의 송신 목적지를 전환하더라도 좋다.
파일럿 통신계(40)는, 파일럿 송신기(32), 파일럿 송신 안테나(33), 펄스 변조 스위치(43), 파일럿 수신 안테나(37), 및 검파기(44)를 갖고 구성된다. 펄스 변조 스위치(43)는, 파일럿 송신기(32)와 파일럿 송신 안테나(33)의 사이에 마련된다. 검파기(44)는, 파일럿 수신 안테나(37)가 수신하는 파일럿 신호(31)를 검파한다. 파일럿 송신기(32), 파일럿 송신 안테나(33) 및 펄스 변조 스위치(43)는, 드론(3D)에 탑재된다. 파일럿 수신 안테나(37) 및 검파기(44)는, 지상에 설치된다.
펄스 변조 스위치(43)는, 기내 제어 장치(16D)로부터 공급되는 검파 데이터(73)를 표현하는 0 또는 1의 신호열에 따라, 파일럿 신호(31)를 방사한다/하지 않는다를 전환한다. 다시 말해, 파일럿 신호(31)를 검파 데이터(73)에 의해 펄스 변조함으로써, 검파 데이터(73)를 송신한다. 파일럿 수신 안테나(37)가 수신하는 파일럿 신호(31)는 2분되어, 도래 방향 검출 장치(38) 및 검파기(44)에 입력된다. 검파기(44)는, 파일럿 신호(31)의 수신 또는 비수신으로부터 검파 데이터(73)를 복조한다. 또, 펄스 변조가 아닌, 진폭 변조, 혹은 BPSK 등의 위상 변조 등에 의해 검파 데이터(73)를 변조 및 복조하더라도 좋다.
기내 제어 장치(16D)는, 검파 데이터(73)를 비행 제어 장치(5)에 송신할지, 펄스 변조 스위치(43)를 검파 데이터(73)로 제어할지를, 소프트웨어로 전환한다. 그렇게 함으로써, 검파 데이터(73)를 파일럿 통신계(40) 및 이동체 통신계(12)의 어느 쪽에서 송신할지를 전환한다.
동작을 설명한다. 도 15는 실시의 형태 5와 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 전파의 방사 패턴을 측정하는 수순을 설명하는 플로차트이다. 도 15에 대하여, 실시의 형태 1의 경우의 도 5와는 상이한 점을 설명한다. 여기서, 계측 커맨드(72)를 통신하는 통신계를, 커맨드 통신계라고 부른다. 측정 데이터(77)를 통신하는 통신계를, 데이터 통신계라고 부른다. S03과 S04A의 사이에, 스텝 S15를 추가하고 있다. S15에서는, 커맨드 통신계를 이동체 통신계(12) 또는 송전 통신계(39)의 어느 것으로 결정한다. S04A에서는, S15에서 결정된 커맨드 통신계로 통신된 계측 커맨드(72)에 따라, 모니터 안테나(14)가 수신하는 송전 전파(2)의 진폭과 위상을 포함하는 검파 데이터(73)를 측정한다. 동시에 드론(3D)의 위치를 측정한다. S04A와 S05B의 사이에, 스텝 S16을 추가하고 있다. S16에서는, 데이터 통신계를 이동체 통신계(12) 또는 파일럿 통신계(40)의 어느 것으로 결정한다. 스텝 S05B에서, 측정한 위치 부가 검파 데이터(70)는, S15에서 결정된 데이터 통신계를 거쳐서, 기내 제어 장치(16D)로부터 측정계 제어 장치(21C)에 보내어진다.
계측 커맨드(72)를 통신하는 타이밍마다가 아닌, 수회마다 커맨드 통신계를 결정하도록 하더라도 좋다. 비행 커맨드(75)를 송전 통신계(39)로 통신하도록 하더라도 좋다. 측정 데이터(77)를 통신하는 타이밍마다가 아닌, 수회마다 데이터 통신계를 결정하도록 하더라도 좋다. 이동체 통신계(12)에서의 통신을 시도하여, 이동체 통신계(12)에서는 통신할 수 없는 경우에, 커맨드 통신계로 송전 통신계(39)를 결정하거나, 데이터 통신계로 파일럿 통신계(40)를 결정하거나 하더라도 좋다.
송전 통신계(39)와 파일럿 통신계(40)를 마련함으로써, 이동체 통신계(12)의 통신 부하가 커서 통신이 느린 경우 등에도, 필요한 데이터를 필요한 속도로 통신할 수 있다. 혹은, 이동체 통신계(12)가 고장이 난 경우 등에, 송전 통신계(39)와 파일럿 통신계(40)를 사용할 수 있다. 따라서, 송전 통신계(39)와 파일럿 통신계(40)는, 전파 측정 시스템의 안정 운용에 크게 기여한다. 또한, 송전 전파(2)나 파일럿 신호(31)에, 펄스 변조(송신의 ON/OFF 제어), 진폭 변조, 위상 변조 등의 간소한 장치에 의해 변조하여 통신할 수 있다. 그 때문에, 큰 하드웨어를 추가하는 것 없이, 또한, 이동체 통신계(12)의 부하 및 소비 전력을 늘리는 일 없이, 송전 전파의 제어나 데이터의 수수를 실현할 수 있다.
실시의 형태 6.
실시의 형태 6은, 계측 커맨드나 검파 데이터를 기내 제어 장치와 측정계 제어 장치의 사이에서 통신하기 위한 계측 통신계를 구비하도록, 전파 측정 시스템이기도 한 경우의 실시의 형태 2를 변경한 경우이다. 실시의 형태 6에서는, 계측 커맨드나 검파 데이터를 기내 제어 장치와 측정계 제어 장치의 사이에서 통신하기 위해, 이동체 통신계를 이용하지 않는다. 실시의 형태 6은, 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 실시의 형태이다. 실시의 형태 6과 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성에 대하여, 도 16을 이용하여 설명한다. 도 16은 본 발명의 실시의 형태 6과 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다.
도 16에 나타내는 구성에서는, 도 7에 나타내는 실시의 형태 2의 경우의 구성에, 계측 통신계(45)를 추가하고 있다. 계측 통신계(45)는, 드론(3E)에 탑재된 기내 통신기(46) 및 기내 통신 안테나(47), 지상에 설치된 지상 통신 안테나(48) 및 지상 통신기(49)를 갖고 구성된다. 측정계 제어 장치(21D)로부터의 계측 커맨드(72)는, 계측 통신계(45)에 의해 드론(3E)에 송신된다. 드론(3E)이 계측한 측정 데이터(77)는, 계측 통신계(45)에 의해 측정계 제어 장치(21D)에 송신된다. 계측 통신계(45)는, 이동체 통신계(12)와는 상이한 통신계이다. 데이터 기억 장치(17E)는, 측정 데이터(77) 등의 전파 측정 시스템으로서 필요한 데이터도 기억하는 점에서, 실시의 형태 2의 경우의 데이터 기억 장치(17A)와는 상이하다.
기내 제어 장치(16E)와 비행 제어 장치(5C)의 사이에서는, 통신할 수 없도록 하고 있다. 탑재 장치(13E)는 드론(3E)에 탑재되어 있을 뿐이고, 드론(3E)이 갖는 기기와의 사이에서의 인터페이스가 존재하지 않도록 하고 있다. 또한, 위치 데이터(74)를 송전 시스템에서 이용할 수 있도록, 측위 센서(18)는 기내 제어 장치(16E)와 접속하고 있다.
이동체 지령 장치(4D)는, 이동체 통신계(12)에 의해 비행 커맨드(75)를 송신하여 드론(3E)의 비행을 제어한다.
드론 전원 시스템(8B)을, 도 17을 참조하여 설명한다. 도 17은 실시의 형태 6과 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의해 송전되는 전력을 수전하는 공중 이동체의 전원 계통의 구성을 설명하는 블록도이다. 도 17과 도 8의 차이는, 계측계 전원선(50)을 추가하고 있는 점이다. 계측계 전원선(50)은, 드론(3E)에 탑재된 축전 유닛(19)에 접속된다. 정류측 컨버터(36), 부하측 컨버터(20b) 및 부하측 컨버터(20c)는, 계측계 전원선(50)을 거쳐셔 축전 유닛(19)에 접속한다. 계측계 전원선(50)을 마련함으로써, 드론(3E)과 탑재 장치(13E)의 사이의 전원 계통의 접속 개소를, 계측계 전원선(50)의 1개소만으로 할 수 있다. 또, 정류측 컨버터를 구비하지 않더라도 좋고, 부하측 컨버터의 구성을 변경하더라도 좋다.
실시의 형태 6의 공중 이동체로의 송전 시스템은, 실시의 형태 2의 경우와 마찬가지로 동작한다. 실시의 형태 2의 송전 시스템과는 상이한 점은, 이동체 통신계(12)가 아닌, 계측 통신계(45)를 사용하여, REV법을 실행하기 위한 커맨드나 데이터를 통신하는 점이다. 또한, 전파 측정 시스템으로서의 실시의 형태 6은, 실시의 형태 1의 전파 측정 시스템과 마찬가지로 동작한다. 계측 통신계(45)를 사용하는 점이, 실시의 형태 6은 실시의 형태 1과는 상이하다.
탑재 장치와 드론의 사이에서 데이터를 송수신할 필요가 없으므로, 일반적으로 시판되고 있는 드론을 개조하는 일 없이 전파 계측 시스템을 구성할 수 있다. 탑재 장치를 다른 드론에 탑재하여 사용하는 것이 용이해진다. 이동체 통신계를 전파 계측을 위한 커맨드나 계측한 데이터를 통신하기 위해 사용하지 않도록 하는 것은, 다른 실시의 형태에도 마찬가지로 적용할 수 있다.
실시의 형태 7.
실시의 형태 7은, 실시의 형태 5의 경우와 마찬가지의 송전 통신계와 파일럿 통신계를 추가하도록, 실시의 형태 6을 변경한 경우이다. 실시의 형태 7과 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성에 대하여, 도 18을 이용하여 설명한다. 도 18은 본 발명의 실시의 형태 7과 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다.
도 18은 실시의 형태 5의 경우의 도 14와, 거의 마찬가지의 구성을 갖는다. 도 18에 나타내는 구성이 도 14에 나타내는 구성과는 상이한 점은, 이하이다. 측정계 제어 장치(21E)에 마련하는 통신계 전환 스위치(42A)가, 지상 통신기(49)와 송전 제어 장치(22D)의 어느 쪽에 계측 커맨드(72)를 송신할지를 전환한다. 다시 말해, 통신계 전환 스위치(42A)는, 계측 통신계(45) 및 송전 통신계(39)의 어느 쪽을 사용할지를 전환한다. 또한, 기내 제어 장치(16F)는, 검파 데이터(73)를 기내 통신기(46)에 송신할지, 펄스 변조 스위치(43)를 검파 데이터(73)로 제어할지를, 소프트웨어로 전환한다. 그렇게 함으로써, 기내 제어 장치(16F)는, 검파 데이터(73)를 계측 통신계(45) 및 파일럿 통신계(40)의 어느 쪽에서 송신할지를 전환한다.
실시의 형태 7의 공중 이동체로의 송전 시스템은, 실시의 형태 2의 경우와 마찬가지로 동작한다. 이동체 통신계(12)가 아닌, 계측 통신계(45)를 사용하는 점이 실시의 형태 2의 경우와는 상이하다. 또한, 전파 측정 시스템으로서의 실시의 형태 7은, 실시의 형태 5의 전파 측정 시스템과 마찬가지로 동작한다. 계측 통신계(45)를 사용하는 점이, 실시의 형태 7은 실시의 형태 5와는 상이하다.
탑재 장치와 드론의 사이에서 데이터를 송수신할 필요가 없으므로, 일반적으로 시판되고 있는 드론을 개조하는 일 없이 전파 계측 시스템 및/또는 공중 이동체로의 송전 시스템을 구성할 수 있다. 또한, 송전 통신계(39)와 파일럿 통신계(40)를, 계측 통신계(45)가 고장이 난 경우 등에 사용할 수 있다. 따라서, 송전 통신계(39)와 파일럿 통신계(40)는, 전파 측정 시스템 및/또는 송전 시스템의 안정 운용에 크게 기여한다.
이동체 통신계를, 기내 제어 장치와 측정계 제어 장치의 사이의 통신에 이용할 수 있도록 하더라도 좋다. 그 경우에는, 3중의 통신계가, 기내 제어 장치와 측정계 제어 장치의 사이에 존재하므로, 통신계의 신뢰성이 보다 향상된다. 실시의 형태 6의 경우에도 마찬가지이다.
실시의 형태 8.
실시의 형태 8은, 공중 이동체의 위치를 지상에 설치한 측위 장치에서 측위하도록, 실시의 형태 5를 변경한 경우이다. 실시의 형태 8과 관련되는 공중 이동체를 이용한 전파 측정 시스템의 구성에 대하여, 도 19와 도 20을 이용하여 설명한다. 도 19는 본 발명의 실시의 형태 8과 관련되는 공중 이동체를 이용한 전파 측정 시스템의 개념도이다. 도 20은 실시의 형태 8과 관련되는 공중 이동체를 이용한 전파 측정 시스템의 구성도이다. 다른 실시의 형태도, 공중 이동체의 위치를 지상으로부터 측정하도록 변경할 수 있다.
도 20에 대하여, 실시의 형태 5의 경우의 도 14와는 상이한 점을 설명한다. 드론(3G)은, 측위 센서(18)를 갖지 않는다. 송전 장치(1B)의 근방에, 드론(3G)의 위치를 측정하는 레이저 측위 장치(51)를 설치하고 있다. 레이저 측위 장치(51)가 측위한 드론(3G)의 위치를 나타내는 위치 데이터(74)는, 전파 측정 중에는 결정된 주기로, 측정계 제어 장치(21F)에 입력된다. 데이터 기억 장치(17G)는, 위치 데이터(74)를 기억하지 않고, 송전 통신계(39) 및 파일럿 통신계(40)를 사용하고 있는지 여부를 나타내는 데이터를 기억한다.
레이저 측위 장치(51)는 레이저 광(82)을 각 방향으로 송신하고, 측위 대상인 드론(3G)에서 반사된 반사 레이저 광(83)을 수신한다. 반사 레이저 광(83)의 방향으로부터 드론(3G)이 존재하는 방향을 결정하고, 레이저 광(82)을 방사하고 나서 반사 레이저 광(83)을 수신할 때까지의 시간으로부터 드론(3G)까지의 거리를 결정한다. 계측한 방향과 거리를 변환하여, 드론(3G)의 3차원 위치를 결정한다. 또, 드론(3G)의 위치를 측정하는 측위 장치로서는, 레이저 광이 아닌 전파를 사용하더라도 좋다.
동작을 설명한다. 전파 측정 시스템의 경우의 동작을, 도 21을 참조하여 설명한다. 도 21은 실시의 형태 8과 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 전파의 방사 패턴을 측정하는 수순을 설명하는 플로차트이다.
도 21에 대하여, 실시의 형태 5의 경우의 도 15와는 상이한 점을 설명한다. 스텝 S04B에서, 드론(3G)에서는, 위치 데이터(74)를 측정하지 않는다. 스텝 S05C에서, 측정한 검파 데이터(73)를 포함하는 측정 데이터(77)는, 기내 제어 장치(16G)로부터 비행 제어 장치(5)에 보내어지고, 또한 이동체 통신계(12) 및 이동체 지령 장치(4C)를 거쳐서, 측정계 제어 장치(21F)에 보내어진다. 스텝 S17에서, 측정계 제어 장치(21F)가, 수신한 측정 데이터(77)에 포함되는 검파 데이터(73)와 최신의 위치 데이터(74)를 조합하여 위치 부가 검파 데이터(70)를 작성한다.
실시의 형태 5의 경우와 마찬가지로, 전파 측정 시스템에서는, 송전 장치(1)로부터 송전 전파(2)를 상공을 향해 방사하고, 공중 이동체인 드론(3G)을 사용하여 송전 장치(1)의 상공에서의 송전 전파(2)의 빔 형상 데이터(71)를 측정한다. 그렇게 함으로써, 반사의 영향을 적게 하여 송전 장치(1)의 송전 전파(2)의 빔 형상 데이터(71)를 정밀하게 측정할 수 있다.
드론(3G)은 측위 센서를 갖지 않으므로, 드론(3G)은 자신의 위치를 계측하기 위해 전력을 사용하지 않더라도 좋다. 또한, 드론(3G)으로부터 위치 데이터(74)를 송신하지 않으므로, 위치 데이터(74)를 송신하는데 요하고 있던 전력을 소비하지 않더라도 좋게 된다. 그 때문에, 실시의 형태 5의 경우와 비교하여, 보다 긴 시간을 비행할 수 있다.
실시의 형태 9.
실시의 형태 9는, 공중 이동체 및 지상측의 장치가 동기한 시각 장치를 갖도록 실시의 형태 1을 변경한 경우이다. 실시의 형태 9와 관련되는 공중 이동체를 이용한 전파 측정 시스템의 구성에 대하여, 도 22와 도 23을 이용하여 설명한다. 도 22는 본 발명의 실시의 형태 9와 관련되는 공중 이동체를 이용한 전파 측정 시스템의 구성도이다. 도 23은 실시의 형태 9와 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 측정계 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다. 도 23에서는, 측정계 제어 장치 및 기내 제어 장치와는 관계가 작은 부분을 생략하고 있다. 기내 제어 장치 등의 내부 구성을 나타내는 이후의 도면에서도, 마찬가지이다.
도 22에 나타내는 바와 같이, 드론(3H)에 탑재된 탑재 장치(13H)는, 모니터 안테나(14), 검파기(15), 기내 제어 장치(16H) 및 데이터 기억 장치(17H)를 갖는다. 또한, 드론(3H)은, 지상측의 설비와 동기한 시각을 발생시키는 시각 장치(52)를 갖는다. 시각 장치(52)로서는, 자신의 위치를 측위하는 측위 센서(18H)인 GPS 수신기의 시각 관리 기능을 사용한다. GPS(Global Positioning System)에서는, GPS 수신기가 자신의 위치를 측정하기 위해 4기 이상의 GPS 위성으로부터의 전파를 수신하고, 그 도달 시간을 계측한다. 그 때문에, GPS 위성 및 GPS 수신기에서는, 시각을 필요한 정밀도로 동기시키고 있다. GPS 수신기의 시각의 오차는, 50나노초 이하라고 말하여지고 있다. 측정계 제어 장치(21H)도, 시각 장치(52)와 동기한 시각을 발생시키는 시각 장치(53)를 갖는다. 시각 장치(53)도, GPS 수신기를 사용한다. 시각 장치(52)는, 공중 이동체에 탑재된 이동체 시각 장치이다. 시각 장치(53)는, 지상에 설치되어, 시각 장치(52)와 동기가 취하여진 시각 데이터를 출력하는 지상 시각 장치이다.
측정계 제어 장치(21H)가 갖는 시각 장치(53)인 GPS 수신기는, 측위 기능을 갖지만, 측위 기능을 동작시키는 일은 없다. 그 때문에, GPS 수신기가 아닌, GPS 위성으로부터의 GPS 신호를 수신하여 시각 동기시키는 기능을 갖는 시각 장치를, 시각 장치(53)로서 사용하더라도 좋다.
시각 장치(52)와 시각 장치(53)로는, 동기한 시각 데이터를 출력하는 것이면, GPS 수신기와는 상이한 장치를 사용하더라도 좋다. GPS 이외의 측위 시스템으로서, 복수의 위성으로부터 전파를 수신함으로써 자신이 존재하는 위치를 측위하는 측위 장치를 갖고 구성되는 측위 시스템이더라도 좋다. 시각 장치를 겸하는 측위 장치로서는, 그와 같은 측위 시스템에서 사용되는 측위 장치이더라도 좋다. 이 실시의 형태에서는, 시각 장치(52)와 시각 장치(53)는, 위성으로부터의 전파에 의해 시각이 교정된다. 드론에 탑재되는 시각 장치와 지상에 설치되는 시각 장치는, 위성으로부터의 전파에 의한 방법과는 상이한 방법으로 시각 동기가 취하여지도록 교정하는 것이더라도 좋다.
송전 제어 장치(22) 및 이동체 지령 장치(4) 등에도, 동기한 시각을 발생시키는 시각 장치를 갖도록 구성하더라도 좋다. 송전 제어 장치(22) 및 이동체 지령 장치(4) 등이 갖는 시각 장치는, 시각 장치(53)와 마찬가지의 것으로 한다.
측위 센서(18H)는, 시각 장치(52)가 관리하는 시각 데이터를 부가한 위치 데이터(74H)를 생성한다. 위치 데이터(74H)는, 위치 데이터(74)를 생성한 시점의 시각 데이터가 부가된 시각 부가 계측점 데이터이다. 측위 센서(18H)는, 시각 부가 계측점 데이터를 생성하는 계측점 데이터 시각 부가부이다. 위치 데이터(74H)는, 비행 제어 장치(5)에 보내어지고, 또한 기내 제어 장치(16H)에 보내어진다. 시각 장치(52)가 출력하는 시각 데이터(85)는, 기내 제어 장치(16H)에 입력된다.
도 23에 나타내는 바와 같이, 기내 제어 장치(16H)는, 이동체 통신부(301), 검파기 제어부(302), 검파 데이터 시각 부가부(303) 및 위치 부가 검파 데이터 생성부(304)를 갖는다. 이동체 통신부(301)는, 계측 커맨드(72)를 수신한다. 수신된 계측 커맨드(72)는, 검파기 제어부(302)에 보내어진다. 계측 커맨드(72)로 검파 데이터(73)의 계측의 개시가 지시되면, 검파기 제어부(302)는, 검파기(15)가 검파 데이터(73)를 기내 제어 장치(16H)에 송신하도록 제어한다.
기내 제어 장치(16H)가 갖는 검파 데이터 시각 부가부(303)는, 검파기(15)가 출력하는 검파 데이터(73)에, 검파 데이터(73)가 생성되었을 때의 시각 데이터(85)를 부가하여 검파 데이터(73H)를 생성한다. 검파기(15)는 검파 데이터(73)를 계측하면 즉시 출력하고, 검파기(15)와 기내 제어 장치(16H)의 사이의 거리는 길어도 수 10㎝ 정도이다. 그 때문에, 검파기(15)가 검파 데이터(73)를 계측하고 나서 기내 제어 장치(16H)가 검파 데이터(73)를 수신할 때까지의 시간은, 미소한 값이고 고려하지 않더라도 좋다. 기내 제어 장치(16H)가 검파 데이터(73)를 받은 시각을, 검파기(15)가 검파 데이터(73)를 계측한 시각으로 한다.
검파 데이터(73H)는, 수신 전파 데이터인 검파 데이터(73)에 검파 데이터(73)가 계측된 시점에 시각 장치(52)가 출력하는 시각 데이터가 부가된 시각 부가 수신 전파 데이터이다. 검파 데이터 시각 부가부(303)는, 시각 부가 수신 전파 데이터를 생성하는 수신 전파 데이터 시각 부가부이다.
위치 부가 검파 데이터 생성부(304)는, 동일한 시각 데이터(85)가 부가된 검파 데이터(73H)와 위치 데이터(74H)를 세트로 하여, 위치 부가 검파 데이터(70H)를 생성한다. 위치 부가 검파 데이터(70H)는, 데이터 기억 장치(17)에 기억된다. 위치 부가 검파 데이터(70H)를, 이동체 통신계(12)를 거쳐서 측정계 제어 장치(21H)에 송신하더라도 좋다. 또, 시각 데이터(85)가 동일하다는 것은, 시각 데이터(85)의 차이가 결정된 허용 차이 이하인 것을 의미한다.
데이터 기억 장치(17H)에는, 검파 데이터(73H), 위치 데이터(74H) 및 위치 부가 검파 데이터(70H)가 기억된다.
측정계 제어 장치(21H)는, 시각 장치(53), 계측 제어 통신부(101), 데이터 기억부(102), 계측 제어부(103), 상대 위치 변환부(104) 및 빔 형상 데이터 생성부(105)를 갖는다. 계측 제어 통신부(101)는, 계측 커맨드(72)를 기내 제어 장치(16H)에 송신한다. 드론(3H)으로부터 위치 부가 검파 데이터(70)를 송신하는 경우에는, 계측 제어 통신부(101)는, 위치 부가 검파 데이터(70H)를 포함하는 계측 데이터(77H)를 수신한다. 데이터 기억부(102)에는, 송전 장치 위치(86), 위치 부가 검파 데이터(70H) 및 빔 형상 데이터(71)가 기억된다. 송전 장치 위치(86)는, 송전 장치(1)가 존재하는 위치를 나타내는 데이터이다. 위치 부가 검파 데이터(70H) 중의 위치 데이터(74)로부터 송전 장치 위치(86)를 감산하면, 상대 위치 데이터(78)가 얻어진다.
계측 제어부(103)는, 드론(3H)에 송신하는 계측 커맨드(72) 및 비행 커맨드(75)를 생성한다. 계측 커맨드(72)에 대하여 위치 부가 검파 데이터(70H)가 계측되면, 빔 형상 데이터(71)를 생성하도록 빔 형상 데이터 생성부(105)를 기동한다. 상대 위치 변환부(104)는, 위치 부가 검파 데이터(70H) 중의 위치 데이터(74)로부터 송전 장치 위치(86)를 감산하여, 상대 위치 데이터(78)를 얻는다. 빔 형상 데이터 생성부(105)는, 위치 데이터(74)로부터 변환된 상대 위치 데이터(78)에 검파 데이터(73)를 대응지은 빔 형상 데이터(71)를 생성한다. 빔 형상 데이터 생성부(105)는, 상대 위치 데이터(78)와, 검파 데이터(73)를 포함하는 방사 전파 데이터를 생성하는 방사 전파 데이터 생성부이다.
동작을 설명한다. 도 24는 실시의 형태 9와 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 전파의 방사 패턴을 측정하는 수순을 설명하는 플로차트이다. 도 24에 대하여, 실시의 형태 1의 경우의 도 4와는 상이한 점을 설명한다. 스텝 S04H에서, 기내 제어 장치(16H)가 갖는 검파 데이터 시각 부가부(303)는, 검파기(15)가 출력하는 검파 데이터(73)에, 검파 데이터(73)가 검파 데이터 시각 부가부(303)에 입력된 시점의 시각 데이터(85)를 부가하여, 검파 데이터(73H)(시각 데이터(85)를 포함한다)를 생성한다. 또한, 측위 센서(18H)가 계측한 위치 데이터(74H)(시각 데이터(85)를 포함한다)를 기내 제어 장치(16H)에 송신한다.
스텝 S05H에서, 기내 제어 장치(16H)가 갖는 위치 부가 검파 데이터 생성부(304)는, 검파 데이터(73H)와 동일한 시각 데이터(85)가 부여된 위치 데이터(74H)를 조합하여, 위치 부가 검파 데이터(70H)를 생성한다. 위치 부가 검파 데이터(70H)는, 데이터 기억 장치(17)에 기억된다. 또, 검파 데이터(73H)와 위치 데이터(74H)는 어느 쪽도, 시각 장치(52)가 출력하는 시각 데이터(85)가 부가되어 있다. 그 때문에, 시각 장치(52)와 시각 장치(53)에서 시각의 동기가 취하여져 있지 않은 경우에도, 동일한 시각 데이터(85)를 갖는 검파 데이터(73H)와 위치 데이터(74H)를 조합하여, 측정계 제어 장치(21H)는 위치 부가 검파 데이터(70H)를 생성할 수 있다.
스텝 S09H에서, 데이터 기억 장치(17)로부터 위치 부가 검파 데이터(70H)를 취득하고, 측정계 제어 장치(21H)에 입력한다. 측정계 제어 장치(21H)가 갖는 빔 형상 데이터 생성부(105)는, 위치 부가 검파 데이터(70H)로부터 빔 형상 데이터(71)를 생성한다.
실시의 형태 9의 전파 계측 시스템에서는, 시각 데이터(85)를 기초로 위치 부가 검파 데이터(70H)를 생성하므로, 위치 부가 검파 데이터(70H) 및 빔 형상 데이터(71)를 종래보다 정밀하게 생성할 수 있다.
위치 부가 검파 데이터(70H)를 드론(3H)이 비행 중에 측정계 제어 장치(21H)에 송신할 수도 있다. 그 경우의 동작을, 도 25를 사용하여 설명한다. 도 25는 실시의 형태 9와 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 전파의 방사 패턴을 측정하는 다른 수순을 설명하는 플로차트이다. 실시의 형태 1의 경우의 도 5와는 상이한 점을 설명한다. 스텝 S04H는, 도 24와 마찬가지이다. 스텝 S05J에서, 기내 제어 장치(16H)가 갖는 이동체 통신부(301)는, 생성한 위치 부가 검파 데이터(70H)를, 측정계 제어 장치(21H)에 송신한다. 스텝 S12J에서, 측정계 제어 장치(21H)에서는, 수신한 위치 부가 검파 데이터(70H)를, 데이터 기억부(102)에 기억시킨다.
도 25에 나타내는 처리에서도, 위치 부가 검파 데이터(70H) 및 빔 형상 데이터(71)를 종래보다 정밀하게 생성할 수 있다.
이 실시의 형태 9에서도, 실시의 형태 1과 마찬가지의 효과가 있다. 동기한 시각 데이터를 사용하여, 검파 데이터와 위치 데이터를 조합하므로, 빔 형상을 보다 정밀하게 측정할 수 있다.
실시의 형태 10.
실시의 형태 10은, 공중 이동체 및 지상측의 장치가 동기한 시각 장치를 갖도록 실시의 형태 2를 변경한 경우이다. 실시의 형태 10과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성에 대하여, 도 26과 도 27을 이용하여 설명한다. 도 26은 본 발명의 실시의 형태 10과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다. 도 27은 실시의 형태 10과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다.
도 26에 나타내는 바와 같이, 드론(3J)은, 시각 장치(52) 및 측위 센서(18H)로서 동작하는 GPS 수신기를 갖는다. 측정계 제어 장치(21J)도, 시각 장치(53)로서 동작하는 GPS 수신기를 갖는다. 송전 제어 장치(22J)도, 시각 장치(54)로서 동작하는 GPS 수신기를 갖는다. 이렇게 하여, 드론(3J)에 탑재된 기내 제어 장치(16J), 측정계 제어 장치(21J) 및 송전 제어 장치(22J)는, 동기한 시각을 사용할 수 있다. 도 26과 도 27에서는, REV법을 실행하기 위한 커맨드나 데이터의 흐름도 도시하고 있다.
송전 제어 장치(22J)는, 드론(3J)에 송신하는 데이터 취득 커맨드(87)를 생성한다. 데이터 취득 커맨드(87)는, 전계 변화 데이터를 취득하도록 기내 제어 장치(16J)에 지시하기 위한 커맨드이다. 전계 변화 데이터는, REV법을 실행하여 얻어지는 모니터 안테나(14)가 계측하는 전계 벡터의 변화를 나타내는 데이터이다. 데이터 취득 커맨드(87)는, 송전 제어 장치(22J)로부터, 측정계 제어 장치(21J), 이동체 지령 장치(4A), 이동체 통신계(12) 및 비행 제어 장치(5A)를 경유하여, 드론(3J)에 탑재된 기내 제어 장치(16J)에 송신된다. 기내 제어 장치(16J)는, 데이터 취득 커맨드(87)를 수신하면, 데이터 취득 커맨드(87)에서 지정된 계측 기간을 설정한다. 계측 기간은, REV법 시나리오(88)(후술)가 실행되는 것이 예정되어 있는 기간 내에 설정된다. 계측 기간은, 1개의 기간이더라도 좋고, 복수로 나누어진 기간이더라도 좋다. 적어도 계측 기간을 포함하는 기간에서, 모니터 안테나(14)가 수신하는 전파의 전계 벡터를 검파기(15)가 계측한다. 전계 벡터를 진폭과 위상으로 표현되는 벡터로서 계측하더라도 좋고, 전계 벡터의 진폭만을 계측하더라도 좋다. 전계 벡터의 진폭을 전계 강도라고 부른다. 예컨대 계측 기간마다, 데이터 취득 커맨드(87)를 송신하도록 하더라도 좋다.
기내 제어 장치(16J)는, 검파기(15J)가 계측한 전계 벡터에, 계측한 시점의 시각 데이터(85)를 부가하여 검파 데이터(73J)를 생성한다. REV법 시나리오(88)를 실행 중에 검파기(15)가 계측하는 검파 데이터(73J)를, REV법 실행시 전파 데이터라고 부른다. 검파 데이터(73J)는, 모니터 안테나(14)가 계측하는 전계 벡터의 변화를 나타낸다. 적어도 계측 기간에 계측된 검파 데이터(73J)가, 데이터 기억 장치(17J)에 기억된다. REV법 시나리오(88)를 실행 중에 계측된 검파 데이터(73J)는, 기내 제어 장치(16J)로부터, 데이터 취득 커맨드(87)와는 역방향의 경로로 송전 제어 장치(22J)에 송신된다. 송전 제어 장치(22J)에서 소자 전계 벡터를 구하기 위해 드론으로부터 송신되는 데이터가, 전계 변화 데이터이다. 이 실시의 형태 10에서는, 검파 데이터(73J)가 전계 변화 데이터이다.
REV법에서는, 각 소자 모듈의 위상의 기준을 맞추기(교정하기) 위해, 적어도 일부의 소자 안테나(28)가 전파를 방사하는 상태에서 일부의 이상기(28)의 이상량을 변화시켜 모니터 안테나(14)가 전계 벡터의 변화를 계측하는 것을 반복한다. 이상량이란, 이상기(28)가 출력하는 신호의 위상을 입력되는 신호의 위상으로부터 변화시키는 양이다. 전계 벡터의 변화로부터, 소자 안테나(27)마다 소자 전계 벡터를 계산한다. 소자 전계 벡터는, 1개의 소자 모듈이 출력하는 송신 신호가 공급되는 소자 안테나(27)가 방사하는 전파가 모니터 안테나(14)의 위치에 생성하는 전계 벡터이다. 소자 안테나(27)마다의 소자 전계 벡터의 위상으로부터, 각 이상기(28)의 위상 기준을 맞추기 위한 이상 오프셋 값(88)을 계산한다. 계산한 이상 오프셋 값(88)은, 각 이상기(28)에 설정한다. 또한, 소자 안테나(27)마다의 소자 전계 벡터의 진폭비로부터, 소자 전계 벡터의 진폭도 맞추어지도록, 각 증폭기(29)의 증폭률을 조정하도록 하더라도 좋다. 소자 전계 벡터가 아닌, 소자 전계 벡터의 위상인 소자 전계 위상만을 구하더라도 좋다.
도 27을 참조하여, 송전 제어 장치(22J), 기내 제어 장치(16J) 및 데이터 기억 장치(17J)의 구성을 설명한다. 도 27에서는, 공중 이동체로의 송전 시스템으로서 동작하는데 있어서 필요한 구성만을 나타낸다. 또, 측정계 제어 장치(21J)는, 송전 제어 장치(22J)와 기내 제어 장치(16J)의 사이를 중계할 뿐이므로, 도 27에는 나타내지 않는다. 송전 제어 장치와 기내 제어 장치가 직접 통신하는 경우는, 계측 제어 장치는 불필요하다.
송전 제어 장치(22J)는, 시각 장치(54), 데이터 기억부(201), REV법 실행부(202), 데이터 취득 커맨드 생성부(203), 송전 제어 통신부(204), 소자 전계 연산부(205), 위상 오프셋 값 계산부(206), 위상 오프셋 값 설정부(207), 방사 방향 결정부(208) 및 전파 방사 제어부(209)를 갖는다. 소자 전계 연산부(205)는, 계측 데이터 해석부(210), 이상량 취득부(211), 소자 전계 위상 계산부(212) 및 소자 전계 진폭 계산부(213)를 갖는다.
데이터 기억부(201)는, REV법을 실행하기 위해, 또한 송전 제어 장치(1A)가 드론(3J)에 송전하기 위해 필요한 데이터를 기억한다. 데이터 기억부(201)에는, REV법 시나리오(88), REV법 기준 상태(89), 검파 데이터(73J), 위상 조작 데이터(90), 소자 전계 벡터(91), 위상 오프셋 값(92), 도래 방향 데이터(80), 방사 방향 데이터(81) 및 방사 지령치(93)가 기억된다.
REV법 시나리오(88)는, REV법을 실행하기 위해 각 이상기(28)의 위상을 변화시키는 양(이상량)의 패턴을 규정하는 데이터이다. 또, REV법 시나리오(88)는, 1개씩 이상기(28)의 이상량을 변화시키더라도 좋고, 복수 개의 이상기(28)의 위상을 동일한 이상량만큼 변화시키더라도 좋다. REV법 시나리오(88)에서는, 모든 소자 안테나(27)로부터 전파를 방사하더라도 좋고, 일부의 소자 안테나(27)로부터 전파를 방사하더라도 좋다. REV법 시나리오(88)는, 적어도 일부의 소자 안테나(27)가 전파를 방사하는 상태에서, 일부의 이상기(28)의 이상량을 변화시키는 것을 반복하는 패턴을 규정하는 것이면 된다. 이상량을 변화시키는 이상기(28)를 조작 이상기라고 부른다.
REV법 기준 상태(89)는, 이상량을 변화시키는 이상기(28) 이외의 이상기(28)의 위상을 지정하는 데이터이다. REV법 기준 상태(89)로서는, 예컨대, 최근에 실시한 REV법으로 얻어진 위상 오프셋 값으로 한다. 최초로 REV법을 실행하는 경우는, 예컨대 모두 제로로 한다. REV법 시나리오(88)는, 기준 상태로부터 이상량을 변화시키는 이상기(28)의 순번 및 각 이상기(28)에서 이상량을 변화시키는 시간 변화의 패턴인 위상 조작 패턴을 규정한다. REV법 시나리오(88)에 따라 송전 제어 신호(76)가 생성되고, 송전 제어 신호(76)는 송전 장치(1A)에 보내어진다. 송전 제어 신호(76)에 의해, 송전 제어 장치(22J)는 각 1단계 모듈(24) 및 각 2단계 모듈(26), 즉 각 이상기(28) 및 각 증폭기(29)에 지령치를 전한다.
위상 조작 패턴은, REV법 시나리오(88)의 개시로부터의 상대 시간으로 각 이상기(28)의 이상량을 변화시키는 시퀀스를 규정한다. 이상기(28)마다, 그 이상기(28)에서 이상량을 변화시키는 기간의 개시로부터의 상대 시간으로 그 이상기(28)의 이상량의 변화를 표현하더라도 좋다. 일반적으로 표현하면, REV법 시나리오(88)에서는, 위상 조작 패턴이, 시각이 지정되는 1개 또는 복수 개의 기준 사상과, 어느 하나의 기준 사상으로부터의 상대 시간으로 시각이 표현되는 비기준 사상으로 표현된다. REV법 시나리오는, 위상 조작 패턴으로서 사상의 순번만을 규정하는 등, 보다 자유도를 갖게 하여 위상 조작 패턴을 표현하는 것이라도 좋다. 이 실시의 형태에서 사용하는 REV법 시나리오(88)에서는, 개시가 기준 사상이고, 그 이외의 사상은 비기준 사상이다.
데이터 취득 커맨드(87)는, 드론(3J)에 탑재된 검파기(15)가 검파 데이터(73J)를 계측하는 기간인 계측 기간을 기내 제어 장치(16J)에 지시하기 위한 커맨드이다. 데이터 취득 커맨드(87)는, 계측 기간을, 예컨대 개시 시각과 개시 시각으로부터의 경과 시간으로 표현한다. 계측 기간을 개시 시각과 종료 시각으로 표현하더라도 좋다. 데이터 취득 커맨드(87)는, 계측 기간의 개시와 종료의 타이밍에 송신되는 커맨드이더라도 좋다.
검파 데이터(73J)는, 검파기(15)가 생성하는 전계 벡터의 시각 부가 데이터이다. 검파 데이터(73J)는, 결정된 시간의 피치 폭마다 계측된다. 위상 조작 데이터(90)는, REV법 시나리오(88)에 따라 변화한 이상기(28)의 시간의 피치 폭마다의 이상량의 데이터이다.
소자 전계 벡터(91)는, 모니터 안테나(14)가 존재하는 위치에서 소자 안테나(27)가 생성하는 전계 벡터를 나타내는 데이터이다. 뒤에서 설명하지만, 소자 전계 연산부(205)는, 소자 전계 벡터의 위상인 소자 전계 위상과, 소자 전계 벡터의 진폭인 소자 전계 진폭을 계산한다. 소자 전계 연산부는, 소자 전계 위상만을 계산하더라도 좋다.
위상 오프셋 값(92)은, 이상량, 즉 위상 지령치로부터 감산하는 수치이다. 위상 오프셋 값(92)은, 각 이상기(28)에 설정한다. 각 이상기(28)는, 위상 지령치로부터 위상 오프셋 값(92)을 감산한 이상량만큼 위상을 변화시킨다. 그렇게 함으로써, 각 이상기(28)에 대하여 동일한 위상 지령치가 주어진 경우에, 각 소자 안테나(27)가 생성하는 소자 전계 벡터(27)의 위상이 동일하게 된다. 위상 오프셋 값(92)은, 소자 모듈마다의 소자 전계 위상의 차이로서 계산된다. 위상 오프셋 값(92)은, 소자 모듈마다의 소자 전계 위상에 근거하여 구하여진, 소자 모듈의 위상의 기준을 맞추기 위한 데이터이다.
소자 모듈의 위상의 기준을 맞추기 위해, 이상기(28)에 위상 오프셋 값을 설정하는 방법과는 상이한 방법을 사용하더라도 좋다. 공중 이동체로의 송전 시스템의 다른 실시의 형태에서도 마찬가지이다.
도래 방향 데이터(80)는, 파일럿 신호(31)가 도래하는 방향을 나타내는 데이터이다. 도래 방향 데이터(80)는, 도래 방향 검출 장치(38)가 구한다. 방사 방향 데이터(81)는, 페이즈드 어레이 안테나(30)로부터 방사하는 전파의 방향을 지정하는 데이터이다. 방사 지령치(93)는, 방사 방향 데이터(81)로 나타내어지는 방향으로 전파를 방사할 수 있도록 각 이상기(28) 및 각 증폭기(29)에 지령하는 지령치를 나타내는 데이터이다. 방사 지령치(93)는, 송전 제어 신호(76)로서 송전 장치(1A)에 송신된다.
REV법 실행부(202)는, REV법 시나리오(88)에서 지정되는 이상기(28)의 이상량을 변화시키고, 변화시킨 결과의 기록인 위상 조작 데이터(90)를 생성한다. REV법 실행부(202)는, REV법 시나리오에 근거하여 변화하는 이상기(28)의 이상량의 시간 변화를 기록하는 위상 조작 데이터(90)를 생성하는 위상 조작 기록부이기도 하다. REV법 시나리오(88)는, 데이터 기억부(201)에 기억하지 않고, REV법 실행부(202)를 실현하는 프로그램 중에 기술되는 형태이더라도 좋다.
데이터 취득 커맨드 생성부(203)는, 데이터 취득 커맨드(87)를 생성한다. 송전 제어 통신부(204)는, 데이터 취득 커맨드(87)를 기내 제어 장치(16J)에 송신하고, 기내 제어 장치(16J)로부터 송신되는 검파 데이터(73J)를 수신한다. 송전 제어 통신부(204)는, 송전 제어 장치(22J)와 다른 장치의 사이의 다른 통신도 실시한다.
소자 전계 연산부(205)는, REV법 시나리오(88), 위상 조작 데이터(90) 및 검파 데이터(73J)에 근거하여, 각 이상기(28)의 소자 전계 벡터(91)를 계산한다. 소자 전계 벡터(91)를 계산하는 방법은, 종래 기술이다. 예컨대, 일본 특허 공개 H1-37882호에 기재되어 있다. 예컨대, 검파 데이터(73J)에 기록된 전계 벡터의 진폭이 최대가 되는 시점에서의 위상 조작 데이터(90)에 기록된 이상량으로부터 소자 전계 벡터의 위상을 계산한다. 또한, 전계 벡터의 진폭의 최대치와 최소치의 비로부터, 소자 전계 벡터의 진폭을 계산한다. 소자 전계 연산부(205)는, 소자 모듈마다 소자 전계 위상을 구하는 REV법 해석부이다. 소자 전계 연산부(205)의 내부 구성은, 뒤에서 설명한다. 또, 위상 조작 데이터(90)는, REV법 시나리오(88)에 근거하여 생성된다. 따라서, 소자 전계 연산부(205)는, REV법 시나리오(88) 및 검파 데이터(73J)에 근거하여, 각 이상기(28)의 소자 전계 벡터(91)를 계산한다.
위상 오프셋 값 계산부(206)는, 각 이상기(28)의 소자 전계 벡터(91)로부터 각 이상기(28)의 위상 오프셋 값(92)을 계산한다. 위상 오프셋 값 설정부(207)는, 위상 오프셋 값(92)을 각 이상기(28)에 설정한다.
방사 방향 결정부(208)는, 도래 방향 데이터(80)를 기초로 방사 방향을 결정하여 방사 방향 데이터(81)에 설정한다. 전파 방사 제어부(209)는, 방사 방향 데이터(81)에 근거하여 방사 지령치(93)를 생성한다. 방사 방향이 정하여져 있지 않은, 즉 방사 방향 데이터(81)가 아직 설정되지 않은 경우는, 전파 방사 제어부(209)는 방사 지령치(93)를 생성하지 않는다. 전파 방사 제어부(209)는, 방사 방향으로 페이즈드 어레이 안테나(30)의 지향 방향을 향하게 하는 지향 방향 변경부이다.
도 27에 나타내는 바와 같이, 드론(3G)에 탑재되는 데이터 기억 장치(17J)는, 계측 기간 데이터(94), 검파 데이터(73J)를 기억한다. 계측 기간 데이터(94)는, 검파 데이터(73J)를 기록하는 기간을 나타내는 데이터이다. 계측 기간 데이터(94)는, 송전 제어 장치(22J)로부터 송신되는 데이터 취득 커맨드(87)로 지시된다. 검파 데이터(73J)는, 계측 기간 데이터(94)에서 지정되는 계측 기간에 모니터 안테나(14)가 계측한 전계 벡터에, 전계 벡터를 계측한 시점에서의 시각 데이터(85)와 대응지은 데이터이다.
기내 제어 장치(16J)는, 시각 장치(52), 이동체 통신부(301), 검파기 제어부(302), 검파 데이터 시각 부가부(303), 데이터 취득 커맨드 해석부(305), 송신 데이터 생성부(306) 및 파일럿 송신기 제어부(307)를 갖는다. 이동체 통신부(301)는, 송전 제어 장치(22A)가 송신하는 데이터 취득 커맨드(87)를 수신하고, 검파 데이터(73J)를 송전 제어 장치(22A)에 송신한다. 검파 데이터 시각 부가부(303)는, 검파기(15)가 출력하는 검파 데이터(73)에, 기내 제어 장치(16J)가 검파 데이터(73)를 받은 시각의 시각 데이터(85)를 부가한다. 기내 제어 장치(16J)는, 기내 제어 장치(16H)와 비교하여, 데이터 취득 커맨드 해석부(305), 송신 데이터 생성부(306) 및 파일럿 송신기 제어부(307)를 갖는 점, 위치 부가 검파 데이터 생성부(304)를 갖지 않는 점이 상이하다.
데이터 취득 커맨드 해석부(305)는, 데이터 취득 커맨드(87)로부터 계측 기간 데이터(94)를 추출하여 데이터 기억 장치(17R)에 저장한다. 검파기 제어부(302)는, 계측 기간 데이터(94)에서 지정되는 계측 기간에 검파 데이터(73)를 생성하도록 검파기(15)를 제어한다. 검파 데이터 시각 부가부(303)는, 검파 데이터(73)에 시각 데이터(85)를 부가하여 검파 데이터(73J)를 생성한다. 검파 데이터(73J)는, 데이터 기억 장치(17J)에 저장된다.
송신 데이터 생성부(306)는, 계측 기간 데이터(94)에서 규정되는 계측 기간의 검파 데이터(73J)를 압축하여 송신하는 검파 데이터(73J)를 생성한다. 이동체 통신부(301)는, 데이터 취득 커맨드(87)를 수신하고, 송신 데이터 생성부(306)가 생성하는 검파 데이터(73J)를 송전 제어 장치(22R)에 송신한다. 송신 데이터 생성부(306)는, 검파 데이터(73J)와 위치 데이터(74H)와 대응지은 위치 부가 검파 데이터(70H)를 압축하여 송신하는 데이터를 생성하더라도 좋다.
파일럿 송신기 제어부(307)는, 파일럿 송신기(32)가 파일럿 신호(31)를 송신할지 여부를 제어한다.
소자 전계 연산부(205)는, 계측 데이터 해석부(210), 이상량 취득부(211), 소자 전계 위상 계산부(212) 및 소자 전계 진폭 계산부(213)를 갖는다. 계측 데이터 해석부(210)는, 기내 제어 장치(16J)로부터 송신되는 검파 데이터(73J)를 해석하여 계측 기간마다, 전계 강도가 최대 및 최소가 되는 시각과, 전계 강도의 최대치 및 최소치를 검출한다. 이상량 취득부(211)는, 전계 강도가 최대 및 최소가 되는 시각에 위상 조작 데이터(90)를 참조하여, 조작 이상기의 이상량인 조작 이상량을 계측 기간마다 구한다. 전계 강도가 최대 또는 최소가 되는 시각은 이상량을 구하는 시각이므로, 이상량 검출 시각이라고도 부른다.
소자 전계 위상 계산부(212)는, 각 이상기(28)의 조작 이상량에 근거하여 소자 모듈마다의 소자 전계 위상을 계산한다. REV법 시나리오(88)로, 1개씩 이상기(28)의 이상량을 변화시키는 경우는, 각 이상기(28)의 조작 이상량으로부터 상수를 감산함으로써 소자 전계 위상을 계산할 수 있다. 감산하는 상수는, 위상의 기준에 따라 적절히 결정한다. 복수의 이상기(28)의 이상량을 동시에 변화시켜 계측한 조작 이상량이 있는 경우는, 연립방정식을 푸는 것에 의해, 소자 모듈마다의 소자 전계 위상을 계산할 수 있다.
소자 전계 진폭 계산부(213)는, 계측 기간마다의 전계 강도의 최대치 및 최소치의 비로부터 소자 전계 벡터의 진폭을 계산한다.
이상량 검출 시각으로부터 이상기(28)의 이상량을 구하기 위해, 위상 조작 데이터(90)를 참조하는 것이 보다 정확하기는 하지만, REV법 시나리오(88)를 참조할 수도 있다. 그 경우에는, REV법 시나리오(88)의 개시로부터의 상대 시간으로 규정되는 각 이상기(28)의 이상량의 변화 패턴을, 이상량 검출 시각으로부터 REV법 시나리오(88)의 개시 시각을 감산한 상대 시간에서 참조하여, 이상량 검출 시각에 있어서의 이상기(28)의 이상량을 구한다. REV법 시나리오(88)의 상대 시간을 절대 시간(시각)으로 변환하여 두고, 이상량 검출 시각에서, 절대 시간으로 변환되어 있는 REV법 시나리오를 참조하더라도 좋다.
동작을 설명한다. 도 28은 실시의 형태 10과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 수순을 설명하는 플로차트이다. 도 28에 대하여, 실시의 형태 2의 경우의 도 9와는 상이한 점을 설명한다. 스텝 S22J에서, 2단계 모듈(26)의 이상량과, 그 이상량일 때에 모니터 안테나(14)에서 계측되는 전계 벡터(적어도 진폭 값)를 시각 데이터(85)에 대응지어 REV법을 실행한다. REV법을 실행하는 구체적인 수순은, 도 29에 나타낸다. S22J에서는, 2단계 모듈(26)의 이상기(28)를 대상으로 하여, 도 29의 처리를 실시한다. S24J에서는, 1단계 모듈(24)의 이상기(28)를 대상으로 하여, 도 29의 처리를 실시한다.
REV법을 실행하는 수순을, 도 29를 참조하여 설명한다. 도 29는 실시의 형태 10과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서 REV법에 의해 각 소자 안테나가 방사하는 전파의 소자 전계 벡터를 계산하는 수순을 설명하는 플로차트이다.
우선, 스텝 S41에서, 송전 제어 장치(22J)가 데이터 취득 커맨드(87)를 기내 제어 장치(16J)에 송신한다.
스텝 S42에서, 데이터 취득 커맨드 해석부(305)가, 데이터 취득 커맨드(87)를 해석하여, 계측을 개시 및 종료하는 시각을 지정하는 계측 기간 데이터(94)를 지정된 수만큼, 데이터 기억 장치(17J)에 저장한다. j번째의 계측 기간을 변수 Tj로 표현한다. 스텝 S43에서, j=0으로 하고, REV법 실행부(202)가, 각 이상기(28)의 이상량을 REV법 기준 상태에서의 값으로 설정한다.
스텝 S44에서, j=j+1로 하고, REV법 실행부(202)가, REV법 시나리오에서 지정된 순번으로 1개의 이상기(28)를 선택한다. 선택한 이상기(28)를, 이상기(28j)라고 표기한다. 이상기(28j)가, 이상량을 변화시키는 일부의 이상기인 조작 이상기이다. 스텝 S45에서, REV법 실행부(202)가, REV법 시나리오(88)에 근거하여 계측 기간 Tj에 있어서 이상기(28j)의 이상량을 변화시키고, 위상 조작 데이터(90)를 기록한다. 또, 이상기(28j)의 이상량의 변경 시퀀스가 완료되면, 이상기(28j)의 이상량은 REV법 기준 상태에서의 값으로 되돌린다. 계측 기간 Tj에 있어서, S45와 병행하여 실행되는 처리로서, 스텝 S46이 실행된다. S46에서는, 모니터 안테나(14)가 전파를 수신하고, 계측 기간 Tj의 검파 데이터(73J)인 전계 강도 Cj를 계측한다.
스텝 S47에서, 이동체 통신부(301)가, 계측 기간 Tj에서의 전계 강도 Cj를 드론(3J)으로부터 송전 제어 장치(22J)에 송신한다. 전계 강도 Cj는 동일한 내용을 적은 데이터의 양으로 송신할 수 있도록 송신 데이터 생성부(306)가 압축하고 나서 송신한다. 또, S47에서 전계 강도 Cj를 송신하는 처리는, S46에서의 전계 강도 Cj를 계측하는 처리가 완료되는 것을 기다리지 않고서 실행하더라도 좋다. 계측 기간 Tj에서의 전계 강도 Cj가, 계측 기간 Tj에서의 전계의 변화를 나타내는 전계 변화 데이터이다.
스텝 S48에서, 송전 제어 통신부(204)가, 전계 강도 Cj를 수신한다.
스텝 S49에서, 계측 데이터 해석부(210)가, 전계 강도 Cj가 최대치 Cjmax를 취하는 시각 tjmax 및 최소치 Cjmin을 취하는 시각 tjmin을 구한다. 계측 기간 Tj에서의 전계 강도 Cj가 모두 입력되고 나서 S49를 실행하더라도 좋고, 전계 강도 Cj가 입력될 때마다, 소자 전계 연산부(205)가 시각 tjmax 및 시각 tjmin을 검출하더라도 좋다. 시각 tjmax 및 시각 tjmin이, 조작 이상기인 이상기(28j)의 이상량 검출 시각이다.
스텝 S50에서, 이상량 취득부(211)가, 위상 조작 데이터(90)를 참조하여, 시각 tjmax에서의 이상기(28j)의 이상량 pjmax 및 시각 tjmin에서의 이상기(28j)의 이상량 pjmin을 검출한다. 이상량 pjmax 및 이상량 pjmin이, 이상기(28j)의 조작 이상량이다.
스텝 S51에서, 소자 전계 위상 계산부(212)가, 이상량 pjmax와 이상량 pjmin으로부터, 소자 전계 벡터 Ej의 위상을 계산한다. 이상량 pjmax로부터 계산한 위상과 이상량 pjmin으로부터 계산한 위상의 평균을, 소자 전계 벡터 Ej의 위상으로 한다. 이상량 pjmax 또는 이상량 pjmin으로부터만 계산한 위상을, 소자 전계 벡터 Ej의 위상으로 하더라도 좋다.
스텝 S52에서, 소자 전계 진폭 계산부(213)가, 전계 강도 Cj의 최대치 Cjmax와 최소치 Cjmin의 비의 값으로부터, 소자 전계 벡터 Ej의 진폭을 계산한다. 소자 전계 벡터 Ej의 진폭은, 계산하지 않더라도 좋다.
스텝 S53에서, 아직 처리되지 않은 이상기(28)가 있는지 체크한다. 아직 처리되지 않은 이상기(28)가 있는(S53에서 예) 경우는, 스텝 S44로 돌아간다.
아직 처리되지 않은 이상기(28)가 없는(S53에서 아니오) 경우는 종료된다.
REV법을 실행함으로써, 각 소자 모듈이 갖는 이상기(28)에 위상 오프셋 값(92)을 산출하여 설정한다. 위상 오프셋 값(92)에 의해, 각 소자 모듈의 위상 기준을 동일하게 할(맞출) 수 있다. S29에서는, 전파 방사 제어부(209)는, 각 소자 모듈의 위상 기준이 맞추어진 상태에서, 각 소자 모듈에 대한 위상과 진폭의 지령치를 생성한다. 지령치는 송전 제어 신호(76)로서 송전 장치(1A)에 보내어진다. 또, 각 소자 모듈에 대한 위상과 진폭의 지령치는, 페이즈드 어레이 안테나(30)의 지향 방향을 송전 방향을 향하게 하도록 계산된 것이다.
S30에서는, 송전 제어 신호(76)의 지시에 따라 송전 장치(1A)가 전파를 방사한다. 이렇게 하여, 전파 방사 제어부(209)는, 소자 모듈마다의 소자 전계 위상에 근거하여, 소자 모듈의 위상의 기준을 맞춘 상태에서, 송전 방향으로 전파를 방사하도록 송전 장치(1A)를 제어한다.
드론(3J)으로부터 파일럿 신호(31)를 송신하고, 파일럿 신호(31)가 도래하는 방향으로 송전 장치(1A)가 송전 전파(2)를 방사하므로, 드론(3J)의 수전 안테나(34)가 효율적으로 송전 전파(2)를 수전할 수 있다.
실시의 형태 2와 마찬가지로, 드론 등의 공중 이동체를 사용하여 REV법을 실행함으로써, 실제로 공중 이동체에 송전하는 상황에서 REV법을 실행할 수 있다. 그 때문에, REV법을 정밀하게 실행할 수 있어, 공중 이동체로의 송전 때에 방사 방향으로 정밀하게 전파를 방사할 수 있다. 또한, REV법을 실행할 때에 사용하는 검파 데이터(73J)에 시각 데이터(85)가 포함되므로, 정밀하게 REV법을 실행할 수 있다.
기내 제어 장치(16J)로부터 전계 변화 데이터로서, REV법을 실행 중인 검파 데이터(73J)를 송신하는 것이 아니라, 검파 데이터(73J)에 근거하여 생성되는 전계 변화 데이터를 송신하더라도 좋다. 그렇게 함으로써, 기내 제어 장치로부터 송전 제어 장치에 송신되는 데이터의 양을 줄일 수 있다. 또한, 소자 전계 연산부를 기내 제어 장치에 갖게 하여, 기내 제어 장치에서 소자 전계 위상을 계산하더라도 좋다. 또, 검파 데이터(73J) 자체도 검파 데이터(73J)에 근거하여 생성되는 전계 변화 데이터에 포함된다.
이상은, 다른 실시의 형태에도 적용된다.
실시의 형태 11.
실시의 형태 11은, 공중 이동체 및 지상측의 장치가 동기한 시각 장치를 갖도록 실시의 형태 3을 변경한 경우이다. 실시의 형태 11은, 실시의 형태 10과 비교하면, 파일럿 신호 대신에 공중 이동체의 위치 데이터를 송전 제어 장치에 송신하도록 한 경우이다. 실시의 형태 11과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성에 대하여, 도 30과 도 31을 이용하여 설명한다. 도 30은 본 발명의 실시의 형태 11과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다. 도 31은 실시의 형태 11과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다.
도 30에 나타내는 바와 같이, 드론(3K)은, 시각 장치(52)이기도 한 측위 센서(18H)를 갖는다. 측위 센서(18H)가 계측하는 위치 데이터(74H)는, 측정계 제어 장치(21K)에 송신된다. 측정계 제어 장치(21K)는, 시각 장치(53)를 갖는다. 송전 제어 장치(22K)는, 시각 장치(54)를 갖는다. 기내 제어 장치(16K), 측정계 제어 장치(21K) 및 송전 제어 장치(22K)는, 동기한 시각을 사용할 수 있다.
도 31에 대하여, 실시의 형태 10의 경우의 도 27과는 상이한 점을 설명한다. 기내 제어 장치(16K)는, 시각 장치(52)를 포함하는 측위 센서(18H)를 갖고, 파일럿 송신기 제어부(307)를 갖지 않는다. 이동체 통신부(301)는, 적어도 송전 장치(1A)로부터 수전 중에는, 위치 데이터(74H)를 송전 제어 장치(22K)에 송신한다.
송전 제어 장치(22K)는, 데이터 기억부(201K) 및 방사 방향 결정부(208K)를 변경하고 있다. 데이터 기억부(201K)는, 위치 데이터(74H) 및 송전 장치 위치(86)를 기억하고, 도래 방향 데이터(80)를 기억하지 않는다. 방사 방향 결정부(208K)는, 드론(3K)으로부터 송신되는 위치 데이터(74H)를, 송전 장치 위치(86)를 기준으로 하는 상대 위치로 변환하고, 상대 위치로부터 방사 방향을 결정한다.
동작을 설명한다. 도 32는 실시의 형태 3과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 수순을 설명하는 플로차트이다. 도 32에 대하여, 실시의 형태 3의 경우의 도 11과는 상이한 점을 설명한다. S22J와 S24J는, 도 28과 마찬가지이다. 스텝 S32K에서, 측위 센서(18H)에 의해 드론(3K)이 자신의 3차원 위치를 시각 데이터(85)와 함께 계측하여 위치 데이터(74H)를 생성한다. 위치 데이터(74H)는, 시각 부가 위치 데이터이다. 방사 방향을 구하기 위한 처리인 스텝 33K로부터 S35K까지는, 위치 데이터(74)가 아닌 위치 데이터(74H)(시각 데이터(85)도 포함한다)에 대하여, S33으로부터 S35와 마찬가지로 동작한다.
실시의 형태 11의 공중 이동체로의 송전 시스템은, 실시의 형태 3과 마찬가지로 동작하여, 마찬가지의 효과가 얻어진다. 검파 데이터(73J)에 시각 데이터(85)가 포함되어 있으므로, 실시의 형태 10의 경우와 마찬가지로, 정밀하게 REV법을 실행할 수 있다.
이상은, 다른 실시의 형태에도 적용된다.
실시의 형태 12.
실시의 형태 12는, 공중 이동체 및 지상측의 장치가 동기한 시각 장치를 갖도록 실시의 형태 4를 변경한 경우이다. 실시의 형태 12와 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성에 대하여, 도 33을 이용하여 설명한다. 도 33은 본 발명의 실시의 형태 12와 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다.
도 33에 대하여, 실시의 형태 9의 경우의 도 22와는 상이한 점을 설명한다. 드론(3L)은, 실시의 형태 2의 경우와 마찬가지의 수전 안테나(34) 및 드론 전원 시스템(8A)을 갖는다. 실시의 형태 4의 경우의 도 12와 비교하면, 실시의 형태 9의 경우와 마찬가지로, 시각 장치(53), 시각 장치(54)가 추가되어 있다. 측위 센서(18)를, 시각 장치(52)를 포함하는 측위 센서(18H)로 변경하고 있다.
동작을 설명한다. 실시의 형태 12와 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에 있어서 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 전파의 방사 패턴을 측정하는 수순을 설명하는 플로차트이다. 도 34에 대하여, 실시의 형태 10의 경우의 도 28과는 상이한 점을 설명한다. S04~S07과 병행하여, 실시의 형태 4와 마찬가지로, S13과 S14를 추가하고 있다. S13 및 S14에서는, 수전 안테나(34)에서 송전 전파(2)를 수신하고, 수신한 송전 전파(2)를 정류기(35)가 정류한 전력을 축전 유닛(19)에 축전한다. S13은, S04 및 S05와 병행하여 동작한다. S14는, S07과 병행하여 동작한다.
실시의 형태 12는, 실시의 형태 4와 마찬가지로 동작하고, 동일한 효과가 있다. 또한, 실시의 형태 11과 마찬가지로, 검파 데이터(73J)에 시각 데이터(85)가 포함되므로, 정밀하게 REV법을 실행할 수 있다.
실시의 형태 13.
실시의 형태 13은, 공중 이동체 및 지상측의 장치가 동기한 시각 장치를 갖도록 실시의 형태 5를 변경한 경우이다. 실시의 형태 13과 관련되는 공중 이동체를 이용한 전파 측정 시스템의 구성에 대하여, 도 35와 도 36을 이용하여 설명한다. 본 발명의 실시의 형태 13과 관련되는 공중 이동체를 이용한 전파 측정 시스템의 구성도이다. 도 36은 실시의 형태 13과 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 측정계 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다. 실시의 형태 13은, 실시의 형태 12와 비교하면, 송전 통신계(39) 및 파일럿 통신계(40)를 갖는 점이 상이하다.
도 35에 대하여, 실시의 형태 5의 경우의 도 14와는 상이한 점을 설명한다. 드론(3M)은, 시각 장치(52)이기도 한 측위 센서(18H)를 갖는다. 측정계 제어 장치(21M)는, 시각 장치(53)를 갖는다. 송전 제어 장치(22M)는, 시각 장치(54)를 갖는다. 기내 제어 장치(16M), 측정계 제어 장치(21M) 및 송전 제어 장치(22M)는, 동기한 시각을 사용할 수 있다.
도 36에 대하여, 실시의 형태 9의 경우의 도 27과는 상이한 점을 설명한다. 데이터 기억 장치(17M)는, 커맨드 통신계 데이터(95) 및 데이터 통신계 데이터(96)를 갖는다. 커맨드 통신계 데이터(95)는, 커맨드 통신계로서 이동체 통신계(12) 및 송전 통신계(39)의 어느 쪽을 사용할지를 나타낸다. 데이터 통신계 데이터(96)는, 데이터 통신계로서 이동체 통신계(12) 및 파일럿 통신계(30)의 어느 쪽을 사용할지를 나타낸다.
기내 제어 장치(16M)는, 송전 신호 복조부(308), 파일럿 신호 변조부(309) 및 통신계 전환부(310)를 갖는다. 송전 신호 복조부(308)는, 검파 데이터(73)를 복조하여 계측 커맨드(72)를 생성한다. 파일럿 신호 변조부(309)는, 측정 데이터(77H)를 송신하기 위해 펄스 변조 스위치(43)에 대한 제어 신호를 생성한다. 통신계 전환부(310)는, 측정계 제어 장치(21M)로부터의 지시에 따라, 커맨드 통신계로서 이동체 통신계(12) 및 송전 통신계(39)의 어느 쪽을 사용할지, 또한, 데이터 통신계로서 이동체 통신계(12) 및 파일럿 통신계(30)의 어느 쪽을 사용할지를 전환한다.
측정계 제어 장치(21M)는, 파일럿 신호 복조부(106) 및 통신계 전환부(107)를 갖는다. 데이터 기억부(102M)는, 커맨드 통신계 데이터(95) 및 데이터 통신계 데이터(96)를 갖는다.
파일럿 신호 복조부(106)는, 검파기(44)가 파일럿 신호(31)를 검파하여 생성하는 파일럿 검파 데이터(97)(도시하지 않음)를 복조한다. 통신계 전환부(107)는, 커맨드 통신계로서 이동체 통신계(12) 및 송전 통신계(39)의 어느 쪽을 사용할지, 또한, 데이터 통신계로서 이동체 통신계(12) 및 파일럿 통신계(30)의 어느 쪽을 사용할지를 전환한다. 통신계를 전환할 때에는, 데이터 기억부(102M)에 기억하고 있는 커맨드 통신계 데이터(95) 및 데이터 통신계 데이터(96)의 데이터 값을 변경하고, 기내 제어 장치(16M)에 전환 후의 통신계를 통지한다. 통지 후에, 커맨드 통신계 데이터(95) 및 데이터 통신계 데이터(96)의 데이터 값을 변경하더라도 좋다. 측정계 제어 장치(21M)로부터 기내 제어 장치(16M)에 사용하는 통신계를 알리기 위한 통신계를 전환 통지 통신계라고 부른다. 전환 통지 통신계는, 예컨대, 사용 중의 커맨드 통신계를 사용한다. 혹은, 항상 이동체 통신계(12)를 전환 통지 통신계로서 사용하더라도 좋다.
동작을 설명한다. 도 37은 실시의 형태 13과 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 전파의 방사 패턴을 측정하는 수순을 설명하는 플로차트이다. 도 37에 대하여, 실시의 형태 9의 경우의 도 25와는 상이한 점을 설명한다. 실시의 형태 5의 경우와 마찬가지의, S15 및 S16을 추가하고 있다. S15에서는, 커맨드 통신계를 결정한다. S16에서는, 데이터 통신계를 결정한다. 또한, S04M에서, S15에서 결정된 커맨드 통신계를 거쳐서 계측 커맨드(72)가 통신된다. S05M에서, S16에서 결정된 데이터 통신계를 거쳐서 위치 부가 검파 데이터(70H)가 통신된다.
실시의 형태 13의 공중 이동체로의 송전 시스템은, 실시의 형태 5와 마찬가지로 동작하고, 마찬가지의 효과가 있다. 동기한 시각 데이터를 사용하여, 검파 데이터와 위치 데이터를 조합하므로, 빔 형상을 보다 정밀하게 측정할 수 있다.
실시의 형태 14.
실시의 형태 14는, 공중 이동체 및 지상측의 장치가 동기한 시각 장치를 갖도록 실시의 형태 6을 변경한 경우이다. 실시의 형태 14는, 실시의 형태 9 또는 실시의 형태 10과 비교하면, 이동체 통신계(12) 대신에 계측 통신계(45)를 갖는 점이 상이하다. 실시의 형태 14와 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성에 대하여, 도 38, 도 39 및 도 40을 이용하여 설명한다. 도 38은 본 발명의 실시의 형태 14와 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다. 도 39는 실시의 형태 14와 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 측정계 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다. 도 40은 실시의 형태 14와 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다.
도 38에 대하여, 실시의 형태 6의 경우의 도 16과는 상이한 점을 설명한다. 드론(3N)에 탑재된 탑재 장치(13N)는, 시각 장치(52)이기도 한 측위 센서(18H)를 갖는다. 시각 데이터(85)가 부가된 위치 데이터(74H)를 포함하는 측정 데이터(77H)가, 측정계 제어 장치(21N)에 송신된다. 측정계 제어 장치(21N)는, 시각 장치(53)를 갖는다. 송전 제어 장치(22J)는, 시각 장치(54)를 갖는다. 기내 제어 장치(16N), 측정계 제어 장치(21N) 및 송전 제어 장치(22J)는, 동기한 시각을 사용할 수 있다.
도 39에 대하여, 실시의 형태 9의 경우의 도 23과는 상이한 점을 설명한다. 기내 제어 장치(16N)는, 이동체 통신부(301N)를 갖는다. 측정계 제어 장치(21N)는, 계측 제어 통신부(101N)를 갖는다. 이동체 통신부(301N) 및 계측 제어 통신부(101N)는, 이동체 통신계(12)는 사용하지 않고, 계측 통신계(45)를 사용한다.
도 40에 대하여, 실시의 형태 10의 경우의 도 27과는 상이한 점을 설명한다. 기내 제어 장치(16N)는, 이동체 통신부(301N)를 갖는다. 송전 제어 장치(22J)는, 측정계 제어 장치(21N)를 거쳐서 계측 통신계(45)를 사용하므로, 송전 제어 통신부(204)에 변경은 없다.
전파 측정 시스템으로서의 실시의 형태 14는, 실시의 형태 9의 전파 측정 시스템과 마찬가지로 동작한다. 실시의 형태 14의 전파 측정 시스템은, 실시의 형태 9와 마찬가지의 효과를 갖는다. 동기한 시각 데이터를 사용하여, 검파 데이터와 위치 데이터를 조합하므로, 빔 형상을 보다 정밀하게 측정할 수 있다.
실시의 형태 14의 공중 이동체로의 송전 시스템은, 실시의 형태 10의 경우와 마찬가지로 동작한다. 실시의 형태 14의 송전 시스템은, 실시의 형태 10과 마찬가지의 효과를 갖는다. REV법을 실행할 때에 사용하는 검파 데이터(73J)에 시각 데이터(85)가 포함되므로, 정밀하게 REV법을 실행할 수 있다.
실시의 형태 15.
실시의 형태 15는, 공중 이동체 및 지상측의 장치가 동기한 시각 장치를 갖도록 실시의 형태 7을 변경한 경우이다. 실시의 형태 15는, 실시의 형태 14와 비교하면, 송전 통신계(39) 및 파일럿 통신계(40)를 갖는 점이 상이하다. 실시의 형태 15와 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성에 대하여, 도 41과 도 42를 이용하여 설명한다. 도 41은 본 발명의 실시의 형태 15와 관련되는 공중 이동체를 이용한 전파 측정 시스템 및 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성도이다. 도 42는 실시의 형태 15와 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 측정계 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다. 또, 뒤에서 설명하지만, REV법의 실행 때에는, 송전 통신계(39) 및 파일럿 통신계(40)를 사용하지 않으므로, 송전 제어 장치의 내부 구성은, 실시의 형태 14의 경우의 도 40과 동일하게 된다.
도 41에 대하여, 실시의 형태 7의 경우의 도 18과는 상이한 점을 설명한다. 드론(3P)에 탑재된 탑재 장치(13P)는, 시각 장치(52)이기도 한 측위 센서(18H)를 갖는다. 측위 센서(18H)가 계측하는 위치 데이터(74H)는, 측정계 제어 장치(21P)에 송신된다. 측정계 제어 장치(21P)는, 시각 장치(53)를 갖는다. 송전 제어 장치(22P)는, 시각 장치(54)를 갖는다. 기내 제어 장치(16P), 측정계 제어 장치(21P) 및 송전 제어 장치(22P)는, 동기한 시각을 사용할 수 있다.
도 41을, 실시의 형태 13의 경우의 도 35와 비교하면, 이동체 통신계(12)가 없고, 계측 통신계(45)가 있는 점이 상이하다.
도 42에 대하여, 실시의 형태 13의 경우의 도 36과는 상이한 점을 설명한다. 기내 제어 장치(16P)는, 이동체 통신부(301P)를 갖는다. 측정계 제어 장치(21P)는, 계측 제어 통신부(101P)를 갖는다. 이동체 통신부(301P) 및 계측 제어 통신부(101P)는, 이동체 통신계(12)를 사용하지 않고, 계측 통신계(45)를 사용한다.
REV법의 실행 때에는, 송전 통신계(39) 및 파일럿 통신계(40)를 사용하지 않는 이유를 설명한다. REV법을 실행 중에는, 지정한 이상기(28)의 이상량을 변경할 뿐이고, 그 외의 상태는 변경하지 않을 필요가 있다. 그 때문에, 적어도 일부의 소자 안테나(27)로부터 전파를 방사하는지 여부를 전환하는 것이 필요한 송전 통신계(39)에서는, REV법을 실행 중에는 통신할 수 없다. 검파 데이터(73J)는 데이터의 양이 크고, 파일럿 통신계(40)는 통신 용량이 부족하므로, REV법의 실행 때에는 파일럿 통신계(40)를 사용하지 않는다. 또, REV법의 실행에 필요한 드론으로부터 송신하는 데이터의 양이 작아지거나, 혹은, 파일럿 통신계(40)의 통신 용량이 커지면, REV법의 실행 때에 파일럿 통신계(40)를 사용 가능하다.
실시의 형태 15의 전파 측정 시스템은, 실시의 형태 5와 마찬가지로 동작하고, 마찬가지의 효과가 있다. 동기한 시각 데이터를 사용하여, 검파 데이터와 위치 데이터를 조합하므로, 빔 형상을 보다 정밀하게 측정할 수 있다.
실시의 형태 15의 공중 이동체로의 송전 시스템은, 실시의 형태 10 및 실시의 형태 14의 경우와 마찬가지로 동작하고, 마찬가지의 효과가 얻어진다. REV법을 실행할 때에 사용하는 검파 데이터(73J)에 시각 데이터(85)가 포함되므로, 정밀하게 REV법을 실행할 수 있다.
실시의 형태 16.
실시의 형태 16은, 공중 이동체 및 지상측의 장치가 동기한 시각 장치를 갖도록 실시의 형태 8을 변경한 경우이다. 실시의 형태 16은, 실시의 형태 13과 비교하면, 공중 이동체의 위치를 지상으로부터 계측하도록 한 경우이다. 실시의 형태 16과 관련되는 공중 이동체를 이용한 전파 측정 시스템의 구성에 대하여, 도 43과 도 44를 이용하여 설명한다. 도 43은 본 발명의 실시의 형태 16과 관련되는 공중 이동체를 이용한 전파 측정 시스템의 구성도이다. 도 44는 실시의 형태 16과 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 측정계 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다.
도 43에 대하여, 실시의 형태 7의 경우의 도 20과는 상이한 점을 설명한다. 드론(3Q)에 탑재된 탑재 장치(13Q)는 시각 장치(52)를 갖는다. 측정계 제어 장치(21Q)는 시각 장치(53)를 갖는다. 송전 제어 장치(22Q)는 시각 장치(54)를 갖는다. 기내 제어 장치(16Q), 측정계 제어 장치(21Q) 및 송전 제어 장치(22M)는, 동기한 시각을 사용할 수 있다.
도 44에 대하여, 실시의 형태 13의 경우의 도 36과는 상이한 점을 설명한다. 기내 제어 장치(16Q)는, 위치 부가 검파 데이터 생성부(304)를 갖지 않는다. 측정계 제어 장치(21Q)는, 위치 데이터 시각 부가부(108) 및 위치 부가 검파 데이터 생성부(109)를 갖는다. 위치 데이터 시각 부가부(108)는, 레이저 측위 장치(51)로부터 입력되는 위치 데이터(73)에, 그 시각 데이터(73)를 수신한 시점의 시각 데이터(85)를 부가한다. 또, 레이저 측위 장치(51)가 시각 장치를 갖고 시각 데이터(85)를 포함하는 위치 데이터(73H)를 출력하도록 하더라도 좋다. 레이저 측위 장치(51)가 위치 데이터(73H)를 출력하는 경우는, 위치 데이터 시각 부가부(108)는 불필요하다.
위치 부가 검파 데이터 생성부(109)는, 동일한 시각 데이터(85)가 부가된 검파 데이터(73H)와 위치 데이터(74H)를 세트로 하여, 위치 부가 검파 데이터(70H)를 생성한다. 위치 부가 검파 데이터(70H)는, 데이터 기억부(102Q)에 기억된다.
동작을 설명한다. 실시의 형태 16과 관련되는 공중 이동체를 이용한 전파 측정 시스템에서의 전파의 방사 패턴을 측정하는 수순을 설명하는 플로차트이다. 도 45에 대하여, 실시의 형태 13의 경우의 도 37과는 상이한 점을 설명한다. 스텝 S04B에서, 드론(3Q)에서는, 위치 데이터(74)를 측정하지 않는다. 스텝 S05Q에서, 드론(3Q)에서 측정한 검파 데이터(73H)는, 기내 제어 장치(16Q)로부터 비행 제어 장치(5)에 보내어지고, 또한 이동체 통신계(12) 및 이동체 지령 장치(4C)를 거쳐서, 측정계 제어 장치(21Q)에 보내어진다. 스텝 S17Q에서, 측정계 제어 장치(21Q)가, 수신한 검파 데이터(73H)와 동일한 시각 데이터(85)를 갖는 위치 데이터(74H)를 조합하여 위치 부가 검파 데이터(70H)를 작성한다.
실시의 형태 16의 전파 측정 시스템은, 실시의 형태 8과 마찬가지의 효과가 있다. 동기한 시각 데이터를 사용하여, 검파 데이터와 위치 데이터를 조합하므로, 빔 형상을 보다 정밀하게 측정할 수 있다.
실시의 형태 17.
실시의 형태 17은, 다음의 2점에서 실시의 형태 10을 변경한 경우이다. (변경점 A) 파일럿 신호가 수신될 수 있는 경우만, 무선 송전 장치로부터 전파를 방사한다. (변경점 B) 송전 장치(1A)가 전파를 방사하기 전에 파일럿 신호로부터 방사 방향을 결정하여, 방사 방향으로 전파를 방사한다. REV법을 실행할 때에도, 방사 방향으로 전파를 방사하는 상태를 REV법의 기준 상태로 한다.
실시의 형태 17에서는, 실시의 형태 10과 비교하여, 송전 제어 장치(22R)만을 변경하고 있다. 실시의 형태 17과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성에 대하여, 도 46을 이용하여 설명한다. 도 46은 실시의 형태 17과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다.
도 46에 관하여, 실시의 형태 10의 경우의 도 27과는 상이한 점을 설명한다. 송전 제어 장치(22R)는, 방사 가부 판단부(214)를 갖는다. 방사 가부 판단부(214)는, 송전 장치(1A)가 전파를 방사하는 것의 가부를 판단한다. 또한, 데이터 기억부(201R), REV법 실행부(202R) 및 전파 방사 제어부(209R)도 변경하고 있다. 데이터 기억부(201R)는, 방사 가부 데이터(98)도 기억한다. 방사 가부 데이터(98)는, 송전 장치(1A)가 전파를 방사할 수 있는지 여부를 나타내는 데이터이다.
방사 가부 판단부(214)는, 파일럿 신호(31)의 신호 강도로부터 전파를 방사하는 것의 가부를 판단하여, 방사 가부 데이터(98)를 설정한다. 파일럿 신호(31)의 신호 강도가 임계치 이상인 경우에, 방사 가(可), 즉 방사할 수 있다고 판단한다. 파일럿 신호(31)의 신호 강도가 임계치 미만인 경우에, 방사 부(否), 즉 방사할 수 없다고 판단한다. 파일럿 신호(31)의 신호 강도가 임계치 이상인 경우를, 파일럿 신호(31)가 수신될 수 있다고 말한다. 파일럿 신호(31)의 신호 강도가 임계치 미만인 경우를, 파일럿 신호(31)가 수신될 수 없다고 말한다.
전파 방사 제어부(209R)는, 방사 가부 데이터(98)를 참조하여, 각 소자 모듈에 대한 방사 지령치(93) 및 송전 제어 신호(76)를 생성한다. 방사 가부 데이터(98)가 부(否)로 변화한 경우는, 전파 방사 제어부(209R)는 송전 장치(1A)에 송전을 금지하는 송전 제어 신호(76)를 송신한다. 송전 장치(1A)가 송전 중(전파를 방사 중)인 경우는, 송전을 금지하는 송전 제어 신호(76)를 수신하면, 송전 장치(1A)는 송전을 정지한다. 송전을 금지하는 송전 제어 신호(76)를 수신한 후는, 송전이 가능하다(금지되어 있지 않다)고 하는 송전 제어 신호(76)를 수신할 때까지는, 송전 장치(1A)는 송전할 수 없다.
방사 가부 데이터(98)가 가(可)로 변화한 경우는, 전파 방사 제어부(209R)는 송전이 가능한 것을 통지하는 송전 제어 신호(76)를 송전 장치(1A)에 송신한다. 송전 장치(1A)는, 송전이 가능한 것을 통지하는 송전 제어 신호(76)를 수신하면, 송전 금지를 해제한다. 또, 송전이 가능한 것을 통지하는 송전 제어 신호(76)를 송신하지 않고, 송전 금지의 상태에서도 방사 지령치(93)를 나타내는 송전 제어 신호(76)를 수신한 경우에 송전하도록 하더라도 좋다.
방사 가부 데이터(98)가 가(可)이고, 또한 송전 장치(1A)가 송전 금지의 상태가 아니고, 또한 송전할 필요가 있고, 또한 송전 방향이 정해져 있는 경우에, 전파 방사 제어부(209R)는 방사 지령치(93)에 근거하여 생성한 송전 제어 신호(76)를 송전 장치(1A)에 송신한다. 그 이외의 경우는, 전파 방사 제어부(209R)는, 방사 지령치(93)를 생성하지 않고, 방사 지령치(93)에 근거하여 생성한 송전 제어 신호(76)를 송전 장치(1A)에 송신하지 않는다. 다시 말해, 전파 방사 가부 판단부(214)가 판단한 결과인 방사 가부 데이터(98)에 근거하여, 수신된 파일럿 신호(31)의 신호 강도가 임계치 이상인 경우에 무선 송전 장치(1A)로부터 송전 전파(2)를 방사할 수 있고, 수신된 파일럿 신호(31)의 신호 강도가 임계치 미만인 경우에 무선 송전 장치(1A)가 송전 전파(2)를 방사하지 않도록 제어한다.
REV법 실행부(202R)는, REV법을 위해 송전 장치(1A)가 전파를 방사하기 전에, 파일럿 신호(31)로부터 방사 방향을 결정하여, 방사 방향으로 전파를 방사하는 상태를 REV법 기준 상태(89)로 한다. 그 후에, REV법 실행부(202R)는, REV법 시나리오(88)를 실행하여 전파를 방사한다.
또한, REV법을 실행한 후에 송전을 위해 전파를 방사하기 전에도, 파일럿 신호(31)에 근거하여 방사 방향을 결정한 후에, 무선 송전 장치(1A)가 송전 전파(2)를 방사하여 송전을 개시한다. 그렇게 함으로써, 드론(3R)이 존재하는 방향과는 상이한 방향으로 방사되는 전파를 적게 할 수 있다.
동작을 설명한다. 도 47은 실시의 형태 17과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 수순을 설명하는 플로차트이다. 도 47에 대하여, 실시의 형태 10의 경우의 도 28과는 상이한 점을 설명한다.
S21의 다음에, 스텝 S36을 추가하고 있다. S36에서는, REV법 실행부(202R)는, 파일럿 신호(31)로부터 방사 방향을 결정하고, 방사 방향으로 송전 전파(2)를 방사하는 상태에서의 각 이상기(28)의 이상량을 REV법 기준 상태(89)에 설정한다.
위상 오프셋 값을 이상기(28)에 설정하는 S23 및 S25는, 송전 장치(1A)가 전파를 방사하지 않는 상태이다. S25의 실행 후 및 송전 실행 중인 S26으로부터 S30을 결정된 주기로 반복하여 실행할 때에, S26의 전에 실행하는 스텝 S37에서, 파일럿 신호(31)의 신호 강도(파일럿 신호 강도)가 임계치 이상인지 여부를 체크한다. 파일럿 신호 강도가 임계치 이상인 경우(S37에서 예)는, S26으로부터 S30의 송전 처리를 계속한다. 임계치 미만인 경우(S37에서 예)는, S38에서 송전을 정지한다. 임계치는, 파일럿 신호(31)가 정상적으로 수신될 수 있는 상태에서의 파일럿 신호 강도를 기준으로 하여, 적절히 작은 값으로 설정한다.
S26으로부터 S30의 송전 처리는, 반드시 드론(3R)이 송신하는 파일럿 신호(31)가 도래하는 도래 방향을 구한 후에, 도래 방향을 향하는 방향을 방사 방향으로 하여 송전한다.
파일럿 신호 강도가 임계치 미만인 상태는, 이하의 어느 하나의 상태라고 생각된다.
(상태 1) 드론(3R)에 어떠한 이상이 있어, 송전 전파(2)를 수신할 수 없는 상태.
(상태 2) 드론(3R)의 자세가 기울어 있어, 수전 안테나(34) 및 파일럿 송신기(32)가 송전 장치(1A)의 방향을 향하고 있지 않은 상태.
(상태 1) 또는 (상태 2)의 어느 상태에서도, 송전 장치(1A)로부터 송전하는 전력은, 드론(3R)에서 수신할 수 없어 쓸모없게 된다. 파일럿 신호 강도를 임계치와 비교함으로써, (상태 1) 또는 (상태 2)를 검출할 수 있어, 쓸모없이 송전 전파(2)를 방사하는 것을 방지할 수 있다.
(변경점 A) 또는 (변경점 B)의 어느 한쪽만을 실시하더라도 좋다. 실시의 형태 10과는 상이한 송전 시스템의 실시의 형태에, (변경점 A) 또는 (변경점 B)의 적어도 어느 한쪽을 적용하더라도 좋다.
실시의 형태 18.
실시의 형태 18은, REV법으로 소자 전계 벡터를 산출하는 처리의 일부를 공중 이동체에서 실시하여, 공중 이동체로부터 송전 제어 장치에 송신하는 데이터의 양을 작게 하도록, 실시의 형태 17을 변경한 경우이다. 실시의 형태 18에서는, 실시의 형태 17과 비교하여, 송전 제어 장치(22S), 기내 제어 장치(16S) 및 데이터 기억 장치(17S)를 변경하고 있다. 실시의 형태 18과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성에 대하여, 도 48을 이용하여 설명한다. 도 48은 실시의 형태 18과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다. 도 48에 관하여, 실시의 형태 17의 경우의 도 46과는 상이한 점을 설명한다.
계측 기간 Tj는, 데이터 취득 커맨드로 통지되는 복수의 기간이다. 각각의 계측 기간은, 조작 이상기가 이상량을 변경하는 기간에 대응한다. 드론(3S)에 탑재된 데이터 기억 장치(17S)는, 최대 최소 시각(61) 및 최대 최소 진폭 값(62)도 기억한다. 최대 최소 시각(61)이란, 계측 기간 Tj 내에 실제로 검출된 전계 강도 Cj(t)가 최대가 되는 시각 tjmax와 전계 강도 Cj(t)가 최소가 되는 시각 tjmin이다. 최대 최소 진폭 값(62)은, 계측 기간 Tj 내의 전계 강도 Cj(t)의 최대치 Cjmax와 최소치 Cjmax이다. 최대 최소 시각(61) 및 최대 최소 진폭 값(62)이, 데이터 취득 커맨드(87)에 대한 답신으로서, 기내 제어 장치(16S)로부터 송전 제어 장치(22S)에 송신된다. 최대 최소 시각(61) 및 최대 최소 진폭 값(62)이, 계측 기간 Tj에서의 전계의 변화를 나타내는 전계 변화 데이터이다. 최대 최소 시각(61)만을 전계 변화 데이터로서 답신하더라도 좋다.
기내 제어 장치(16S)는, 송신 데이터 생성부(306)를 갖지 않고, 계측 데이터 해석부(311)를 갖는다. 계측 데이터 해석부(311)는, 실시의 형태 10에 있어서, 송전 제어 장치(22J)가 갖는 계측 데이터 해석부(210)와 마찬가지의 처리를 실시한다. 계측 데이터 해석부(311)는, 계측 기간 Tj 내에 실제로 계측된 전계 강도 Cj(t)로부터 시각 tjmax 및 시각 tjmin을 검출한다. 또한, 전계 강도 Cj(t)의 최대치 Cjmax와 최소치 Cjmax도 검출한다. 계측 기간 Tj는, 그 기간 내에 계측된 전계 강도 Cj(t)를 해석하는 해석 기간이다. 또한, 최대 최소 시각(61)으로서 데이터 기억 장치(17S)에 기억되는 시각 tjmax 및 시각 tjmin은, 해석 기간의 각각에서 계측된 전계 강도 Cj(t)를 해석하여 얻어지는 이상량 검출 시각이다. 계측 데이터 해석부(311)는, 해석 기간마다 이상량 검출 시각을 검출한다.
이동체 통신부(301)는, 최대 최소 시각(61) 및 최대 최소 진폭 값(62)을 송전 제어 장치(22S)에 송신한다. 이동체 통신부(301)는, 계측 기간 Tj에서 계측된 전계 강도 Cj, 즉 검파 데이터(73J)는, 송전 제어 장치(22S)에 송신하지 않는다.
송전 제어 장치(22S)가 갖는 데이터 기억부(201S)에서는, 드론(3S)으로부터 송신되는 최대 최소 시각(61) 및 최대 최소 진폭 값(62)을 기억한다. 검파 데이터(73J)는 드론(3S)으로부터 송신되지 않으므로, 데이터 기억부(201S)에는 검파 데이터(73J)는 기억되지 않는다.
소자 전계 연산부(205S)는, 계측 데이터 해석부(210)를 갖지 않는다. 이상량 취득부(211)는, 최대 최소 시각(61)인 시각 tjmax 및 시각 tjmin에서의 위상 조작 데이터(90)에 기록된 이상기(28j)의 이상량을 구한다. 소자 전계 위상 계산부(212)는, 위상을 변화시킨 이상기(28j)의 소자 전계 벡터(91)의 위상(소자 전계 위상)을 계산한다. 소자 전계 진폭 계산부(213)는, 전계 강도 Cj(t)의 최대치 Cjmax와 최소치 Cjmax의 비율로부터, 소자 전계 벡터(91)의 진폭을 계산한다. 위상 오프셋 값 계산부(206)는, 각 이상기(28)의 소자 전계 벡터(91)의 위상으로부터 각 이상기(28)의 위상 오프셋 값(92)을 계산한다. 위상 오프셋 값 설정부(207)는, 위상 오프셋 값(92)을 각 이상기(28)에 설정한다.
동작을 설명한다. 도 49는 실시의 형태 18과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 수순을 설명하는 플로차트이다. 도 50은 실시의 형태 18과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서 REV법에 의해 각 소자 안테나가 방사하는 전파의 소자 전계 벡터를 계산하는 수순을 설명하는 플로차트이다.
도 49에 대하여, 실시의 형태 17의 경우의 도 47과는 상이한 점을 설명한다. 2단계 모듈(26)의 소자 전계 벡터를 구하는 스텝 S22S에서는, 드론(3S)으로부터 송신되는 최대 최소 시각(61)을 사용하여, 이상기(29j)에 의해 위상이 제어되는 소자 안테나(27j)가 방사하는 전파에 의한 소자 전계 벡터를 계산한다. S24S에서는, 송전 장치(1A)에서 생성되는 전계 벡터의 위상차를 구하기 위해, 1단계 모듈(24)을 대상으로 하여 S22S와 마찬가지로 REV법을 실행한다.
도 50에 대하여, 실시의 형태 10의 경우의 도 29와는 상이한 점을 설명한다. S47S의 전에, 스텝 S54를 추가하고 있다. S54에서는, 드론(3S)이 갖는 계측 데이터 해석부(311)가, 계측 기간 Tj의 전계 강도 Cj의 최대치 Cjmax와, 최대치 Cjmax를 취하는 시각인 시각 tjmax를 검출한다. 또한, 계측 기간 Tj의 전계 강도 Cj의 최소치 Cjmin과, 최소치 Cjmin을 취하는 시각인 시각 tjmin을 검출한다.
S54의 처리는, 도 29에서의 S49의 처리에 상당한다. 그 때문에, 도 50에서는, S49는 존재하지 않는다.
스텝 S47S에서는, 이동체 통신부(301)가, 시각 tjmax 및 시각 tjmin을 최대 최소 시각(61)으로서, 최대치 Cjmax 및 최소치 Cjmin을 최대 최소 진폭 값(62)으로서, 송전 제어 장치(22S)가 갖는 송전 제어 통신부(204)에 송신한다.
스텝 S48S에서, 송전 제어 통신부(204)가, 시각 tjmax 및 시각 tjmin과, 최대치 Cjmax 및 최소치 Cjmin을 수신한다.
S48S의 다음에, S50이 실행된다. 이후는, 도 29와 마찬가지이다.
실시의 형태 18의 공중 이동체로의 송전 시스템에서는, 실시의 형태 17이 갖는 효과에 더하여, REV법을 실행하기 위해 드론(3S)으로부터 송신되는 데이터의 양을 적게 할 수 있다.
실시의 형태 19.
실시의 형태 19는, REV법으로 소자 전계 벡터를 산출하는 처리를 공중 이동체에서 실시하여, 공중 이동체로부터 송전 제어 장치에 송신하는 데이터의 양을 작게 하도록, 실시의 형태 17을 변경한 경우이다. 또한, REV법 시나리오에서는, 각 이상기의 이상량을 이산적으로, 또한 이상량이 동일한 값을 취하는 시간을 적절한 길이로 한다. 그렇게 함으로써, 실제의 이상기의 이상량의 변화의 기록이 아닌 REV법 시나리오를 사용하여 시각으로부터 이상량을 구할 때의 오차를 작게 할 수 있다.
실시의 형태 19에서는, 실시의 형태 17과 비교하여, 송전 제어 장치(22T), 기내 제어 장치(16T), 데이터 기억 장치(17T)를 변경하고 있다. 실시의 형태 19와 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성에 대하여, 도 51을 이용하여 설명한다. 도 51은 실시의 형태 19와 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다. 도 51에 관하여, 실시의 형태 18의 경우의 도 48과는 상이한 점을 설명한다.
전계 계산 커맨드(99)는, 기내 제어 장치(16T)에 소자 전계 벡터의 계산을 지시하는 커맨드이다. 송전 제어 장치(22T)로부터 전계 계산 커맨드(99)를 기내 제어 장치(16T)에 송신한다. 기내 제어 장치(16T)는, 검파 데이터(73J)를 생성한다. 기내 제어 장치(16T)는, 검파 데이터(73J)와 REV법 시나리오(88)에 근거하여 각 소자 모듈의 소자 전계 벡터(91)를 계산한다. 기내 제어 장치(16T)는, 소자 전계 벡터(91)를 송전 제어 장치(22T)에 송신한다.
송전 제어 장치(22T)는, 데이터 취득 커맨드 생성부(203) 및 소자 전계 연산부(205)를 갖지 않는다. 또한, 데이터 기억부(201T)는, 최대 최소 시각(61) 및 최대 최소 진폭 값(62)을 기억하지 않는다. 데이터 기억부(201T)는, REV법 시나리오(88T)를 기억한다. REV법 시나리오(88T)는, 소자 전계 벡터(91)를 기내 제어 장치(16T)에서도 계산하기 쉽게 하기 위해, REV법 시나리오(88)로부터 변경하고 있다. REV법 시나리오(88T)에 대해서는, 뒤에서 설명한다.
송전 제어 장치(22T)는, 전계 계산 커맨드(99)를 생성하는 전계 계산 커맨드 생성부(215)를 갖는다. 전계 계산 커맨드(99)는, 이동체 통신계(12)에 의해 기내 제어 장치(16T)에 보내어진다. 전계 계산 커맨드(99)에는, REV법 개시 시각이 포함된다. REV법 개시 시각(63)은, 송전 제어 장치(22T)의 REV법 실행부(202)가 REV법 시나리오(88T)의 실행을 개시하는 시각이다. REV법 시나리오(88T)에 있어서, 실행 개시는 기준 사상이고, 그 이외의 사상은 실행 개시로부터의 상대 시간으로 시간이 표현되는 비기준 사상이다.
REV법 시나리오가 복수의 기준 사상을 갖는 경우 등, 전계 계산 커맨드(99)를 복수 회, 혹은 기준 사상의 시각을 전하는 커맨드를 1회 이상 그리고 전계 계산 커맨드(99)를 1회, 송신하더라도 좋다.
기내 제어 장치(16T)는, 전계 계산 커맨드 해석부(312)와 소자 전계 연산부(313)를 갖는다. 데이터 기억 장치(17T)는, REV법 시나리오(88T), REV법 개시 시각(63), 계측 기간 데이터(94), 검파 데이터(73J), 최대 최소 시각(61), 최대 최소 진폭 값(62) 및 소자 전계 벡터(91)를 기억한다. REV법 시나리오(88T)는, 드론(3T)이 이륙하기 전에 데이터 기억 장치(17T)에 기억시켜 둔다.
데이터 기억 장치(17T)에 기억시키는 REV법 시나리오(88T)는, 송전 제어 장치(22T)가 갖는 것과 동일하더라도 좋고, 소자 전계 연산부(313)에 필요한 데이터만을 포함하는 것이더라도 좋다. 최대 최소 시각(61) 및 최대 최소 진폭 값(62)은, 소자 전계 연산부(313)가 소자 전계 벡터(91)를 구하기 위해 사용하는 데이터이므로, 그들을 소자 전계 연산부(313)의 내부 데이터로 하여, 데이터 기억 장치(17T)에 기억하지 않더라도 좋다.
전계 계산 커맨드(99)를 수신하면, 전계 계산 커맨드 해석부(312)는, 전계 계산 커맨드(99)로부터 REV법 개시 시각(63)을 추출하여 데이터 기억 장치(17R)에 저장한다. REV법 시나리오(88T)를 참조하여, 조작 이상기마다의 계측 기간 Tj인 계측 기간 데이터(94)를 설정한다. 계측 기간 데이터(94)에서는, REV법 개시 시각(63)을 사용하여 상대 시간을 시각으로 치환한다. REV법 개시 시각(63) 및 REV법 시나리오(88T)에 근거하여 복수의 계측 기간 Tj를 설정하는 것은, 이상량 검출 시각인 시각 tjmax 및 시각 tjmin을 드론으로 구하는 실시의 형태 18 등에 적용하더라도 좋다.
검파기 제어부(302)는, 계측 기간 데이터(94)에서 지정되는 계측 기간에 검파 데이터(73)를 생성한다. 검파 데이터 시각 부가부(303)는, 검파 데이터(73)에 시각 데이터(85)를 부가하여 검파 데이터(73J)를 생성한다. 검파 데이터(73J)는, 데이터 기억 장치(17J)에 저장된다.
소자 전계 연산부(313)는, 계측 기간 데이터(94)에서 지정되는 기간에 계측된 검파 데이터(73J)와 REV법 시나리오(88T)에 근거하여, 소자 전계 벡터(91)를 계산한다. 위상 조작 데이터(90)는, 송전 제어 장치(21J)로부터 기내 제어 장치(16T)에 송신되지 않는다. 그 때문에, 소자 전계 연산부(313)는, 위상 조작 데이터(90) 대신에 REV법 시나리오(88T)를 참조한다.
소자 전계 연산부(313)는, 계측 데이터 해석부(311), 이상량 취득부(314), 소자 전계 위상 계산부(315) 및 소자 전계 진폭 계산부(316)를 갖는다. 계측 데이터 해석부(311)는, 실시의 형태 18과 마찬가지로, 계측 기간 Tj 내에 실제로 계측된 전계 강도 Cj(t)가 최대 또는 최소가 되는 시각 tjmax 및 시각 tjmin을 검출한다. 엄밀하게 최대 또는 최소의 시각을 구하는 것이 아니라, 노이즈에 의한 변동분을 제외하고 전계 강도 Cj(t)가 최대 또는 최소에 가까운 값을 취하는 기간의 중앙 부근의 시각을, 시각 tjmax 및 시각 tjmin으로서 검출한다. 또한, 전계 강도 Cj(t)의 최대치 Cjmax와 최소치 Cjmax도 검출한다. 시각 tjmax 및 시각 tjmin은, 최대 최소 시각(61)으로서 데이터 기억 장치(17T)에 기억된다. 최대치 Cjmax와 최소치 Cjmax는, 최대 최소 진폭 값(62)으로서 데이터 기억 장치(17T)에 기억된다.
이상량 취득부(314)는, 시각 tjmax 및 시각 tjmin으로부터 REV법 개시 시각(63)을 감산하여 상대 시간으로 변환한다. 상대 시간으로 변환한 시각 tjmax 및 시각 tjmin에서 REV법 시나리오(88T)를 참조하여, 시각 tjmax에서의 이상량 pjmax와 시각 tjmin에서의 이상량 pjmin을 구한다. 또, REV법 시나리오(88T) 중의 상대 시간을, REV법 개시 시각(63)을 가산함으로써 시각으로 변환하여 두고, 시각 tjmax 및 시각 tjmin에서 참조하더라도 좋다.
소자 전계 위상 계산부(315)는, 이상량 pjmax 및 이상량 pjmin으로부터 각 소자 모듈의 소자 전계 위상을 계산한다. 소자 전계 진폭 계산부(316)는, 최대치 Cjmax와 최소치 Cjmax로부터 소자 전계 진폭을 계산한다.
소자 전계 연산부(313)가 위상 조작 데이터(90)를 참조하지 않는 경우에도, 조작 이상량을 확실히 취득할 수 있도록, REV법 시나리오(88T)를 변경하고 있다. REV법 시나리오(88T)에서는, 각 이상기(28)의 이상량을 이산적으로 변화시킨다. 이상기(28)가 동일한 이상량을 취하는 기간은 결정된 길이 이상으로 한다. 다시 말해, REV법 시나리오(88T)에서는, 조작 이상기(이상량이 조작되는 이상기(28))가 상이한 복수의 이상량의 각각을 결정된 계속 시간 이상은 취하도록, 위상 조작 패턴이 규정되어 있다.
REV법 실행부(202T)가 REV법 시나리오(88T)에 따라 송전 장치(1A)를 제어할 때에, 실제로 이상량을 변화시키는 타이밍에는 오차가 발생할 수 있다. 오차가 발생하는 경우에도, 이상량이 동일한 값을 취하는 기간은 결정된 길이 이상이므로, REV법 시나리오(88T)를 참조하여 시각 tjmax 및 시각 tjmin에서의 이상량 pjmax 및 이상량 pjmin을, 오차를 작게 하여 취득할 수 있다. 이상량을 일정하게 하는 기간의 길이는, 실행 시각이 변동하는 오차의 크기를 고려하여 적절히 결정한다.
동작을 설명한다. 도 52는 실시의 형태 19와 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 수순을 설명하는 플로차트이다. 도 53은 실시의 형태 19와 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서 REV법에 의해 각 소자 안테나가 방사하는 전파의 소자 전계 벡터를 계산하는 수순을 설명하는 플로차트이다.
도 52에 대하여, 실시의 형태 18의 경우의 도 49와는 상이한 점을 설명한다. 2단계 모듈(26)의 소자 전계 벡터를 구하는 스텝 S22T에서는, 드론(3T)에서 REV법 시나리오(88T)에 근거하여, 이상기(29j)에 의해 위상이 제어되는 소자 안테나(27j)가 방사하는 전파에 의한 소자 전계 벡터(전파의 위상차)를 계산한다. S24T에서는, 송전 장치(1A)에서 생성되는 전계 벡터의 위상차를 구하기 위해, 1단계 모듈(24)을 대상으로 하여 S22T와 마찬가지로 드론(3T)에서 REV법을 실행한다.
도 53에 대하여, 실시의 형태 18의 경우의 도 50과는 상이한 점을 설명한다. S47S 및 S48S가 없고, 스텝 S55~S59를 추가하고 있다. S54~S58은, 드론(3T)에서 실행되는 처리이다. S54에서는, 실시의 형태 18의 경우와 마찬가지로 계측 데이터 해석부(311)가 시각 tjmax 및 시각 tjmin을 검출한다. 스텝 S54의 다음에, 스텝 S55에서 이상량 취득부(314)가, REV법 시나리오(88T)를 참조하여, 시각 tjmax에서의 이상기(28j)의 이상량 pjmax를 검출한다. 시각 tjmin에서의 이상기(28j)의 이상량 pjmin도 검출한다.
스텝 S56에서, 소자 전계 위상 계산부(315)가, 이상량 pjmax와 이상량 pjmin으로부터, 소자 전계 벡터 Ej의 위상을 계산한다. 이상량 pjmax로부터 계산한 위상과 이상량 pjmin으로부터 계산한 위상의 평균을, 소자 전계 벡터 Ej의 위상으로 한다. 스텝 S57에서, 소자 전계 진폭 계산부(316)가, 전계 강도 Cj의 최대치 Cjmax와 최소치 Cjmin의 비의 값으로부터, 소자 전계 벡터 Ej의 진폭을 계산한다.
스텝 S58에서는, 이동체 통신부(301)가, 소자 전계 벡터 Ej를 송전 제어 장치(22S)가 갖는 송전 제어 통신부(204)에 송신한다. 스텝 S59에서, 송전 제어 통신부(204)가, 소자 전계 벡터 Ej를 수신한다.
S59의 다음에, S53에서 아직 처리되지 않은 이상기(28)가 있는지 체크한다.
실시의 형태 19에서는, 실시의 형태 17이 갖는 효과에 더하여, 드론에서 REV법을 실행하므로, 드론(3S)으로부터 송신되는 데이터의 양을 적게 할 수 있다. 또한, 송전 제어 장치(22T)에서 REV법에 의해 소자 전계 벡터 Ej를 계산하지 않더라도 되게 된다.
기내 제어 장치에서, 조작 이상기의 조작 이상량인 이상량 pjmax와 이상량 pjmin을 구하는 처리까지 실시하고, 이상량 pjmax와 이상량 pjmin으로부터 소자 전계 벡터 Ej를 계산하는 처리는 송전 제어 장치에서 실시하더라도 좋다. 그 경우에는, 기내 제어 장치로부터 송전 제어 장치에 이상량 pjmax와 이상량 pjmin을 송신한다.
실시의 형태 20.
실시의 형태 20은, REV법을 작은 전력과 통상 전력의 2단계에서 실행하도록, 실시의 형태 18을 변경한 경우이다. 실시의 형태 20에서는, 실시의 형태 18과 비교하여, 송전 제어 장치(22U)를 변경하고 있다. 실시의 형태 20과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템의 구성에 대하여, 도 54를 이용하여 설명한다. 도 54는 실시의 형태 20과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 제어 장치 및 기내 제어 장치의 내부 구성을 설명하는 도면이다. 도 54에 관하여, 실시의 형태 18의 경우의 도 48과는 상이한 점을 설명한다.
송전 제어 장치(22U)는, 데이터 기억부(201U)와 REV법 실행부(202U)를 변경하고 있다. 데이터 기억부(201U)는, 작은 전력 비율(65), 통상 전력 비율(66) 및 사용 전력 비율(67)을 기억하고 있다. 작은 전력 비율(65)은, REV법을 1회째에 실행하는 경우에 방사하는 송전 전파(2)의 전력의 정격 출력에 대한 비율이다. 작은 전력 비율(65)은, 절반(50%) 미만, 예컨대 20% 정도로 설정된다. 통상 전력 비율(66)은, REV법을 2회째에 실행하는 경우에 방사하는 송전 전파(2)의 전력의 정격 출력에 대한 비율이다. 통상 전력 비율(66)은, 절반(50%)을 넘는 값, 예컨대 80%로 설정된다. 사용 전력 비율(67)은, 2단계의 각각에서 실행하는 REV법에서 사용하는 전력 비율이다. 1회째의 REV법에서는, 사용 전력 비율(67)에는 작은 전력 비율(65)이 설정된다. 2회째의 REV법에서는, 사용 전력 비율(67)에는 통상 전력 비율(66)이 설정된다. 다시 말해, REV법 시나리오(88)에는, 작은 전력으로 실행하는 부분과 통상 전력으로 실행하는 부분이 있게 된다.
REV법 실행부(202U)는, 작은 전력 비율(65), 통상 전력 비율(66) 및 사용 전력 비율(67)을 참조하여, REV법을 2단계에서 실행한다.
동작을 설명한다. 도 55는 실시의 형태 20과 관련되는 무선 송전 장치에 의한 공중 이동체로의 송전 시스템에서의 송전 수순을 설명하는 플로차트이다. 도 55에 대하여, 실시의 형태 18의 경우의 도 49와는 상이한 점을 설명한다.
S36과 S22U의 사이에, 스텝 S61을 추가하고 있다. S61에서는, 사용 전력 비율(67)에 작은 전력 비율(65)을 설정한다.
S22U 및 S24U에서, 사용 전력 비율(67)에서 지정되는 전력으로 전파를 방사한다.
S25의 뒤에, 스텝 S62 및 스텝 S63을 추가하고 있다. S62에서는, 사용 전력 비율(67)이 작은 전력 비율(65)과 동일한지 여부, 즉 사용 전력이 작은 전력인지 여부를 체크한다. 사용 전력 비율(67)이 작은 전력 비율(65)과 동일한 경우(S62에서 예)는, S63에서, 사용 전력 비율(67)에 통상 전력 비율(66)을 설정한다. S63의 실행 후는, 통상 전력에서의 REV법을 실행하기 위해, S22U로 돌아간다. 사용 전력 비율(67)이 작은 전력 비율(65)과 동일하지 않은 경우(S62에서 아니오)는, 송전을 개시하기 위해 S37로 진행한다.
도 55에 나타내는 플로차트에서는, 처음에는 작은 전력으로 REV법을 실행한다. REV법을 아직 실시하지 않은 상태에서는, 송전 장치(1A)가 송전 전파(2)를 의도하지 않은 방향으로 방사할 가능성이 있다. 통상 전력으로 송전 전파(2)가 의도하지 않은 방향으로 방사되면, 예상 못한 폐해가 발생할 가능성이 있다. 처음에는 작은 전력으로 REV법을 실행함으로써, 의도하지 않은 방향으로 송전 전파(2)를 방사하는 것에 의해 폐해가 발생하는 경우에도, 폐해를 문제가 되지 않을 정도로 작게 할 수 있다.
1회째에 작은 전력으로 실행하는 REV법에 의해, S23 및 S25에서 작은 전력의 REV법으로 얻어진 위상 오프셋 값이 이상기에 설정된다. 그 때문에, 2회째의 통상 전력으로 실행하는 REV법에서는, 각 소자 모듈의 위상 기준이 상당이 맞추어진 상태에서 실행된다. 다시 말해, 작은 전력에서의 REV법을 실행한 후는, 의도하는 방향과 거의 동일한 방향으로 송전 장치(1A)가 송전 전파(2)를 방사할 수 있다. 통상 전력으로 REV법을 실행할 때에는, 송전 전파(2)를 방사하는 것에 의해 폐해가 발생할 가능성을 매우 작게 할 수 있다. 통상 전력으로 REV법을 실행하므로, 실제로 사용하는 상태에서 REV법을 실행할 수 있다.
REV법을 작은 전력과 통상 전력의 2단계에서 실행하는 것은, 다른 실시의 형태에도 적용할 수 있다. 작은 전력과 통상 전력은, 정격 전력에 대한 비율이 아닌, 전력치를 지정하더라도 좋다.
본 발명은 그 발명의 정신의 범위 내에 있어서 각 실시의 형태의 자유로운 조합, 혹은 각 실시의 형태의 변형이나 생략이 가능하다.
1, 1A : 송전 장치(무선 송전 장치)
2 : 송전 전파(전파)
3, 3A, 3B, 3C, 3D, 3E, 3F, 3G, 3H, 3J, 3K, 3L, 3M, 3N, 3P, 3Q, 3R, 3S, 3T : 드론(공중 이동체)
4, 4A, 4B, 4C, 4D : 이동체 지령 장치
5, 5A, 5B, 5C : 비행 제어 장치
6 : 기내 통신 안테나
7 : 무선 모뎀
8, 8A, 8B : 드론 전원 시스템
9 : 구동 모터
10 : 무선 모뎀
11 : 통신 안테나
12 : 이동체 통신계
13, 13A, 13B, 13C, 13D, 13E, 13F, 13G, 13H, 13J, 13K, 13L, 13M, 13N, 13P, 13Q, 13R, 13S, 13T : 탑재 장치
14 : 모니터 안테나(계측용 안테나)
15, 15A : 검파기(전파 계측부)
16, 16A, 16B, 16D, 16E, 16F, 16G, 16H, 16J, 16K, 16M, 16N, 16P, 16Q, 16R, 16S, 16T : 기내 제어 장치
17, 17A, 17B, 17D, 17E, 17G, 17S, 17T : 데이터 기억 장치(기억 장치)
18, 18H : 측위 센서(위치 측정부)
19 : 축전 유닛
20a, 20b, 20c : 부하측 컨버터
21, 21D, 21E, 21F, 21G : 측정계 제어 장치(방사 전파 데이터 생성부)
21A, 21B, 21H, 21J, 21K, 21L, 21M, 21N, 21P, 21Q : 측정계 제어 장치
22 : 송전 제어 장치
22A, 22B, 22C, 22D : 송전 제어 장치(방사 방향 결정부, 지향 방향 변경부)
22H, 22J, 22K, 22L, 22M, 22R, 22S, 22T, 22U : 송전 제어 장치
23 : 송신 신호 생성부
24, 24A : 1단계 모듈(소자 모듈)
25 : 분배 회로
26, 26A : 2단계 모듈(소자 모듈)
27 : 소자 안테나
28 : 이상기
29 : 증폭기
30 : 페이즈드 어레이 안테나(피계측 안테나, 송전 안테나)
31 : 파일럿 신호
32 : 파일럿 송신기(방향 신호 송신부, 방향 신호 송수신부)
33 : 파일럿 송신 안테나(방향 신호 송신부, 방향 신호 송수신부)
34 : 수전 안테나
35 : 정류기
36 : 정류측 컨버터
37 : 파일럿 수신 안테나(방향 신호 수신부, 방향 신호 송수신부)
38 : 도래 방향 검출 장치(방사 방향 결정부)
39 : 송전 통신계
40 : 파일럿 통신계
41 : 펄스 변조 스위치
42, 42A : 통신계 전환 스위치
43 : 펄스 변조 스위치
44 : 검파기
45 : 계측 통신계
46 : 기내 통신기
47 : 기내 통신 안테나
48 : 지상 통신 안테나
49 : 지상 통신기
50 : 계측계 전원선
51 : 레이저 측위 장치
52, 53, 54 : 시각 장치
101, 101N, 101P : 계측 제어 통신부
102, 102Q : 데이터 기억부
103 : 계측 제어부
104 : 상대 위치 변환부
105 : 빔 형상 데이터 생성부(방사 전파 데이터 생성부)
106 : 파일럿 신호 복조부
107 : 통신계 전환부
108 : 위치 데이터 시각 부가부
109 : 위치 부가 검파 데이터 생성부
201, 201K, 201R, 201S : 데이터 기억부
202, 202R : REV법 실행부
203 : 데이터 취득 커맨드 생성부
204 : 송전 제어 통신부
205 : 소자 전계 연산부
206 : 위상 오프셋 값 계산부
207 : 위상 오프셋 값 설정부
208 : 방사 방향 결정부
209, 209R : 전파 방사 제어부(지향 방향 변경부)
210 : 계측 데이터 해석부
211 : 이상량 취득부
212 : 소자 전계 위상 계산부
213 : 소자 전계 진폭 계산부
214 : 방사 가부 판단부
215 : 전계 계산 커맨드 생성부
301, 301N, 301P : 이동체 통신부
302 : 검파기 제어부
303 : 검파 데이터 시각 부가부(수신 전파 데이터 시각 부가부)
304 : 위치 부가 검파 데이터 생성부
305 : 데이터 취득 커맨드 해석부
306 : 송신 데이터 생성부
307 : 파일럿 송신기 제어부
308 : 송전 신호 복조부
309 : 파일럿 신호 변조부
310 : 통신계 전환부
311 : 계측 데이터 해석부
312 : 전계 계산 커맨드 해석부
313 : 소자 전계 연산부
314 : 이상량 취득부
315 : 소자 전계 위상 계산부
316 : 소자 전계 진폭 계산부
70, 70A, 70H : 위치 부가 검파 데이터(전파 측정 데이터)
71, 71A : 빔 형상 데이터(방사 전파 데이터)
72 : 계측 커맨드
73, 73H : 검파 데이터(수신 전파 데이터)
73J : 검파 데이터(수신 전파 데이터, 전계 변화 데이터)
74, 74H : 위치 데이터(계측점 데이터)
75 : 비행 커맨드
76 : 송전 제어 신호
77, 77H : 측정 데이터
78 : 상대 위치 데이터(전파원 상대 위치 데이터)
79 : 파일럿 송신기 제어 커맨드
80 : 도래 방향 데이터
81 : 방사 방향 데이터
82 : 레이저 광
83 : 반사 레이저 광
85 : 시각 데이터
86 : 송전 장치 위치
87 : 데이터 취득 커맨드
88, 88T : REV법 시나리오
89 : REV법 기준 상태
90 : 위상 조작 데이터
91 : 소자 전계 벡터(소자 전계 위상)
92 : 위상 오프셋 값
93 : 방사 지령치
94 : 계측 기간 데이터(계측 기간, 해석 기간)
95 : 커맨드 통신계 데이터
96 : 데이터 통신계 데이터
97 : 파일럿 검파 데이터
98 : 방사 가부 데이터
99 : 전계 계산 커맨드
61 : 최대 최소 시각(전계 변화 데이터)
62 : 최대 최소 진폭 값(전계 변화 데이터)
63 : REV법 개시 시각(기준 사상의 시각)
65 : 작은 전력 비율
66 : 통상 전력 비율
67 : 사용 전력 비율

Claims (24)

  1. 상공 방향으로 전파를 방사하고 있는 피계측 안테나의 상공에서 이동 또는 정지하는 공중 이동체와,
    상기 공중 이동체의 위치를 측정하고, 상기 공중 이동체의 위치를 나타내는 계측점 데이터를 생성하는 위치 측정부와,
    상기 계측점 데이터를 생성한 시점의 시각 데이터를 상기 계측점 데이터에 부가하여 시각 부가 계측점 데이터를 생성하는 계측점 데이터 시각 부가부와,
    상기 공중 이동체에 탑재되어, 상기 전파를 수신하는 계측용 안테나와,
    상기 공중 이동체에 탑재되어, 상기 계측용 안테나가 수신하는 상기 전파의 진폭 및 위상의 적어도 어느 하나를 포함하는 수신 전파 데이터를 계측하는 전파 계측부와,
    상기 공중 이동체에 탑재되어, 상기 계측점 데이터에 부가되는 시각 데이터와 동기가 취하여진 시각 데이터를 출력하는 이동체 시각 장치와,
    상기 공중 이동체에 탑재되어, 상기 수신 전파 데이터가 계측된 시점에 상기 이동체 시각 장치가 출력하는 시각 데이터를 상기 수신 전파 데이터에 부가하여 시각 부가 수신 전파 데이터를 생성하는 수신 전파 데이터 시각 부가부와,
    상기 시각 부가 수신 전파 데이터 및 상기 시각 부가 계측점 데이터에 부가된 시각 데이터로부터 판단한 상기 수신 전파 데이터를 계측한 시점에서의 상기 계측점 데이터를 상기 피계측 안테나에 대한 상대적인 위치로서 나타낸 전파원 상대 위치 데이터와, 상기 수신 전파 데이터를 포함하는 방사 전파 데이터를 생성하는 방사 전파 데이터 생성부
    를 구비한 전파 측정 시스템.
  2. 제 1 항에 있어서,
    지상에 설치되어, 상기 이동체 시각 장치와 동기가 취하여진 시각 데이터를 출력하는 지상 시각 장치와,
    지상에 설치되어, 상기 방사 전파 데이터 생성부를 갖는 측정계 제어 장치와,
    상기 공중 이동체에 탑재되어, 상기 시각 부가 수신 전파 데이터를 상기 측정계 제어 장치에 송신하는 이동체 송신부
    를 더 구비하고,
    상기 위치 측정부 및 상기 계측점 데이터 시각 부가부가 지상에 설치되고,
    상기 지상 시각 장치가 출력하는 시각 데이터를 상기 계측점 데이터 시각 부가부가 사용하는
    전파 측정 시스템.
  3. 제 1 항에 있어서,
    지상에 설치되어, 상기 이동체 시각 장치와 동기가 취하여진 시각 데이터를 출력하는 지상 시각 장치와,
    지상에 설치되어, 상기 방사 전파 데이터 생성부를 갖는 측정계 제어 장치와,
    상기 공중 이동체에 탑재되어, 상기 시각 부가 수신 전파 데이터를 기억하는 기억 장치
    를 더 구비하고,
    상기 위치 측정부 및 상기 계측점 데이터 시각 부가부가 지상에 설치되고,
    상기 지상 시각 장치가 출력하는 시각 데이터를 상기 계측점 데이터 시각 부가부가 사용하고,
    상기 기억 장치에 기억된 상기 시각 부가 수신 전파 데이터가 상기 방사 전파 데이터 생성부에 입력되는
    전파 측정 시스템.
  4. 제 1 항에 있어서,
    상기 위치 측정부 및 상기 계측점 데이터 시각 부가부가 상기 공중 이동체에 탑재되고,
    상기 계측점 데이터를 생성한 시점에 상기 이동체 시각 장치가 출력하는 시각 데이터를 상기 계측점 데이터에 부가하여 상기 계측점 데이터 시각 부가부가 상기 시각 부가 계측점 데이터를 생성하고,
    지상에 설치되어, 상기 방사 전파 데이터 생성부를 갖는 측정계 제어 장치와,
    상기 공중 이동체에 탑재되어, 상기 시각 부가 수신 전파 데이터 및 상기 시각 부가 계측점 데이터를 상기 측정계 제어 장치에 송신하는 이동체 송신부
    를 더 구비한
    전파 측정 시스템.
  5. 제 1 항에 있어서,
    상기 위치 측정부 및 상기 계측점 데이터 시각 부가부가 상기 공중 이동체에 탑재되고,
    상기 계측점 데이터를 생성한 시점에 상기 이동체 시각 장치가 출력하는 시각 데이터를 상기 계측점 데이터에 부가하여 상기 계측점 데이터 시각 부가부가 상기 시각 부가 계측점 데이터를 생성하고,
    지상에 설치되어, 상기 방사 전파 데이터 생성부를 갖는 측정계 제어 장치와,
    상기 공중 이동체에 탑재되어, 상기 시각 부가 수신 전파 데이터 및 상기 시각 부가 계측점 데이터를 기억하는 기억 장치
    를 더 구비하고
    상기 기억 장치에 기억된 상기 시각 부가 수신 전파 데이터 및 상기 시각 부가 계측점 데이터가 상기 방사 전파 데이터 생성부에 입력되는
    전파 측정 시스템.
  6. 제 1 항에 있어서,
    상기 위치 측정부, 상기 계측점 데이터 시각 부가부 및 상기 방사 전파 데이터 생성부가 상기 공중 이동체에 탑재되고,
    상기 계측점 데이터를 생성한 시점에 상기 이동체 시각 장치가 출력하는 시각 데이터를 상기 수신 전파 데이터에 부가하여 상기 계측점 데이터 시각 부가부가 상기 시각 부가 수신 전파 데이터를 생성하는
    전파 측정 시스템.
  7. 제 2 항 또는 제 3 항에 있어서,
    상기 이동체 시각 장치 및 상기 지상 시각 장치가, 위성으로부터의 전파에 의해 시각이 교정되는 전파 측정 시스템.
  8. 제 4 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 이동체 시각 장치를 겸하는 상기 위치 측정부가, 복수의 위성으로부터의 전파를 수신함으로써 자신이 존재하는 위치를 측위하는 측위 장치인 전파 측정 시스템.
  9. 방사하는 전파로 전력을 송전하는 지향 방향을 변경할 수 있는 송전 안테나와,
    송전 대상인 공중 이동체가 존재하는 방향인 방사 방향을 결정하는 방사 방향 결정부와,
    상기 방사 방향으로 상기 송전 안테나의 상기 지향 방향을 향하게 하는 지향 방향 변경부와,
    상기 송전 안테나로부터 상기 전파로서 송신되는 송신 신호를 생성하는 송신 신호 생성부
    를 구비한 무선 송전 장치.
  10. 제 9 항에 있어서,
    상기 공중 이동체가 송신하는 파일럿 신호를 수신하는 파일럿 수신 안테나와,
    수신된 상기 파일럿 신호의 신호 강도가 임계치 이상인 경우에 상기 송전 안테나로부터 상기 전파를 방사할 수 있고, 수신된 상기 파일럿 신호의 신호 강도가 임계치 미만인 경우에 상기 송전 안테나로부터 상기 전파를 방사할 수 없다고 판단하는 전파 방사 가부 판단부
    를 구비하고,
    상기 전파 방사 가부 판단부가 상기 전파를 방사할 수 없다고 판단하는 경우에 상기 송전 안테나로부터 상기 전파가 방사되지 않는
    무선 송전 장치.
  11. 제 9 항 또는 제 10 항에 있어서,
    상기 방사 방향 결정부가 상기 방사 방향을 결정한 후에 상기 송전 안테나로부터 상기 전파를 방사하고, 상기 방사 방향이 정해져 있지 않은 상태에서는 상기 송전 안테나로부터 상기 전파를 방사하지 않도록 제어하는 전파 방사 제어부를 구비한 무선 송전 장치.
  12. 제 9 항 내지 제 11 항 중 어느 한 항에 있어서,
    상기 송전 안테나가,
    상기 전파를 방사하는 복수의 소자 안테나와,
    결정된 개수의 상기 소자 안테나마다 마련된, 상기 송신 신호의 위상을 변화시키는 이상기 및 상기 송신 신호를 증폭하는 증폭기를 갖는 복수의 소자 모듈
    을 갖는 페이즈드 어레이 안테나이고,
    상기 지향 방향 변경부가, 상기 이상기의 이상량을 제어하는 것인
    무선 송전 장치.
  13. 제 12 항에 있어서,
    복수의 상기 소자 안테나가 복수의 그룹으로 나누어져 있고,
    1개의 상기 그룹에 속하는 상기 소자 안테나의 위상 및 진폭을 일률적으로 변경하는 상기 소자 모듈을 구비한
    무선 송전 장치.
  14. 청구항 12 또는 청구항 13에 기재된 무선 송전 장치와,
    상기 무선 송전 장치를 제어하는 송전 제어 장치와,
    지상에 설치되어 시각 데이터를 출력하는 지상 시각 장치와,
    수전 안테나, 계측용 안테나, 전파 계측부, 이동체 시각 장치, 수신 전파 데이터 시각 부가부 및 이동체 통신부가 탑재된 공중 이동체와,
    상기 무선 송전 장치가 방사하는 상기 전파를 수신하는 상기 수전 안테나와,
    상기 무선 송전 장치가 방사하는 상기 전파를 수신하는 상기 계측용 안테나와,
    상기 계측용 안테나가 수신하는 상기 전파의 진폭인 전계 강도를 포함하는 수신 전파 데이터를 계측하는 상기 전파 계측부와,
    상기 지상 시각 장치와 동기가 취하여진 시각 데이터를 출력하는 상기 이동체 시각 장치와,
    상기 수신 전파 데이터가 계측된 시점에 상기 이동체 시각 장치가 출력하는 시각 데이터를 상기 수신 전파 데이터에 부가하여 시각 부가 수신 전파 데이터를 생성하는 상기 수신 전파 데이터 시각 부가부와,
    상기 송전 제어 장치와 통신하는 상기 이동체 통신부와,
    1개의 상기 소자 모듈이 출력하는 상기 송신 신호가 공급되는 상기 소자 안테나가 방사하는 상기 전파가 상기 계측용 안테나의 위치에 생성하는 소자 전계 벡터의 위상인 소자 전계 위상을 구하는 REV법을 실행하기 위해, 적어도 일부의 상기 소자 안테나가 상기 전파를 방사하는 상태에서 일부의 상기 이상기인 조작 이상기의 이상량을 변화시키는 것을 반복하는 위상 조작 패턴을 규정하는 REV법 시나리오를 실행 중에 상기 전파 계측부가 계측하는 상기 시각 부가 수신 전파 데이터인 REV법 실행시 전파 데이터 및 상기 REV법 시나리오에 근거하여, 상기 소자 모듈마다 상기 소자 전계 위상을 구하는 REV법 해석부
    를 구비하고,
    상기 송전 제어 장치는, 상기 이동체 통신부와 통신하는 송전 제어 통신부, 상기 REV법 시나리오에 근거하여 상기 무선 송전 장치를 제어하는 REV법 실행부를 갖고,
    상기 소자 모듈마다의 상기 소자 전계 위상에 근거하여, 상기 소자 모듈의 위상의 기준을 맞춘 상태에서, 상기 지향 방향 변경부는 상기 방사 방향으로 상기 지향 방향을 향하게 하는
    공중 이동체로의 송전 시스템.
  15. 제 14 항에 있어서,
    상기 송전 제어 장치가 상기 REV법 해석부를 갖고,
    상기 송전 제어 통신부가, 상기 REV법 실행시 전파 데이터에 근거하여 생성되는 전계 변화 데이터의 취득을 지시하는 데이터 취득 커맨드를 상기 이동체 통신부에 송신하고, 상기 데이터 취득 커맨드에 따라 상기 이동체 통신부가 송신하는 상기 전계 변화 데이터를 수신하고,
    상기 REV법 해석부가, 상기 전계 변화 데이터 및 상기 REV법 시나리오에 근거하여 상기 소자 모듈마다 상기 소자 전계 위상을 구하는
    공중 이동체로의 송전 시스템.
  16. 제 15 항에 있어서,
    상기 전계 변화 데이터가 상기 REV법 실행시 전파 데이터이고,
    상기 REV법 해석부가, 상기 REV법 시나리오에 근거하여 상기 REV법 실행시 전파 데이터를 해석하여 상기 조작 이상기마다 이상량 검출 시각을 검출하는 계측 데이터 해석부, 상기 REV법 시나리오에 근거하여 상기 이상량 검출 시각의 상기 조작 이상기의 이상량인 조작 이상량을 구하는 이상량 취득부 및 상기 조작 이상량에 근거하여 상기 소자 전계 위상을 계산하는 소자 전계 위상 계산부를 갖는
    공중 이동체로의 송전 시스템.
  17. 제 15 항에 있어서,
    상기 데이터 취득 커맨드로 통지되는 복수의 해석 기간마다 상기 REV법 실행시 전파 데이터를 해석하여, 상기 해석 기간마다 이상량 검출 시각을 검출하는 계측 데이터 해석부가 상기 공중 이동체에 탑재되고,
    상기 전계 변화 데이터가 상기 이상량 검출 시각이고,
    상기 REV법 해석부가, 상기 REV법 시나리오에 근거하여 상기 이상량 검출 시각의 상기 조작 이상기의 이상량인 조작 이상량을 구하는 이상량 취득부 및 상기 조작 이상량에 근거하여 상기 소자 전계 위상을 계산하는 소자 전계 위상 계산부를 갖는
    공중 이동체로의 송전 시스템.
  18. 제 15 항에 있어서,
    상기 REV법 시나리오에서는, 상기 위상 조작 패턴이, 시각이 지정되는 1개 또는 복수 개의 기준 사상(event)과, 어느 하나의 상기 기준 사상으로부터의 상대 시간으로 시각이 표현되는 비기준 사상으로 표현되어 있고,
    상기 공중 이동체는,
    상기 REV법 시나리오를 기억하는 데이터 기억 장치와,
    상기 데이터 취득 커맨드로 통지되는 상기 기준 사상의 시각 및 상기 REV법 시나리오에 근거하여 설정되는 복수의 해석 기간마다 상기 REV법 실행시 전파 데이터를 해석하여, 상기 해석 기간마다 이상량 검출 시각을 검출하는 계측 데이터 해석부
    를 탑재하고,
    상기 전계 변화 데이터가 상기 이상량 검출 시각이고,
    상기 REV법 해석부가, 상기 REV법 시나리오에 근거하여 상기 이상량 검출 시각의 상기 조작 이상기의 이상량인 조작 이상량을 구하는 이상량 취득부 및 상기 조작 이상량에 근거하여 상기 소자 전계 위상을 계산하는 소자 전계 위상 계산부를 갖는
    공중 이동체로의 송전 시스템.
  19. 제 16 항 내지 제 18 항 중 어느 한 항에 있어서,
    상기 송전 제어 장치가, 상기 REV법 시나리오를 실행 중인 상기 조작 이상기의 이상량의 시간 변화인 위상 조작 데이터를 기록하는 위상 조작 기록부를 갖고,
    상기 이상량 취득부가, 상기 이상량 검출 시각에 상기 위상 조작 데이터를 참조하여 상기 조작 이상량을 구하는
    공중 이동체로의 송전 시스템.
  20. 제 16 항 내지 제 18 항 중 어느 한 항에 있어서,
    상기 REV법 시나리오에서는, 상기 위상 조작 패턴이, 시각이 지정되는 1개 또는 복수 개의 기준 사상과, 어느 하나의 상기 기준 사상으로부터의 상대 시간으로 시각이 표현되는 비기준 사상으로 표현되어 있고,
    상기 이상량 취득부가, 상기 기준 사상의 시각, 상기 REV법 시나리오 및 상기 이상량 검출 시각에 근거하여 상기 조작 이상량을 구하는
    공중 이동체로의 송전 시스템.
  21. 제 14 항에 있어서,
    상기 REV법 시나리오에서는, 상기 위상 조작 패턴이, 시각이 지정되는 1개 또는 복수 개의 기준 사상과, 어느 하나의 상기 기준 사상으로부터의 상대 시간으로 시각이 표현되는 비기준 사상으로 표현되어 있고,
    상기 송전 제어 통신부는, 상기 소자 전계 위상을 구하는 전계 계산 커맨드를 상기 이동체 통신부에 송신하고, 상기 전계 계산 커맨드에 따라 상기 이동체 통신부가 송신하는 상기 소자 전계 위상을 수신하고,
    상기 공중 이동체는,
    상기 REV법 시나리오를 기억하는 데이터 기억 장치와,
    상기 전계 계산 커맨드로 통지되는 상기 기준 사상의 시각 및 상기 REV법 시나리오에 근거하여, 상기 REV법 실행시 전파 데이터를 해석하여 상기 조작 이상기마다의 이상량 검출 시각을 검출하는 계측 데이터 해석부와,
    상기 기준 사상의 시각 및 상기 REV법 시나리오에 근거하여, 상기 이상량 검출 시각의 상기 조작 이상기의 이상량인 조작 이상량을 구하는 이상량 취득부와,
    상기 조작 이상량으로부터 상기 소자 전계 위상을 구하는 상기 REV법 해석부
    를 탑재한
    공중 이동체로의 송전 시스템.
  22. 제 14 항 내지 제 21 항 중 어느 한 항에 있어서,
    상기 위상 조작 패턴은, 상기 조작 이상기가 상이한 복수의 이상량의 각각을 결정된 계속 시간 이상은 취하도록 규정되어 있는 공중 이동체로의 송전 시스템.
  23. 제 14 항 내지 제 22 항 중 어느 한 항에 있어서,
    상기 REV법 실행부가, 상기 방사 방향 결정부가 상기 방사 방향을 결정한 후에 상기 REV법 시나리오를 실행하는 공중 이동체로의 송전 시스템.
  24. 제 14 항 내지 제 23 항 중 어느 한 항에 있어서,
    상기 REV법 시나리오가, 상기 전파의 전력이 정격 전력의 절반 미만으로 결정된 작은 전력과 정격 전력의 절반 이상으로 결정된 통상 전력으로, 적어도 일부의 상기 소자 안테나가 상기 전파를 방사하는 상태에서 일부의 상기 이상기의 이상량을 변화시키는 것이고,
    상기 REV법 실행부가, 상기 REV법 시나리오 중의 상기 작은 전력의 부분을 실행하여 얻어진 상기 소자 모듈마다의 상기 소자 전계 위상에 근거하여, 상기 소자 모듈의 위상의 기준을 맞춘 상태에서, 상기 REV법 시나리오 중의 상기 통상 전력의 부분을 실행하는
    공중 이동체로의 송전 시스템.
KR1020197034375A 2017-05-29 2018-04-10 전파 측정 시스템 KR102157525B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017105269 2017-05-29
JPJP-P-2017-105269 2017-05-29
PCT/JP2018/014265 WO2018220996A1 (ja) 2017-05-29 2018-04-03 電波測定システム、および無線送電装置
JPPCT/JP2018/014265 2018-04-03
PCT/JP2018/015092 WO2018221022A1 (ja) 2017-05-29 2018-04-10 電波測定システム、無線送電装置および空中移動体への送電システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020207026412A Division KR102235813B1 (ko) 2017-05-29 2018-04-10 무선 송전 장치 및 공중 이동체로의 송전 시스템

Publications (2)

Publication Number Publication Date
KR20200003839A true KR20200003839A (ko) 2020-01-10
KR102157525B1 KR102157525B1 (ko) 2020-09-18

Family

ID=64455906

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020197034333A KR102193810B1 (ko) 2017-05-29 2018-04-03 전파 측정 시스템
KR1020197034375A KR102157525B1 (ko) 2017-05-29 2018-04-10 전파 측정 시스템
KR1020207026412A KR102235813B1 (ko) 2017-05-29 2018-04-10 무선 송전 장치 및 공중 이동체로의 송전 시스템

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020197034333A KR102193810B1 (ko) 2017-05-29 2018-04-03 전파 측정 시스템

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020207026412A KR102235813B1 (ko) 2017-05-29 2018-04-10 무선 송전 장치 및 공중 이동체로의 송전 시스템

Country Status (6)

Country Link
US (3) US11137433B2 (ko)
EP (6) EP3770616A1 (ko)
JP (7) JP6551617B2 (ko)
KR (3) KR102193810B1 (ko)
CN (2) CN110709714B (ko)
WO (1) WO2018220996A1 (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3770616A1 (en) * 2017-05-29 2021-01-27 Mitsubishi Electric Corporation Radio wave measurement system and wireless power transmission device
US11313893B2 (en) * 2017-09-20 2022-04-26 California Institute Of Technology Far-field radiation pattern measurements of high-frequency antennas with unmanned aerial systems
KR102469310B1 (ko) 2017-11-23 2022-11-22 삼성전자주식회사 무선 전력 송신 장치, 무선으로 전력을 수신하는 전자 장치 및 그 동작 방법
JP6810071B2 (ja) * 2018-02-05 2021-01-06 ソフトバンク株式会社 飛行体への無線電力供給システム
JP7192574B2 (ja) * 2019-02-28 2022-12-20 株式会社デンソー 車両用無線通信装置
JP6832975B2 (ja) * 2019-04-19 2021-02-24 ソフトバンク株式会社 受電アンテナ、上空移動体、無線電力伝送システム及び受電アンテナの製造方法
EP3994768A4 (en) * 2019-07-03 2023-07-26 Verily Life Sciences LLC SYSTEMS AND METHODS FOR SEALING AND WIRELESS POWERING OF PORTABLE OR IMPLANTABLE DEVICES
EP4052352A4 (en) * 2019-10-31 2023-08-09 Telefonaktiebolaget LM ERICSSON (PUBL) FIRST NETWORK NODE, SECOND NODE, WIRELESS DEVICE AND METHOD OF HANDLING THE CHARGE OF THE WIRELESS DEVICE
JP7377133B2 (ja) * 2020-02-28 2023-11-09 株式会社Subaru 航空機
JP7074264B2 (ja) * 2020-03-31 2022-05-24 三菱電機株式会社 無線送電装置
CN111929508B (zh) * 2020-07-16 2022-12-27 中国电子科技集团公司第四十一研究所 一种抗环境漂移的电厚度信息提取方法及装置
JP7136387B2 (ja) * 2020-08-18 2022-09-13 三菱電機株式会社 空中移動体および無線送電システム
CN112769503B (zh) * 2020-12-29 2022-05-27 国家无线电监测中心成都监测站 基于场强变化的超短波信号源单站移动测定方法及***
JP7201722B2 (ja) * 2021-02-26 2023-01-10 ソフトバンク株式会社 アンテナ接続回路、レクテナ、受電アンテナ装置、上空移動体及び無線電力伝送システム
RU209690U1 (ru) * 2021-10-04 2022-03-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Устройство для увеличения продолжительности и дальности полета беспилотного летательного аппарата
JP7348979B1 (ja) 2022-03-22 2023-09-21 ソフトバンク株式会社 通信装置、プログラム、及び制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302947A (ja) * 1992-04-27 1993-11-16 N H K Itec:Kk Gpsを利用した送信空中線放射特性の測定方法
US20090167605A1 (en) * 2006-06-09 2009-07-02 Qinetiq Limited Phased Array Antenna System with Two Dimensional Scanning
JP2016127678A (ja) 2014-12-26 2016-07-11 日本電気株式会社 給電システム、移動体および給電装置
JP2017069799A (ja) * 2015-09-30 2017-04-06 Kddi株式会社 測定装置、測定システム及び測定方法

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437882A (en) 1987-08-03 1989-02-08 Fujitsu Ltd Superconduction phase difference detection
JP2584503B2 (ja) 1988-12-01 1997-02-26 三菱電機株式会社 アンテナ装置
GB2289799B (en) * 1991-09-17 1996-04-17 Cossor Electronics Ltd Improvements relating to radar antenna systems
JPH0618582A (ja) * 1992-06-29 1994-01-25 Nippon Telegr & Teleph Corp <Ntt> 追尾測位形電磁環境無線計測システム
JP3461911B2 (ja) 1994-05-20 2003-10-27 株式会社東芝 フェーズドアレイアンテナ
JP3339967B2 (ja) 1994-07-22 2002-10-28 株式会社アイ・エイチ・アイ・エアロスペース マイクロ波送電装置
JPH08130840A (ja) 1994-11-01 1996-05-21 Mitsubishi Electric Corp 電波給電装置
JPH08304497A (ja) * 1995-05-10 1996-11-22 Mitsubishi Heavy Ind Ltd 航空機電波評価装置
WO2001050145A2 (de) * 1999-12-30 2001-07-12 Astrium Gmbh Mobile anordnung und verfahren zur grossflächigen und genauen charakterisierung von strahlungsfeldern im aussenbereich
JP3638108B2 (ja) * 2000-01-19 2005-04-13 三菱電機株式会社 アンテナ測定装置およびアンテナ測定方法
JP2007018211A (ja) * 2005-07-07 2007-01-25 Yamatake Corp 自律型データロガー
JP4632889B2 (ja) * 2005-07-19 2011-02-16 三菱電機株式会社 飛翔体への給電システムおよびそれに使用される飛翔体への送電装置と飛翔体
EP1962408B1 (en) * 2006-11-16 2015-05-27 Semiconductor Energy Laboratory Co., Ltd. Radio field intensity measurement device, and radio field intensity detector and game console using the same
JP2008211868A (ja) * 2007-02-23 2008-09-11 Mitsubishi Electric Corp 人工衛星用電力供給システム
JP5336709B2 (ja) 2007-03-09 2013-11-06 三菱重工業株式会社 電力供給システム
US7744032B2 (en) 2007-04-27 2010-06-29 Lockheed Martin Corporation Power and imaging system for an airship
JP5327059B2 (ja) * 2010-01-05 2013-10-30 三菱電機株式会社 無線電力伝送システム及びレクテナ基地局
JP5578885B2 (ja) * 2010-02-26 2014-08-27 三菱重工業株式会社 フェーズドアレイアンテナ及びその制御方法
EP2601722A1 (en) 2010-08-04 2013-06-12 Johnson Controls Technology Company Universal wireless charging system for motor vehicles
JP5639462B2 (ja) * 2010-12-20 2014-12-10 日本放送協会 無線送受信装置および方法
JP2012217323A (ja) * 2011-03-25 2012-11-08 Mitsubishi Electric Corp 無線電力伝送システム、電力送信装置及びレクテナ基地局
DE102011015917B4 (de) * 2011-04-01 2015-09-17 Bundesrepublik Deutschland, vertr.d.d. Bundesministerium für Wirtschaft und Technologie, d.vertr.d.d. Präsidenten der Physikalisch-Technischen Bundesanstalt Verfahren zur Freiraum-Funksignalmessung sowie Freiraum-Funksignalmesseineinrichtung hierzu
KR20150053786A (ko) 2012-10-03 2015-05-18 미쓰비시덴키 가부시키가이샤 전자파 송신 장치, 전력 증폭 장치 및 전자파 송신 시스템
JP5449502B1 (ja) * 2012-10-31 2014-03-19 三菱電機エンジニアリング株式会社 無線電力伝送による可動部多重化伝送システム
CN103076502B (zh) * 2012-12-20 2015-08-26 中国铁路总公司 一种针对移动体目标异地同步测量数据采集***及方法
JP2014204452A (ja) * 2013-04-01 2014-10-27 日東電工株式会社 受電装置
JP6185767B2 (ja) 2013-06-21 2017-08-23 日本放送協会 フェーズドアレー給電装置及びフェーズドアレーアンテナ装置
US9681320B2 (en) * 2014-04-22 2017-06-13 Pc-Tel, Inc. System, apparatus, and method for the measurement, collection, and analysis of radio signals utilizing unmanned aerial vehicles
JP5975359B2 (ja) * 2014-04-23 2016-08-23 パナソニックIpマネジメント株式会社 ワイヤレス給電方法及びワイヤレス給電システム
CN105207280B (zh) * 2014-06-20 2018-06-05 展讯通信(上海)有限公司 充电位置的校准方法、装置、无线充电设备及移动终端
US20160088498A1 (en) * 2014-09-18 2016-03-24 King Fahd University Of Petroleum And Minerals Unmanned aerial vehicle for antenna radiation characterization
US9612296B2 (en) * 2014-10-08 2017-04-04 Qualcomm Incorporated Methods and apparatus for testing of wireless power transmitters and systems
BR112017016261A2 (pt) * 2015-01-28 2018-03-27 Lockheed Martin Corporation carga de energia in situ
US20170329351A1 (en) * 2015-05-22 2017-11-16 Qualcomm Incorporated Apparatus-assisted sensor data collection
CN104967155A (zh) * 2015-06-02 2015-10-07 李高山 车辆道路移动充电***
US20170015414A1 (en) * 2015-07-15 2017-01-19 Elwha Llc System and method for power transfer to an unmanned aircraft
WO2017035316A1 (en) * 2015-08-25 2017-03-02 Ossia Inc. Systems and methods for improved phase determinations in wireless power delivery environments
US10173774B2 (en) * 2015-09-23 2019-01-08 Walmart Apollo, Llc Portable unmanned delivery aircraft launch systems, and methods of delivering products utilizing aircraft launch systems
JP6486256B2 (ja) 2015-10-09 2019-03-20 三菱電機株式会社 無線送電装置及び無線送電システム
CN105319449B (zh) * 2015-10-23 2018-03-06 上海交通大学 基于无人机的天线近场测量方法
CN105302155B (zh) * 2015-11-27 2017-11-17 国网福建省电力有限公司 一种以电力载波辐射确定安全距离的无人机巡线方法
US10618651B2 (en) * 2016-02-22 2020-04-14 WiBotic Inc. Systems and methods of electrically powering devices
JP6388728B2 (ja) * 2016-04-08 2018-09-12 三菱電機株式会社 無線送電装置および電力伝送システム
CN105912024B (zh) * 2016-06-07 2019-06-11 三峡大学 一种架空输电线路巡线无人机的电磁场定位方法及装置
CN106300596B (zh) * 2016-08-02 2018-07-13 安徽朗巴智能科技有限公司 一种高续航航拍无人机控制***
US10112728B2 (en) * 2016-09-09 2018-10-30 Michael Steward Evans Drone charging stations
JP6377108B2 (ja) * 2016-09-15 2018-08-22 株式会社Subaru 無人機制御システムの異常検知方法
EP3770616A1 (en) * 2017-05-29 2021-01-27 Mitsubishi Electric Corporation Radio wave measurement system and wireless power transmission device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302947A (ja) * 1992-04-27 1993-11-16 N H K Itec:Kk Gpsを利用した送信空中線放射特性の測定方法
US20090167605A1 (en) * 2006-06-09 2009-07-02 Qinetiq Limited Phased Array Antenna System with Two Dimensional Scanning
JP2016127678A (ja) 2014-12-26 2016-07-11 日本電気株式会社 給電システム、移動体および給電装置
JP2017069799A (ja) * 2015-09-30 2017-04-06 Kddi株式会社 測定装置、測定システム及び測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
비특허문헌 1 : 마키노 카츠미 외 : "SSPS의 실현을 향한 높은 정밀도의 마이크로파 빔 방향 제어 장치의 개발과 그 기술 실증 시험", 전자 정보 통신 학회 기보, SANE 2015-22, pp. 37-42, June 2015.

Also Published As

Publication number Publication date
KR102157525B1 (ko) 2020-09-18
JP2019075984A (ja) 2019-05-16
JP6809584B2 (ja) 2021-01-06
CN110709714A (zh) 2020-01-17
JP2020024230A (ja) 2020-02-13
JP2020080635A (ja) 2020-05-28
KR102235813B1 (ko) 2021-04-02
JP6551617B2 (ja) 2019-07-31
EP3633395A1 (en) 2020-04-08
EP3633394B1 (en) 2024-02-07
JP6604417B2 (ja) 2019-11-13
JP2019054723A (ja) 2019-04-04
JPWO2018220996A1 (ja) 2019-06-27
JP6551619B2 (ja) 2019-07-31
EP3828559A1 (en) 2021-06-02
US20200355734A1 (en) 2020-11-12
CN110709714B (zh) 2022-09-16
JP6617851B1 (ja) 2019-12-11
KR102193810B1 (ko) 2020-12-22
JPWO2018221022A1 (ja) 2019-06-27
KR20200003837A (ko) 2020-01-10
EP3633394A1 (en) 2020-04-08
JP2020079786A (ja) 2020-05-28
KR20200109385A (ko) 2020-09-22
CN110678762A (zh) 2020-01-10
EP3798647A1 (en) 2021-03-31
CN110678762B (zh) 2022-07-26
US10782333B2 (en) 2020-09-22
EP3770616A1 (en) 2021-01-27
EP3633394A4 (en) 2020-06-17
EP3633395A4 (en) 2020-06-17
WO2018220996A1 (ja) 2018-12-06
US11137433B2 (en) 2021-10-05
US20200174052A1 (en) 2020-06-04
EP3809146A1 (en) 2021-04-21
US10962579B2 (en) 2021-03-30
JP6590061B2 (ja) 2019-10-16
US20200177029A1 (en) 2020-06-04
EP3828559B1 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
KR102157525B1 (ko) 전파 측정 시스템
JP7063371B2 (ja) 無線送電装置
US12025644B2 (en) Wireless power transmission device and power transmission system to aerial moving body
US20210194292A1 (en) Methods and systems for wireless power transfer
US11843261B2 (en) Wireless power transmission device

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant