KR20190084617A - Manufacturing method for Ni-Co-Mn composite precursor using recycled ammonia - Google Patents

Manufacturing method for Ni-Co-Mn composite precursor using recycled ammonia Download PDF

Info

Publication number
KR20190084617A
KR20190084617A KR1020180002582A KR20180002582A KR20190084617A KR 20190084617 A KR20190084617 A KR 20190084617A KR 1020180002582 A KR1020180002582 A KR 1020180002582A KR 20180002582 A KR20180002582 A KR 20180002582A KR 20190084617 A KR20190084617 A KR 20190084617A
Authority
KR
South Korea
Prior art keywords
cobalt
nickel
wastewater
composite precursor
ammonia
Prior art date
Application number
KR1020180002582A
Other languages
Korean (ko)
Other versions
KR102025201B1 (en
Inventor
권순모
권오상
우대중
Original Assignee
주식회사 이엔드디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엔드디 filed Critical 주식회사 이엔드디
Priority to KR1020180002582A priority Critical patent/KR102025201B1/en
Priority to PCT/KR2018/000461 priority patent/WO2019139182A1/en
Publication of KR20190084617A publication Critical patent/KR20190084617A/en
Application granted granted Critical
Publication of KR102025201B1 publication Critical patent/KR102025201B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/586Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing ammoniacal nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to a technology for recycling wastewater generated when manufacturing a nickel-cobalt-manganese (Ni-Co-Mn) composite precursor which is a positive electrode active material for a lithium secondary battery. After ammonia nitrogen is separated and recovered from the wastewater, the separated ammonia nitrogen is recycled to manufacture a Ni-Co-Mn composite precursor. Ammonia nitrogen which is harmful to the environment is removed from wastewater so that an environment protection effect and a cost reduction effect can be obtained.

Description

재활용 암모니아를 사용한 니켈―코발트―망간 복합전구체의 제조 방법{Manufacturing method for Ni-Co-Mn composite precursor using recycled ammonia}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-cobalt-manganese composite precursor using recycled ammonia,

본 발명은 니켈-코발트-망간 복합전구체의 제조 방법에 관한 기술로서, 더욱 구체적으로는 리튬이차전지용 양극 활물질 전구체인 니켈-코발트-망간 복합전구체 NixCoyMn1-x-y(OH)2 (여기서, 0<x<1, 0<y<1, 0<x+y<1)의 제조 시 발생하는 폐수로부터 암모니아성 질소를 분리한 후, 상기 회수된 암모니아성 질소를 니켈-코발트-망간 복합전구체를 제조하기 위한 공침 반응 시 재활용하여 니켈-코발트-망간 복합전구체를 제조하는 기술에 관한 것이다. More particularly, the present invention relates to a nickel-cobalt-manganese composite precursor Ni x Co y Mn 1-xy (OH) 2 which is a precursor of a cathode active material for a lithium secondary battery , Ammonia nitrogen is separated from the wastewater generated in the production of 0 <x <1, 0 <y <1, 0 <x + y <1), and then the recovered ammonia nitrogen is reacted with a nickel-cobalt- Cobalt-manganese composite precursor by recycling it in a coprecipitation reaction for producing a nickel-cobalt-manganese composite precursor.

즉, 본 발명은 니켈-코발트-망간 복합전구체의 제조 시 발생하는 폐수 중의 암모니아성 질소를 재활용함으로써, 환경보호 및 니켈-코발트-망간 복합전구체 제조 비용을 절감할 수 있는 기술에 관한 것이다.That is, the present invention relates to a technology capable of protecting the environment and reducing the manufacturing cost of the nickel-cobalt-manganese composite precursor by recycling the ammonia nitrogen in the wastewater generated in the production of the nickel-cobalt-manganese composite precursor.

휴대용의 소형 전기ㆍ전자기기의 보급 확산에 따라 니켈수소전지나 리튬이차전지와 같은 신형 이차전지 개발이 활발하게 진행되고 있다. 이 중 리튬이차전지는 흑연 등의 카본을 음극 활물질로 사용하고, 리튬이 포함되어 있는 금속 산화물을 양극 활물질로 사용하며, 비수 용매를 전해액으로 사용하는 전지이다. 리튬은 이온화 경향이 매우 큰 금속으로 고전압 발현이 가능하여 에너지 밀도가 높은 전지에 각광을 받고 있는 물질이다. Development of new secondary batteries such as a nickel hydride battery and a lithium secondary battery is progressing actively due to the spread of portable small electric and electronic devices. Among them, the lithium secondary battery uses carbon such as graphite as an anode active material, a metal oxide containing lithium as a cathode active material, and a non-aqueous solvent as an electrolyte. Lithium is a metal that has a very high ionization tendency, and is capable of high voltage generation, and is a material that is attracted to high energy density batteries.

리튬이차전지에 사용되는 양극 활물질로는 리튬을 함유하고 있는 리튬 전이금속산화물이 주로 사용되고 있으며, 코발트계, 니켈계, 삼성분계(코발트, 니켈 및 망간이 공존) 등의 층상계 리튬 전이금속 복합산화물이 90% 이상 사용되고 있다. 예를 들어, Li2CO3와 NixCoyMn1-x-y(OH)2계 전구체를 혼합 소성 가공하여 양극 소재로 사용하고 있다. 통상 NixCoyMn1-x-y(OH)2 전구체는 공침법을 이용하여 제조되는데, 니켈염, 망간염 및 코발트염을 증류수에 용해한 후, 암모니아 수용액(킬레이팅제), NaOH 수용액(염기성 수용액)과 함께 반응기에 투입하면 NixCoyMn1-x-y(OH)2이 고상으로 합성된 후 침전된다.Lithium transition metal oxides containing lithium are mainly used as the positive electrode active material used in the lithium secondary battery, and layered lithium transition metal complex oxides such as cobalt, nickel, ternary system (coexisting cobalt, nickel and manganese) Have been used for more than 90%. For example, Li 2 CO 3 and Ni x Co y Mn 1-xy (OH) 2 precursors are mixed and calcined to be used as a cathode material. In general, the Ni x Co y Mn 1-xy (OH) 2 precursor is prepared by coprecipitation. After the nickel salt, manganese salt and cobalt salt are dissolved in distilled water, an aqueous ammonia solution (chelating agent), aqueous NaOH solution ), The Ni x Co y Mn 1-xy (OH) 2 is synthesized as a solid phase and precipitated.

전술한 바와 같이, 위와 같은 리튬이차전지를 구성하는 양극 활물질을 제조하기 위한 일반적인 방법으로는 공침법을 사용하는데, 공침 과정에서 발생하는 폐수에는 니켈(Ni), 망간(Mn), 코발트(Co) 등의 중금속이 수십 ~ 수백 ppm까지 포함되어 있으며, 암모니아와 수산화나트륨의 사용으로 인해 pH 10 이상의 강알칼리성을 나타내며, (NH4)2SO4, NH4OH 등의 총질소는 8,000~10,000ppm, Na2SO4 등의 무기염은 전체 폐수의 중량에 대하여 10 중량% 정도 포함되게 된다. 이러한 폐수를 적절히 처리하지 않고 외부로 방출할 경우, 심각한 환경 오염을 유발할 수 있다.As described above, as a general method for producing the positive electrode active material constituting the lithium secondary battery as described above, coprecipitation is used. Nickel (Ni), manganese (Mn), cobalt (Co) (NH 4 ) 2 SO 4 , NH 4 OH, and the like are in the range of 8,000 to 10,000 ppm, and the total nitrogen such as (NH 4 ) 2 SO 4 and NH 4 OH is in the range of 8,000 to 10,000 ppm, And inorganic salts such as Na 2 SO 4 are contained in an amount of about 10% by weight based on the weight of the total wastewater. If these wastewater are discharged to the outside without proper treatment, serious environmental pollution may occur.

대한민국 특허공개 제10-2016-0013674호는 리튬 이차전지용 양극 활물질 전구체 제조 시 발생하는 암모니아 형태로 폐수 중에 포함되어 있는 고농도의 총질소를 포함하는 폐수 처리 방법으로서, 반응조에서 폐수를 공기로 스트리핑(stripping)하여 암모니아를 제거하는 단계를 포함하는 폐수 처리 방법을 제시하고 있으나, 상기 특허에서는 폐수 중 암모니아성 질소를 제거하기 위한 방법만을 제시하고 있을 뿐, 폐수로부터 분리된 암모니아성 질소의 재활용 방안을 제시하지 못하고 있는 단점이 있다.Korean Patent Laid-Open Publication No. 10-2016-0013674 discloses a method for treating wastewater containing a high concentration of total nitrogen contained in wastewater in the form of ammonia which occurs in the production of a precursor of a cathode active material for a lithium secondary battery, ). However, the above patent discloses only a method for removing ammonia nitrogen from wastewater, suggests a method for recycling ammonia nitrogen separated from wastewater There is a disadvantage that you can not.

대한민국 특허공개 제10-2016-0013674호Korean Patent Publication No. 10-2016-0013674

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 리튬이차전지용 양극 활물질 전구체 제조 시 발생하는 폐수로부터 암모니아성 질소를 효과적으로 분리 회수한 후, 상기 회수된 암모니아성 질소를 재활용하는 방법을 제공하는 것을 목적으로 한다.Disclosure of Invention Technical Problem [8] Accordingly, the present invention provides a method of effectively recovering and recovering ammonia nitrogen from wastewater generated during production of a cathode active material precursor for a lithium secondary battery, and then recycling the recovered ammonia nitrogen .

특히, 본 발명은 공침 반응 후의 폐수 속의 암모니아성 질소를 재활용하여 니켈-코발트-망간 복합전구체의 킬레이팅제로 재활용하는 방법을 제공하는 것을 목적으로 한다.In particular, it is an object of the present invention to provide a method for recycling ammonia nitrogen in wastewater after a coprecipitation reaction as a chelating agent for a nickel-cobalt-manganese composite precursor.

본 발명은, 이차 전지용 양극활물질 전구체인 니켈-코발트-망간 복합전구체의 제조시 발생하는 폐수를 상기 복합전구체로부터 분리하는 단계(1); 상기 분리된 폐수를 스트리핑하여 암모니아성 질소를 추출하는 단계(2); 상기 단계(2)에서 얻은 암모니아성 질소를 냉각하여 액체 상태의 암모니아 수용액으로 제조하는 단계(3); 및 니켈-코발트-망간 복합전구체를 제조하는 공침 과정에 상기 회수된 암모니아 수용액을 투입하는 단계(4)를 포함하여 이루어지는, 재활용 암모니아를 사용한 니켈―코발트―망간 복합전구체의 제조 방법을 제공한다.The present invention relates to a method for producing a nickel-cobalt-manganese composite precursor, comprising the steps of: (1) separating wastewater generated from the nickel-cobalt-manganese composite precursor, which is a precursor of a cathode active material for a secondary battery, from the complex precursor; Stripping the separated wastewater to extract ammonia nitrogen (2); (3) cooling the ammonia nitrogen obtained in the step (2) to prepare a liquid ammonia aqueous solution; And a step (4) of introducing the recovered aqueous ammonia solution into a coprecipitation process for preparing a nickel-cobalt-manganese composite precursor, and a step (4) of adding the recovered ammonia aqueous solution to the nickel-cobalt-manganese composite precursor.

특히, 상기 스트리핑은 2회 이상 진행할 수 있다. In particular, the stripping can proceed more than two times.

특히, 상기 스트리핑 후의 암모니아성 질소 중의 먼지를 포함한 불순물을 제거하는 미스트 제거 단계(2-1)을 더 가질 수 있다. In particular, it may further have a mist removing step (2-1) for removing impurities including dust in the ammonia nitrogen after the stripping.

특히, pH 센서를 이용하여 상기 단계(1)에서 분리된 폐수의 pH를 측정하여, 일정값 이하의 pH값이 측정되는 경우, 폐수 또는 알칼리 용액을 추가 투입할 수 있다.In particular, when the pH value of the wastewater separated in the step (1) is measured using a pH sensor and a pH value lower than a predetermined value is measured, wastewater or an alkaline solution may be further added.

본 발명에 따른 니켈-코발트-망간 공침 반응에 의해 발생하는 폐수의 처리 방법은 폐수 중에 포함되어 있는 암모니아성 질소를 효과적으로 분리한 후, 이를 다시 재활용하여 니켈-코발트-망간 복합전구체의 합성하는 공침 과정에 사용할 수 있는바, 환경에 유해한 암모니아성 질소를 폐수로부터 제거함으로써 환경 보호 효과와 더불어 원가 절감 효과를 동시에 얻을 수 있는 이중효과가 있다.The method for treating wastewater generated by the nickel-cobalt-manganese coprecipitation reaction according to the present invention effectively separates the ammonium nitrogen contained in the wastewater and recycles it again to prepare a nickel-cobalt-manganese complex precursor , There is a dual effect that the ammonia nitrogen which is harmful to the environment is removed from the wastewater, thereby achieving the environmental protection effect and the cost saving effect at the same time.

도 1 및 2는 비교예에 의해 제조된 니켈-코발트-망간 복합전구체의 배율을 달리한 SEM 측정 사진이다.
도 3 및 4는 실시예에 의해 제조된 니켈-코발트-망간 복합전구체의 배율을 달리한 SEM 측정 사진이다.
도 5 및 도 6은 각각 비교예 및 실험예의 니켈-코발트-망간 복합전구체의 입도분포도이다.
FIGS. 1 and 2 are SEM photographs showing magnifications of the nickel-cobalt-manganese composite precursor produced by the comparative example.
FIGS. 3 and 4 are SEM photographs showing magnifications of nickel-cobalt-manganese composite precursors prepared by the examples.
5 and 6 are particle size distribution charts of the nickel-cobalt-manganese composite precursor of Comparative Examples and Experimental Examples, respectively.

본 발명은 리튬이차전지용 양극 활물질 전구체인 니켈-코발트-망간 복합전구체의 제조 시 발생하는 폐수로부터 암모니아성 질소를 스트리핑에 의해 회수한 후, 회수된 암모니아성 질소를 니켈-코발트-망간 복합전구체를 제조하는 공침 반응에 재활용하는 것을 특징으로 한다.The present invention relates to a nickel-cobalt-manganese composite precursor which is produced by stripping ammonia nitrogen from a wastewater generated in the production of a nickel-cobalt-manganese composite precursor which is a cathode active material precursor for a lithium secondary battery by stripping, And then recycled to the coprecipitation reaction.

본 발명은, 이차 전지용 양극활물질 전구체인 니켈-코발트-망간 복합전구체의 제조시 발생하는 폐수를 상기 복합전구체로부터 분리 저장하는 단계(1); 상기 분리된 폐수를 스트리핑하여 암모니아성 질소를 추출하는 단계(2); 상기 단계(2)에서 얻은 암모니아성 질소를 냉각하여 액체 상태의 암모니아 수용액으로 제조하는 단계(3); 및 니켈-코발트-망간 복합전구체를 제조하는 공침 과정에 상기 회수된 암모니아 수용액을 투입하는 단계(4)를 포함하여 이루어지는, 재활용 암모니아를 사용한 니켈―코발트―망간 복합전구체의 제조 방법을 제공한다.(1) separating and storing wastewater generated in the production of a nickel-cobalt-manganese composite precursor, which is a precursor of a cathode active material for a secondary battery, from the complex precursor; Stripping the separated wastewater to extract ammonia nitrogen (2); (3) cooling the ammonia nitrogen obtained in the step (2) to prepare a liquid ammonia aqueous solution; And a step (4) of introducing the recovered aqueous ammonia solution into a coprecipitation process for preparing a nickel-cobalt-manganese composite precursor, and a step (4) of adding the recovered ammonia aqueous solution to the nickel-cobalt-manganese composite precursor.

단계(1)은, Ni, Co, Mn과 공침을 위한 킬레이팅제 및 알칼리용액을 혼합 반응하여 니켈-코발트-망간 복합전구체를 제조하는 공침 공정에서 제조된 복합전구체와 폐수를 분리하는 단계로서, 상기 공침 과정은 종래 잘 알려진 기술이므로 본 발명에서는 구체적인 설명을 생략하기로 한다. 방류 기준 총질소는 50 ppm이하인데,공침 후의 폐수 속에는 총질소가 8000 ~ 10,000 ppm으로 방류 허용치를 크게 상회한다. Step (1) is a step of separating the composite precursor and the wastewater produced in the coprecipitation step of preparing a nickel-cobalt-manganese composite precursor by mixing and reacting a chelating agent and an alkaline solution for Ni, Co, and Mn, Since the coprocessing process is well known in the art, a detailed description thereof will be omitted in the present invention. The total nitrogen content is below 50 ppm. The total nitrogen in the wastewater after coprecipitation is 8000 ~ 10,000 ppm, greatly exceeding the allowance for discharge.

상기 공침 과정에서 생산된 복합전구체를 여과 분리한 후, 총질소, 특히 암모니아성 질소가 대부분인 폐수를 다음 단계(2)에서 이용한다. After the complex precursor produced in the coprecipitation process is separated by filtration, wastewater having total nitrogen, especially ammonia nitrogen, is used in the next step (2).

단계(2)에서는 상기 단계(1)에서 분리된 폐수 속의 총질소, 특히, 암모니아성 질소를 회수하기 위하여 스트리핑타워 내에서 스트리핑을 통해 암모니아성 질소를 회수한다. 스트리핑(공기 탈기법)은 암모니아 함유 폐수를 pH 조정조에서 산성도, 열교환기에서 온도를 조절한 후, 탈기탑에서 액상의 폐수와 공기의 접촉에 의해 암모니를 기체 상태로 분리하고, 분리된 암모니아를 흡수탑에서 수거하는 기술이다. In step (2), ammonia nitrogen is stripped through stripping in the stripping tower to recover total nitrogen, especially ammonia nitrogen, in the wastewater separated in step (1). Stripping (air stripping) separates ammonia into gaseous state by contacting ammonia-containing wastewater with liquid wastewater and air in the degassing tower after adjusting the acidity in the pH adjusting tank and the temperature in the heat exchanger, and absorbing the separated ammonia It is the technology to collect from the tower.

스트리핑(stripping)법을 보다 자세히 설명하면 다음과 같다. 암모니아는 수중에서 다음 화학식 1과 같이 평형 상태로 존재한다.The stripping method will be described in more detail as follows. Ammonia exists in equilibrium in water as shown in the following chemical formula (1).

[화학식 1][Chemical Formula 1]

NH4+ + OH- [0020] ↔ NH3 + H2ONH4 + + OH- [0020] ↔ NH3 + H2O

평형 상태의 pH는 9.25이며 pH를 증가시키면 평형이 오른쪽으로 이동하므로 pH를 10 이상으로 높인 후 공기로 암모니아를 기체 상태로 제거하는 방법이 암모니아 스트리핑(stripping)법이다. 본 발명에서 상기 단계(1)의 폐수는 양극 활물질 전구체 제조 공정에서 암모니아와 NaOH가 사용되기 때문에 pH가 10 이상, 구체적으로 원-폐수(원수)의 pH는 11 ~ 13 이므로 인위적으로 pH를 상승시키지 않고도 스트리핑법의 적용이 가능하며 스트리핑법 실시 이후의 pH는 9~11로 조정될 수 있다. 또한 스트리핑은 다단계 타워를 구비함으로써, 여러 차례 스트리핑을 거칠 수 있다.The equilibrium pH is 9.25. When the pH is increased, the equilibrium shifts to the right. Therefore, the ammonia stripping method removes the ammonia to the gaseous state by increasing the pH to 10 or more. In the present invention, since ammonia and NaOH are used in the production process of the cathode active material precursor in the step (1), the pH is 10 or more, specifically the pH of the raw wastewater (raw water) is 11 to 13. Therefore, The stripping method can be applied and the pH after the stripping method can be adjusted to 9 to 11. In addition, the stripping can be stripped several times by having a multi-stage tower.

특히, 상기 스트리핑 후의 암모니아성 질소 중의 먼지를 포함한 불순물을 제거하는 미스트 제거 단계(2-1)을 더 가질 수 있다.In particular, it may further have a mist removing step (2-1) for removing impurities including dust in the ammonia nitrogen after the stripping.

단계(2)에서 회수된 암모니아 가스는 냉각하여 액상화하며(단계(3)), 상기 단계(3)에서 수득한 암모니아 수용액을 재활용하여 공침 반응을 통해 NiCoMn(OH)2를 형성한다(단계(4)).The ammonia gas recovered in step 2 is cooled and liquefied (step (3)), and the aqueous ammonia solution obtained in step (3) is recycled to form NiCoMn (OH) 2 through a coprecipitation reaction )).

이하에서는 실시예 및 비교예를 통해 본 발명에 대하여 자세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to examples and comparative examples.

실시예Example

통상의 공침 과정을 통해 니켈-코발트-망간 복합전구체를 제조한 후 발생하는 폐수를 분리하였다. 상기 폐수를 분석한 결과, 총질소가 약 8,500 ppm이었다.The wastewater generated after nickel - cobalt - manganese complex precursor was prepared through ordinary coprecipitation process was separated. Analysis of the wastewater showed that the total nitrogen was about 8,500 ppm.

상기 폐수를 스트리핑 추출을 통해 암모니아성 질소를 회수한 후, 액상화하여 암모니아 수용액을 수득하였다.The ammonia nitrogen was recovered by stripping the wastewater and then liquefied to obtain an aqueous ammonia solution.

상기 회수한 암모니아 수용액을 니켈-코발트-망간 복합전구체를 제조하기 위한 공침 반응 시 재활용하여, 실시예의 니켈-코발트-망간 복합전구체를 제조하였다.The recovered aqueous ammonia solution was recycled in the coprecipitation reaction for preparing the nickel-cobalt-manganese composite precursor to prepare the nickel-cobalt-manganese composite precursor of the example.

비교예Comparative Example

비교예의 니켈-코발트-망간 복합전구체는, 황산니켈, 황산코발트, 황산망간의 원료에 NH4OH와 NaOH의 혼합 용액을 이용한 공침을 통해 제조되었다. 즉, 비교예에서는 재활용 암모니아 수용액이 사용되지 않았다.The nickel-cobalt-manganese composite precursor of Comparative Example was prepared by coprecipitation using a mixed solution of NH 4 OH and NaOH as raw materials for nickel sulfate, cobalt sulfate and manganese sulfate. That is, in the comparative example, the aqueous recycled ammonia solution was not used.

실험예 1 : SEM 측정 Experimental Example 1: SEM measurement

도 1 및 2는 비교예에 의해 제조된 니켈-코발트-망간 복합전구체의 배율을 달리한 SEM 측정 사진이며, 도 3 및 4는 실시예에 의해 제조된 니켈-코발트-망간 복합전구체의 배율을 달리한 SEM 측정 사진이다. 실시예 및 비교예의 복합전구체 모두 비교적 균일한 형상의 전구체가 제조되었음을 확인할 수 있었다.FIGS. 1 and 2 are SEM photographs of nickel-cobalt-manganese composite precursors prepared according to the comparative examples at different magnifications, and FIGS. It is a SEM measurement photograph. It was confirmed that both of the complex precursors of Examples and Comparative Examples had a relatively uniform precursor.

실험예 2 : 입도분포도Experimental Example 2: Particle size distribution

도 5 및 도 6은 각각 비교예 및 실험예의 복합전구체의 입도분포도로서 재활용 시드를 사용하여 제조된 복합전구체와 통상의 방법으로 제조된 복합전구체의 입도분포에 큰 차이가 없음을 알 수 있으며, 이를 통해 본 발명의 방법이 현장에서 적용 가능함을 확인할 수 있었다.FIG. 5 and FIG. 6 are particle size distribution diagrams of the composite precursors of Comparative Examples and Experimental Examples, respectively. It can be seen that there is no significant difference in particle size distribution between the composite precursor prepared by using the recycled seed and the composite precursor produced by the conventional method, It can be confirmed that the method of the present invention is applicable in the field.

Claims (4)

이차전지용 양극활물질 전구체인 니켈-코발트-망간 복합전구체의 제조시 발생하는 폐수를 상기 복합전구체로부터 분리하는 단계(1);
상기 분리된 폐수를 스트리핑하여 암모니아성 질소를 추출하는 단계(2);
상기 단계(2)에서 얻은 암모니아성 질소를 냉각하여 액체 상태의 암모니아 수용액으로 제조하는 단계(3); 및
니켈-코발트-망간 복합전구체를 제조하는 공침 과정에 상기 회수된 암모니아 수용액을 투입하는 단계(4)를 포함하여 이루어지는, 재활용 암모니아를 사용한 니켈―코발트―망간 복합전구체의 제조 방법.
(1) separating wastewater generated in the production of a nickel-cobalt-manganese composite precursor, which is a precursor of a cathode active material for a secondary battery, from the complex precursor;
Stripping the separated wastewater to extract ammonia nitrogen (2);
(3) cooling the ammonia nitrogen obtained in the step (2) to prepare a liquid ammonia aqueous solution; And
A method for producing a nickel-cobalt-manganese composite precursor using recycled ammonia, comprising the step (4) of adding the recovered aqueous ammonia solution to a coprecipitation process for preparing a nickel-cobalt-manganese composite precursor.
제1항에서, 상기 스트리핑은 2회 이상 진행하는, 재활용 암모니아를 사용한 니켈―코발트―망간 복합전구체의 제조 방법.
The method of claim 1, wherein the stripping is conducted at least twice. The method for producing a nickel-cobalt-manganese composite precursor using recycled ammonia.
제1항에서, 상기 스트리핑 후의 암모니아성 질소 중의 불순물을 제거하는 미스트 제거 단계(2-1)을 더 갖는, 재활용 암모니아를 사용한 니켈―코발트―망간 복합전구체의 제조 방법.
The method for producing a nickel-cobalt-manganese composite precursor according to claim 1, further comprising a mist removing step (2-1) for removing impurities in the ammonia nitrogen after the stripping.
제1항에서, pH 센서를 이용하여 상기 단계(1)에서 분리된 폐수의 pH를 측정하여, 일정값 이하의 pH값이 측정되는 경우, 폐수 또는 알칼리 용액을 추가 투입하는, 재활용 암모니아를 사용한 니켈―코발트―망간 복합전구체의 제조 방법. The method according to claim 1, wherein the pH of the wastewater separated in the step (1) is measured using a pH sensor, and when the pH value below a predetermined value is measured, the wastewater or alkaline solution is additionally introduced, - cobalt-manganese composite precursor.
KR1020180002582A 2018-01-09 2018-01-09 Manufacturing method for Ni-Co-Mn composite precursor using recycled ammonia KR102025201B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180002582A KR102025201B1 (en) 2018-01-09 2018-01-09 Manufacturing method for Ni-Co-Mn composite precursor using recycled ammonia
PCT/KR2018/000461 WO2019139182A1 (en) 2018-01-09 2018-01-10 Method for preparing nickel-cobalt-manganese complex precursor by using recycled ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180002582A KR102025201B1 (en) 2018-01-09 2018-01-09 Manufacturing method for Ni-Co-Mn composite precursor using recycled ammonia

Publications (2)

Publication Number Publication Date
KR20190084617A true KR20190084617A (en) 2019-07-17
KR102025201B1 KR102025201B1 (en) 2019-09-25

Family

ID=67218345

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180002582A KR102025201B1 (en) 2018-01-09 2018-01-09 Manufacturing method for Ni-Co-Mn composite precursor using recycled ammonia

Country Status (2)

Country Link
KR (1) KR102025201B1 (en)
WO (1) WO2019139182A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039312A (en) * 2019-12-26 2020-04-21 甘肃睿思科新材料有限公司 Treatment method of nickel cobalt lithium manganate positive electrode material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110071236A (en) * 2009-12-21 2011-06-29 이앤에스 주식회사 System and method for treatment of ammonia from wastewater
KR101305056B1 (en) * 2012-10-26 2013-09-11 (주)이엠티 Ammonia collecting apparatus using wastewater and method therefor
KR20130138377A (en) * 2012-06-11 2013-12-19 주식회사녹색기술단 Method and apparatus for recovering high concentration ammonia water from wastewater containing ammonia
KR20160013674A (en) 2014-07-28 2016-02-05 주식회사 엘지화학 Method for the treatment of wastewater in the production process of cathod active material precursor for lithium secondary battery
KR20170138101A (en) * 2016-06-07 2017-12-15 (주)이엠티 A Method For Treating Waste Water Generated In Process Of Manufacturing A Precursor Of Cathode Active Material For Lithium Batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110071236A (en) * 2009-12-21 2011-06-29 이앤에스 주식회사 System and method for treatment of ammonia from wastewater
KR20130138377A (en) * 2012-06-11 2013-12-19 주식회사녹색기술단 Method and apparatus for recovering high concentration ammonia water from wastewater containing ammonia
KR101305056B1 (en) * 2012-10-26 2013-09-11 (주)이엠티 Ammonia collecting apparatus using wastewater and method therefor
KR20160013674A (en) 2014-07-28 2016-02-05 주식회사 엘지화학 Method for the treatment of wastewater in the production process of cathod active material precursor for lithium secondary battery
KR20170138101A (en) * 2016-06-07 2017-12-15 (주)이엠티 A Method For Treating Waste Water Generated In Process Of Manufacturing A Precursor Of Cathode Active Material For Lithium Batteries

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039312A (en) * 2019-12-26 2020-04-21 甘肃睿思科新材料有限公司 Treatment method of nickel cobalt lithium manganate positive electrode material

Also Published As

Publication number Publication date
KR102025201B1 (en) 2019-09-25
WO2019139182A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP7384805B2 (en) Reuse of batteries by leachate treatment using metallic nickel
KR101497041B1 (en) Method for recovering valuable metals from cathodic active material of used lithium battery
US11401167B2 (en) Nitrate process for manufacturing transition metal hydroxide precursors
JP2023134439A (en) Processes for preparing hydroxides and oxides of various metals and derivatives thereof
Patil et al. Rapid dissolution and recovery of Li and Co from spent LiCoO2 using mild organic acids under microwave irradiation
JP5112526B2 (en) Reprocessing and synthesis method of metal oxide positive electrode active material for lithium secondary battery
US20080050295A1 (en) Lithium Battery Treatment Method
KR20170119691A (en) High capacity nickel-cobalt based lithium ion cathode material and its manufacturing method
CN109119711B (en) Method for preparing high-voltage positive electrode material by adopting waste lithium cobalt oxide battery
EP3832782A1 (en) Recycling method for positive electrode material, positive electrode material produced, and uses thereof
JP2012064557A5 (en)
JP2004359538A (en) Lithium phosphate aggregate, its manufacture method, and manufacture method of lithium/iron/phosphorus-based complex oxide
KR20190084616A (en) Manufacturing method for Ni-Co-Mn composite precursor using recycled seed material
JP2021521327A (en) Method of recovering lithium and transition metals using heat
KR20210009133A (en) A method for recovering lithium or lithium compound and valuable metals from a waste cathode material for a lithium secondary battery
CN110498434B (en) Recovery method and application of lithium ion battery positive electrode active material
KR101589738B1 (en) Method of preparing positive active material precursor
Zhang et al. The Foreseeable Future of Spent Lithium-Ion Batteries: Advanced Upcycling for Toxic Electrolyte, Cathode, and Anode from Environmental and Technological Perspectives
US20150037677A1 (en) Positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery
US20220320617A1 (en) Method for Separating Transition Metal from Waste Positive Electrode Material
KR20190084617A (en) Manufacturing method for Ni-Co-Mn composite precursor using recycled ammonia
WO2018167224A1 (en) Nitrate process for manufacturing transition metal hydroxide precursors
JP2005187282A (en) Lithium-nickel-manganese composite oxide and its manufacturing method as well as its use
CN115799696A (en) Method for pretreating waste electrolyte after disassembling lithium ion battery and method for fully recovering lithium, fluorine and phosphorus in waste electrolyte
JP6466074B2 (en) Cathode active material for sodium ion secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant