KR20090086761A - Efficient method to remove nox and sox by dielectric barrier discharge-photocatalysts hybrid process - Google Patents

Efficient method to remove nox and sox by dielectric barrier discharge-photocatalysts hybrid process Download PDF

Info

Publication number
KR20090086761A
KR20090086761A KR1020080012212A KR20080012212A KR20090086761A KR 20090086761 A KR20090086761 A KR 20090086761A KR 1020080012212 A KR1020080012212 A KR 1020080012212A KR 20080012212 A KR20080012212 A KR 20080012212A KR 20090086761 A KR20090086761 A KR 20090086761A
Authority
KR
South Korea
Prior art keywords
exhaust gas
barrier discharge
photocatalyst
dielectric barrier
plasma reactor
Prior art date
Application number
KR1020080012212A
Other languages
Korean (ko)
Other versions
KR100969629B1 (en
Inventor
김교선
김동주
나소노바 안나
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020080012212A priority Critical patent/KR100969629B1/en
Publication of KR20090086761A publication Critical patent/KR20090086761A/en
Application granted granted Critical
Publication of KR100969629B1 publication Critical patent/KR100969629B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

A dielectric barrier discharge - photocatalysts hybrid system is provided to process nitric oxide and sulfur oxide included exhaust gas with a simple system which is necessary for activation of photocatalyst. A dielectric barrier discharge - photocatalyst hybrid system for removing exhaust gas includes the followings: a plasma reactor(10) in which dielectric balls coated with the photocatalyst are filled; an exhaust gas inlet(20) in which exhaust gas is flowed with a mass flow controller(30), and formed on one side of the plasma reactor; a purified gas outlet(22) in which the purified exhaust gas is discharged, and passed through the plasma reactor. The plasma reactor is connected to a power supply(40), a pulse generator(46) and a voltage/frequency measuring device(42).

Description

배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템{Efficient method to remove NOx and SOx by dielectric barrier discharge-photocatalysts hybrid process}Efficient method to remove NOx and SOx by dielectric barrier discharge-photocatalysts hybrid process}

본 발명은 질소산화물(NOx)과 황산화물(SOx) 등을 포함하는 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템에 관한 것이다.The present invention relates to a dielectric barrier discharge-photocatalyst complex system for exhaust gas removal including nitrogen oxides (NOx), sulfur oxides (SOx), and the like.

현재 환경오염 문제는 간과할 수 없는 중요한 문제가 되고 있으며 배가스 중 산성비의 주된 요인인 질소산화물(NOx)과 황산화물(SOx)은 배출양에 대한 심각성이 고려되어 선진국들을 시작으로 배출원에 대한 규제가 강화되고 있다.At present, environmental pollution has become an important issue that cannot be overlooked, and NOx and sulfur oxides (SOx), which are the main sources of acid rain in flue gas, are considered to be severe in terms of emission levels. It is becoming.

종래의 질소산화물(NOx)와 황산화물(SOx) 제거 기술은 촉매 등을 이용한 습식 공정이 대부분이며 습식 공정에서는 2차 오염물질 생성이 문제시되고 있고 다른 유해물질 처리로의 활용이 불가능한 단점을 갖고 있다. Conventional nitrogen oxide (NOx) and sulfur oxide (SOx) removal techniques are mostly wet processes using a catalyst, etc. In the wet process, the generation of secondary pollutants is a problem and has a disadvantage that can not be used to treat other harmful substances. .

이에 습식 공정에서는 오염물 처리 장치가 필히 수반되므로 건식 공정에 비해 고가의 생산비 및 유지비가 요구된다. 또한, 처리 대상 물질의 제한성이 있어 기존에 개발된 공정들의 응용 및 활용의 폭이 제한될 수 있다. In the wet process, since the pollutant treatment apparatus is necessarily accompanied, expensive production and maintenance costs are required as compared to the dry process. In addition, the limitation of the material to be treated may limit the range of application and utilization of previously developed processes.

이에 환경오염원들을 효율적으로 제거 및 처리하기 위한 기술로 플라즈마를 이용한 배가스 처리가 매우 주목을 받고 있으며, 또한, 광촉매를 이용한 환경오염원 처리도 매우 유용한 방법으로 인정받고 있다.As a technique for efficiently removing and treating environmental pollutants, flue gas treatment using plasma has received much attention, and environmental pollutant treatment using photocatalysts has also been recognized as a very useful method.

상기한 플라즈마 또는 광촉매를 이용한 환경오염원의 제거방법은 무엇보다 2차 오염물질 생성의 문제점을 극복한 건식방법이고, 질소산화물과 황산화물 외에 다른 유해물질들도 처리가 가능한 잇점이 있다.The method of removing the environmental pollution source using the plasma or photocatalyst is a dry method that overcomes the problem of the generation of secondary pollutants, and has the advantage that other harmful substances can be treated in addition to nitrogen oxide and sulfur oxide.

한편, 한국등록특허 제0339849호는 플라즈마-광촉매 기술을 접목한 플라즈마-광촉매 복합 시스템에 대한 기술이 제시되고 있으며, 개별적으로 환경오염물 제거에 효과가 입증된 플라즈마 공정과 광촉매 공정을 복합한 공정이므로 환경오염원 제거 효율이 향상되었으나, 상기 기술은 광촉매 활성을 위해 별도의 광원 발생 장치 및 광촉매 저장소 등이 수반되는 단점을 가지고 있다.On the other hand, Korean Patent No. 0339849 discloses a technique for a plasma-photocatalyst complex system incorporating plasma-photocatalyst technology, and is a process that combines a plasma process and a photocatalyst process that have been proven to effectively remove environmental contaminants. Although the source removal efficiency has been improved, the technology has a disadvantage that a separate light source generating device and a photocatalytic reservoir for photocatalytic activity are involved.

이에 본 발명의 발명자들은 상기한 문제점을 개선하기 위하여 연구노력한 결과, 유전체 장벽 방전을 발생시키기 위한 유전체 구에 광촉매를 코팅하고 이들 유전체를 플라즈마 반응기에 충진함으로써, 광촉매의 활성화를 위한 별도의 광원을 위한 장치를 생략할 수 있고, 별도의 광촉매 저장 장치를 생략할 수 있으면서도 배가스 성분의 처리 효율이 우수함을 확인하여 본 발명을 완성하였다.Accordingly, the inventors of the present invention have made efforts to improve the above problems, and as a result, by coating a photocatalyst on a dielectric sphere for generating a dielectric barrier discharge and filling these dielectrics in a plasma reactor, a separate light source for activation of the photocatalyst The present invention was completed by confirming that the apparatus can be omitted and that a separate photocatalyst storage device can be omitted while the treatment efficiency of the exhaust gas component is excellent.

따라서, 본 발명은 광촉매의 활성화를 위한 광원 발생장치 등이 생략되어 보다 간단한 장치로 질소산화물, 황산화물 등의 배가스를 비롯한 환경오염물질의 제거가 용이한 질소산화물과 황산화물 제거용 유전체 장벽 방전-광촉매 복합 시스템을 제공하는데 그 목적이 있다.Therefore, in the present invention, a light source generator for activating a photocatalyst is omitted, and as a simpler apparatus, dielectric barrier discharge for removing nitrogen oxide and sulfur oxide, which is easy to remove environmental pollutants including flue gas such as nitrogen oxide and sulfur oxide, Its purpose is to provide a photocatalyst complex system.

상기한 과제를 해결하기 위한 일례로서 본 발명의 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템은, 광촉매로 코팅된 유전체 구가 충진된 플라즈마반응기(10); 상기 플라즈마반응기(10)의 일측에 형성되며, 질량유속제어기(30)에 의하여 질량과 유속이 조절된 배가스가 유입되는 배가스 유입구(20); 및, 상기 플라즈마반응기(10)의 타측에 형성되며, 플라즈마반응기(10)를 통과하며 정화된 배가스가 유출되는 정화가스 유출구(22); 를 포함하여 이루어지는 것을 특징으로 한다.As an example for solving the above problems, the dielectric barrier discharge-photocatalyst complex system for exhaust gas removal of the present invention includes: a plasma reactor (10) filled with a dielectric sphere coated with a photocatalyst; An exhaust gas inlet 20 formed at one side of the plasma reactor 10 and into which the exhaust gas whose mass and flow rate are controlled by the mass flow controller 30 is introduced; And a purification gas outlet 22 formed at the other side of the plasma reactor 10 and passing through the plasma reactor 10 to allow the purified exhaust gas to flow out; Characterized in that comprises a.

이하 본 발명의 질소산화물과 황산화물을 포함하는 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템을 도 1 및 2 에 근거하여 구체적으로 설명한다.Hereinafter, a dielectric barrier discharge-photocatalyst complex system for removing exhaust gas including nitrogen oxide and sulfur oxide of the present invention will be described in detail with reference to FIGS. 1 and 2.

본 발명의 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템은 반응물질의 주입 및 제어부[배가스 유입구(20), 암모니아 유입구(24), 질량유속제어기(30)], 반응기[플라즈마반응기(10), 미립자반응기(12)], 전력공급 및 제어부[전원공급기(40), 전압/주파수 측정기(42) 및 펄스발생기(46)], 반응물 및 부산물 측정부[가스 분석기(32), 미립자 포집기(26), 일부미도시]로 구성되어 있다. Dielectric barrier discharge-photocatalyst complex system for exhaust gas removal of the present invention is the injection and control of the reaction material (exhaust gas inlet 20, ammonia inlet 24, mass flow controller 30), reactor (plasma reactor 10, fine particles) Reactor 12], power supply and control unit (power supply 40, voltage / frequency meter 42 and pulse generator 46), reactant and byproduct measuring unit [gas analyzer 32, particulate collector 26, Some not shown].

질소산화물, 황산화물, 질소 등으로 임의로 이루어진 모사 배가스 또는 실제 배가스를 질량유속제어기(30)에서 유속을 제어하면서 정량적으로 배가스 유입구(20)를 통해 플라즈마반응기(10) 내로 유입된다. Simulated flue gas or actual flue gas, optionally composed of nitrogen oxides, sulfur oxides, nitrogen, or the like, is quantitatively introduced into the plasma reactor 10 through the flue gas inlet 20 while controlling the flow rate in the mass flow controller 30.

플라즈마에 의한 질소산화물(NOx)과 황산화물(SOx) 제거시 OH, O, O3, HO2 등의 산화성 라디칼들이 중요한 역할을 수행한다. 상기 산화성 라디칼 중 OH, HO2 등은 TiO2 등의 광촉매에 의해서도 생성될 수 있으므로, 플라즈마에 의한 분해와 광촉매 활성에 의한 광화학적 분해를 복합하여 적용할 경우 질소산화물(NOx)과 황산화물(SOx) 제거반응에 중요한 산화성 라디칼들이 플라즈마 공정과 광촉매 활성화에 의한 광화학적 분해 과정에서 생성되므로, 기존의 플라즈마 공정 보다 질소산화물(NOx)과 황산화물(SOx)의 제거 효율을 향상시킬 수 있다. Oxidizing radicals such as OH, O, O3 and HO2 play an important role in removing NOx and SOx by plasma. Among the oxidative radicals, OH, HO2, etc. may be generated by photocatalysts such as TiO2, and thus, nitrogen oxides (NOx) and sulfur oxides (SOx) may be removed when combined with plasma decomposition and photochemical decomposition by photocatalytic activity. Since the oxidative radicals important for the reaction are generated during the photochemical decomposition process by the plasma process and the photocatalytic activation, it is possible to improve the removal efficiency of nitrogen oxides (NOx) and sulfur oxides (SOx) than the conventional plasma process.

수분의 공급은 배가스 제거효율을 더욱 향상시킬 수 있다. 이를 위하여 거품기(bubbler)를 사용하여 일정양의 수분을 산소가스에 포화시켜 플라즈마반응기(10) 내로 공급할 수 있다. 수분이 플라즈마반응기(10) 내로 유입되기 전에 응축되는 것을 방지하기 위해 가열테이프(heating tape)(36)를 사용하여 유입되는 가스의 온도를 일정하게 유지시킬 수 있다. The supply of water can further improve the exhaust gas removal efficiency. To this end, a bubbler (bubbler) may be used to saturate a certain amount of moisture in oxygen gas and supply the same into the plasma reactor 10. In order to prevent condensation before the water is introduced into the plasma reactor 10, a heating tape 36 may be used to maintain a constant temperature of the incoming gas.

이에, 배가스 유입구(20)의 타측에 온도 조절기(44)를 더 장착하여 플라즈마반응기(10)로 유입되는 배가스의 온도를 조절할 경우 바람직하다.Thus, the temperature controller 44 is further mounted on the other side of the exhaust gas inlet 20 to adjust the temperature of the exhaust gas flowing into the plasma reactor 10.

본 발명의 플라즈마반응기(10)는 실린더-와이어(cylinder-wire) 형을 사용할 수 있으며, 방전극은 플라즈마반응기(10) 내부 중앙에 설치하고, 접지극은 플라즈마반응기(10) 외벽에 설치한다. 안정적인 플라즈마 발생을 위해 유전체 장벽 방전을 사용한다. 상기 유전체 장벽 방전을 발생시키기 위한 유전체 구로는 통상의 유 전체로 이루어진 구를 사용할 수 있으며, 특히 가격이 저렴하면서 투명하여 플라즈마 방전광을 광촉매에 의한 광화학반응을 일으키는데 효율적으로 사용할 수 있는 유리구를 사용할 경우 바람직하다다. 플라즈마 방전을 위한 전원공급기(40)로서 AC 고전압발생기를 사용하고, 공급전력의 주파수는 펄스발생기(46)를 사용하여 조절하며 공정 중의 전압과 주파수 변화는 전압/주파수 측정기(42)를 사용하여 측정한다.The plasma reactor 10 of the present invention may use a cylinder-wire type, the discharge electrode is installed in the center of the plasma reactor 10, and the ground electrode is installed on the outer wall of the plasma reactor 10. Dielectric barrier discharge is used for stable plasma generation. As the dielectric sphere for generating the dielectric barrier discharge, a sphere made of a common dielectric may be used, and in particular, a glass sphere which may be efficiently used to cause a photochemical reaction by a plasma catalyst is used because it is inexpensive and transparent. Is preferable. AC high voltage generator is used as the power supply 40 for the plasma discharge, the frequency of the supply power is controlled using the pulse generator 46, and the voltage and frequency change during the process are measured using the voltage / frequency measuring instrument 42. do.

플라즈마반응기(10)의 유전체 장벽 방전 발생을 위한 유전체 구는 광촉매를 코팅시킨 특징이 있다. 광촉매가 코팅된 유전체구(50)는 도 1에 나타낸 바와 같이 도시할 수 있다. 광촉매로는 이산화티탄(TiO2), 삼산화텅스텐(WO3), 이산화주석(SnO2) 및 산화아연(ZnO) 등 중에서 선택된 광촉매로서 기능하는 것을 사용할 수 있으며, 특히 이산화티탄은 광부식이나 화학적 부식에 안정하며 인체에 무해하고 가격이 저렴하며 높은 광활성을 갖고 있어 이산화티탄을 광촉매로 사용하면 바람직한 광촉매 활성을 기대할 수 있다.The dielectric sphere for generating the dielectric barrier discharge of the plasma reactor 10 is characterized by coating a photocatalyst. The photocatalyst coated dielectric sphere 50 may be shown as shown in FIG. 1. As the photocatalyst, one that functions as a photocatalyst selected from titanium dioxide (TiO2), tungsten trioxide (WO3), tin dioxide (SnO2), and zinc oxide (ZnO) can be used. In particular, titanium dioxide is stable to photocorrosion and chemical corrosion. It is harmless to the human body, inexpensive, and has high photoactivity. Therefore, when titanium dioxide is used as a photocatalyst, desirable photocatalytic activity can be expected.

본 발명은 플라즈마반응기(10)의 플라즈마 발생을 위해 유전체 장벽 방전을 사용하고, 상기 유전체 장벽 방전 발생을 위한 유전체 구의 표면에 광촉매를 코팅함으로써, 플라즈마 발생시 나타나는 광(光)을 광촉매 활성을 위한 광원으로 사용할 수 있게 한다. 이로써, 기존의 플라즈마-광촉매 복합 시스템과 달리 광촉매의 활성을 위한 별도의 광원 발생기와 광촉매 저장소를 요구하지 않는 잇점을 얻을 수 있다.The present invention uses a dielectric barrier discharge for the plasma generation of the plasma reactor 10, and by coating a photocatalyst on the surface of the dielectric sphere for generating the dielectric barrier discharge, the light generated during the plasma generation as a light source for photocatalytic activity Make it available. Thus, unlike the conventional plasma-photocatalyst complex system, it is possible to obtain an advantage of not requiring a separate light source generator and a photocatalyst reservoir for the activation of the photocatalyst.

한편, 기존의 플라즈마-광촉매 복합 시스템의 경우 플라즈마에 의하여 1차 정화된 배가스를 광촉매에 의한 광화학적인 2차 정화공정을 거쳐야 하므로 장치가 커질 수 밖에 없으나, 본 발명의 경우 플라즈마반응기(10) 내부에서 플라즈마에 의한 분해와 광촉매 활성에 의한 광화학적인 분해가 동시에 이루어지므로 장치의 단순화를 기대할 수 있다.On the other hand, in the conventional plasma-photocatalyst complex system, since the exhaust gas firstly purified by the plasma has to undergo a photochemical secondary purification process by the photocatalyst, the apparatus is inevitably large, but in the case of the present invention, in the plasma reactor 10 Since the decomposition by plasma and the photochemical decomposition by photocatalytic activity are performed at the same time, the device can be simplified.

플라즈마반응기(10)를 통과하여 정화된 가스는 정화가스 유출구(22)로 유출된다. 정화가스 중 질소산화물(NOx), 이산화황(SO2)과 같은 황산화물의 농도 변화를 측정하기 위해 정화가스 유출구(22)에는 가스 분석기(Gas Analyzer)(32)를 설치한다. The gas purified through the plasma reactor 10 is discharged to the purification gas outlet 22. In order to measure the concentration change of sulfur oxides such as nitrogen oxides (NOx) and sulfur dioxide (SO 2) in the purification gas, a gas analyzer 32 is installed at the purification gas outlet 22.

본 발명의 배가스 제거용 유전체 장벽 방전-광촉매 복합시스템은 플라즈마반응기(10)와 정화가스 유출구(22) 사이에 또 하나의 미립자반응기(12)를 연결 장착할 수 있고, 여기에 질량유속제어기(30)를 구비한 암모니아(NH3) 유입구(24)를 더 포함하여 구성될 수 있다. In the dielectric barrier discharge-photocatalyst complex system for exhaust gas removal of the present invention, another particulate reactor 12 may be connected between the plasma reactor 10 and the purification gas outlet 22, and the mass flow controller 30 may be installed therein. It may further comprise ammonia (NH3) inlet 24 having a).

암모니아(NH3)는 플라즈마반응기(10) 내로 공급되기 전에 주로 이산화황(SO2)과 반응하는 것을 막기 위해 질소산화물(NOx)과 이산화황(SO2)의 공급선과 분리하여 구성된 암모니아 유입구(24)를 통하여 플라즈마반응기(10)와 정화가스 유출구(22) 사이에 연결 장착된 두 번째 실린더인 미립자반응기(12)에 유입되고, 플라즈마반응기(10)를 통과한 정화가스와 미립자반응기(12) 내에서 화학적으로 반응하여 미립자를 생성하게 되는데, 상기 미립자는 미립자반응기(12)의 출구에 설치된 미립자 포집기(26)에 의해 포집된다.The ammonia (NH3) is plasma reactor through an ammonia inlet (24) separated from the supply line of nitrogen oxides (NOx) and sulfur dioxide (SO2) in order to prevent the reaction mainly with sulfur dioxide (SO2) before being fed into the plasma reactor (10) Into the particulate reactor 12, which is the second cylinder connected between the 10 and the purge gas outlet 22, chemically reacts with the purge gas passed through the plasma reactor 10 in the particulate reactor 12 Particulates are produced, which are collected by a particulate collector 26 installed at the outlet of the particulate reactor 12.

상기한 바와 같이, 본 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템은 기존의 플라즈마-광촉매 복합 시스템과 달리 광촉매의 활성을 위한 별도의 광원이 요구되지 않는 간단한 시스템으로도 배가스에 포함된 질소산화물(NOx)과 황산화물(SOx)을 각각 단독 또는 질소산화물(NOx)과 황산화물(SOx)을 동시에 처리할 수 있는 효과를 기대할 수 있다.As described above, the dielectric barrier discharge-photocatalytic complex system for removing exhaust gas is different from the conventional plasma-photocatalytic complex system, even in a simple system that does not require a separate light source for activation of the photocatalyst. ) And sulfur oxides (SOx) can be expected to be treated alone or nitrogen oxides (NOx) and sulfur oxides (SOx) respectively.

본 발명에 의하면, 질소산화물(NOx)과 황산화물(SOx) 이 외에도 휘발성 화합물(VOC), 악취, 다이옥신 등의 여타 유해 가스처리 등 다양한 산업분야로의 적용가능성을 예측할 수 있다.According to the present invention, it is possible to predict the applicability to various industrial fields, such as nitrogen oxides (NOx) and sulfur oxides (SOx), in addition to volatile compounds (VOC), odors, and other harmful gas treatments such as dioxins.

또한, 본 발명의 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템에 의하면, 질소산화물(NOx)과 황산화물(SOx)의 제거뿐만 아니라 이들을 정화하여 얻어진 정화가스는 유안 및 초안 등의 비료 제조에 사용될 수 있으며, 이들 비료의 제조 및 포집을 동시에 수행할 수 있는 장점을 가지고 있다.In addition, according to the dielectric barrier discharge-photocatalyst composite system for removing exhaust gas of the present invention, the purge gas obtained by purifying not only nitrogen oxides (NOx) and sulfur oxides (SOx) but also by purifying them can be used for the manufacture of fertilizers such as oil and draft. In addition, it has the advantage that can be carried out simultaneously with the production and collection of these fertilizers.

즉, 본 발명의 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템에 의하면 환경오염원의 배출 허용기준을 만족시키면서 에너지 효율적으로 환경오염원을 제거할 수 있으므로, 향후 응용 분야 및 시장성이 더욱 확대될 것으로 기대된다.That is, according to the dielectric barrier discharge-photocatalyst composite system for exhaust gas removal of the present invention, it is possible to efficiently remove environmental pollution sources while satisfying the emission limit of environmental pollution sources, and therefore, it is expected that the field of application and marketability will be further expanded in the future.

이하, 본 발명을 실시예에 의거하여 구체적으로 설명하겠는바, 본 발명이 다음 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the following Examples.

실시예Example  And 비교예Comparative example

도 3과 도 4는 도 1에 나타낸 플라즈마반응기를 사용하여 유전체 장벽 방전-광촉매 복합시스템에 의한 NO와 SO2의 제거 효율을 각각 나타낸다. 유전체 장벽 방전-광촉매 복합시스템에서의 NO와 SO2의 제거 효율은 플라즈마만을 사용하였을 때의 결과들과 비교하였다. 3 and 4 show the removal efficiency of NO and SO 2 by the dielectric barrier discharge-photocatalyst composite system using the plasma reactor shown in FIG. 1, respectively. The removal efficiencies of NO and SO2 in the dielectric barrier discharge-photocatalytic composite system were compared with those obtained using plasma alone.

NO와 SO2 제거를 위해 플라즈마만을 사용한 경우에도 도 1에 나타낸 동일 플라즈마반응기를 사용하였으며 플라즈마는 유전체 장벽 방전에 의해 발생시켰다.Even when only plasma was used to remove NO and SO 2, the same plasma reactor shown in FIG. 1 was used, and the plasma was generated by dielectric barrier discharge.

유전체 장벽 방전-광촉매 복합시스템에서는 딥-코팅(dip-coating) 방법에 의해 광촉매가 코팅된 유전체 구를 사용하였다. 유전체 구는 직경이 3 mm인 유리구 사용하였고 광촉매는 Degussa 제품의 TiO2 (P-25)를 사용하였다. In the dielectric barrier discharge-photocatalytic composite system, a dielectric catalyst coated with a photocatalyst by a dip-coating method was used. The dielectric spheres were glass spheres with a diameter of 3 mm and the photocatalysts were TiO 2 (P-25) from Degussa.

100 ml 증류수에 TiO2 광촉매 2 g을 첨가하여 딥-코팅을 위한 TiO2 슬러리 용액을 만들었으며 TiO2 슬러리 용액에 유리구를 넣은 후 1 시간 동안 교반하였다. 유리구 표면에 TiO2 광촉매의 부착력을 높이기 위해 120 ℃ 온도에서 1시간 동안 건조시켜 사용하였다. 2 g of TiO2 photocatalyst was added to 100 ml of distilled water to make a TiO2 slurry solution for dip-coating, and glass balls were added to the TiO2 slurry solution, followed by stirring for 1 hour. In order to increase the adhesion of the TiO 2 photocatalyst on the surface of the glass sphere, it was used by drying at 120 ° C. for 1 hour.

비교예Comparative example

상기 실시예와 동일한 플라즈마반응기를 사용한 유전체 장벽 방전-광촉매 복합시스템에 의하여 NO와 SO2의 제거 효율을 측정하였으며, 유전체 구에 광촉매가 코팅되지 않은 점만 다르게 구성하였다.The removal efficiency of NO and SO 2 was measured by the dielectric barrier discharge-photocatalytic composite system using the same plasma reactor as in the above example, and only the photocatalyst was not coated on the dielectric sphere.

실험예Experimental Example

상기 실시예 및 비교예에 의한 NO와 SO2의 제거 효율은 다음과 같은 방법으로 수행하였다. Removal efficiency of NO and SO 2 according to the above Examples and Comparative Examples was performed in the following manner.

즉, 상온 상압에서 NO와 SO2를 플라즈마반응기로 공급하였다. NO 공급 농도 ([NO]0)와 SO2 공급 농도 ([SO2]0)는 각각 400 ppm, H2O 공급 농도 ([H2O]0)는 0.2%, 인가전압 주기(f)는 900 Hz, 체류시간 (τr)은 1 s를 사용하였다. N2 가스 농도는 71%로 유지시켰으며 밸런스 가스로 O2를 사용하였다. 인가전압을 4-9 [kV]로 변화시키면서 NO와 SO2의 농도 변화를 가스분석기로 측정하였다. That is, NO and SO 2 were supplied to the plasma reactor at room temperature and normal pressure. The NO supply concentration ([NO] 0) and SO2 supply concentration ([SO2] 0) are 400 ppm, the H2O supply concentration ([H2O] 0) is 0.2%, the applied voltage period (f) is 900 Hz, and the residence time ( τr) was used for 1 s. N2 gas concentration was maintained at 71% and O2 was used as the balance gas. The concentration change of NO and SO2 was measured with a gas analyzer while changing the applied voltage to 4-9 [kV].

상기 실시예 및 비교예의 결과는 도 3과 도 4로 각각 나타내었며, 이는 플라즈마 공정에 의한 NO와 SO2 제거 효율을 유전체 장벽 방전-광촉매 복합 공정에서의 값과 비교한 결과를 보여주는 것으로서, 유전체 장벽 방전-광촉매 복합 공정에서의 NO와 SO2 제거 효율은 플라즈마만을 사용했을 때보다 각각 최대 57%와 18% 정도 향상되었음을 알 수 있다.The results of the Examples and Comparative Examples are shown in FIGS. 3 and 4, respectively, which show the results of comparing the NO and SO 2 removal efficiencies by the plasma process with those in the dielectric barrier discharge-photocatalytic composite process. -The NO and SO2 removal efficiencies in the photocatalytic complex process are improved by up to 57% and 18%, respectively, compared with the plasma alone.

도 1은 본 발명의 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템의 개략도이다.1 is a schematic diagram of a dielectric barrier discharge-photocatalytic composite system for exhaust gas removal of the present invention.

도 2는 미립자 반응기가 장착된 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템의 개략도이다.2 is a schematic diagram of a dielectric barrier discharge-photocatalyst complex system for exhaust gas removal equipped with a particulate reactor.

도 3은 이산화티탄 광촉매를 사용하거나(-■-), 사용하지 않은(-●-) 플라즈마 프로세서에서의 NO 제거율을 나타낸 그래프이다.3 is a graph showing the NO removal rate in the plasma processor using (-■-) or not (-●-) titanium dioxide photocatalyst.

도 4는 이산화티탄 광촉매를 사용하거나(-■-), 사용하지 않은(-●-) 플라즈마 프로세서에서의 SO2 제거율을 나타낸 그래프이다.4 is a graph showing the SO2 removal rate in a plasma processor using (-■-) or not (-●-) titanium dioxide photocatalyst.

[도면에 나타낸 부호의 간단한 설명][Simple explanation of symbols shown in drawings]

플라즈마반응기(10) 미립자반응기(12)Plasma Reactor (10) Particle Reactor (12)

배가스 유입구(20) 정화가스유출구(22) Exhaust gas inlet (20) Purification gas outlet (22)

암모니아 유입구(24) 미립자 포집기(26) Ammonia Inlet (24) Particle Collector (26)

질량 유속 제어기(30) 가스 분석기(32) Mass Flow Controllers (30) Gas Analyzers (32)

거품기(34) 가열테이프(36)Foamer (34) Heating Tapes (36)

전원공급기(40) 전압/주파수 측정기(42)Power Supply (40) Voltage / Frequency Meter (42)

온도조절기(44) 펄스발생기(46)Temperature Controllers (44) Pulse Generators (46)

광촉매가 코팅된 유전체구(50)Photocatalyst coated dielectric sphere (50)

Claims (9)

광촉매로 코팅된 유전체 구로 충진된 플라즈마반응기(10);A plasma reactor (10) filled with a dielectric sphere coated with a photocatalyst; 상기 플라즈마반응기(10)의 일측에 형성되며, 질량유속제어기(30)에 의하여 질량과 유속이 조절된 배가스가 유입되는 배가스 유입구(20); 및, An exhaust gas inlet 20 formed at one side of the plasma reactor 10 and into which the exhaust gas whose mass and flow rate are controlled by the mass flow controller 30 is introduced; And, 상기 플라즈마반응기(10)의 타측에 형성되며, 플라즈마반응기(10)를 통과하며 정화된 배가스가 유출되는 정화가스 유출구(22); A purification gas outlet 22 formed at the other side of the plasma reactor 10 and passing through the plasma reactor 10 to allow the purified exhaust gas to flow out; 를 포함하여 이루어지는 것을 특징으로 하는 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템.Dielectric barrier discharge-photocatalyst complex system for exhaust gas removal comprising a. 청구항 1에 있어서,The method according to claim 1, 상기 플라즈마반응기(10)는 전원공급기(40), 펄스발생기(46) 및 전압/주파수 측정기(42)와 연결된 것을 특징으로 하는 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템.The plasma reactor (10) is a dielectric barrier discharge-photocatalyst complex system for exhaust gas removal, characterized in that connected to the power supply (40), pulse generator (46) and voltage / frequency meter (42). 청구항 1에 있어서,The method according to claim 1, 상기 배가스 유입구(20)는 온도 조절기(44)와 연결된 것을 특징으로 하는 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템.The exhaust gas inlet 20 is connected to the temperature controller 44, characterized in that the exhaust gas removal dielectric barrier discharge-photocatalyst complex system. 청구항 1에 있어서,The method according to claim 1, 상기 배가스 유입구(20)는 수분공급을 위한 거품기(34)와 열결된 것을 특징으로 하는 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템.The exhaust gas inlet 20 is a dielectric barrier discharge-photocatalyst complex system for exhaust gas removal, characterized in that it is thermally connected with a bubbler (34) for water supply. 청구항 1에 있어서,The method according to claim 1, 상기 정화가스 유출구(22)는 가스 분석기(32)와 열결된 것을 특징으로 하는 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템.The purge gas outlet 22 is connected to the gas analyzer 32, the exhaust gas removal dielectric barrier discharge-photocatalyst complex system. 청구항 1에 있어서,The method according to claim 1, 플라즈마반응기(10)를 통과하여 유입되는 정화가스와 암모니아(NH3)유입구(24)로 유입되는 암모니아(NH3)의 화학반응에 의해 미립자가 형성되는 미립자반응기(12)가 더 포함되는 것을 특징으로 하는 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템. Particle reactor 12 is further characterized in that the fine particles are formed by the chemical reaction of the purification gas flowing through the plasma reactor 10 and the ammonia (NH3) flowing into the ammonia (NH3) inlet 24 is characterized in that it further comprises Dielectric barrier discharge-photocatalytic composite system for exhaust gas removal. 청구항 6에 있어서,The method according to claim 6, 미립자반응기(12) 타측에 형성되며, 미립자반응기(12)에서 생성된 미립자가 포집되는 미립자 포집기(26)가 더 포함되는 것을 특징으로 하는 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템.A particulate barrier discharge-photocatalytic composite system for exhaust gas removal, further comprising a particulate collector (26) formed on the other side of the particulate reactor (12) and collecting particulates generated in the particulate reactor (12). 청구항 1 내지 7 중에서 선택된 어느 하나의 항에 있어서, The compound according to any one of claims 1 to 7, 상기 유전체 구는 유리구인 것을 특징으로 하는 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템.And the dielectric sphere is a glass sphere. 청구항 1 내지 7 중에서 선택된 어느 하나의 항에 있어서, The compound according to any one of claims 1 to 7, 상기 광촉매는 이산화티탄(TiO2), 삼산화텅스텐(WO3), 이산화주석(SnO2) 및 산화아연(ZnO) 중에서 선택된 어느 하나인 것을 특징으로 하는 배가스 제거용 유전체 장벽 방전-광촉매 복합 시스템.The photocatalyst is any one selected from titanium dioxide (TiO2), tungsten trioxide (WO3), tin dioxide (SnO2) and zinc oxide (ZnO) dielectric barrier discharge-photocatalyst composite system for exhaust gas removal.
KR1020080012212A 2008-02-11 2008-02-11 Efficient method to remove NOx and SOx by dielectric barrier discharge-photocatalysts hybrid process KR100969629B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080012212A KR100969629B1 (en) 2008-02-11 2008-02-11 Efficient method to remove NOx and SOx by dielectric barrier discharge-photocatalysts hybrid process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080012212A KR100969629B1 (en) 2008-02-11 2008-02-11 Efficient method to remove NOx and SOx by dielectric barrier discharge-photocatalysts hybrid process

Publications (2)

Publication Number Publication Date
KR20090086761A true KR20090086761A (en) 2009-08-14
KR100969629B1 KR100969629B1 (en) 2010-07-14

Family

ID=41205991

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080012212A KR100969629B1 (en) 2008-02-11 2008-02-11 Efficient method to remove NOx and SOx by dielectric barrier discharge-photocatalysts hybrid process

Country Status (1)

Country Link
KR (1) KR100969629B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9117616B2 (en) 2012-07-13 2015-08-25 Sp Tech Co., Ltd. Dielectric barrier discharge-type electrode structure for generating plasma having conductive body protrusion on electrodes
CN105879566A (en) * 2016-05-28 2016-08-24 复旦大学 Method and device for removing NOx in flue gas by induced reduction of dielectric barrier discharge
CN106268207A (en) * 2016-08-09 2017-01-04 西安理工大学 The device of gas-liquid two-phase dielectric barrier discharge removing nitrogen oxides and application thereof
CN108421638A (en) * 2018-01-19 2018-08-21 河海大学常州校区 Catalytic association corona and dielectric barrier discharge air purification regulator control system
KR20190092939A (en) 2018-01-31 2019-08-08 전배혁 Plasma-Photo Catalyst Reactor for Removal of Ammonia, Packing Material coated with Photo Catalyst for the same Reactor, and Preparation of the same Packing Material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101515975B1 (en) * 2015-02-09 2015-05-07 강원대학교산학협력단 Preparation method of catalytic composite for dielectric barrier discharge-catalyst-photocatalyst hybrid process and air pollutants removal device using catalytic composite prepared thereby

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615143A (en) * 1992-07-03 1994-01-25 Mitsui Eng & Shipbuild Co Ltd Plasma reaction vessel for nitrogen oxide decomposition device
KR100339849B1 (en) * 1999-12-27 2002-06-05 손재익 De-NOx or De-SOx and Simultaneous De-NOx and De-SOx Photocatalysis and Plasma Hybrid System

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9117616B2 (en) 2012-07-13 2015-08-25 Sp Tech Co., Ltd. Dielectric barrier discharge-type electrode structure for generating plasma having conductive body protrusion on electrodes
CN105879566A (en) * 2016-05-28 2016-08-24 复旦大学 Method and device for removing NOx in flue gas by induced reduction of dielectric barrier discharge
CN105879566B (en) * 2016-05-28 2019-04-05 复旦大学 NO in the medium barrier discharging induced reduction removing flue gas of one kindxMethod and apparatus
CN106268207A (en) * 2016-08-09 2017-01-04 西安理工大学 The device of gas-liquid two-phase dielectric barrier discharge removing nitrogen oxides and application thereof
CN108421638A (en) * 2018-01-19 2018-08-21 河海大学常州校区 Catalytic association corona and dielectric barrier discharge air purification regulator control system
KR20190092939A (en) 2018-01-31 2019-08-08 전배혁 Plasma-Photo Catalyst Reactor for Removal of Ammonia, Packing Material coated with Photo Catalyst for the same Reactor, and Preparation of the same Packing Material

Also Published As

Publication number Publication date
KR100969629B1 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
Zhang et al. Simultaneous removal of NO and SO2 from flue gas by ozone oxidation and NaOH absorption
Park et al. Simultaneous treatment of NO and SO2 with aqueous NaClO2 solution in a wet scrubber combined with a plasma electrostatic precipitator
US7998445B2 (en) Method and apparatus for the treatment of nitrogen oxides using an ozone and catalyst hybrid system
Zhong et al. Photocatalytic air cleaners and materials technologies–abilities and limitations
Su et al. Photocatalytic process of simultaneous desulfurization and denitrification of flue gas by TiO2–polyacrylonitrile nanofibers
KR100969629B1 (en) Efficient method to remove NOx and SOx by dielectric barrier discharge-photocatalysts hybrid process
Ji et al. Study on the key factors of NO oxidation using O3: the oxidation product composition and oxidation selectivity
Li et al. Experimental study on ozone photolytic and photocatalytic degradation of H2S using continuous flow mode
Zhou et al. Marine emission pollution abatement using ozone oxidation by a wet scrubbing method
Yang et al. Nitrogen oxide removal from simulated flue gas by UV-irradiated sodium chlorite solution in a bench-scale scrubbing reactor
CN203899431U (en) Desulfurization, denitrification and demercuration system based on photoactivated ammonium persulfate
CN107297142B (en) Flue gas purification method
Yuan et al. Abatement of NO/SO2/Hg0 from flue gas by advanced oxidation processes (AOPs): Tech-category, status quo and prospects
CN108057327A (en) A kind of purification of pollution air containing ammonia and recycling processing method
Cui et al. Simultaneous removal of NO and SO2 via an integrated system of nonthermal plasma combined with catalytic oxidation and wet electrostatic precipitator
Wang et al. Oxidation and removal of NO from flue gas by DC corona discharge combined with alkaline absorption
CN106076086A (en) A kind of method of normal-temperature efficient catalytic degradation vehicle spray painting industry VOCs waste gas
Choi et al. Dry De-NO x Process via Gas-Phase Photochemical Oxidation Using an Ultraviolet and Aerosolized H2O/H2O2 Hybrid System
Jo et al. A study on additives to improve electron beam technology for NOx and SO2 reduction
Fang et al. Split, partial oxidation and mixed absorption: A novel process for synergistic removal of multiple pollutants from simulated flue gas
Hu et al. Removal of dimethyl sulfide by post-plasma catalysis over CeO2-MnOx catalysts and reaction mechanism analysis
Abedi et al. Effect of TiO-ZnO/GAC on by-product distribution of CVOCs decomposition in a NTP-assisted catalysis system
Yamamoto et al. Pilot-scale exhaust gas treatment for a glass manufacturing system using a plasma combined wet chemical process
KR100339849B1 (en) De-NOx or De-SOx and Simultaneous De-NOx and De-SOx Photocatalysis and Plasma Hybrid System
Yamasaki et al. Toward NO x/SO x and nanoparticle control technology using a single-stage wet-type nonthermal plasma reactor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130621

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150626

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee