KR20190103955A - 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 - Google Patents

이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
KR20190103955A
KR20190103955A KR1020190020604A KR20190020604A KR20190103955A KR 20190103955 A KR20190103955 A KR 20190103955A KR 1020190020604 A KR1020190020604 A KR 1020190020604A KR 20190020604 A KR20190020604 A KR 20190020604A KR 20190103955 A KR20190103955 A KR 20190103955A
Authority
KR
South Korea
Prior art keywords
active material
transition metal
positive electrode
metal oxide
lithium
Prior art date
Application number
KR1020190020604A
Other languages
English (en)
Other versions
KR102379596B1 (ko
Inventor
채화석
박상민
박신영
박홍규
강성훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20190103955A publication Critical patent/KR20190103955A/ko
Application granted granted Critical
Publication of KR102379596B1 publication Critical patent/KR102379596B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/991Boron carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • C01B35/121Borates of alkali metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 복합 전이금속 산화물을 마련하는 단계; 상기 리튬 복합 전이금속 산화물을 수세하여 리튬 복합 전이금속 산화물의 표면에 존재하는 리튬 부산물을 제거하는 단계; 및 상기 수세된 리튬 복합 전이금속 산화물, 코발트(Co) 함유 원료물질 및 보론(B) 함유 원료물질을 혼합하고, 600℃ 이상의 온도로 고온 열처리하는 단계;를 포함하는 이차전지용 양극 활물질의 제조방법 및 이와 같이 제조된 양극 활물질에 관한 것이다.

Description

이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지{POSITIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY BATTERY, METHOD FOR PREPARING THE SAME AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME}
본 발명은 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차전지의 성능향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4) 등이 사용되었다. 또한, LiNiO2의 우수한 가역 용량은 유지하면서도 낮은 열 안정성을 개선하기 위한 방법으로서, 니켈(Ni)의 일부를 코발트(Co)나 망간(Mn)/알루미늄(Al)으로 치환한 리튬 복합금속 산화물(이하 간단히 'NCM계 리튬 복합 전이금속 산화물' 또는 'NCA계 리튬 복합 전이금속 산화물'이라 함)이 개발되었다. 그러나, 종래의 개발된 NCM계/NCA계 리튬 복합 전이금속 산화물은 용량 특성이 충분하지 않아 적용에 한계가 있었다.
이와 같은 문제점을 개선하기 위해, 최근에는 NCM계/NCA계 리튬 복합 전이금속 산화물에서 Ni의 함량을 증가시키려는 연구가 이루어지고 있다. 그러나, 니켈 함량이 높은 고농도 니켈 양극 활물질의 경우, 활물질의 구조적 안정성과 화학적 안정성이 떨어져 열 안정성이 급격히 저하된다는 문제점이 있다. 또한, 활물질 내의 니켈 함량이 높아짐에 따라 양극 활물질 표면에 LiOH, Li2CO3 형태로 존재하는 리튬 부산물의 잔류량이 높아져 이로 인한 가스 발생 및 스웰링(swelling) 현상이 발생하여 전지의 수명 및 안정성이 저하되는 문제점도 발생한다.
따라서, 고용량화에 부합하면서도 리튬 부산물의 잔류량이 적고, 고온 안정성이 우수한 고농도 니켈(Ni-rich) 양극 활물질의 개발이 요구되고 있다.
한국공개특허 제2017-0103662호
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 리튬 부산물의 잔류량이 적으면서도 구조적 안정, 우수한 용량 특성 및 고온 안정성을 동시에 구현할 수 있는 고농도 니켈(High-Ni)의 양극 활물질, 그 제조 방법과, 이를 포함하는 이차 전지용 양극 및 리튬 이차 전지를 제공하고자 한다.
또한, 본 발명은 고농도 니켈(High-Ni) 양극 활물질의 열 안정성 문제를 해결하기 위하여 수행되는 코팅 공정을 간소화하고, 생산 시간 및 공정 비용을 절감할 수 있는 양극 활물질의 제조방법을 제공하고자 한다.
본 발명은 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 복합 전이금속 산화물을 마련하는 단계; 상기 리튬 복합 전이금속 산화물을 수세하여 리튬 복합 전이금속 산화물의 표면에 존재하는 리튬 부산물을 제거하는 단계; 및 상기 수세된 리튬 복합 전이금속 산화물, 코발트(Co) 함유 원료물질 및 보론(B) 함유 원료물질을 혼합하고, 600℃ 이상의 온도로 고온 열처리하는 단계;를 포함하는 이차전지용 양극 활물질의 제조방법을 제공한다.
또한, 본 발명은 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 복합 전이금속 산화물; 및 상기 리튬 복합 전이금속 산화물의 입자 표면에 형성된 표면 코팅부;를 포함하며, 상기 표면 코팅부는 상기 리튬 복합 전이금속 산화물에 비해 코발트 함량이 높은 코발트-리치층(Cobalt-rich layer) 및 리튬 보론 산화물을 포함하는 이차전지용 양극 활물질을 제공한다.
또한, 본 발명은 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지를 제공한다.
본 발명에 따르면, 고농도 니켈(High-Ni) 양극 활물질의 니켈(Ni) 증가로 인해 발생하는 구조적/화학적 안정성 저하의 문제를 개선하고, 고용량 구현과 더불어 우수한 열 안정성을 갖는 양극 활물질을 제공할 수 있다. 또한, 고농도 니켈(High-Ni) 양극 활물질의 리튬 부산물의 잔류량을 감소시키고, 고온 수명 특성 및 출력 특성을 향상시킬 수 있다.
또한, 본 발명은 수세 후 고온 열처리 단계에서 표면 코팅부를 동시에 형성함으로써, 고온 안정성 문제를 해결하면서도 공정을 간소화하고, 생산 시간 및 공정 비용을 절감할 수 있다.
도 1은 실시예 1~2 및 비교예 1~3의 양극 활물질에 대해 시차주사열량측정기(SETARAM Instrumentation, Sensys evo DSC)를 이용하여 온도에 따른 열류량(Heat Flow)을 측정한 그래프이다.
도 2는 실시예 1~2 및 비교예 1~3의 양극 활물질을 이용하여 제조된 전지 셀의 충반전 사이클에 따른 용량 유지율을 도시한 그래프이다.
도 3은 실시예 1~2 및 비교예 1~3의 양극 활물질을 이용하여 제조된 전지 셀의 충반전 사이클에 따른 저항 증가율을 도시한 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
<양극 활물질의 제조방법>
본 발명은 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 복합 전이금속 산화물을 마련하는 단계; 상기 리튬 복합 전이금속 산화물을 수세하여 리튬 복합 전이금속 산화물의 표면에 존재하는 리튬 부산물을 제거하는 단계; 및 상기 수세된 리튬 복합 전이금속 산화물, 코발트(Co) 함유 원료물질 및 보론(B) 함유 원료물질을 600℃ 이상의 온도로 고온 열처리하는 단계;를 포함하여 이차전지용 양극 활물질을 제조한다. 이하, 본 발명의 각 단계에 대해 보다 구체적으로 설명한다.
먼저, 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 복합 전이금속 산화물을 마련한다.
상기 리튬 복합 전이금속 산화물은 전이금속 전체 함량 중 니켈(Ni)의 함량이 60몰% 이상인 High-Ni NCM계/NCA계의 리튬 복합 전이금속 산화물일 수 있다. 보다 바람직하게는 전이금속 전체 함량 중 니켈(Ni)의 함량이 70몰% 이상, 더욱 바람직하게는 니켈(Ni)의 함량이 80몰% 이상일 수 있다. 상기 리튬 복합 전이금속 산화물의 전이금속 전체 함량 중 니켈(Ni)의 함량이 60몰% 이상을 만족함으로써 고용량 확보가 가능할 수 있다.
보다 구체적으로, 상기 리튬 복합 전이금속 산화물은 하기 화학식 1로 표시될 수 있다.
[화학식 1]
LipNi1 -(x1+y1+z1)Cox1Ma y1Mb z1Mc q1O2 -aAa
상기 식에서, Ma은 Mn 및 Al로 이루어진 군에서 선택된 적어도 하나 이상이고, Mb는 Zr, W, Mg, Al, Ce, Hf, Ta, La, Ti, Sr, Ba, Ge, V, Si, Nb, Mo, 및 Cr로 이루어진 군에서 선택된 적어도 하나 이상이며, Mc는 Al, Zr, Ti, Mg, Ta, Nb, Mo 및 Cr로 이루어진 군에서 선택되는 적어도 하나 이상이며, A는 P 및 F로 이루어진 군에서 선택된 적어도 하나 이상이고, 0.9≤p≤1.05, 0<x1≤0.3, 0<y1≤0.2, 0≤z1≤0.1, 0≤q1≤0.1이고, 0≤a<1, 0<x1+y1+z1≤0.4이다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Li은 p에 해당하는 함량, 즉 0.9≤p≤1.05로 포함될 수 있다. p가 0.9 미만이면 용량이 저하될 우려가 있고, 1.05를 초과하면 소성 공정에서 입자가 소결되어 버려, 양극 활물질 제조가 어려울 수 있다. Li 함량 제어에 따른 양극 활물질의 용량 특성 개선 효과의 현저함 및 활물질 제조시의 소결성이 발란스를 고려할 때, 상기 Li는 보다 바람직하게는 1.0≤p≤1.05의 함량으로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Ni은 1-(x1+y1+z1)에 해당하는 함량, 예를 들어, 0.6≤1-(x1+y1+z1)<1로 포함될 수 있다. 상기 화학식 1의 리튬 복합 전이금속 산화물 내 Ni의 함량이 0.6 이상의 조성이 되면 충방전에 기여하기에 충분한 Ni량이 확보되어 고용량화를 도모할 수 있다. 보다 바람직하게는 Ni은 0.80≤1-(x1+y1+z1)≤0.99로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Co는 x1에 해당하는 함량, 즉 0<x1≤0.3으로 포함될 수 있다. 상기 화학식 1의 리튬 복합 전이금속 산화물 내 Co의 함량이 0.3을 초과할 경우 비용 증가의 우려가 있다. Co 포함에 따른 용량 특성 개선 효과의 현저함을 고려할 때, 상기 Co는 보다 구체적으로 0.05≤x1≤0.2의 함량으로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Ma은 Mn 또는 Al이거나, Mn 및 Al일 수 있고, 이러한 금속 원소는 활물질의 안정성을 향상시키고, 결과로서 전지의 안정성을 개선시킬 수 있다. 수명 특성 개선 효과를 고려할 때, 상기 Ma은 y1에 해당하는 함량, 즉 0<y1≤0.2의 함량으로 포함될 수 있다. 상기 화학식 1의 리튬 복합 전이금속 산화물 내 y1가 0.2를 초과하면 오히려 전지의 출력 특성 및 용량 특성이 저하될 우려가 있으며, 상기 Ma은 보다 구체적으로 0.05≤y1≤0.2의 함량으로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Mb는 리튬 복합 전이금속 산화물의 결정 구조 내 포함된 도핑원소일 수 있으며, Mb는 z1에 해당하는 함량, 즉 0≤z1≤0.1로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Mc의 금속 원소는 리튬 복합 전이금속 산화물 구조 내에 포함되지 않을 수 있고, 전구체와 리튬 소스를 혼합하고 소성할 때 Mc 소스를 함께 혼합하여 소성하거나, 리튬 복합 전이금속 산화물을 형성한 후 별도로 Mc 소스를 투입하고 소성하는 방법을 통해 상기 Mc가 리튬 복합 전이금속 산화물의 표면에 도핑된 리튬 복합 전이금속 산화물을 제조할 수 있다. 상기 Mc는 q1에 해당하는 함량, 즉 0≤q1≤0.1의 범위 내에서 양극 활물질의 특성을 저하하지 않는 함량으로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, A 원소는 산소를 일부 대체하는 원소로 P 및/또는 F 일 수 있으며, A 원소는 a에 해당하는 함량, 즉, 0≤a<1로 산소를 대체할 수 있다.
본 발명에서 사용되는 상기 리튬 복합 전이금속 산화물은 예를 들면, 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 NCM계 리튬 복합 전이금속 산화물일 수 있고, 또는 니켈(Ni), 코발트(Co) 및 알루미늄(Al)을 포함하는 NCA계 리튬 복합 전이금속 산화물일 수 있다. 또한, 상기 양극 활물질은 니켈(Ni), 코발트(Co), 망간(Mn) 및 알루미늄(Al)의 4성분을 필수로 포함하는 4성분계 리튬 복합 전이금속 산화물일 수 있다. 상기 4성분계 양극 활물질의 경우 안정성을 향상시킬 수 있으며, NCM/NCA 양극 활물질보다 출력 특성 및 용량 특성을 열화시키지 않으면서도 수명을 향상시킬 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물은, 이로써 한정되는 것은 아니나, 예를 들면, 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 양극 활물질 전구체 및 리튬 함유 원료물질을 혼합하고, 600 내지 900℃에서 소성하는 방법으로 제조할 수 있다.
이때, 상기 양극 활물질 전구체는 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 NCM계 화합물일 수 있고, 또는 니켈(Ni), 코발트(Co) 및 알루미늄(Al)을 포함하는 NCA계 화합물일 수 있으며, 니켈(Ni), 코발트(Co), 망간(Mn) 및 알루미늄(Al)의 4성분을 필수로 포함하는 4성분계 양극 활물질 전구체일 수도 있다. 또한, 니켈(Ni), 코발트(Co), 망간(Mn) 및/또는 알루미늄(Al)과 Mb을 더 포함하는 양극 활물질 전구체일 수 있다. 상기 양극 활물질 전구체는 시판되는 양극 활물질 전구체를 구입하여 사용하거나, 당해 기술 분야에 잘 알려진 양극 활물질 전구체의 제조 방법에 따라 제조될 수 있다.
예를 들면, 상기 니켈-코발트-망간 전구체는 니켈 함유 원료물질, 코발트 함유 원료물질 및 망간 함유 원료물질을 포함하는 전이금속 용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 첨가하여 공침 반응시켜 제조되는 것일 수 있다.
상기 니켈 함유 원료물질은 예를 들면, 니켈 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는, Ni(OH)2, NiO, NiOOH, NiCO3ㆍ2Ni(OH)2ㆍ4H2O, NiC2O2ㆍ2H2O, Ni(NO3)2ㆍ6H2O, NiSO4, NiSO4ㆍ6H2O, 지방산 니켈염, 니켈 할로겐화물 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 코발트 함유 원료 물질은 코발트 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는 Co(OH)2, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O, CoSO4, Co(SO4)2ㆍ7H2O 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 망간 함유 원료물질은 예를 들면, 망간 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물, 옥시수산화물 또는 이들의 조합일 수 있으며, 구체적으로는 Mn2O3, MnO2, Mn3O4 등과 같은 망간산화물; MnCO3, Mn(NO3)2, MnSO4, 아세트산 망간, 디카르복실산 망간염, 시트르산 망간, 지방산 망간염과 같은 망간염; 옥시 수산화망간, 염화 망간 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 전이금속 용액은 니켈 함유 원료물질, 코발트 함유 원료물질 및 망간 함유 원료물질을 용매, 구체적으로는 물, 또는 물과 균일하게 혼합될 수 있는 유기 용매(예를 들면, 알코올 등)의 혼합 용매에 첨가하여 제조되거나, 또는 니켈 함유 원료물질의 수용액, 코발트 함유 원료물질의 수용액 및 망간 함유 원료물질을 혼합하여 제조된 것일 수 있다.
상기 암모늄 양이온 함유 착물 형성제는, 예를 들면 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, NH4CO3 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다. 한편, 상기 암모늄 양이온 함유 착물 형성제는 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 염기성 화합물은 NaOH, KOH 또는 Ca(OH)2 등과 같은 알칼리 금속 또는 알칼리 토금속의 수산화물, 이들의 수화물 또는 이들의 조합일 수 있다. 상기 염기성 화합물 역시 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
한편, 필수적인 것은 아니나, 필요에 따라, 상기 염기성 화합물에 상기 A 원소, 즉, P 및/또는 F를 포함하는 음이온성 화합물을 용해시켜 사용될 수도 있다. 이 경우, 상기 음이온성 화합물로부터 유래된 A 원소가 전구체의 산소 위치에 일부 치환되면서 이차 전지의 충방전 시의 산소 탈리 및 전해액과의 반응을 억제하는 효과를 얻을 수 있다.
상기 염기성 화합물은 반응 용액의 pH를 조절하기 위해 첨가되는 것으로, 금속 용액의 pH가 11 내지 13이 되는 양으로 첨가될 수 있다.
한편, 상기 공침 반응은 질소 또는 아르곤 등의 비활성 분위기하에서, 40℃내지 70℃의 온도에서 수행될 수 있다.
상기와 같은 공정에 의해 니켈-코발트-망간 수산화물의 입자가 생성되고, 반응용액 내에 침전된다. 침전된 니켈-코발트-망간 수산화물 입자를 통상의 방법에 따라 분리시키고, 건조시켜 니켈-코발트-망간 전구체를 얻을 수 있다.
상기 방법으로 제조된 양극 활물질 전구체와, 리튬 함유 원료물질을 혼합하거나, 상기 양극 활물질 전구체, 리튬 함유 원료물질 및 Mc 함유 원료물질을 혼합하고, 600℃ 내지 900℃, 바람직하게는 600℃ 내지 800℃에서 소성하여 리튬 복합 전이금속 산화물을 얻을 수 있다.
상기 Mc 함유 원료물질은 Mc 원소를 함유하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물, 옥시수산화물 또는 이들의 조합일 수 있으며, 예를 들어, Mc가 Al인 경우 Al2O3, AlSO4, AlCl3, Al-이소프로폭사이드(Al-isopropoxide), AlNO3, 또는 이들의 조합을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 리튬 함유 원료물질은 리튬 함유 황산염, 질산염, 아세트산염, 탄산염, 옥살산염, 시트르산염, 할라이드, 수산화물 또는 옥시수산화물 등이 사용될 수 있으며, 물에 용해될 수 있는 한 특별히 한정되지 않는다. 구체적으로 상기 리튬 소스는 Li2CO3, LiNO3, LiNO2, LiOH, LiOHㆍH2O, LiH, LiF, LiCl, LiBr, LiI, CH3COOLi, Li2O, Li2SO4, CH3COOLi, 또는 Li3C6H5O7 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 필수적인 것은 아니나, 리튬 복합 전이금속 산화물의 산소 중 일부를 A 원소로 도핑하기 위해, 상기 소성 시에 A 함유 원료물질을 추가로 혼합할 수도 있다. 이때, 상기 A 함유 원료 물질로는, 예를 들면, Na3PO4, K3PO4, Mg3(PO4)2, AlF3, NH4F, LiF 등일 수 있으나, 이에 한정되는 것은 아니다. 상기와 같이 A 원소에 의해 산소의 일부가 대체될 경우, 이차 전지의 충방전 시의 산소 탈리 및 전해액과의 반응을 억제하는 효과를 얻을 수 있다.
다음으로, 상기 리튬 복합 전이금속 산화물을 수세하여 리튬 복합 전이금속 산화물의 표면에 존재하는 리튬 부산물을 제거한다.
니켈을 고 농도로 함유하는 리튬 복합 전이금속 산화물의 경우, 니켈 함량이 적은 리튬 복합 전이금속 산화물에 비해 구조적으로 불안정하기 때문에 제조 공정에서 미반응 수산화리튬이나 탄산리튬과 같은 리튬 부산물이 더 많이 발생한다. 예를 들어, 니켈 분율이 80몰% 미만인 리튬 복합 금속 산화물의 경우, 합성 후 리튬 부산물의 양이 0.5~0.6중량% 정도인데 반해, 니켈 분율이 80몰% 이상인 리튬 복합 금속 산화물의 경우, 합성 후 리튬 부산물의 양이 1중량% 정도로 높게 나타난다. 한편, 양극 활물질에 리튬 부산물이 다량 존재할 경우, 리튬 부산물과 전해액이 반응하여 가스 발생 및 스웰링 현상이 발생하게 되고, 이로 인해 고온 안정성이 현저하게 저하되게 된다. 따라서, 고농도 니켈을 포함하는 리튬 복합 전이금속 산화물로부터 리튬 부산물을 제거하기 위한 수세 공정이 필수적으로 요구된다.
상기 수세 단계는, 예를 들면, 초순수에 리튬 복합 전이금속 산화물을 투입하고, 교반시키는 방법으로 수행될 수 있다. 이때, 상기 수세 온도는 20℃ 이하, 바람직하게는 10℃ 내지 20℃일 수 있으며, 수세 시간은 10분 내지 1시간 정도일 수 있다. 수세 온도 및 수세 시간이 상기 범위를 만족할 때, 리튬 부산물이 효과적으로 제거될 수 있다.
다음으로, 상기 수세된 리튬 복합 전이금속 산화물, 코발트(Co) 함유 원료물질 및 보론(B) 함유 원료물질을 혼합하고, 고온 열처리한다. 이때, 상기 고온 열처리는 600℃ 이상 온도로 수행되며, 보다 바람직하게는 600℃ 내지 900℃, 더욱 바람직하게는 700℃ 내지 900℃ 온도로 수행될 수 있다. 상기 고온 열처리 단계는 리튬 부산물을 추가로 제거하고, 고온 열처리를 통해 양극 활물질 내의 금속 원소들을 재결정화함으로써 구조 안정성 및 열 안정성을 향상시키기 위한 것이다. 고농도의 니켈을 함유하는 리튬 복합 전이금속 산화물의 경우 잔류하는 리튬 부산물을 제거하기 위해 수세를 진행하게 되는데, 수세 시 리튬 부산물 뿐 아니라 결정 구조 내의 리튬이 같이 빠져나가 결정화도가 떨어지게 되고 안정성이 저하된다. 이에, 수세된 리튬 복합 전이금속 산화물을 고온 열처리함으로써, 리튬 복합 전이금속 산화물의 금속 원소들을 재결정화하여 리튬의 빈 자리를 채우고, 표면 안정성을 향상시킬 수 있다.
이때, 본 발명의 경우 코발트(Co) 함유 원료물질 및 보론(B) 함유 원료물질을 함께 혼합하여 고온 열처리한다. 종래에는 고농도 니켈을 함유하는 리튬 복합 전이금속 산화물의 열 안정성을 향상시키기 위해, 고온 열처리 후에 별도로 저온에서 코팅 공정을 진행하였지만, 이 경우 공정 단계의 증가로 생산 시간이 증가되고, 공정 비용이 증가되는 문제가 있었다. 그러나, 본 발명은 수세 후 고온 열처리 단계에서 코발트(Co) 함유 원료물질 및 보론(B) 함유 원료물질을 함께 혼합하여 표면 코팅부를 동시에 형성함으로써, 공정을 간소화하고, 생산 시간 및 공정 비용을 절감할 수 있도록 하였다. 또한, 이와 같이 제조된 표면 코팅부가 형성된 양극 활물질은 공정 시간 및 비용 증가의 문제를 해결하면서도 우수한 열 안정성, 고온 수명 특성 및 출력 특성이 향상된 것을 확인하였다.
상기 코발트(Co) 함유 원료물질로는, 코발트 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는 Co(OH)2, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O, Co(SO4)2ㆍ7H2O 또는 이들의 조합 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 코발트(Co) 함유 원료물질은 리튬 복합 전이금속 산화물 100중량부에 대하여 0.001 내지 0.01 중량부, 바람직하게는 0.002 내지 0.008중량부로 혼합될 수 있다. 코발트(Co) 함유 원료물질의 함량이 상기 범위를 만족하는 경우, 리튬 복합 전이금속 산화물의 용량 특성을 저해하지 않으면서 출력 특성을 효과적으로 개선할 수 있다. 구체적으로는 0.001중량부 미만인 경우에는 출력 향상 효과가 미미하고, 0.01중량부를 초과할 경우, 리튬 복합 전이금속 산화물 내의 니켈이 코발트로 대체되어 용량 특성이 저하될 수 있다.
상기 보론(B) 함유 원료물질은 B4C 및 B2O3로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있으며, 보다 바람직하게는 B4C를 사용할 수 있다. 상기 B4C는 탄소와 보론이 공유 결합되어 있으며, 상대적으로 높은 녹는점을 가지고 있어, 600℃ 이상의 고온 열처리 시에도 분해되지 않고, 리튬 보론 산화물을 효과적으로 형성할 수 있다. 반면에, 보론(B) 함유 원료물질로서 일반적으로 사용되는 H3BO3는 낮은 녹는점을 가지고 있어, 400℃ 이상에서 열처리할 경우 분해 반응이 일어나 리튬 보론 산화물을 형성할 수 없다.
상기 보론(B) 함유 원료물질은 리튬 복합 전이금속 산화물 100중량부에 대하여 0.0001 내지 0.001중량부, 바람직하게는 0.0002 내지 0.0008중량부로 혼합될 수 있다. 보론(B) 함유 원료물질의 함량이 상기 범위를 만족하는 경우, 양극 활물질의 용량 및 고온 수명 특성을 효과적으로 개선할 수 있다. 구체적으로는 0.0001중량부 미만인 경우에는 용량 향상 효과가 미미하고, 0.001중량부를 초과할 경우, 리튬과의 반응성이 커져 오히려 용량 및 고온 수명 특성이 저하될 수 있다.
이와 같이 코발트(Co) 함유 원료물질 및 보론(B) 함유 원료물질을 추가로 투입하여 고온 열처리를 수행할 경우, 고온 열처리 과정에서 리튬 복합 전이금속 산화물의 표면에 코발트 성분이 코팅되면서 리튬 복합 전이금속 산화물 내부에 비해 코발트 함량이 상대적으로 높은 코발트-리치층(Cobalt-Rich Layer)이 형성되게 되고, 리튬 복합 전이금속 산화물의 리튬 부산물과 보론이 반응하여 리튬 보론 산화물을 형성하게 된다. 이와 같이 리튬 복합 전이금속 산화물 표면에 코발트-리치층 및 리튬 보론 산화물을 포함하는 표면 코팅부가 형성되면, 출력 특성이 향상되고, 열 안정성이 향상되는 효과를 얻을 수 있다.
한편, 상기 열처리는 산화 분위기, 예를 들면, 산소 분위기에서 수행된다. 구체적으로는 상기 열처리는 0.5 ~ 10L/min, 바람직하게는 1 ~ 5L/min 유량으로 산소를 공급하면서 수행될 수 있다. 본 발명과 같이 산화 분위기에서 열처리가 수행될 경우, 리튬 부산물이 효과적으로 제거된다. 본 발명자들의 연구에 따르면 대기 하에서 열처리를 수행할 경우 리튬 부산물 제거 효과가 현저하게 떨어지며, 특히, 대기 하에서 700℃ 이상으로 열처리를 수행할 경우, 리튬 부산물의 양이 열처리 전보다 오히려 증가하는 것으로 나타났다.
또한, 상기 고온 열처리는 600℃ 이상, 예를 들면, 600℃ 내지 900℃, 보다 바람직하게는 700℃ 내지 900℃ 온도에서 10시간 이내, 예를 들면, 1시간 내지 10시간 정도 수행될 수 있다. 열처리 온도 및 시간이 상기 범위를 만족할 때, 열 안정성 개선 효과가 우수하게 나타난다. 본 발명자들의 연구에 따르면, 열처리 온도가 600℃ 미만인 경우에는 열 안정성 개선 효과가 거의 없는 것으로 나타났다.
<이차전지용 양극 활물질>
다음으로, 본 발명에 따른 이차전지용 양극 활물질에 대해 설명한다.
상기와 같은 방법에 따라 제조된 본 발명의 이차전지용 양극 활물질은 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 복합 전이금속 산화물; 및 상기 리튬 복합 전이금속 산화물의 입자 표면에 형성된 표면부;를 포함하며, 상기 표면부는 상기 리튬 복합 전이금속 산화물에 비해 코발트 함량이 높은 코발트-리치층(Cobalt-rich layer) 및 리튬 보론 산화물을 포함한다.
상기 리튬 복합 전이금속 산화물은 전이금속 전체 함량 중 니켈(Ni)의 함량이 60몰% 이상인 High-Ni NCM계/NCA계의 리튬 복합 전이금속 산화물일 수 있다. 보다 바람직하게는 전이금속 전체 함량 중 니켈(Ni)의 함량이 70몰% 이상, 더욱 바람직하게는 니켈(Ni)의 함량이 80몰% 이상일 수 있다. 상기 리튬 복합 전이금속 산화물의 전이금속 전체 함량 중 니켈(Ni)의 함량이 60몰% 이상을 만족함으로써 고용량 확보가 가능할 수 있다.
보다 구체적으로, 상기 리튬 복합 전이금속 산화물은 하기 화학식 1로 표시될 수 있다.
[화학식 1]
LipNi1 -(x1+y1+z1)Cox1Ma y1Mb z1Mc q1O2 -aAa
상기 식에서, Ma은 Mn 및 Al로 이루어진 군에서 선택된 적어도 하나 이상이고, Mb는 Zr, W, Mg, Al, Ce, Hf, Ta, La, Ti, Sr, Ba, Ge, V, Si, Nb, Mo, 및 Cr로 이루어진 군에서 선택된 적어도 하나 이상이며, Mc는 Al, Zr, Ti, Mg, Ta, Nb, Mo 및 Cr로 이루어진 군에서 선택되는 적어도 하나 이상이며, A는 P 및 F로 이루어진 군에서 선택된 적어도 하나 이상이고, 0.9≤p≤1.05, 0<x1≤0.3, 0<y1≤0.2, 0≤z1≤0.1, 0≤q1≤0.1이고, 0≤a<1, 0<x1+y1+z1≤0.4이다. 상기 [화학식 1]로 표시되는 리튬 복합 전이금속 산화물의 구체적인 사양은 상기 제조방법에서 설명한 것과 동일하므로, 구체적인 설명은 생략한다.
상기 코발트-리치층은, 리튬 복합 전이금속 산화물과 코발트(Co) 함유 원료물질을 혼합하여 고온 열처리하는 과정에서 코발트 함유 원료물질로부터 유래된 코발트 성분이 리튬 복합 전이금속 산화물의 표면에 코팅되어 형성된 층으로, 리튬 복합 금속 산화물에 비해 상대적으로 많은 코발트를 포함하는 층이다.
구체적으로는, 상기 코발트-리치층의 리튬을 제외한 금속 원소의 총 원자 개수(즉, 니켈, 코발트, 망간 및 알루미늄의 원자 개수의 합)에 대한 코발트의 원자 개수의 비(이하, '코발트 원자분율'이라 함)와 리튬 복합 전이금속 산화물의 코발트 원자 분율의 차가 0.05 내지 0.2, 바람직하게는 0.05 내지 0.15 정도일 수 있다. 보다 구체적으로는, 상기 코발트-리치층 내의 니켈, 코발트, 망간 및 알루미늄 중 코발트의 원자분율(즉, 니켈, 코발트, 망간 및 M의 원자 개수의 합에 대한 코발트의 원자 개수의 비)은 0.05 내지 0.45, 바람직하게는 0.05 내지 0.35일 수 있다. 코발트 리치층 내의 코발트 원자 분율이 상기 범위를 만족할 때, 리튬 복합 전이금속 산화물의 용량 특성을 저해하지 않으면서 출력 특성을 효과적으로 개선할 수 있다.
상기 리튬 보론 산화물은, 리튬 복합 전이금속 산화물과 보론(B) 함유 원료물질을 혼합하여 고온 열처리하는 과정에서 리튬 복합 전이금속 산화물의 리튬 부산물과 보론이 반응하여 리튬 보론 산화물을 형성한 것이다.
구체적으로, 상기 리튬 보론 산화물에 함유된 보론(B)은 양극 활물질 전체 중량에 대하여 100 내지 1,000ppm, 바람직하게는 200 내지 500ppm으로 함유될 수 있다. 이와 같이 보론(B)의 함량이 상기 범위를 만족할 때, 고온 안정성을 효과적으로 개선하고, 용량 및 고온 수명 특성 개선의 효과가 있다.
이와 같이 리튬 복합 전이금속 산화물 표면에 코발트-리치층 및 리튬 보론 산화물을 포함하는 표면 코팅부가 형성되면, 출력 특성이 향상되고, 열 안정성이 향상되는 효과를 얻을 수 있다.
상기 표면 코팅부는 두께가 10 내지 100nm, 바람직하게는 30nm 내지 70nm일 수 있다. 표면 코팅부의 두께가 100nm를 초과할 경우, 초기 방전 용량이 감소하고, 리튬의 이동을 방해하는 저항층으로 작용할 수 있으며, 표면 코팅부의 두께가 30nm 미만인 경우에는 출력, 열 안정성 및 사이클 특성이 저하될 수 있다.
상기와 같은 본 발명에 따른 양극 활물질은 수세 후에 산화 분위기에서 고온 열처리하는 공정을 거치고, 고온 열처리 시 코발트 리치층 및 리튬 보론 산화물을 포함하는 표면 코팅부를 형성하도록 제조되어, 종래의 고농도 니켈 함유 양극 활물질에 비해 리튬 부산물 잔류량이 현저하게 적고, 우수한 고온 안정성을 구현할 수 있다.
본 발명에 따른 양극 활물질은 리튬 부산물의 함량이 양극 활물질 전체 중량에 대하여 0.55중량% 이하, 바람직하게는 0.53중량% 이하, 더 바람직하게는 0.50중량% 이하를 만족할 수 있다. 따라서, 본 발명에 따른 양극 활물질을 이용하여 이차전지를 제조할 경우, 충반전 시 가스 발생 및 스웰링 현상을 효과적으로 억제할 수 있다.
또한, 본 발명에 따른 양극 활물질은 시차주사열량측정법(DSC)에 의해 열류량(Heat Flow)을 측정하였을 때, 220℃ 내지 250℃의 온도 범위, 바람직하게는 230℃ 내지 240℃, 가장 바람직하게는 234 내지 240℃의 온도 범위에서 메인 피크(main peak)가 나타나고, 열류량(Heat Flow)이 2,000W/g 이하, 바람직하게는 1,800W/g 이하, 더 바람직하게는 1,750W/g 이하를 만족할 수 있다. 수세 후 고온 열처리를 하지 않거나, 고온 열처리를 하더라도 열처리 온도 및 분위기가 본 발명의 조건을 만족하지 못하거나, 표면 코팅부를 형성하지 않은 경우, 상대적으로 낮은 온도에서 피크가 나타나며, 2,000W/g를 초과하는 높은 열류량 값이 나타난다. 이와 같이 낮은 온도 범위에서 피크가 나타나고, 열류량이 높은 양극 활물질을 사용할 경우, 과충전 등으로 전지 내부의 온도가 상승하면 열류량이 급격하게 증가하면서 폭발이 발생할 수 있다. 이에 비해 본 발명의 양극 활물질은 피크가 나타나는 온도 범위가 상대적으로 높고, 열류량이 작기 때문에, 과충전 등에 의해 전지 내부 온도가 상승하는 경우에도 폭발 위험성이 작다.
<양극 및 이차전지>
본 발명의 또 다른 일 실시예에 따르면 상기 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지를 제공한다.
구체적으로, 상기 양극은 양극 집전체 및 상기 양극 집전체 위에 형성되며, 상기 양극 활물질을 포함하는 양극 활물질 층을 포함한다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또, 상기 양극 활물질 층은 앞서 설명한 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
또, 상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 포함하는 양극 활물질 층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 양극은 상기 양극 활물질 층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지 또는 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극활물질 층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질 층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극 활물질 층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOα(0 < α < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
리튬 복합 전이금속 산화물 LiNi0 . 86Co0 . 1Mn0 . 02Al0 . 02O2 300g을 초순수 300mL에 넣고 30분 동안 교반하여 수세하고, 20분간 필터링을 수행하였다. 필터링된 리튬 복합 전이금속 산화물을 진공 오븐에서 130℃로 건조시킨 후 체거름(seiving)을 진행하였다. 그런 다음, 상기 리튬 복합 전이금속 산화물 100중량부에 대하여 Co(OH)2를 0.0078중량부(Co 5000ppm), B4C 0.0004중량부(B 300ppm)를 혼합하고, 1L/min 유량으로 산소를 공급하면서 700℃로 5시간 동안 고온 열처리하여 양극 활물질을 제조하였다.
실시예 2
리튬 복합 전이금속 산화물 100중량부에 대하여 Co(OH)2를 0.0031중량부(Co 2000ppm), B4C 0.0004중량부(B 300ppm)를 혼합한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극 활물질을 제조하였다.
비교예 1
고온 열처리 시에 Co(OH)2 B4C을 혼합하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하여 양극 활물질을 제조하였다.
비교예 2
리튬 복합 전이금속 산화물 LiNi0 . 86Co0 . 1Mn0 . 02Al0 . 02O2 300g을 초순수 300mL에 넣고 30분 동안 교반하여 수세하고, 20분간 필터링을 수행하였다. 필터링된 리튬 복합 전이금속 산화물을 진공 오븐에서 130℃로 건조시킨 후 체거름(seiving)을 진행하였다. 그런 다음, 상기 리튬 복합 전이금속 산화물 100중량부에 대하여 Co(OH)2를 0.0078중량부(Co 5000ppm)를 혼합하고, 1L/min 유량으로 산소를 공급하면서 700℃로 5시간 동안 고온 열처리하고, 필터링을 수행하였다. 그런 다음, H3BO3을 0.0057중량부(B 1,000ppm) 혼합하고, 300℃로 3시간 동안 대기(air) 분위기 하에서 열처리하여 양극 활물질을 제조하였다.
비교예 3
리튬 복합 전이금속 산화물 LiNi0 . 86Co0 . 1Mn0 . 02Al0 . 02O2 300g을 초순수 300mL에 넣고 30분 동안 교반하여 수세하고, 20분간 필터링을 수행하였다. 필터링된 리튬 복합 전이금속 산화물을 진공 오븐에서 130℃로 건조시킨 후 체거름(seiving)을 진행하였다. 그런 다음, 상기 리튬 복합 전이금속 산화물 100중량부에 대하여 H3BO3을 0.0057중량부(B 1,000ppm) 혼합하고, 300℃로 3시간 동안 대기(air) 분위기 하에서 열처리하여 양극 활물질을 제조하였다.
[실험예 1: 열류량 평가]
시차주사열량측정기(SETARAM Instrumentation, Sensys evo DSC)를 이용하여 실시예 1~2 및 비교예 1~3의 양극 활물질의 온도에 따른 열류량(Heat Flow)을 측정하였다. 구체적으로는 상기 실시예 1~2 및 비교예 1~3의 양극 활물질 16mg을 DSC 측정용 내압펜에 투입한 후 전해액(EVPS) 20μL를 주입하였다. DSC 분석을 위한 온도 범위는 25℃ ~ 400℃로 하였으며, 승온 속도는 10℃/min으로 하였다. 각각의 양극 활물질에 대하여 3회 이상 DSC 측정을 실시하여 평균값을 산측하였다. 측정 결과는 표 1 및 도 1에 도시하였다.
Main peak (℃) 열류량(W/g)
실시예1 234.7 1,661
실시예2 234.9 1,981
비교예1 230.1 2,228
비교예2 233.9 2,186
비교예3 229.6 2,436
상기 표 1 및 도 1을 참조하면, 실시예 1~2의 양극 활물질은 234℃ 이상에서 메인 피크(main peak)가 나타나고, 열류량이 2,000W/g 미만인데 반해, 비교예 1의 양극 활물질은 상대적으로 낮은 온도인 약 230℃에서 메인 피크(main peak)가 나타나고, 열류량이 2,000W/g을 초과함을 확인할 수 있다. 이는 실시예 1~2의 양극 활물질이 비교예 1의 양극 활물질에 비해 우수한 열 안정성을 가짐을 보여주는 것이다. 또한, 실시예 1~2의 양극 활물질이 비교예 2~3의 양극 활물질에 비해서도 상대적으로 고온에서 메인 피크(main peak)가 나타나고, 열류량이 적게 나타났음을 확인할 수 있다.
[실험예 2: 리튬 부산물 잔류량 평가]
실시예 1~2 및 비교예 2~3에 의해 제조된 양극 활물질 5g을 물 100mL에 분산시킨 후 0.1M의 HCl로 적정하면서 pH 값의 변화를 측정하여 pH 적정 곡선(pH titration Curve)을 얻었다. 상기 pH 적정 곡선을 이용하여 각 양극 활물질 내의 LiOH 잔류량과 Li2CO3 잔류량을 계산하였으며, 이들을 합한 값을 전체 리튬 부산물 잔류량으로 평가하여 하기 표 2에 나타내었다.
LiOH 잔류량(wt%) Li2CO3 잔류량(wt%) 전체 리튬 부산물 잔류량(wt%)
실시예1 0.413 0.085 0.498
실시예2 0.343 0.142 0.485
비교예2 0.327 0.229 0.556
비교예3 0.365 0.176 0.541
상기 표 2를 참조하면, 실시예 1~2의 양극 활물질이 비교예 2~3의 양극 활물질에 비하여 Li2CO3의 잔류량이 현저히 감소하였으며, 리튬 부산물 전체 잔류량도 감소된 것을 확인할 수 있다. 이를 통해, 실시예 1~2의 양극 활물질은 가스 발생 억제 및 스웰링 억제 효과가 있음을 예측할 수 있다.
[실험예 3: 사이클 특성 평가]
실시예 1~2 및 비교예 1~3에 의해 제조된 각각의 양극 활물질, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 95:2.5:2.5의 비율로 혼합하여 양극 합재(점도: 5000mPa·s)을 제조하고, 이를 알루미늄 집전체의 일면에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.
또, 음극 활물질로서 천연흑연, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 85:10:5의 비율로 혼합하여 음극활물질층 형성용 조성물을 제조하고, 이를 구리 집전체의 일면에 도포하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
상기와 같이 제조된 리튬 이차 전지를 45℃에서 충전 종지 전압 4.25V, 방전 종지 전압 2.5V, 0.3C/0.3C 조건으로 30사이클 충방전을 실시하면서 용량 유지율(Capacity Retention[%]) 및 저항 증가율(DCR Incress[%])을 측정하였다. 측정 결과는 도 2 및 도 3에 나타내었다. 도 2는 용량 유지율을 나타낸 그래프이고, 도 3은 저항 증가율을 나타낸 그래프이다.
도 2 및 도 3을 통해, 실시예 1~2의 양극 활물질을 적용한 이차전지의 경우, 비교예 1~3의 양극 활물질을 적용한 이차전지에 비해, 30회 충방전 시에 용량 감소율 및 저항 증가율이 현저하게 낮음을 확인할 수 있다.
[실험예 4: C rate에 따른 방전 용량 변화 평가]
상기 실험예 3과 같이 제조된 리튬 이차 전지를 25℃에서 충전 종지 전압 4.25V, 방전 종지 전압 2.5V, 0.5C로 충전 후, 0.1C/0.2C/0.33C/0.5C/1.0C/2.0C로 각 방전 시 방전 용량 변화를 측정하였다. 측정 결과는 표 3에 나타내었다.

C rate
0.1C 0.2C 0.33C 0.5C 1.0C 2.0C
실시예1
방전용량
(mAh/g)
205.3 199.9 196.0 192.7 186.8 180.4
Rate(%) 100.0 97.4 95.5 93.9 91.0 87.9
실시예2
방전용량
(mAh/g)
205.0 199.8 196.0 192.6 186.1 178.6
Rate(%) 100.0 97.4 95.6 93.9 90.7 87.1
비교예1
방전용량
(mAh/g)
205.2 200.0 196.0 192.5 185.6 177.6
Rate(%) 100.0 97.4 95.3 93.8 90.4 86.5
비교예2
방전용량
(mAh/g)
204.9 199.2 194.4 190.2 182.8 174.1
Rate(%) 100.0 97.2 94.9 92.8 89.2 85.0
비교예3 방전용량
(mAh/g)
206.7 200.7 195.6 191.4 183.9 175.6
Rate(%) 100.0 97.1 94.6 92.6 89.0 84.9
상기 표 3을 참조하면, 실시예 1~2의 양극 활물질을 적용한 이차전지의 경우, 비교예 1~3의 양극 활물질을 적용한 이차전지에 비해, 율 특성이 개선되었음을 확인할 수 있다.

Claims (16)

  1. 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 복합 전이금속 산화물을 마련하는 단계;
    상기 리튬 복합 전이금속 산화물을 수세하여 리튬 복합 전이금속 산화물의 표면에 존재하는 리튬 부산물을 제거하는 단계; 및
    상기 수세된 리튬 복합 전이금속 산화물, 코발트(Co) 함유 원료물질 및 보론(B) 함유 원료물질을 혼합하고, 600℃ 이상의 온도로 고온 열처리하는 단계;
    를 포함하는 이차전지용 양극 활물질의 제조방법.
  2. 제1항에 있어서,
    상기 리튬 복합 전이금속 산화물은 전이금속 전체 함량 중 니켈(Ni)의 함량이 60몰% 이상인 이차전지용 양극 활물질의 제조방법.
  3. 제1항에 있어서,
    상기 보론(B) 함유 원료물질은 B4C를 포함하는 이차전지용 양극 활물질의 제조방법.
  4. 제1항에 있어서,
    상기 고온 열처리는 600 내지 900℃의 온도 및 산화 분위기 하에서 수행하는 이차전지용 양극 활물질의 제조방법.
  5. 제1항에 있어서,
    상기 코발트(Co) 함유 원료물질은, 리튬 복합 전이금속 산화물 100중량부에 대하여 0.001 내지 0.01중량부 혼합하는 이차전지용 양극 활물질의 제조방법.
  6. 제1항에 있어서,
    상기 보론(B) 함유 원료물질은, 리튬 복합 전이금속 산화물 100중량부에 대하여 0.0001 내지 0.001중량부 혼합하는 이차전지용 양극 활물질의 제조방법.
  7. 제1항에 있어서,
    상기 리튬 복합 전이금속 산화물은 하기 화학식 1로 표시되는 이차전지용 양극 활물질의 제조방법.
    [화학식 1]
    LipNi1 -(x1+y1+z1)Cox1Ma y1Mb z1Mc q1O2 -aAa
    상기 식에서, Ma은 Mn 및 Al로 이루어진 군에서 선택된 적어도 하나 이상이고, Mb는 Zr, W, Mg, Al, Ce, Hf, Ta, La, Ti, Sr, Ba, Ge, V, Si, Nb, Mo, 및 Cr로 이루어진 군에서 선택된 적어도 하나 이상이며, Mc는 Al, Zr, Ti, Mg, Ta, Nb, Mo 및 Cr로 이루어진 군에서 선택되는 적어도 하나 이상이며, A는 P 및 F로 이루어진 군에서 선택된 적어도 하나 이상이고, 0.9≤p≤1.05, 0<x1≤0.3, 0<y1≤0.2, 0≤z1≤0.1, 0≤q1≤0.1이고, 0≤a<1, 0<x1+y1+z1≤0.4이다.
  8. 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 복합 전이금속 산화물; 및
    상기 리튬 복합 전이금속 산화물의 입자 표면에 형성된 표면 코팅부;를 포함하며,
    상기 표면 코팅부는 상기 리튬 복합 전이금속 산화물에 비해 코발트 함량이 높은 코발트-리치층(Cobalt-rich layer) 및 리튬 보론 산화물을 포함하는 이차전지용 양극 활물질.
  9. 제8항에 있어서,
    상기 리튬 복합 전이금속 산화물은 전이금속 전체 함량 중 니켈(Ni)의 함량이 60몰% 이상인 이차전지용 양극 활물질.
  10. 제8항에 있어서,
    상기 코발트-리치층 내의 니켈(Ni), 코발트(Co), 망간(Mn) 및 알루미늄(Al)의 원자 개수의 합에 대한 코발트(Co)의 원자 개수의 비와, 상기 리튬 복합 전이금속 산화물 내의 니켈(Ni), 코발트(Co), 망간(Mn) 및 알루미늄(Al)의 원자 개수의 합에 대한 코발트의 원자 개수의 비의 차가 0.05 내지 0.2인 이차전지용 양극 활물질.
  11. 제8항에 있어서,
    상기 리튬 보론 산화물에 함유된 보론(B)은 양극 활물질 전체 중량에 대하여 100 내지 1,000ppm으로 함유된 이차전지용 양극 활물질.
  12. 제8항에 있어서,
    상기 표면 코팅부는 10 내지 100nm의 두께로 형성되는 이차전지용 양극 활물질.
  13. 제8항에 있어서,
    상기 리튬 부산물은 양극 활물질 전체 중량에 대하여 0.55중량% 이하로 포함되는 이차전지용 양극 활물질.
  14. 제8항에 있어서,
    상기 리튬 복합 전이금속 산화물은 하기 화학식 1로 표시되는 이차전지용 양극 활물질.
    [화학식 1]
    LipNi1 -(x1+y1+z1)Cox1Ma y1Mb z1Mc q1O2 -aAa
    상기 식에서, Ma은 Mn 및 Al로 이루어진 군에서 선택된 적어도 하나 이상이고, Mb는 Zr, W, Mg, Al, Ce, Hf, Ta, La, Ti, Sr, Ba, Ge, V, Si, Nb, Mo, 및 Cr로 이루어진 군에서 선택된 적어도 하나 이상이며, Mc는 Al, Zr, Ti, Mg, Ta, Nb, Mo 및 Cr로 이루어진 군에서 선택되는 적어도 하나 이상이며, A는 P 및 F로 이루어진 군에서 선택된 적어도 하나 이상이고, 0.9≤p≤1.05, 0<x1≤0.3, 0<y1≤0.2, 0≤z1≤0.1, 0≤q1≤0.1이고, 0≤a<1, 0<x1+y1+z1≤0.4이다.
  15. 제8항 내지 제14항 중 어느 한 항에 따른 양극 활물질을 포함하는 이차전지용 양극.
  16. 제15항에 따른 양극을 포함하는 리튬 이차전지.
KR1020190020604A 2018-02-28 2019-02-21 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 KR102379596B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180024858 2018-02-28
KR20180024858 2018-02-28

Publications (2)

Publication Number Publication Date
KR20190103955A true KR20190103955A (ko) 2019-09-05
KR102379596B1 KR102379596B1 (ko) 2022-03-29

Family

ID=67805438

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190020604A KR102379596B1 (ko) 2018-02-28 2019-02-21 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지

Country Status (6)

Country Link
US (1) US20200335787A1 (ko)
EP (1) EP3715333B1 (ko)
JP (1) JP7139007B2 (ko)
KR (1) KR102379596B1 (ko)
CN (1) CN111542496B (ko)
WO (1) WO2019168301A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054959A1 (ko) * 2021-10-01 2023-04-06 주식회사 엘지에너지솔루션 리튬 이차전지용 양극 활물질의 제조 방법 및 이에 의하여 제조된 양극 활물질
KR20230081345A (ko) * 2021-11-30 2023-06-07 한국교통대학교산학협력단 전극활물질의 제조방법, 전극활물질 및 이를 포함하는 리튬 이온 전지

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102288290B1 (ko) 2018-02-23 2021-08-10 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
CN115023832A (zh) * 2020-01-27 2022-09-06 日亚化学工业株式会社 非水电解质二次电池用正极活性物质及其制造方法
CA3166707A1 (en) * 2020-02-07 2021-08-12 Tobias Maximilian TEUFL Cathode active material and method for making such cathode active material
KR102587970B1 (ko) * 2020-10-06 2023-10-10 주식회사 엘지화학 고함량의 니켈 함유 리튬 복합전이금속 산화물 양극 활물질 입자 혼합물의 제조방법
CN116848659A (zh) * 2021-03-23 2023-10-03 株式会社Lg化学 锂二次电池用正极活性材料、其制备方法以及包含所述正极活性材料的锂二次电池用正极和锂二次电池
US20230174380A1 (en) * 2021-12-03 2023-06-08 Sylvatex, Inc. Method for the Manufacture of Cathode Materials
WO2023123054A1 (zh) * 2021-12-29 2023-07-06 宁德时代新能源科技股份有限公司 钠离子电池用正极活性材料、其制备方法、以及包含其的正极极片、钠离子电池及用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140081663A (ko) * 2012-12-13 2014-07-01 주식회사 에코프로 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질
KR20150050152A (ko) * 2013-10-31 2015-05-08 주식회사 엘지화학 양극 활물질의 제조방법, 및 이에 의해 제조된 리튬 이차전지용 양극 활물질
KR20170067085A (ko) * 2015-12-07 2017-06-15 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20170076088A (ko) * 2015-12-24 2017-07-04 주식회사 포스코 리튬 이차 전지용 양극 활물질의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20170103662A (ko) 2016-03-03 2017-09-13 주식회사 엘지화학 리튬 이차전지용 양극활물질 및 이의 제조 방법

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4130048B2 (ja) * 1999-05-25 2008-08-06 三洋電機株式会社 非水電解質二次電池
KR100696619B1 (ko) * 2000-09-25 2007-03-19 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 그 제조 방법
JP2002158011A (ja) * 2000-09-25 2002-05-31 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法
US6984469B2 (en) * 2000-09-25 2006-01-10 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium batteries and method of preparing same
US7138209B2 (en) * 2000-10-09 2006-11-21 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
WO2004049473A2 (en) * 2002-11-26 2004-06-10 Showa Denko K.K. Electrode material comprising silicon and/or tin particles and production method and use thereof
KR101264364B1 (ko) * 2009-12-03 2013-05-14 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질 및 이를 이용한 리튬 이차 전지
WO2012141258A1 (ja) * 2011-04-14 2012-10-18 戸田工業株式会社 Li-Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
KR101863094B1 (ko) * 2011-09-16 2018-07-05 삼성에스디아이 주식회사 복합양극활물질, 및 이를 채용한 양극과 리튬전지
JP6286855B2 (ja) * 2012-04-18 2018-03-07 日亜化学工業株式会社 非水電解液二次電池用正極組成物
KR101785266B1 (ko) * 2013-01-18 2017-11-06 삼성에스디아이 주식회사 복합양극활물질, 이를 채용한 양극 및 리튬전지, 및 그 제조방법
KR101816945B1 (ko) * 2013-10-29 2018-01-09 주식회사 엘지화학 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR101747140B1 (ko) * 2014-08-29 2017-06-14 주식회사 엘 앤 에프 리튬 이차 전지용 니켈계 복합 산화물, 및 이를 포함하는 리튬 이차 전지
KR101777466B1 (ko) * 2014-10-02 2017-09-11 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR102314045B1 (ko) * 2014-12-18 2021-10-18 삼성에스디아이 주식회사 복합 양극 활물질, 그 제조방법, 이를 포함한 양극 및 리튬 전지
KR101614016B1 (ko) * 2014-12-31 2016-04-20 (주)오렌지파워 실리콘계 음극 활물질 및 이의 제조 방법
KR102004457B1 (ko) * 2015-11-30 2019-07-29 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2017095134A1 (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR20170075596A (ko) * 2015-12-23 2017-07-03 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
US11302919B2 (en) * 2016-07-20 2022-04-12 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
KR102295366B1 (ko) * 2016-07-20 2021-08-31 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
JP7052189B2 (ja) * 2016-07-20 2022-04-12 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法
CN108878795B (zh) * 2017-05-15 2021-02-02 宁德时代新能源科技股份有限公司 改性正极活性材料及其制备方法及电化学储能装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140081663A (ko) * 2012-12-13 2014-07-01 주식회사 에코프로 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질
KR20150050152A (ko) * 2013-10-31 2015-05-08 주식회사 엘지화학 양극 활물질의 제조방법, 및 이에 의해 제조된 리튬 이차전지용 양극 활물질
KR20170067085A (ko) * 2015-12-07 2017-06-15 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20170076088A (ko) * 2015-12-24 2017-07-04 주식회사 포스코 리튬 이차 전지용 양극 활물질의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20170103662A (ko) 2016-03-03 2017-09-13 주식회사 엘지화학 리튬 이차전지용 양극활물질 및 이의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Korean Chem. Eng. Res., 55(6), 861-867(2017.07.28) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054959A1 (ko) * 2021-10-01 2023-04-06 주식회사 엘지에너지솔루션 리튬 이차전지용 양극 활물질의 제조 방법 및 이에 의하여 제조된 양극 활물질
KR20230081345A (ko) * 2021-11-30 2023-06-07 한국교통대학교산학협력단 전극활물질의 제조방법, 전극활물질 및 이를 포함하는 리튬 이온 전지
WO2023101078A1 (ko) * 2021-11-30 2023-06-08 한국교통대학교산학협력단 전극활물질의 제조방법, 전극활물질 및 이를 포함하는 리튬 이온 전지

Also Published As

Publication number Publication date
EP3715333A4 (en) 2021-01-27
US20200335787A1 (en) 2020-10-22
EP3715333B1 (en) 2024-03-27
KR102379596B1 (ko) 2022-03-29
EP3715333A1 (en) 2020-09-30
WO2019168301A1 (ko) 2019-09-06
CN111542496A (zh) 2020-08-14
CN111542496B (zh) 2024-03-26
JP7139007B2 (ja) 2022-09-20
JP2021508154A (ja) 2021-02-25

Similar Documents

Publication Publication Date Title
KR102379596B1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR102313092B1 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102268079B1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20190041715A (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20190106406A (ko) 양극 활물질, 그 제조 방법, 이를 포함하는 양극 및 이차전지
KR102507631B1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102313089B1 (ko) 양극활물질 전구체, 그 제조 방법, 이를 이용해 제조된 양극 활물질, 양극 및 이차전지
KR102207105B1 (ko) 이차전지용 양극 활물질의 제조 방법
KR20200085679A (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
KR102412586B1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20200070647A (ko) 고-니켈 양극 활물질, 그 제조 방법, 이를 포함하는 양극 및 리튬이차전지
KR20200099900A (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
KR102429236B1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20200065856A (ko) 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
KR102288296B1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102569296B1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조방법에 의해 제조된 양극 활물질
KR102565910B1 (ko) 이차전지용 양극 활물질의 제조방법
KR102128011B1 (ko) 이차전지용 양극 활물질, 그 제조 방법, 이를 포함하는 이차전지용 양극 및 이차전지
KR102397220B1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20180076647A (ko) 이차전지용 양극 활물질, 그 제조 방법, 이를 포함하는 이차전지용 양극 및 이차전지
KR20190113441A (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102675805B1 (ko) 양극 활물질의 제조 방법, 양극 활물질, 이를 포함하는 양극 및 이차전지
KR102565001B1 (ko) 양극 활물질 전구체, 이의 제조방법 및 이를 이용한 양극 활물질의 제조방법
KR20230096894A (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
KR20230076480A (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 이에 의하여 제조된 양극 활물질

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
X701 Decision to grant (after re-examination)
GRNT Written decision to grant