KR20190092939A - Plasma-Photo Catalyst Reactor for Removal of Ammonia, Packing Material coated with Photo Catalyst for the same Reactor, and Preparation of the same Packing Material - Google Patents

Plasma-Photo Catalyst Reactor for Removal of Ammonia, Packing Material coated with Photo Catalyst for the same Reactor, and Preparation of the same Packing Material Download PDF

Info

Publication number
KR20190092939A
KR20190092939A KR1020180012263A KR20180012263A KR20190092939A KR 20190092939 A KR20190092939 A KR 20190092939A KR 1020180012263 A KR1020180012263 A KR 1020180012263A KR 20180012263 A KR20180012263 A KR 20180012263A KR 20190092939 A KR20190092939 A KR 20190092939A
Authority
KR
South Korea
Prior art keywords
plasma
reactor
titanium dioxide
coated
ammonia
Prior art date
Application number
KR1020180012263A
Other languages
Korean (ko)
Inventor
전배혁
이순호
Original Assignee
전배혁
이순호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전배혁, 이순호 filed Critical 전배혁
Priority to KR1020180012263A priority Critical patent/KR20190092939A/en
Publication of KR20190092939A publication Critical patent/KR20190092939A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8634Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/002Catalysts characterised by their physical properties
    • B01J35/004Photocatalysts
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/402Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma

Abstract

The present invention provides a plasma-photocatalyst ammonia removal device for removing ammonia from air, a photocatalyst-coated filling material used therefor, and a manufacturing method thereof. A plasma-photocatalyst reactor for ammonia removal provides perovskite ceramic coated with titanium dioxide in a plasma reactor using a cylinder metal housing as one electrode and a metal wire or a metal rod located at the center of a cylinder as another electrode. A manufacturing method of a perovskite ceramic filling material coated with titanium dioxide comprises: a step a) of filling a plasma reactor with a perovskite ceramic to be coated with titanium dioxide; a step b) of coating the perovskite ceramic with titanium dioxide by generating a plasma while introducing titanium ethoxide and oxygen or air as a precursor of titanium dioxide into the plasma reactor; and a step c) of heat-treating the titanium dioxide-coated perovskite ceramic at 300 to 500°C for 1 to 5 hours. The present invention can easily manufacture titanium dioxide-coated perovskite ceramic filling material.

Description

플라즈마-광촉매 암모니아 제거 장치, 이에 사용되는 광촉매가 코팅된 충전물 및 이의 제조방법 {Plasma-Photo Catalyst Reactor for Removal of Ammonia, Packing Material coated with Photo Catalyst for the same Reactor, and Preparation of the same Packing Material}Plasma-Photocatalyst Ammonia Removal Apparatus, Photocatalyst-Coated Filler Used In It And Manufacturing Method Thereof {Plasma-Photo Catalyst Reactor for Removal of Ammonia, Packing Material coated with Photo Catalyst for the same Reactor, and Preparation of the same Packing Material}

본 발명은 암모니아 제거장치에 관한 것으로, 보다 상세하게는 플라즈마와 광촉매를 함께 이용하는 플라즈마-광촉매 암모니아 제거 장치에 관한 것이다.The present invention relates to an ammonia removal device, and more particularly to a plasma-photocatalyst ammonia removal device using a plasma and a photocatalyst.

본 발명은 또한 상기 플라즈마-광촉매 암모니아 제거 장치에 사용하기 위한 광촉매가 코팅된 충전물 및 이의 제조방법에 관한 것이다.The present invention also relates to a photocatalyst-coated filler for use in the plasma-photocatalytic ammonia removal apparatus and a method for producing the same.

암모니아는 축사, 돼지 분뇨 처리장과 하수 처리장 등에서 많이 발생하는데 악취가 심하여 불쾌감을 유발할 뿐만 아니라 적절한 처리 없이 배출하면 주민들의 건강을 해치고 많은 불평을 유발한다. Ammonia is often produced in barns, pig manure treatment plants and sewage treatment plants. It is notoriously bad, causing unpleasant feelings.

공기 중의 암모니아를 제거하는 방법으로는 물에 흡수시켜 제거하는 방법, 활성탄에 흡착시켜 제거하는 방법, 소각, 촉매를 이용하여 산화시켜 제거하는 방법 등이 있다. 그러나 이러한 방법들은 흡수나 흡착에 의한 제거는 2차 처리 문제를 야기하고, 소각 및 촉매에 의한 산화는 처리하고자 하는 공기를 높은 온도로 높여야 하기 때문에 에너지 소비량이 많다는 문제점이 있다. As a method of removing ammonia in the air, there is a method of absorbing water to remove it, a method of adsorbing and removing activated carbon, an incineration, and a method of oxidizing and removing the catalyst using a catalyst. However, these methods have a problem in that the removal by absorption or adsorption causes a secondary treatment problem, and the incineration and oxidation by the catalyst require high energy consumption because the air to be treated must be raised to a high temperature.

최근 들어 공기 중에 함유된 유해 가스 제거방법으로 저온 플라즈마가 관심을 끌고 있는데 플라즈마 발생시 전기 에너지의 일부가 열로 변환되기는 하지만 대부분은 플라즈마를 생성하는데 사용되므로 유해 가스가 포함된 공기 전체를 가열해야 하는 소각이나 촉매에 의한 제거보다 에너지 효율이 높다. In recent years, low-temperature plasma has attracted attention as a method for removing harmful gases contained in air. Although some of the electrical energy is converted to heat when plasma is generated, most of them are used to generate plasma, so incineration that requires heating the entire air containing harmful gases Energy efficiency is higher than removal by catalyst.

TiO2가 광촉매로 작용하여 물 분자를 분해할 수 있다는 것이 알려지면서 광촉매로서의 TiO2의 산화력에 주목하여 TiO2를 건물의 외장재로 사용, 대기 오염물질을 제거하려는 시도 등이 있었다. 그러나 TiO2는 햇빛만으로는 오염물질 분해 효율이 낮고 분자량이 큰 오염물질은 분해하지 못하는 한계가 있어 공기 청정기로서의 충분한 역할을 하지 못했다. TiO 2 acts as a photocatalyst in that it became known to decompose water molecules attention to the oxidizing power of TiO 2 as a photocatalyst using TiO 2 as exterior of the building, there were such attempts to remove air pollutants. However, TiO 2 did not play a sufficient role as an air purifier because sunlight alone had low efficiency of pollutant decomposition and limited molecular weight pollutants.

그리하여 TiO2 광촉매를 저온 플라즈마와 함께 결합하여 유기물을 분해시키려는 시도가 이루어지고 있는데 이렇게 하면 플라즈마가 생성되면서 발생하는 다량의 자외선이 광촉매를 활성화시켜 시너지 효과를 기대할 수 있기 때문이다.Thus TiO 2 Attempts have been made to decompose organic matter by combining the photocatalyst with the low temperature plasma, because a large amount of ultraviolet light generated by the plasma generation can activate the photocatalyst and be synergistic.

한국공개특허 10-2009-0086761에는 플라즈마 반응기 내부에 광촉매가 코팅된 유전체 구를 채움으로써 광촉매 활성을 위한 별도의 광원 없이 질소산화물(NOx), 황산화물(SOx) 등을 포함하는 배기가스를 처리하는 유전체 장벽 방전-광촉매 복합 시스템이 개시되어 있다. Korean Patent Publication No. 10-2009-0086761 discloses a method for treating exhaust gas containing nitrogen oxides (NOx), sulfur oxides (SOx), etc. without a separate light source for photocatalytic activity by filling a dielectric catalyst coated with a photocatalyst inside a plasma reactor. A dielectric barrier discharge-photocatalytic composite system is disclosed.

한국공개특허 10-2013-0133603에는 플라즈마 반응기 내부에 유전체와 광촉매가 고정된 유리섬유 지지체가 구비된 유전체 장벽의 방전 플라즈마 반응기를 이용한 유해기체 처리장치가 개시되어 있다. Korean Patent Publication No. 10-2013-0133603 discloses a harmful gas treatment apparatus using a discharge plasma reactor of a dielectric barrier having a glass fiber support having a dielectric and a photocatalyst fixed therein.

한국공개특허 10-2015-0035835에는 플라즈마 반응기에 사용되는 코어가 촉매 파티클이고, 쉘이 이산화티탄인 촉매 복합체를 플라즈마 화학증착법에 의해 제조하는 방법과 이를 이용한 대기유해물질 제거장치가 개시되어 있다.Korean Laid-Open Patent Publication No. 10-2015-0035835 discloses a method for preparing a catalyst complex in which a core used in a plasma reactor is a catalyst particle and a shell is titanium dioxide by plasma chemical vapor deposition, and an apparatus for removing airborne harmful substances using the same.

한국공개특허 10-2003-0092205에는 저온 플라즈마와 광촉매 필터를 이용한 유해가스 처리장치가 개시되어 있다. Korean Unexamined Patent Publication No. 10-2003-0092205 discloses an apparatus for treating harmful gas using a low temperature plasma and a photocatalyst filter.

한국공개특허 10-2011-0098407에는 화학기상법에 의해 광촉매 박막이 코팅된 고분자 비드를 제조하는 방법이 개시되어 있는데 광촉매 이산화티탄의 전구체로 TTIP (titaniumtetraisoproxide)를 사용하였다.Korean Patent Laid-Open Publication No. 10-2011-0098407 discloses a method for preparing polymer beads coated with a photocatalyst thin film by chemical vapor deposition. TTIP (titaniumtetraisoproxide) was used as a precursor of titanium dioxide photocatalyst.

상기 특허 외에 유해 가스를 처리하기 위한 플라즈마-광촉매 시스템에 관한 문헌으로 다음 논문들이 있다.In addition to the above patents, there are literatures on plasma-photocatalyst systems for treating hazardous gases.

우선, 가솔린 엔진의 냉 시동시, 배출되는 배기가스에서 유기물을 제거하기 위해 저온 플라즈마-광촉매 복합 시스템을 사용하였다. 그 결과, 벤젠 등 방향족 성분은 극히 낮은 배출 농도를 보였고, 고분자량 시료는 경질화 (cracking) 되거나, 분해되어 제거되었다. [1, 2 ,3]First, at cold start of a gasoline engine, a low temperature plasma-photocatalyst combination system was used to remove organics from the exhaust gas. As a result, aromatic components such as benzene showed extremely low emission concentrations, and high molecular weight samples were cracked or decomposed and removed. [1, 2,3]

2007년, Rousseau 등이 아세틸렌가스를 사용하여 VOC 제거를 실험하였다. 광촉매로는 TiO2가 코팅된 실리카 섬유를 사용하였고, 유전체 장벽(DBD; dielectric barrier discharge) 플라즈마를 사용하였다. 플라즈마-광촉매 결합 시스템이 자외선을 조사하는 광촉매 공정과 플라즈마 공정을 순차적으로 거치는 것보다 제거 효율이 높았다. [4] In 2007, Rousseau et al. Experimented with VOC removal using acetylene gas. TiO 2 -coated silica fibers were used as the photocatalyst, and dielectric barrier discharge (DBD) plasma was used. The plasma-photocatalytic coupling system has a higher removal efficiency than the photocatalytic process of irradiating ultraviolet rays and the plasma process sequentially. [4]

2011년, Akira Fusishima 등이 표면방전 플라즈마 (SDP; surface discharge plasma)와 TiO2 나노 파우다를 함침시킨 Ti 와이어를 이용한 플라즈마-광촉매 복합 시스템으로 암모니아를 제거하는 실험을 하였다. 결과는 UV+광촉매 공정 및 플라즈마 공정보다 제거율이 높았다. [5]In 2011, Akira Fusishima et al. Published a surface discharge plasma (SDP) and TiO 2. Experiments were performed to remove ammonia with a plasma-photocatalytic composite system using Ti wire impregnated with nano powder. The result was higher removal rate than UV + photocatalyst and plasma process. [5]

2012년, Yuanwei Lu 등이 대표적인 실내 오염물질인 알데하이드(HCHO) 제거 실험을 하였다. 이들은 TiO2 나노 파우더를 함침시킨 활성탄과 침-판 (wire-to-plate) 형태의 구조를 갖는 플라즈마 장치를 사용하였다. 플라즈마-광촉매 시스템이 알데하이드 제거에 높은 시너지 효과를 보였다. [6] In 2012, Yuanwei Lu et al conducted an experiment to remove aldehyde (HCHO), a representative indoor pollutant. These are TiO 2 A plasma apparatus having a structure in the form of activated carbon and a wire-to-plate impregnated with nano powder was used. Plasma-photocatalyst systems showed a high synergistic effect on aldehyde removal. [6]

Wen-jun Liang 등은 플라즈마-촉매 시스템을 이용하여 톨루엔 제거에 관한 실험을 하였다. 이들은 광촉매의 담체로 알루미나를 재질로 한 비드, Rashig Ring, 및 유리 스프링을 사용하였고, 이들 표면에 TiO2를 sol-gel법으로 코팅하고, BaTiO3나노파우더를 함침법으로 코팅하여 충진형 플라즈마 시스템을 구성하였다. [7]Wen-jun Liang et al. Conducted an experiment on toluene removal using a plasma-catalyst system. They used alumina-based beads, Rashig Ring, and glass spring as carriers for the photocatalyst, and TiO 2 was coated on the surface by sol-gel method and BaTiO 3 nanopowder was impregnated to fill the plasma system. It was made up. [7]

플라즈마 반응기의 충전물로는 강유전체인 페로브스카이트(perovskite) 구조를 갖는 세라믹이 사용되는데 이 구조의 세라믹은 유전 상수가 높아 알루미나나 유리의 8-10에 비해 BaTi03의 경우 10,000 이상의 값을 갖는다. 따라서 이러한 페로스프카이트 세라믹은 낮은 전기장에서도 플라즈마가 생성된다. [8] As a filler of the plasma reactor, a ceramic having a ferroelectric perovskite structure is used. The ceramic having a high dielectric constant has a value of 10,000 or more in the case of BaTi0 3 compared to 8-10 of alumina or glass. Thus, such perovskite ceramics generate plasma even at low electric fields. [8]

Bundy 등은 1996년 이러한 페로브스카이트를 저온 플라즈마에 이용하여 암모니아를 제거하는 실험을 하였으나 제거율이 매우 낮았고 [9], Yamamoto 등은 메탄 및 사염화탄소 분해하는 실험을 하였으나 역시 분해율이 높지 않았다. [10, 11]In 1996, Bundy et al. Experimented to remove ammonia by using such perovskite in low-temperature plasma, but the removal rate was very low. [9] Yamamoto et al. Also decomposed methane and carbon tetrachloride. [10, 11]

이밖에 이해완 등은 위 페로브스카이트 충전 플라즈마 시스템을 이용하여 삼염화에틸렌을 분해하는 실험을 하였고, [12] Takaki 등은 페로브스카이트 세라믹을 구형 및 실린더 형으로 제작하여 NO 제거에 있어 형태가 미치는 영향을 연구하였다. [13] In addition, Lee Hae-wan et al. Experimented to decompose ethylene trichloride using the above perovskite-filled plasma system. [12] Takaki et al. Produced perovskite ceramics in spherical and cylindrical form to remove NO. The effect was studied. [13]

한편, 담체에 광촉매를 코팅하는 방법으로는 함침법, Sol-Gel법, 스퍼터링(sputtering) 법, PECVD (plasma enhanced chemical vapor deposition)법 등이 있는데 함침법과 Sol-Gel법은 시간이 지남에 따라 촉매의 지지체에 대한 접착력이 감소하는 단점이 있다. On the other hand, the coating method of the photocatalyst on the carrier includes impregnation method, Sol-Gel method, sputtering method, PECVD (plasma enhanced chemical vapor deposition) method, impregnation method and Sol-Gel method over time There is a disadvantage that the adhesion to the support of the is reduced.

1. 한국공개특허 10-2009-0086761 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템1. Korean Patent Publication 10-2009-0086761 Dielectric Barrier Discharge-Photocatalytic Hybrid System for Exhaust Gas Removal 2. 한국공개특허 10-2013-0133603 광촉매가 충진된 유전체 장벽의 방전 플라즈마 반응기를 이용한 유해기체 처리장치2. Korea Patent Publication 10-2013-0133603 Noxious gas treatment apparatus using the discharge plasma reactor of the dielectric barrier filled with photocatalyst 3. 한국공개특허 10-2015-0035835 유전체 장벽 방전-촉매-광촉매 복합공정용 촉매복합체 제조방법 및 이에 의해 제조된 촉매복합체를 이용한 대기유해물질 제거장치3. Korean Patent Publication 10-2015-0035835 Dielectric Barrier Discharge-Catalyst-Photocatalyst Composite Process of Manufacturing Catalyst Complex and Atmospheric Hazardous Substance Removal Device Using Catalyst Composite Prepared Thereby 4. 한국공개특허 10-2003-0092205 저온 플라즈마와 광촉매 필터를 이용한 유해가스 처리장치4. Korea Patent Publication 10-2003-0092205 Hazardous gas treatment system using a low-temperature plasma and photocatalyst filter 5. 한국공개특허 10-2011-0098407 플라즈마 화학기상법에 의해 광촉매 박막이 코팅된 고분자 비드를 제조하는 방법 및 이를 이용한 수질오염물질의 제조방법5. Korean Patent Publication No. 10-2011-0098407 A method for preparing polymer beads coated with a photocatalyst thin film by plasma chemical vapor method and a method for preparing water pollutant using the same 6. 한국공개특허 10-2012-0097183 하수처리장용 플라즈마 악취 저감장치6. Korean Patent Publication 10-2012-0097183 Plasma odor reduction device for sewage treatment plant

1. T. H. Lee, W. Song, K. M. Chun, B, H, Chun, Y. G. Shin, “Experimental Study on the Oxidation of Model Gases, n-Propylene, n-Butane, Acetylene, at Ambient Temperatures by non-thermal Plasma and Photo-catalyst”, SAE Paper 2001-01 -3514, 2001TH Lee, W. Song, KM Chun, B, H, Chun, YG Shin, “Experimental Study on the Oxidation of Model Gases, n-Propylene, n-Butane, Acetylene, at Ambient Temperatures by non-thermal Plasma and Photo-catalyst ”, SAE Paper 2001-01 -3514, 2001 2. 이택헌, “스파크 점화기관 냉시동 및 웜업 기간의 플라즈마 광촉매 복합 반응기를 이용한 탄화수소 화합물 분석과 저감에 괸한 연구, 박사학위 논문, 연세대학교 공과대학원 기계공학과, 2001년, 6월2. Taek-Heon Lee, “Study on the Analysis and Reduction of Hydrocarbon Compounds by Plasma Photocatalytic Combined Reactor with Cold Ignition Engine and Warm-up Period, Ph.D. Thesis, Dept. of Mechanical Engineering, Yonsei University, 2001, June 3. 이택헌, 전광민, 전배혁, 신영기, “이택헌, “스파크 점화기관 냉시동 및 웜업 기간의 플라즈마 광촉매 복합 반응기를 이용한 탄화수소 화합물 분석과 저감에 괸한 실험적 연구”, 제 23회 KOSCO Symposium 논문집, pp 169 178, 20013. Taek-Heon Lee, Kwang-Min Jeon, Bae-Hyuk Jeon, and Young-Kee Shin, “Taek-Heon Lee,“ An Experimental Study on the Hydrocarbon Compound Analysis and Reduction Using Plasma Photocatalytic Hybrid Reactor during Spark Ignition Engine Cold and Warm-up ”, 23rd KOSCO Symposium Paper, pp. 169 178, 2001 4. A. Rousseau et al., “Comparison of the Plasma-Photocatalyst Synergy at Low and Atmospheric Pressure”, International J. of Plasma Environmental Science & Technology Vol. 1, No. 1, pp 52, 20074. A. Rousseau et al., “Comparison of the Plasma-Photocatalyst Synergy at Low and Atmospheric Pressure”, International J. of Plasma Environmental Science & Technology Vol. 1, No. 1, pp 52, 2007 5. Akira Fujishima et al., “Development of an Air-Purification Unit Using a Photocatalysis-Plasma Hybrid Reactor”, Electrochemistry, Technical Report, No. 10, p838, 20075. Akira Fujishima et al., “Development of an Air-Purification Unit Using a Photocatalysis-Plasma Hybrid Reactor”, Electrochemistry, Technical Report, No. 10, p838, 2007 6. Yuanwei Lu et al., “Synergistic Effect of Nanophotocatalysis and Nonthermal Plasma on the Removal of Indoor HCHO”, International J. of Photoenergy, Vol.2012, Article ID 354032, p. 8, 20126. Yuanwei Lu et al., “Synergistic Effect of Nanophotocatalysis and Nonthermal Plasma on the Removal of Indoor HCHO”, International J. of Photoenergy, Vol. 2012, Article ID 354032, p. 8, 2012 7. Wen-jun, Liang et al., “Combination of spontaneous polarization plasma and photocatalyst for toluene oxidation”, J. of Electrostatics, 75, p. 27, 20157. Wen-jun, Liang et al., “Combination of spontaneous polarization plasma and photocatalyst for toluene oxidation”, J. of Electrostatics, 75, p. 27, 2015 8. Anthony R. West, “Basic Solid State Chemistry”, John Wiley & Sons. 19948. Anthony R. West, “Basic Solid State Chemistry”, John Wiley & Sons. 1994 9. Dwaine S. Bundy, “Control of Ammonia and Odors in Animal Houses by a Ferroelectric Plasma Reactor”, IEEE Transactions on Industry Applications, Vol. 33, No. 1, p. 113, 19969. Dwaine S. Bundy, “Control of Ammonia and Odors in Animal Houses by a Ferroelectric Plasma Reactor”, IEEE Transactions on Industry Applications, Vol. 33, No. 1, p. 113, 1996 10. T. Yamamoto et al., “Catalysis-Assisted Plasma Technology for Carbon Tetrachloride Destruction”, IEEE Transactions on Industry Applications, Vol. 22, No. 1, 199610. T. Yamamoto et al., “Catalysis-Assisted Plasma Technology for Carbon Tetrachloride Destruction”, IEEE Transactions on Industry Applications, Vol. 22, no. 1, 1996 11. T. Yamamoto et al., “Methane Decomposition in a Barium Titanate Packed-Bed Nonthermal Plasma Reactor”, Plasma Chemistry and Plasma Processing, Vol. 18, No. 3, 199811. T. Yamamoto et al., “Methane Decomposition in a Barium Titanate Packed-Bed Nonthermal Plasma Reactor,” Plasma Chemistry and Plasma Processing, Vol. 18, No. 3, 1998 12. 이해완, 유상곤, 박명규, 박현배, 황경창, “유전체 충전형 플라즈마 반응기를 이용한 Trichloroethylene의 분해반응”, 화학공학 (Hwahak Konghak), Vol. 41, No. 3,p. 368, 200312. Hae-Wan Lee, Sang-Kon Yoo, Myung-Kyu Park, Hyun-Bae Park, Kyung-Chang Hwang, “Decomposition of Trichloroethylene Using Dielectric-Charged Plasma Reactor”, Chemical Engineering (Hwahak Konghak), Vol. 41, No. 3, p. 368, 2003 13. K. Takaki et al., “Influence of Pellet Shape of Ferrro-Electric Packed-Bed Plasma Reactor on Ozone Generation and NO Removal”, International J. of Plasma Environmental Science and Technology, Vol. 3, No. 1, p. 28, 200913.K. Takaki et al., “Influence of Pellet Shape of Ferrro-Electric Packed-Bed Plasma Reactor on Ozone Generation and NO Removal”, International J. of Plasma Environmental Science and Technology, Vol. 3, No. 1, p. 28, 2009

본 발명의 목적은 공기 중의 암모니아를 제거할 수 있는 플라즈마-광촉매 암모니아 제거 장치를 제공하는 것이다.It is an object of the present invention to provide a plasma-catalyst ammonia removal apparatus capable of removing ammonia in air.

본 발명의 다른 목적은 상기 플라즈마-광촉매 암모니아 제거 장치에 사용되는 광촉매가 코팅된 충전물 및 이의 제조방법을 제공하는 것이다. Another object of the present invention is to provide a photocatalyst-coated filler used in the plasma-photocatalyst ammonia removal apparatus and a method of manufacturing the same.

상기 과제를 해결하기 위한 본 발명의 암모니아 제거용 플라즈마-광촉매 반응기는 처리 가스의 유입구와 유출구가 구비된 실린더형 금속제 하우징과 두 개의 전극과 파워 서플라이로 구성되는 플라즈마 반응기와 그 내부에 충전되는 이산화티탄이 코팅된 페로브스카이트 세라믹 충전물로 구성된다.The plasma-photocatalytic reactor for ammonia removal of the present invention for solving the above problems is a plasma reactor composed of a cylindrical metal housing having an inlet and an outlet of a processing gas, two electrodes and a power supply, and a titanium dioxide filled therein. It consists of a coated perovskite ceramic filler.

이하 본 발명의 암모니아 제거용 플라즈마-광촉매 반응기를 도 1을 사용하여 구체적으로 설명한다.Hereinafter, the plasma-photocatalytic reactor for removing ammonia of the present invention will be described in detail with reference to FIG. 1.

도 1은 하우징을 금속제 실린더로 제작하여 하나의 전극으로 사용하고, 실린더 중앙에 위치하는 세라믹 튜브 안에 위치한 금속제 로드를 또 하나의 전극으로 사용하는 플라즈마 반응기에 이산화티탄이 코팅된 페로브스카이트 세라믹 충전물을 충전한 것이다. 1 is a perovskite ceramic filler coated with titanium dioxide in a plasma reactor using a housing made of a metal cylinder as one electrode and a metal rod located in a ceramic tube located at the center of the cylinder as another electrode. It is charged.

여기에서, 또 하나의 전극을 구성하는 세라믹 튜브 안에 위치한 금속제 로드는 금속제 와이어를 사용해도 좋고, 세라믹 튜브 없이 노출된 금속제 와이어 또는 금속제 로드를 사용해도 된다.Here, the metal rod located in the ceramic tube constituting another electrode may use a metal wire, or may use an exposed metal wire or metal rod without a ceramic tube.

본 발명은 플라즈마에 의한 산화 반응과 광촉매에 의한 산화 반응의 시너지 효과를 노린 발명으로, 상기 반응기에 충전되는 이산화티탄이 코팅된 페로브스카이트 세라믹 충전물이 발명의 핵심이다.The present invention aims at the synergistic effect of the oxidation reaction by plasma and the oxidation reaction by photocatalyst, and the titanium dioxide-coated perovskite ceramic filler filled in the reactor is the core of the invention.

통상 충전재로 많이 사용하는 유리나 알루미나는 유전율이 매우 낮기 때문에 반응기의 직경이 커지면 스파크가 일어나는 등 플라즈마가 안정적으로 발생되지 않지만 페로브스카이트는 유전 상수가 커서 반응기를 대형화할 수 있다.Since glass or alumina, which is commonly used as a filler, has a very low dielectric constant, plasma is not generated stably, such as sparking when the diameter of the reactor is increased, but perovskite has a large dielectric constant, which may increase the size of the reactor.

페로브스카이트는 BaTiO3, CaTiO3, MgTiO3가 있는데 유전 상수가 10,000 정도로 매우 크다. 특히 후술하는 실시예에서 보는 바와 같이, BaTiO3직경 3~8mm의 구를 충전재롤 사용하면 내경 10cm의 관에서도 플라즈마가 안정적으로 발생되고, 스파크 현상도 거의 관찰되지 않는다. Perovskite includes BaTiO 3 , CaTiO 3 , MgTiO 3 and has a very high dielectric constant of 10,000. Particularly, as shown in Examples described later, when a ball roll having a BaTiO 3 diameter of 3 to 8 mm is used, plasma is stably generated even in a tube having an inner diameter of 10 cm, and sparking is hardly observed.

상기 이산화티탄이 코팅된 페로브스카이트 세라믹 충전물은,The titanium dioxide-coated perovskite ceramic filler,

a) 이산화티탄을 코팅하고자 하는 페로브스카이트 세라믹을 플라즈마 반응기에 채우는 단계, a) filling the plasma reactor with a perovskite ceramic to be coated with titanium dioxide,

b) 이산화티탄의 전구체로 티타늄 에톡사이드(titanium ethoxide)와, 산소 또는 공기를 플라즈마 반응기에 유입시키면서 플라즈마를 발생시켜 페로브스카이트 세라믹에 이산화티탄을 코팅하는 단계 및b) coating titanium dioxide on the perovskite ceramic by generating a plasma while introducing titanium ethoxide and oxygen or air into the plasma reactor as a precursor of titanium dioxide;

c) 이산화티탄이 코팅된 페로브스카이트 세라믹을 300~500℃에서 1~5시간 열처리하는 단계를 거쳐 제조된다.c) Titanium dioxide-coated perovskite ceramic is manufactured through a step of heat-treating for 1 to 5 hours at 300 ~ 500 ℃.

페로브스카이트 세라믹에 이산화티탄을 골고루 코팅되도록 하기 위해 플라즈마 코팅 단계를 반응기를 회전시키면서 수행하는 것이 바람직하다.In order to evenly coat titanium dioxide on the perovskite ceramic, it is preferable to perform the plasma coating step while rotating the reactor.

플라즈마에서 생성되는 빛(자외선)을 광촉매 반응에 이용하는 플라즈마-광촉매 복합 반응기에서 통상 충전재로 사용되는 유리나 알루미나는 유전율이 낮아 플라즈마가 잘 발생하지 않는다.Glass or alumina, which is usually used as a filler in a plasma-photocatalytic hybrid reactor that uses light (ultraviolet rays) generated in plasma for a photocatalytic reaction, has a low dielectric constant and thus hardly generates plasma.

이산화티탄을 코팅한 후 열처리를 하는 것은 유기물을 제거하고 아나타제 결정(anatase crystal)을 더 많이 생성되게 하기 위함이다. The heat treatment after coating titanium dioxide is to remove organic matter and to generate more anatase crystals.

본 발명의 플라즈마-광촉매 반응기에 의하면 암모니아를 효과적이고 대용량으로 처리할 수 있고, 암모니아가 질산성 질소로 산화되지 않으므로 추가적인 처리가 필요 없다. According to the plasma-photocatalytic reactor of the present invention, ammonia can be treated effectively and in large quantities, and since ammonia is not oxidized to nitrate nitrogen, no further treatment is required.

또 본 발명에 의하면 이산화티탄이 코팅된 페로브스카이트 세라믹 충전물을 보다 용이하게 제조할 수 있다. According to the present invention, a titanium dioxide-coated perovskite ceramic filler can be more easily produced.

도 1은 본 발명의 암모니아 제거용 플라즈마-광촉매 반응기의 개요도이다.
도 2는 TiO2 광촉매가 코팅된 경우와 코팅되지 않은 경우에 있어서 처리 가스의 유량에 대한 암모니아 제거율이다.
도 3은 페로브스카이트 세라믹 볼의 크기를 달리한 경우에 있어서 처리 가스의 유량 별 암모니아 제거율이다.
도 4는 직경 8cm의 구리 반응기에서의 유량별 암모니아 제거율이다.
도 5는 직경 9cm의 알루미늄 반응기에서의 유량별 암모니아 제거율이다.
1 is a schematic diagram of a plasma-photocatalytic reactor for removing ammonia of the present invention.
FIG. 2 is ammonia removal rate with respect to the flow rate of the processing gas in the case of coating and without coating TiO 2 photocatalyst.
3 is ammonia removal rate by flow rate of the processing gas when the size of the perovskite ceramic ball is changed.
4 is ammonia removal rate by flow rate in a copper reactor having a diameter of 8 cm.
5 is ammonia removal rate by flow rate in an aluminum reactor having a diameter of 9 cm.

상기 본 발명의 구성은 후술하는 실시예에 의해 그 내용이 명확해질 것이나 권리범위는 이에 의해 제한되지 않는다. The configuration of the present invention will be clearer by the embodiments described below, but the scope of rights is not limited thereto.

<실시예 1> <Example 1>

광촉매가 코팅된 페로브스카이트 세라믹 볼을 사용한 경우와 광촉매가 코팅되지 않은 페로브스카이트 세라믹 볼을 사용한 경우에 있어서 암모니아 제거율을 비교하였다.The ammonia removal rate was compared between the photocatalyst coated perovskite ceramic ball and the photocatalyst coated perovskite ceramic ball.

1) 플라즈마 반응기1) plasma reactor

직경 5cm의 동관을 사용하였고, 이산화티탄이 코팅되거나 되지 않은 직경 5mm의 BaTiO3 볼 200cc를 충전하였다. A copper tube 5 cm in diameter was used, and 200 cc of BaTiO 3 balls having a diameter of 5 mm with or without titanium dioxide coated were charged.

2) 시료가스2) sample gas

암모니아 농도 400ppm의 공기를 유량 2~10 L/min의 범위에서 흘려주었다. Air having an ammonia concentration of 400 ppm was allowed to flow in a range of a flow rate of 2 to 10 L / min.

3) 파워서플라이3) Power Supply

주파수 18KHz의 교류 전기를 40watt로 공급하였다.AC electricity with a frequency of 18 kHz was supplied at 40 watts.

결과를 도 3에 도시하였다. The results are shown in FIG.

광촉매가 코팅된 페로브스카이트 세라믹 볼을 사용한 경우(1)에는 유량 2~3L/min에서는 배출 가스에서 암모니아가 전혀 검출 되지 않았고, 유량이 증가함에 따라 제거율이 점점 떨어져 유량 10L/min에서는 60%까지 떨어졌다. 암모니아 400 ppm의 공기에서 암모니아를 100% 제거하는데 소요되는 에너지 소비량은 2 J/L(NH3의 ppm 농도)이었다. When the photocatalyst-coated perovskite ceramic ball was used (1), no ammonia was detected in the exhaust gas at the flow rate of 2 to 3 L / min, and the removal rate gradually decreased as the flow rate increased, and 60% at the flow rate of 10 L / min. Fell down. The energy consumption for 100% removal of ammonia from 400 ppm of ammonia was 2 J / L (ppm concentration of NH 3 ).

한편, 광촉매가 코팅되지 않은 페로브스카이트 세라믹 볼을 사용한 경우(2)에는 유량에 관계없이 100% 제거율은 없었으며, 유량이 증가함에 따라, 87%에서 47%까지 감소하였다. On the other hand, in the case of using perovskite ceramic balls not coated with a photocatalyst (2), there was no 100% removal rate regardless of the flow rate, and as the flow rate increased, it decreased from 87% to 47%.

광촉매가 코팅된 경우(1)와 코팅되지 않은 경우(2)를 비교하면, 광촉매에 의한 상승효과는 대략 15-20%이고, 암모니아를 100% 제거하기 위해서는 꼭 사용해야 함을 알 수 있다. Comparing the case where the photocatalyst is coated (1) with the case where it is not coated (2), the synergistic effect of the photocatalyst is about 15-20%, and it must be used to remove 100% of ammonia.

<실시예 2> <Example 2>

광촉매가 코팅된 페로브스카이트 세라믹 볼의 크기에 따른 암모니아 제거율을 조사하였다.The removal rate of ammonia according to the size of the photocatalyst-coated perovskite ceramic ball was investigated.

1) 플라즈마 반응기1) plasma reactor

실시예 1과 동일한 반응기에 직경이 각각 3mm, 5mm 및 8mm인 이산화티탄이 코팅된 BaTiO3 볼 200cc를 충전하였다. The same reactor as in Example 1 was charged with 200 cc of BaTiO 3 balls coated with titanium dioxide having a diameter of 3 mm, 5 mm and 8 mm, respectively.

2) 시료가스2) sample gas

암모니아 농도 350ppm의 공기를 유량 2L/min와 5L/min으로 흘려주었다. 350 ppm of ammonia was flowed at a flow rate of 2 L / min and 5 L / min.

3) 파워서플라이3) Power Supply

주파수 18KHz의 교류 전기를 40watt로 공급하였다.AC electricity with a frequency of 18 kHz was supplied at 40 watts.

결과를 도 4에 도시하였다. The results are shown in FIG.

BaTiO3 볼의 크기에 따라 암모니아 제거율이 큰 차이는 보이지는 않았지만 직경이 8mm인 경우에는 유량이 2L/min와 5L/min에서 모두 100% 제거율을 보였으며, 직경이 작아질수록 제거율이 약간씩 감소하는 경향을 보였다. Although there was no significant difference in the removal rate of ammonia according to the size of BaTiO 3 balls, in case of 8mm diameter, the removal rate was 100% at both 2L / min and 5L / min. Showed a tendency to.

<실시예 3> <Example 3>

실시예 1에 비해 세라믹 볼의 양을 2배(400cc)로 늘렸고, 전원은 quasi pulse 10%를 약 4배(150watt)로 늘렸다. Compared to Example 1, the amount of ceramic balls was increased by 2 times (400 cc), and the power source increased quasi pulse 10% by about 4 times (150 watts).

1) 플라즈마 반응기1) plasma reactor

직경 8cm의 동관을 사용하였고, 이산화티탄이 코팅된 직경 5mm의 BaTiO3 볼 400cc를 충전하였다. A copper tube of 8 cm in diameter was used, and 400 cc of BaTiO 3 balls having a diameter of 5 mm coated with titanium dioxide were charged.

2) 시료가스2) sample gas

암모니아 농도 350ppm의 공기를 유량 2~10 L/min의 범위에서 흘려주었다. Air of 350 ppm ammonia concentration was flowed in the range of 2-10 L / min flow volume.

3) 파워서플라이3) Power Supply

주파수 40KHz의 quasi pulse 10%를 150watt로 공급하였다.The quasi pulse 10% of frequency 40KHz was supplied at 150watt.

결과를 도 5에 도시하였다, The results are shown in FIG.

유량 2~4 L/min까지는 암모니아가 100% 제거되었지만 유량이 증가함에 따라 제거율이 감소하여 10L/min 에서는 86%까지 떨어졌다. 유량이 10L/min인 경우에 대하여 실시예 1과 비교하면 제거율이 60%에서 86%로 높아졌지만 투입된 에너지가 4배이고, 충전된 BaTiO3 볼의 양이 2배인 것을 감안하면 반응기의 효율이 떨어졌다고 볼 수 있다. 다만 반응기의 직경을 8cm까지 늘려도 플라즈마가 잘 생성되는 것을 확인할 수 있었다.At a flow rate of 2-4 L / min, ammonia was removed 100%, but as the flow rate increased, the removal rate decreased to 86% at 10 L / min. When the flow rate was 10 L / min compared with Example 1, the removal rate was increased from 60% to 86%, but the efficiency of the reactor was reduced considering that the energy input was four times and the amount of charged BaTiO 3 balls was doubled. can see. However, even if the diameter of the reactor to increase to 8cm it was confirmed that the plasma is generated well.

<실시예 4> <Example 4>

반응기를 직경 9cm의 알루미늄 관으로 바꿨다. 충전된 BaTiO3 볼의 양, 시료 가스의 암모니아 농도와 유량 등 구체적인 조건은 다음과 같다.The reactor was replaced with an aluminum tube 9 cm in diameter. Specific conditions such as the amount of charged BaTiO 3 balls, ammonia concentration and flow rate of the sample gas are as follows.

1) 플라즈마 반응기1) plasma reactor

직경 9cm의 알루미늄 관을 사용하였고, 이산화티탄이 코팅된 직경 5mm의 BaTiO3 볼 600cc를 충전하였다. An aluminum tube 9 cm in diameter was used, and 600 cc of BaTiO 3 balls having a diameter of 5 mm coated with titanium dioxide were charged.

2) 시료가스2) sample gas

암모니아 농도 450ppm의 공기를 유량 10~25L/min의 범위에서 흘려주었다. Air with an ammonia concentration of 450 ppm was flowed in the range of 10-25 L / min flow volume.

3) 파워서플라이3) Power Supply

주파수 40 KHz의 quasi pulse 10%를 230watt로 공급하였다.10% quasi pulses with a frequency of 40 KHz were supplied at 230 watts.

결과를 도 6에 도시하였다. The results are shown in FIG.

암모니아 제거율이 유량 10L/min에서는 100%이었고, 15L/min까지는 90% 이상을 유지했지만, 15L/min 이상에서는 급격히 떨어져 25L/min 에서는 44%까지 떨어졌다. The ammonia removal rate was 100% at the flow rate of 10 L / min and remained at 90% or more until 15 L / min, but dropped sharply above 15 L / min and dropped to 44% at 25 L / min.

반응기의 크기를 크게 하고, 이에 따라 충전되는 BaTiO3 볼의 양을 늘리고, 시료 가스의 처리량도 늘리기는 했지만 실시예 1~실시예 3과 비교할 때, 충분한 전력을 공급했음에도 불구하고 시료 가스의 유량 15L/min 이상에서 암모니아 제거율이 급격히 떨어진 것은 반응기의 재질이 알루미늄으로 바뀌었기 때문이 아니라 플라즈마 반응 및 광촉매 반응이 충분히 일어나기 위한 임계적 의미를 갖는 체류시간(retention time)이나 선속도(superficial velocity)가 있다는 것을 암시한다고 볼 수 있다.Although the reactor was enlarged, the amount of charged BaTiO 3 balls was increased, and the throughput of the sample gas was increased. However, in comparison with Examples 1 to 3, the flow rate of the sample gas was 15 L even though sufficient power was supplied. The rapid drop in ammonia removal rate above / min is not due to the change of the material of the reactor to aluminum, but the retention time or superficial velocity, which has a critical meaning for sufficient plasma and photocatalytic reactions to occur. It can be seen that implied.

<실시예 5> Example 5

실시예 1에서 실시예 4까지 플라즈마-광촉매 반응기의 배출가스가 산성인지 알칼리성인지 리트머스 시험지로 조사하였다. From Example 1 to Example 4, the exhaust gas of the plasma-photocatalytic reactor was irradiated with litmus test paper to determine whether it was acidic or alkaline.

암모니아가 100% 제거되지 않았을 때는 당연히 푸른색으로 변하였으나 제거율이 100%로 완전히 제거되었을 때는 색이 변하지 않았다. 이는 암모니아가 100% 제거되었음을 다시 확인해주는 결과이며, 유해한 질산성 가스인 NO2도 생성되지 않았음을 보여주는 것이다. 암모니아는 플라즈마-광촉매 반응, 즉 산화반응으로 NO가 된 것으로 보인다. Naturally, when 100% of the ammonia was not removed, it turned blue, but when the removal rate was 100%, the color did not change. This is again a confirmation that 100% of ammonia is removed, showing that no harmful nitric acid gas NO 2 was produced. Ammonia appears to be NO in the plasma-photocatalytic reaction, ie oxidation.

<실시예 6> <Example 6>

상기 실시예 1~실시예 6에서 사용된 이산화티탄이 코팅된 페로브스카이트 세라믹 충전물을 제조하였다. Titanium dioxide-coated perovskite ceramic fillers used in Examples 1 to 6 were prepared.

플라즈마 반응기는 코팅하고자 하는 페로브스카이트 세라믹과 플라즈마와의 접촉을 향상시키기 위해 회전이 가능한 플라즈마 반응기를 사용하였고, 플라즈마는 Advanced Energy사의 RF(radioa frequency; 13.56 MHz) 파워 서플라이를 사용하여 발생시켰다. 페로브스카이트 세라믹으로는 BaTiO3 구를 사용하였고, 이산화티탄의 전구체로는 티타늄 에톡사이드(titanium ethoxide; Ti(C2H5)4)를 사용하였으며, 플라즈마 가스는 공기를 사용하였다. The plasma reactor used a rotatable plasma reactor to improve the contact between the perovskite ceramic and the plasma to be coated, and the plasma was generated using Advanced Energy's RF (radioa frequency; 13.56 MHz) power supply. BaTiO 3 as the perovskite ceramic A sphere was used, and titanium ethoxide (Ti (C 2 H 5 ) 4 ) was used as a precursor of titanium dioxide, and plasma gas was used.

플라즈마 반응기에 BaTiO3 구를 채우고, 티타늄 에톡사이드를 물중탕으로 온도를 80℃로 높여 증기를 발생시켜 계량 밸브를 통해 반응기에 주입하고, 공기를 반응기에 주입하고, 반응기를 회전시켜가며 플라즈마를 발생시켜 BaTiO3 구에 이산화티탄을 코팅한 후, 이어서 이산화티탄이 코팅된 페로브스카이트 세라믹을 400℃에서 3시간 열처리하였다. BaTiO 3 in the plasma reactor After filling the sphere, the titanium ethoxide was heated in a water bath to a temperature of 80 ° C. to generate steam and injected into the reactor through a metering valve, air was injected into the reactor, and the reactor was rotated to generate a plasma, thereby generating BaTiO 3. After the titanium dioxide was coated on the sphere, the titanium dioxide-coated perovskite ceramic was then heat-treated at 400 ° C for 3 hours.

플라즈마 가스로는 산소나 공기를 사용하는데 공기를 사용한 경우에는 아래 [표 1]에서 보듯이 TiO2 층에 질소가 6% 도핑 되었다. (N-doped) Oxygen or air is used as the plasma gas, but when air is used, nitrogen is doped to 6% in the TiO 2 layer as shown in Table 1 below. (N-doped)


원소

element

Ba

Ba

Ti

Ti

O

O

N

N

원자분율(%)

Atomic fraction (%)

22

22

22

22

50

50

6

6

* 도면 주요 부분의 명칭
11: 구리 하우징(튜브) 12: 구리 전극
13: 알루미나 튜브 14: 파워서플라이
15: TiO2가 코팅된 페로브스카이트 세라믹 볼
20: 암모니아 농도 측정기 31: 공기
32: 유량계 40: 버블러
* Name of the main parts of the drawing
11: copper housing (tube) 12: copper electrode
13: Alumina Tube 14: Power Supply
15: Perovskite Ceramic Balls Coated with TiO 2
20: ammonia concentration meter 31: air
32: flow meter 40: bubbler

Claims (5)

처리 가스의 유입구와 유출구가 구비된 실린더형 금속제 하우징과 두 개의 전극과 파워 서플라이로 구성되는 플라즈마 반응기의 내부에 이산화티탄이 코팅된 페로브스카이트 세라믹 충전물이 충전된 암모니아 제거용 플라즈마-광촉매 반응기.A plasma-photocatalyst reactor for removing ammonia filled with a titanium dioxide-coated perovskite ceramic filler filled with a cylindrical metal housing having an inlet and an outlet of a processing gas, two electrodes and a power supply. 제1항에 있어서, 두 개의 전극이 하나는 실린더형 금속제 하우징이고, 다른 하나는 실린더 중앙에 위치하는 금속제 와이어, 금속제 로드, 또는 세라믹 튜브 안에 위치한 금속제 와이어 또는 로드인 것을 특징으로 하는 암모니아 제거용 플라즈마-광촉매 반응기.The plasma for ammonia removal according to claim 1, wherein the two electrodes are one of a cylindrical metal housing, and the other is a metal wire, a metal rod, or a metal wire or rod located in a ceramic tube located at the center of the cylinder. Photocatalytic reactor. 제1항 또는 제2항의 암모니아 제거용 플라즈마-광촉매 반응기에 사용되는 이산화티탄이 코팅된 페로브스카이트 세라믹 충전물.Titanium dioxide-coated perovskite ceramic filler for use in the plasma-photocatalytic reactor for removing ammonia of claim 1. a) 이산화티탄을 코팅하고자 하는 페로브스카이트 세라믹을 플라즈마 반응기에 채우는 단계,
b) 이산화티탄의 전구체로 티타늄 에톡사이드(titanium ethoxide)와, 산소 또는 공기를 플라즈마 반응기에 유입시키면서 플라즈마를 발생시켜 페로브스카이트 세라믹에 이산화티탄을 코팅하는 단계 및
c) 이산화티탄이 코팅된 페로브스카이트 세라믹을 300~500℃에서 1~5시간 열처리하는 단계를 포함하는 제3항의 이산화티탄이 코팅된 페로브스카이트 세라믹 충전물의 제조방법.
a) filling the plasma reactor with a perovskite ceramic to be coated with titanium dioxide,
b) coating titanium dioxide on the perovskite ceramic by generating a plasma while introducing titanium ethoxide and oxygen or air into the plasma reactor as a precursor of titanium dioxide;
c) A method for preparing the titanium dioxide-coated perovskite ceramic filler according to claim 3, comprising the step of heat-treating the titanium dioxide-coated perovskite ceramic at 300 to 500 ° C. for 1 to 5 hours.
제4항에 있어서, b) 단계에서 반응기를 회전시키면서 플라즈마를 발생시켜 페로브스카이트 세라믹에 이산화티탄을 코팅하는 것을 특징으로 하는 이산화티탄이 코팅된 페로브스카이트 세라믹 충전물의 제조방법.5. The method of claim 4, wherein in step b), a plasma is generated while rotating the reactor to coat titanium dioxide on the perovskite ceramic.
KR1020180012263A 2018-01-31 2018-01-31 Plasma-Photo Catalyst Reactor for Removal of Ammonia, Packing Material coated with Photo Catalyst for the same Reactor, and Preparation of the same Packing Material KR20190092939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180012263A KR20190092939A (en) 2018-01-31 2018-01-31 Plasma-Photo Catalyst Reactor for Removal of Ammonia, Packing Material coated with Photo Catalyst for the same Reactor, and Preparation of the same Packing Material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180012263A KR20190092939A (en) 2018-01-31 2018-01-31 Plasma-Photo Catalyst Reactor for Removal of Ammonia, Packing Material coated with Photo Catalyst for the same Reactor, and Preparation of the same Packing Material

Publications (1)

Publication Number Publication Date
KR20190092939A true KR20190092939A (en) 2019-08-08

Family

ID=67613375

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180012263A KR20190092939A (en) 2018-01-31 2018-01-31 Plasma-Photo Catalyst Reactor for Removal of Ammonia, Packing Material coated with Photo Catalyst for the same Reactor, and Preparation of the same Packing Material

Country Status (1)

Country Link
KR (1) KR20190092939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021190734A1 (en) 2020-03-24 2021-09-30 Efenco Oü Nanosized ceramic plasma catalyst for stabiliting and assisting plasma combustion

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030092205A (en) 2002-05-27 2003-12-06 주식회사 에이스랩 Pollution gas disposer using low temp plasma and optic fiber catalyst filter
KR20090086761A (en) 2008-02-11 2009-08-14 강원대학교산학협력단 Efficient method to remove nox and sox by dielectric barrier discharge-photocatalysts hybrid process
KR20110098407A (en) 2010-02-26 2011-09-01 강원대학교산학협력단 Method of preparation for polymer beads coated with photocatalyst thin film using plasma chemical vaphor deposition process and method of removing water pollution using thereof
KR20120097183A (en) 2011-02-24 2012-09-03 현대제철 주식회사 Hot-rolled steel plate with high strength and method of manufacturing the same
KR20130133603A (en) 2012-05-29 2013-12-09 미륭이씨오 주식회사 Device of treating hazardous air pollutant using dielectric barrier discharge plasma reactor with graphene oxide photocatalyst
KR20150035835A (en) 2015-02-09 2015-04-07 강원대학교산학협력단 Preparation method of catalytic composite for dielectric barrier discharge-catalyst-photocatalyst hybrid process and air pollutants removal device using catalytic composite prepared thereby

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030092205A (en) 2002-05-27 2003-12-06 주식회사 에이스랩 Pollution gas disposer using low temp plasma and optic fiber catalyst filter
KR20090086761A (en) 2008-02-11 2009-08-14 강원대학교산학협력단 Efficient method to remove nox and sox by dielectric barrier discharge-photocatalysts hybrid process
KR20110098407A (en) 2010-02-26 2011-09-01 강원대학교산학협력단 Method of preparation for polymer beads coated with photocatalyst thin film using plasma chemical vaphor deposition process and method of removing water pollution using thereof
KR20120097183A (en) 2011-02-24 2012-09-03 현대제철 주식회사 Hot-rolled steel plate with high strength and method of manufacturing the same
KR20130133603A (en) 2012-05-29 2013-12-09 미륭이씨오 주식회사 Device of treating hazardous air pollutant using dielectric barrier discharge plasma reactor with graphene oxide photocatalyst
KR20150035835A (en) 2015-02-09 2015-04-07 강원대학교산학협력단 Preparation method of catalytic composite for dielectric barrier discharge-catalyst-photocatalyst hybrid process and air pollutants removal device using catalytic composite prepared thereby

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
1. T. H. Lee, W. Song, K. M. Chun, B, H, Chun, Y. G. Shin, "Experimental Study on the Oxidation of Model Gases, n-Propylene, n-Butane, Acetylene, at Ambient Temperatures by non-thermal Plasma and Photo-catalyst", SAE Paper 2001-01 -3514, 2001
10. T. Yamamoto et al., "Catalysis-Assisted Plasma Technology for Carbon Tetrachloride Destruction", IEEE Transactions on Industry Applications, Vol. 22, No. 1, 1996
11. T. Yamamoto et al., "Methane Decomposition in a Barium Titanate Packed-Bed Nonthermal Plasma Reactor", Plasma Chemistry and Plasma Processing, Vol. 18, No. 3, 1998
12. 이해완, 유상곤, 박명규, 박현배, 황경창, "유전체 충전형 플라즈마 반응기를 이용한 Trichloroethylene의 분해반응", 화학공학 (Hwahak Konghak), Vol. 41, No. 3,p. 368, 2003
13. K. Takaki et al., "Influence of Pellet Shape of Ferrro-Electric Packed-Bed Plasma Reactor on Ozone Generation and NO Removal", International J. of Plasma Environmental Science and Technology, Vol. 3, No. 1, p. 28, 2009
2. 이택헌, "스파크 점화기관 냉시동 및 웜업 기간의 플라즈마 광촉매 복합 반응기를 이용한 탄화수소 화합물 분석과 저감에 괸한 연구, 박사학위 논문, 연세대학교 공과대학원 기계공학과, 2001년, 6월
3. 이택헌, 전광민, 전배혁, 신영기, "이택헌, "스파크 점화기관 냉시동 및 웜업 기간의 플라즈마 광촉매 복합 반응기를 이용한 탄화수소 화합물 분석과 저감에 괸한 실험적 연구", 제 23회 KOSCO Symposium 논문집, pp 169 178, 2001
4. A. Rousseau et al., "Comparison of the Plasma-Photocatalyst Synergy at Low and Atmospheric Pressure", International J. of Plasma Environmental Science & Technology Vol. 1, No. 1, pp 52, 2007
5. Akira Fujishima et al., "Development of an Air-Purification Unit Using a Photocatalysis-Plasma Hybrid Reactor", Electrochemistry, Technical Report, No. 10, p838, 2007
6. Yuanwei Lu et al., "Synergistic Effect of Nanophotocatalysis and Nonthermal Plasma on the Removal of Indoor HCHO", International J. of Photoenergy, Vol.2012, Article ID 354032, p. 8, 2012
7. Wen-jun, Liang et al., "Combination of spontaneous polarization plasma and photocatalyst for toluene oxidation", J. of Electrostatics, 75, p. 27, 2015
8. Anthony R. West, "Basic Solid State Chemistry", John Wiley & Sons. 1994
9. Dwaine S. Bundy, "Control of Ammonia and Odors in Animal Houses by a Ferroelectric Plasma Reactor", IEEE Transactions on Industry Applications, Vol. 33, No. 1, p. 113, 1996

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021190734A1 (en) 2020-03-24 2021-09-30 Efenco Oü Nanosized ceramic plasma catalyst for stabiliting and assisting plasma combustion
CN115335144A (en) * 2020-03-24 2022-11-11 埃芬科有限公司 Nanoscale ceramic plasma catalysts for stable and assisted plasma combustion

Similar Documents

Publication Publication Date Title
AU2006310457B2 (en) Combined treatment of gaseous effluents by cold plasma and photocatalysis
Zhang et al. Removal of styrene using dielectric barrier discharge plasmas combined with sol–gel prepared TiO2 coated γ-Al2O3
Taranto et al. Combining cold plasma and TiO2 photocatalysis to purify gaseous effluents: a preliminary study using methanol-contaminated air
Mohammadi et al. Plasma-photocatalytic degradation of gaseous toluene using SrTiO3/rGO as an efficient heterojunction for by-products abatement and synergistic effects
Liang et al. Combination of spontaneous polarization plasma and photocatalyst for toluene oxidation
CN108452646B (en) Device and method for catalytically treating VOCs (volatile organic compounds) by cooperation of plasma and electric heating cylinder net
CN105923697A (en) Multi-stage photocatalytic ozonidation reactor and preparation method of photocatalyst
KR100969629B1 (en) Efficient method to remove NOx and SOx by dielectric barrier discharge-photocatalysts hybrid process
JP2022509280A (en) Methods and equipment for plasma-induced water purification
KR20190092939A (en) Plasma-Photo Catalyst Reactor for Removal of Ammonia, Packing Material coated with Photo Catalyst for the same Reactor, and Preparation of the same Packing Material
CN101664626A (en) Method for treating industrial organic waste gases
Abedi et al. Effect of TiO-ZnO/GAC on by-product distribution of CVOCs decomposition in a NTP-assisted catalysis system
CN104258835A (en) Preparation method of loaded type titanium dioxide photocatalyst
KR100714849B1 (en) Photocatalyst composition, fixing method thereof and continuous reactor using the photocatalyst
CN204097171U (en) Environment-friendly type organic waste water purifier
CN102671537B (en) Method for removing hydrogen sulfide through photochemical catalysis
KR101817907B1 (en) Apparatus for eliminating stink and harzardous gas
CN107081036B (en) Ultraviolet activated ozone oxidation VOCs dust removal purification device and method
Liang et al. Control of Hydrogen Sulfide by a Wire‐Tube Dielectric Barrier Discharge AC Plasma Reactor
Janus et al. Study of nitric oxide degradation properties of photoactive concrete containing nitrogen and/or carbon co‐modified titanium dioxide–preliminary findings
Won et al. Photocatalytic decomposition of toluene by a cylindrical UV reactor with helically installed TiO2-coated perforated planes
KR20130093947A (en) Preparation method of titanium dioxide photocatalyst hybrid composite by rotating plasma reactor and the hybrid composite thereof for removing nitric oxide and sulfur dioxide by dielectric barrier-photocatalyst hybrid process
KR100627972B1 (en) equipment for treatment of air using immobilized photocatalytic fiber filter
KR100969643B1 (en) Method for decomposing aromatic cyclic compound using photolysis catalyst double layer with different band gap energy
Fukinbara et al. Characteristics of the photocatalytic reactor with an annular array of glass tubes surrounding a light source: 1. Selection of a light source and photocatalyst support

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application