KR20190068097A - Method for manufacturing functional engine oil - Google Patents

Method for manufacturing functional engine oil Download PDF

Info

Publication number
KR20190068097A
KR20190068097A KR1020170168147A KR20170168147A KR20190068097A KR 20190068097 A KR20190068097 A KR 20190068097A KR 1020170168147 A KR1020170168147 A KR 1020170168147A KR 20170168147 A KR20170168147 A KR 20170168147A KR 20190068097 A KR20190068097 A KR 20190068097A
Authority
KR
South Korea
Prior art keywords
engine
powder
oil
particle size
dispersion
Prior art date
Application number
KR1020170168147A
Other languages
Korean (ko)
Inventor
이병성
Original Assignee
이병성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이병성 filed Critical 이병성
Priority to KR1020170168147A priority Critical patent/KR20190068097A/en
Publication of KR20190068097A publication Critical patent/KR20190068097A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • B01F11/02
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/04Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/26Compounds containing silicon or boron, e.g. silica, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2240/10

Abstract

The present invention relates to a method for manufacturing functional engine oil. More particularly, in addition to a basic engine oil function to increase the life an engine by forming a protective film on the engine, germanium and silver nano-powders are mixed at a specific ratio and then compressed at least for 5 hours in a high pressure tank at 10 atm for homogenization. Therefore, viscosity change due to temperature is small to ensure starting and running stability of the engine, and soot and noise can be reduced by suppressing deterioration phenomenon which reduces lubrication function by increasing oxidation stability.

Description

기능성 엔진오일 제조방법{Method for manufacturing functional engine oil}TECHNICAL FIELD The present invention relates to a method for manufacturing a functional engine oil,

본 발명은 기능성 엔진오일 제조방법에 관한 것으로, 보다 상세하게는 엔진에 보호막을 형성하여 엔진의 수명을 증가시키는 기본적인 엔진오일의 기능에 더하여 게르마늄과 은나노 분말을 특정비율로 혼합한 후 10기압 하의 고압탱크에서 최소 5시간 압축하여 균질화시킴으로써 온도에 따른 점도변화가 적어 엔진의 시동 및 구동안정성을 확보하고, 산화안정성을 높여 윤활기능을 저하시키는 열화현상을 억제하여 매연과 소음 저감에 기여할 수 있도록 한 기능성 엔진오일 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a functional engine oil, and more particularly, to a method for manufacturing a functional engine oil, which comprises the steps of mixing a germanium powder with a silver nano powder at a specific ratio in addition to the function of a basic engine oil, By compressing the mixture in the tank for at least 5 hours to homogenize it, it is possible to reduce the viscosity change with temperature and to secure the starting and driving stability of the engine. To improve the oxidation stability and decrease the lubrication function, To an engine oil producing method.

일반적으로 자동차의 엔진은 열에너지를 기계적 에너지로 바꾸기 위해 통상 휘발유 및 디젤 등의 액체연료를 이용하며, 흡기→압축→폭발→배기의 행정으로 엔진을 작동한다. Generally, an automobile engine uses liquid fuel such as gasoline and diesel in order to convert thermal energy into mechanical energy, and operates the engine by the stroke of intake → compression → explosion → exhaust.

이 과정에서 엔진 연료의 불완전 연소로 인한 카본이나 CO, CO2, SO2, NO2 등의 유해물질이 발생하게 되어 내연기관 내부에 부착 또는 고착된다. In this process, harmful substances such as carbon, CO, CO 2 , SO 2 and NO 2 are generated due to incomplete combustion of the engine fuel and are adhered or fixed to the inside of the internal combustion engine.

이러한 유해물질을 방치할 경우 엔진의 시동이 잘 꺼지고, 부조나 노킹 현상이 발생되며, 가는 선 및 상처로부터 마찰 손실을 가져오며, 연료 소모가 많아지고, 가속 성능의 저하와 함께 엔진 소음이 많이 발생된다.When these harmful substances are left unattended, the starting of the engine is shut off well, and there is a problem of collision and knocking, frictional loss from thin lines and scratches, increase of fuel consumption, decrease of acceleration performance, do.

이와 같은 현상을 방지하기 위하여 엔진의 구동시 유해물질이 발생되지 않도록 하고 유해물질을 세정하는 기술이 요구되고 있다.In order to prevent such a phenomenon, there is a demand for a technique for preventing harmful substances from being generated when the engine is driven and for cleaning harmful substances.

자동차 내연기관 내부에 고착된 유해물질을 제거 세정하기 위한 방법으로 통상, 익스트림이라 불리는 물질성분이 사용되고 있으며, 상기 익스트림은 엔진 세정제 및 엔진 코팅제로 사용되고 있다.As a method for removing and cleaning harmful substances adhered to the inside of an automobile internal combustion engine, a substance component called extreme is generally used, and the extreme is used as an engine cleaner and an engine coating agent.

이러한 기술은 단지 밸브 및 엔진의 연소실 내부를 세정하여 연소 효율을 높이고 불완전 연소를 줄이는 기술로서 엔진오일 자체에 첨가되는 물질이 아닌 별도의 첨가제 형태로 제공되고 있어 불편함과 비용부담이 있다.This technology is a technique for improving combustion efficiency and incomplete combustion by cleaning only the inside of a combustion chamber of a valve and an engine, and is provided as a separate additive instead of a material added to engine oil itself, which is inconvenient and costly.

전통적으로, 엔진오일은 실린더와 피스톤 사이의 마찰을 줄여 윤활성을 갖도록 함과 동시에 엔진의 기밀성을 유지하고, 엔진을 청정상태로 만들면서 방청 및 냉각작용을 수행하도록 첨가되는 일종의 윤활유이다.Traditionally, engine oil is a kind of lubricant that is added to lubricate the engine by reducing friction between the cylinder and the piston, while maintaining the airtightness of the engine while maintaining the engine clean and providing rustproofing and cooling.

엔진오일은 기유(基油)에 따라 구분되는데, 기유를 광유로 하는 일반유와; 기유를 VHVI(Very High Viscosity Index)로 하거나 PAO(Poly Alpha Olefin)로 하거나 혹은 에스테르 복합체로 하는 합성유를 예시할 수 있다.The engine oil is classified according to the base oil, which is made up of oil, which is made of base oil and mineral oil; The base oil can be exemplified by VHVI (Very High Viscosity Index), PAO (Poly Alpha Olefin), or synthetic oil with ester complex.

그런데, 시판되는 엔진오일은 일반유의 경우 5000km, 합성유의 경우 10000km를 교환주기로 하고 있으며 국내 대부분이 사용되는 표준점도격으로 SAE(Society of Automotive Engineers)의 점도기준에 따른 5W30을 주로 사용하고 있는데, 교환주기 기준 km에 도달하지 않았음에도 열화가 발생하여 사용시 온도에 따른 점도변화가 커지면서 시동불량, 윤활성 저하를 초래하는 단점이 발생되고 있다.However, the commercially available engine oil has a replacement cycle of 5000 km for the general oil and 10000 km for the synthetic oil, and the 5W30 according to the viscosity standard of SAE (Society of Automotive Engineers) Deterioration occurs even though the cycle is not reached to the reference mileage, so that a change in viscosity depending on temperature at the time of use becomes large, resulting in a disadvantage that the starting failure and the lubricating ability are lowered.

또한, 그에 따른 매연량 증대, 소음증대가 파생됨으로 인해 차량검사시 불합격 판정을 받는 사례도 생기고 있으며, 운전자는 물론 보행자 등에게 불편을 발생시키는 단점이 있다.Also, due to the increase of the smoke amount and the increase of the noise, there is a case that the vehicle is judged to be rejected in the inspection, and there is a disadvantage that it inconveniences the driver as well as the pedestrian.

국내 공개특허 제10-2010-0060053호(2010.06.07), '광물질 기능성 엔진오일'Korean Patent Publication No. 10-2010-0060053 (June, 2010), "Mineral Functional Engine Oil" 국내 등록특허 제10-1261880호(2013.05.01.), '다목적 내연기관의 고기능성 엔진 오일 첨가제 및 이 제조 방법'Korean Registered Patent No. 10-1261880 (Feb. 31, 2013), " High Performance Engine Oil Additive for Multipurpose Internal Combustion Engine, 국내 등록특허 제10-1330185호(2013.11.11.), '엔진오일 첨가제 및 제조방법'Korean Patent No. 10-1330185 (Nov. 11, 2013), 'Engine oil additive and manufacturing method'

본 발명은 상술한 바와 같은 종래 기술상의 제반 문제점들을 감안하여 이를 해결하고자 창출된 것으로, 엔진에 보호막을 형성하여 엔진의 수명을 증가시키는 기본적인 엔진오일의 기능에 더하여 게르마늄과 은나노 분말을 특정비율로 혼합한 후 10기압하의 고압탱크에서 최소 5시간 압축하여 균질화시킴으로써 온도에 따른 점도변화가 적어 엔진의 시동 및 구동안정성을 확보하고, 산화안정성을 높여 윤활기능을 저하시키는 열화현상을 억제하여 매연과 소음 저감에 기여할 수 있도록 한 기능성 엔진오일 제조방법을 제공함에 그 주된 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the prior art, and it is an object of the present invention to provide a method of manufacturing an engine in which a protective film is formed on an engine to increase the life of the engine, And after homogenizing for at least 5 hours in a high pressure tank under 10 atmospheres, viscosity change with temperature is small and engine starting and driving stability are ensured. Oxidation stability is improved, deterioration of lubricating function is suppressed and smoke and noise are reduced. The present invention provides a method of manufacturing a functional engine oil.

본 발명은 상기한 목적을 달성하기 위한 수단으로, 기유(基油)를 광유로 하는 윤활유와 기능성 물질을 8:2의 중량비로 혼합하여 혼합액을 만드는 제1단계; 혼합액이 만들어지면, 초음파분산기를 이용하여 30-60분간 분말을 분산매인 윤활유 중에 1차적으로 균질 분산시키는 제2단계; 1차 균질 분산된 분산액을 고압탱크에 넣고, 10기압 하에서 5시간 동안 공기 압축처리하여 최종 균질 분산시키는 제3단계;를 포함하되, 상기 기능성 물질은 게르마늄이 증착된 은 박막을 0.01㎛ 이하 입도의 초미분, 특히 바람직하게는 나노입도로 분쇄된 분말과 동일 입도를 갖는 규조토 분말을 1:0.2의 중량비로 혼합한 혼합분말인 것을 특징으로 하는 기능성 엔진오일 제조방법을 제공한다.A first aspect of the present invention is a method for achieving the above objects, comprising the steps of: mixing a lubricating oil containing a base oil as a mineral oil and a functional material at a weight ratio of 8: 2 to prepare a mixture; A second step of uniformly dispersing the powder in a lubricating oil as a dispersion medium for 30 to 60 minutes using an ultrasonic dispersing machine when the mixed liquid is produced; And a third step of subjecting the dispersion of the first homogeneous dispersion to a high pressure tank and air-compressing the dispersion under a pressure of 10 atmospheres for 5 hours to finally homogeneously disperse the dispersion, wherein the functional material is a silver thin film having germanium- And particularly preferably a mixed powder obtained by mixing powders pulverized at a nano particle size and diatomite powder having the same particle size at a weight ratio of 1: 0.2.

이때, 상기 제2단계에서, 나노입자의 분산안정성을 확보하기 위해 상기 혼합액 전체량 대비 0.1 부피%의 도데실벤젠술폰산나트륨을 더 첨가한 것에도 그 특징있다.At this time, in order to secure the dispersion stability of the nanoparticles, 0.1% by volume of sodium dodecylbenzenesulfonate is further added to the total amount of the mixed liquid in the second step.

본 발명에 따르면, 엔진에 보호막을 형성하여 엔진의 수명을 증가시키는 기본적인 엔진오일의 기능에 더하여 게르마늄과 은나노 분말을 특정비율로 혼합한 후 10기압하의 고압탱크에서 최소 5시간 압축하여 균질화시킴으로써 온도에 따른 점도변화가 적어 엔진의 시동 및 구동안정성을 확보하고, 산화안정성을 높여 윤활기능을 저하시키는 열화현상을 억제하여 매연과 소음 저감에 기여하는 효과를 얻을 수 있다.According to the present invention, in addition to the function of a basic engine oil which increases the service life of the engine by forming a protective film on the engine, germanium and silver nano powder are mixed at a specific ratio and then compressed in a high pressure tank under 10 atm for at least 5 hours, It is possible to obtain the effect of contributing to the reduction of soot and noise by suppressing the deterioration phenomenon which lowers the lubricating function by increasing the oxidation stability and securing the starting and driving stability of the engine.

이하에서는, 본 발명에 따른 바람직한 실시예를 보다 상세하게 설명하기로 한다.Hereinafter, preferred embodiments according to the present invention will be described in detail.

본 발명 설명에 앞서, 이하의 특정한 구조 내지 기능적 설명들은 단지 본 발명의 개념에 따른 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있으며, 본 명세서에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니된다.Before describing the present invention, the following specific structural or functional descriptions are merely illustrative for the purpose of describing an embodiment according to the concept of the present invention, and embodiments according to the concept of the present invention may be embodied in various forms, And should not be construed as limited to the embodiments described herein.

또한, 본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경물, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.In addition, it should be understood that the embodiments according to the concept of the present invention include various modifications, equivalents, and alternatives included in the spirit and technical scope of the present invention, .

본 발명에 따른 엔진오일은 주로 디젤엔진용이며, 기유(基油)를 광유로 하는 윤활유와 기능성 물질을 8:2의 중량비로 혼합하여 혼합액을 만드는 제1단계를 포함한다. 즉, 저급의 일반화된 광유를 사용하면서도 특성은 고급 합성유와 거의 대등한 효과를 얻을 수 있도록 구성된다.The engine oil according to the present invention is mainly used for a diesel engine, and includes a first step of mixing a lubricating oil containing a base oil as a mineral oil and a functional material at a weight ratio of 8: 2 to prepare a mixed solution. In other words, while using low-grade generalized mineral oil, the characteristics are configured to achieve almost the same effect as high-grade synthetic oil.

이때, 상기 기능성 물질은 게르마늄이 증착된 은 박막을 0.01㎛ 이하 입도의 초미분, 특히 바람직하게는 나노입도로 분쇄된 분말과 동일 입도를 갖는 규조토 분말을 1:0.2의 중량비로 혼합한 혼합분말이다.At this time, the functional material is a mixed powder obtained by mixing a silver thin film on which germanium is deposited with ultrafine powder having a particle size of 0.01 μm or less, particularly preferably powder having a nano particle size and diatomite powder having the same particle size at a weight ratio of 1: 0.2 .

이 경우, 상기 혼합분말은 초미분 혹은 나노입도를 갖는 분말은 이산화게르마늄을 수소로 환원시켜 분말 형태의 게르마늄 금속을 얻는 과정과, 분말형태의 게르마늄 금속을 은(Ag) 박막의 일측면에 비스듬히 방사시켜 30-40nm의 두께로 빗각증착시키는 과정과, 게르마늄이 증착된 은 박막을 건식 나노분쇄기를 이용하여 0.01㎛ 이하의 초미분 혹은 나노입도로 분쇄하는 과정과, 규조토를 나노입도로 분쇄하는 과정과, 분쇄된 두 개의 나노입도를 갖는 분말을 혼합하는 과정을 통해 제조된다.In this case, the mixed powder may be prepared by reducing powder of germanium dioxide with hydrogen to obtain a germanium metal in the form of powder, and mixing germanium metal in powder form into the silver (Ag) A step of crushing the silver thin film deposited with germanium with ultrafine powder or nano particle size of 0.01 μm or less using a dry nano-crusher, a step of pulverizing the diatomaceous earth with nano particle size, , And powder having two nanosized powders that are pulverized.

특히, 상기 게르마늄을 비스듬하게 증착하는 이유는 게르마늄 분말의 경우 흑색에 가까워지지만 이를 은 표면에 경사 증착시키면 빛이 통과하는 매질의 양이 달라져 주황색에 가까운 색변화를 나타내기 때문에 윤활유의 색상을 좋게 보이게 하기 위함이다.In particular, the reason why the germanium is obliquely deposited is that the germanium powder is close to black, but if it is obliquely deposited on the silver surface, the amount of the medium through which the light passes varies to show a color change close to orange, .

아울러, 게르마늄은 일반적으로 세포내 산소공급 촉진, 면역력 강화, 혈액순환 촉진 등의 인체 유용성을 갖는 원자번호 32의 물질로 알려져 있지만, 본 발명에서는 일종의 여과지 기능을 통해 유해물질을 걸러낼 뿐만 아니라, 게르마늄이 산화물 형태로 존재하다가 연소과정에서 500℃를 넘는 고온에 이르면,In addition, although germanium is generally known to have an atomic number of 32, which has human-like properties such as promoting intracellular oxygen supply, enhancing immunity, promoting blood circulation, the present invention not only filters harmful substances through a kind of filter paper, Is present in the form of an oxide and reaches a high temperature exceeding 500 ° C in the combustion process,

GeO2 → GeO + ½O2 GeO 2 → GeO + ½O 2

GeO + CO2 → GeO2 + COGeO + CO 2 ? GeO 2 + CO

로 반응하면서 이산화탄소의 발생을 억제하게 된다.And the generation of carbon dioxide is suppressed.

또한, 생성된 일산화탄소는 규조토로부터 제공되는 음이온에 의해,In addition, the generated carbon monoxide is converted into the carbon monoxide by the anion provided from diatomaceous earth,

CO + 2OH → CO2 + H2OCO + 2OH? CO 2 + H 2 O

2NO + 4OH → N2 + 2O2 + 2H2O2NO + 4OH? N 2 + 2O 2 + 2H 2 O

형태로 반응하여 제거되므로 연소 후 배기가스를 통해 배출되는 일산화탄소의 배출량도 현저히 줄일 수 있고, 그와 함께 NOx 제거에도 기여하게 된다.So that the amount of carbon monoxide discharged through the exhaust gas after combustion can be remarkably reduced, and at the same time, it contributes to the removal of NOx.

그리고, 은(Ag)은 이하 설명되는 균일 분산 기술에 의해 기유를 VHVI(Very High Viscosity Index)로 하는 윤활유 전체에 균질하게 분산됨으로써 윤활유 중에서 불규칙한 브라운 운동을 통해 분말 표면과 액상 윤활유의 계면에서 열교환 특성이 활성화되면서 유체의 열전달특성을 향상시키고, 금속성 분말의 마찰 경도 향상을 통해 마찰계수를 낮춰 내마모성과 윤활특성을 더욱 향상시키게 된다.The silver (Ag) is homogeneously dispersed in the entire lubricating oil having the base oil as VHVI (Very High Viscosity Index) by the uniform dispersion technique described below, whereby the heat exchange characteristic at the interface between the powder surface and the liquid lubricant through irregular Brownian motion Is activated to improve the heat transfer characteristics of the fluid and to lower the friction coefficient by improving the friction hardness of the metallic powder, thereby further improving the wear resistance and lubrication characteristics.

이에 따라, 점도의 급격한 변화를 억제하고, 열화현상을 극소화시키게 된다.As a result, abrupt changes in viscosity are suppressed and the deterioration phenomenon is minimized.

이렇게 하여, 혼합액이 만들어지면 이어, 초음파분산기를 이용하여 30-60분간 분말을 분산매인 윤활유 중에 1차적으로 균질 분산시키는 제2단계가 수행된다.Thus, when the mixed solution is produced, a second step of firstly dispersing the powder homogeneously in the lubricant oil as the dispersion medium for 30 to 60 minutes is performed using an ultrasonic dispersing machine.

이 경우, 나노입자의 분산안정성을 확보하기 위해 상기 혼합액 전체량 대비 0.1 부피%의 도데실벤젠술폰산나트륨을 더 첨가할 수 있다.In this case, 0.1% by volume of sodium dodecylbenzenesulfonate relative to the total amount of the mixed liquid may be further added to secure the dispersion stability of the nanoparticles.

이후, 1차 균질 분산된 분산액을 고압탱크에 넣고, 10기압 하에서 5시간 동안 공기 압축처리하여 최종 균질 분산시키는 제3단계가 수행된다.Thereafter, the first homogeneously dispersed dispersion is put in a high pressure tank, and subjected to air compression treatment at 10 atm for 5 hours to finally carry out homogeneous dispersion.

상기 제3단계는 고압의 공기압축을 통해 고열발생을 차단한 채 실린더 내부 환경과 비슷하게 유지하여 균일 분산상태를 완성함과 동시에 입자들의 미립화가 더 촉진되어 점도는 동일하게 유지하면서 유체의 부드러움을 강화시키는 단계이다.In the third step, the high-temperature air is compressed through the high-pressure air compression to keep the internal environment similar to the cylinder, thereby completing the uniform dispersion state. Further, atomization of the particles is further facilitated, .

이렇게 하면, 실린더 내벽에서의 흐름성이 좋아져 냉각특성 향상, 마모억제력 강화에 기여하게 된다. 이것은 점도변화에 따른 흐름성과는 다른 것이다.In this way, the flowability at the inner wall of the cylinder is improved, which contributes to the improvement of the cooling characteristics and the strengthening of the abrasion resistance. This is different from the flow performance according to viscosity change.

이에 더하여, 상기 제1단계에서는 상기 혼합액 전체량 대비 양털유 2.5중량부와, 나노입도를 갖는 수산화칼륨 분말 1.5중량부 및, 나노입도를 갖는 카프릭산 분말 2.5중량부 더 첨가될 수 있다.In addition, in the first step, 2.5 parts by weight of fleece milk, 1.5 parts by weight of potassium hydroxide powder having a nano particle size, and 2.5 parts by weight of capric acid powder having a nano particle size can be added to the total amount of the mixed liquid.

이때, 상기 양털유는 양 털에서 정제하여 얻은 무수 라놀린으로서 부식방지 및 실린더 내벽 세척 기능을 강화시키기 위한 천연성분이며, 상기 수산화칼륨 분말은 수분과 이산화탄소 흡수력이 뛰어나 매연 발생을 억제하고 수산기를 제공하여 게르마늄의 반응을 촉진하기 위해 첨가되고, 상기 카프릭산(Capric Acid) 분말은 윤활유에서 기포발생을 억제하여 윤활유의 안정성을 강화시키기 위해 첨가된다.The fleece oil is an anhydrous lanolin purified from fur and is a natural component for enhancing corrosion prevention and cleaning function of the inner wall of the cylinder. The potassium hydroxide powder is excellent in water and carbon dioxide absorption ability, Germanium, and the capric acid powder is added to enhance the stability of the lubricating oil by suppressing bubbling in the lubricating oil.

덧붙여, 본 발명에서는 나노분말로 설명했으나, 이는 가장 바람직한 예이고, 0.01㎛의 초미분 상태면 충분하다.Incidentally, although the present invention has been described with respect to the nano powder, this is the most preferable example, and an ultrafine particle state of 0.01 탆 is sufficient.

이하, 실시예에 대하여 설명한다.Hereinafter, examples will be described.

[실시예 1][Example 1]

상술한 방법으로 본 발명에 따른 기능성 엔진오일 시료 1을 만들었다.A functional engine oil sample 1 according to the present invention was prepared by the above-described method.

[실시예 2][Example 2]

실시예 1과 동일하게 하되, 혼합액을 만들 때 혼합액 전체량 대비 양털유 2.5중량부와, 나노입도를 갖는 수산화칼륨 분말 1.5중량부 및 나노입도를 갖는 카프릭산 분말 2.5중량부를 더 첨가하여 시료 2를 만들었다.2.5 parts by weight of fleece oil, 1.5 parts by weight of potassium hydroxide powder having a nano-particle size and 2.5 parts by weight of capric acid powder having a nano-particle size were further added to prepare a mixed solution, .

시료 1,2의 매연 감소 여부를 확인하기 위해 3대의 동급 카니발을 준비한 후 시험 전,후 매연발생량(%)을 자동차 중량을 측정하였다.Three identical carnivals were prepared in order to check whether the samples 1 and 2 were reduced in soot, and the car weight was measured in terms of the amount of soot generated before and after the test.

이때, 시험방법은 기유를 광유로 하는 시판중인 동일한 엔진오일을 넣고 500km를 주행한 후 무부하 상태에서 급가속모드로 매연측정기를 이용하여 측정하였으며, 시험전 3대의 주행적산거리는 각각 6820km, 5602km, 5948km였다. At this time, the test method was carried out by using a soot measuring machine in a no-load state and a rapid acceleration mode after running the same engine oil on a commercial basis using base oil as a mineral oil, and the three running mileage before the test were 6820 km, 5602 km, 5948 km Respectively.

즉, 자동차의 변속기 위치가 중립에서 정지가동(아이들링) 상태의 엔진을 급가속하여 최고회전속도 도달 후 4초간 공회전시킨 다음 아이들링 상태로 30초가 유지 후 급가속과정을 반복하면서 엔진을 가속한 상태에서 배출되는 매연 배출농도(%)를 측정하였다.That is, when the transmission position of the vehicle suddenly accelerates from the neutral to idling (idling) state, idling is performed for 4 seconds after reaching the maximum rotation speed, and then the idling state is maintained for 30 seconds. (%) Of discharged soot was measured.

측정결과, 시험전 3대의 평균 매연발생량은 38.2% 였다.As a result of the measurement, the average generation amount of three fumes before the test was 38.2%.

이후, 채워져 있는 엔진오일을 모두 빼낸 후 시료 1을 채운 다음 각각 5000km를 주행한 후 매연 배출농도를 측정하였으며, 측정된 3대의 평균 매연발생량은 21.5% 였다.Thereafter, all of the engine oil that had been filled was taken out, and then the sample 1 was filled, and then the exhaust gas concentration was measured after running at 5000 km, and the average amount of the three samples was 21.5%.

또한, 동일한 방식으로 시료 2를 넣고 동일하게 시험한 결과, 3대의 평균 매연발생량은 20.4% 였다.In addition, the same test was carried out in the same manner as in Example 2, and the average generation amount of three soot was 20.4%.

이를 통해, 본 발명에 따른 엔진오일이 저급의 광유를 사용함에도 불구하고 매연 발생량을 줄일 수 있음을 확인하였다.As a result, it has been confirmed that the amount of soot generated can be reduced even though the engine oil according to the present invention uses low-grade mineral oil.

아울러, 마이크로폰을 통한 소음 감소 테스트를 수행한 결과, 시험전 평균은 47.8dB였지만, 시료 1,2를 이용하여 5000km 주행 후의 평균은 시료 1,2이 각각 23.5dB와 22.7dB였다.As a result of the noise reduction test through the microphone, the average before test was 47.8dB, but the average of samples 1 and 2 after running 5000km using samples 1 and 2 was 23.5dB and 22.7dB respectively.

이를 통해, 본 발명에 따른 엔진오일이 저급 광유를 사용함에도 불구하고 소음저감 특성도 있는 것으로 확인되었다.As a result, it has been confirmed that the engine oil according to the present invention has a noise reduction characteristic in spite of using low-grade mineral oil.

Claims (2)

기유(基油)를 광유로 하는 윤활유와 기능성 물질을 8:2의 중량비로 혼합하여 혼합액을 만드는 제1단계;
혼합액이 만들어지면, 초음파분산기를 이용하여 30-60분간 분말을 분산매인 윤활유 중에 1차적으로 균질 분산시키는 제2단계;
1차 균질 분산된 분산액을 고압탱크에 넣고, 10기압 하에서 5시간 동안 공기 압축처리하여 최종 균질 분산시키는 제3단계;를 포함하되,
상기 기능성 물질은 게르마늄이 증착된 은 박막을 0.01㎛ 이하 입도의 초미분, 특히 바람직하게는 나노입도로 분쇄된 분말과 동일 입도를 갖는 규조토 분말을 1:0.2의 중량비로 혼합한 혼합분말인 것을 특징으로 하는 기능성 엔진오일 제조방법.
A first step of mixing a lubricating oil containing a base oil as a mineral oil and a functional material at a weight ratio of 8: 2 to prepare a mixed solution;
A second step of uniformly dispersing the powder in a lubricating oil as a dispersion medium for 30 to 60 minutes using an ultrasonic dispersing machine when the mixed liquid is produced;
And a third step of putting the first homogeneously dispersed dispersion liquid in a high pressure tank and air compressing the mixture at 10 atm for 5 hours to finally homogeneously disperse the dispersion,
The functional material is a mixed powder obtained by mixing a silver thin film on which germanium is deposited with ultrafine powder having a particle size of 0.01 μm or less, particularly preferably powder having a nano particle size and diatomite powder having the same particle size at a weight ratio of 1: 0.2 By weight.
청구항 1에 있어서,
상기 제2단계에서, 나노입자의 분산안정성을 확보하기 위해 상기 혼합액 전체량 대비 0.1 부피%의 도데실벤젠술폰산나트륨을 더 첨가한 것을 특징으로 하는 기능성 엔진오일 제조방법.
The method according to claim 1,
Wherein the second step further comprises adding 0.1 vol% sodium dodecylbenzenesulfonate to the total amount of the mixed liquid to secure dispersion stability of the nanoparticles.
KR1020170168147A 2017-12-08 2017-12-08 Method for manufacturing functional engine oil KR20190068097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170168147A KR20190068097A (en) 2017-12-08 2017-12-08 Method for manufacturing functional engine oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170168147A KR20190068097A (en) 2017-12-08 2017-12-08 Method for manufacturing functional engine oil

Publications (1)

Publication Number Publication Date
KR20190068097A true KR20190068097A (en) 2019-06-18

Family

ID=67103030

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170168147A KR20190068097A (en) 2017-12-08 2017-12-08 Method for manufacturing functional engine oil

Country Status (1)

Country Link
KR (1) KR20190068097A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102139824B1 (en) 2020-06-02 2020-07-30 주식회사 에이오에프 Engine oil manufacturing system
KR102155900B1 (en) 2020-06-05 2020-09-14 심재헌 Thermal spraying Process system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100060053A (en) 2008-11-27 2010-06-07 김상만 Mineral Functional Engine Oil
KR101261880B1 (en) 2012-11-29 2013-05-08 (주)이바이오텍 A high-funcitional engine oil additives of multipurpose internal combustion engine and method of manufacturing
KR101330185B1 (en) 2013-04-12 2013-12-06 주식회사 오일시티 Additives for engine oil and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100060053A (en) 2008-11-27 2010-06-07 김상만 Mineral Functional Engine Oil
KR101261880B1 (en) 2012-11-29 2013-05-08 (주)이바이오텍 A high-funcitional engine oil additives of multipurpose internal combustion engine and method of manufacturing
KR101330185B1 (en) 2013-04-12 2013-12-06 주식회사 오일시티 Additives for engine oil and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102139824B1 (en) 2020-06-02 2020-07-30 주식회사 에이오에프 Engine oil manufacturing system
KR102155900B1 (en) 2020-06-05 2020-09-14 심재헌 Thermal spraying Process system

Similar Documents

Publication Publication Date Title
US8163044B2 (en) Fuel additive and method for use for combustion enhancement and emission reduction
CN1944607A (en) High performance nano metal/mine ore powder composite self repairing agent and its preparing method
Chen et al. Improvement of engine performance and emissions by biomass oil filter in diesel engine
CN105733774B (en) A kind of engine conditioning oil and preparation method thereof
KR20190068097A (en) Method for manufacturing functional engine oil
CN103189482B (en) Lubricating composition and method for the preparation thereof
Chinas-Castillo et al. The behavior of diluted sooted oils in lubricated contacts
CN102295978B (en) Lubricating oil for internal combustion engines and preparation method thereof
CN108865300A (en) A kind of fuel system multiple-effect non-dismounting cleaning agent
KR101227192B1 (en) Engine cleaner composition
KR20150104283A (en) A high-functional engine oil additives of multipurpose and manufacturing method thereof
CN108753386A (en) A kind of Multifucntional diesel cleaning power agent and preparation method thereof
KR101899198B1 (en) Additive for engine restoring comprising nano-sized tungsten bisulfide powder and method for manufacturing the same
Chua Abdullah et al. The hBN nanoparticles as an effective engine oil additive to enhance the durability and performance of a small diesel engine
Bardasz et al. Understanding soot mediated oil thickening through designed experimentation-part 1: Mack EM6-287, GM 6.2 L
Gligorijevic et al. Engine oil contribution to diesel exhaust emissions
RU2246531C2 (en) Composition for improving of friction assembly endurance
TWI650413B (en) Lubricating oil additive, lubricating oil, grease composition, fuel oil additive, fuel oil and sludge suppression method
CN102295974B (en) Engine lubricating oil additive and preparation method thereof
US11530364B2 (en) Lubricant comprising spherical graphite nanoparticles
KR20210148771A (en) Lubricating oil containing porous silica (SIO2) nanoparticles and method for manufacturing the same
EP1917332B1 (en) Use of lubricants
Kasai et al. Piston detergency and anti-wear performance of non-phosphorus and non-ash engine oil
CN106753602B (en) A kind of low-carbon clean fuel and preparation method thereof
KR20240053233A (en) ENGINE OIL ADDITIVES AND ENGINE OILS comprising thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right