KR20180089581A - Synthesis Method of Spherical Bulk Powders - Google Patents

Synthesis Method of Spherical Bulk Powders Download PDF

Info

Publication number
KR20180089581A
KR20180089581A KR1020160181778A KR20160181778A KR20180089581A KR 20180089581 A KR20180089581 A KR 20180089581A KR 1020160181778 A KR1020160181778 A KR 1020160181778A KR 20160181778 A KR20160181778 A KR 20160181778A KR 20180089581 A KR20180089581 A KR 20180089581A
Authority
KR
South Korea
Prior art keywords
active material
carbon
hydrogen
precursor
gas
Prior art date
Application number
KR1020160181778A
Other languages
Korean (ko)
Inventor
김윤구
오명진
Original Assignee
김윤구
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김윤구 filed Critical 김윤구
Priority to KR1020160181778A priority Critical patent/KR20180089581A/en
Publication of KR20180089581A publication Critical patent/KR20180089581A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a method for manufacturing precursor powder of an active material for a secondary battery using phase separation of the active material and a solid phase reaction method. Since the method does not use the conventionally used coprecipitation reaction method, the precursor active materials for the secondary battery can be manufactured using existing mass production equipment without additional facility investment. In addition, since the precursor powder can be manufactured by the solid phase reaction method, waste water treatment is not required, thereby having the cost reduction effect and minimizing the emission of environmental pollutants.

Description

전지용 구형의 활물질 분말 합성법 {Synthesis Method of Spherical Bulk Powders}TECHNICAL FIELD [0001] The present invention relates to a spherical active material powder,

이차전지, 활물질, 전구체, 리튬이온, 공침 반응법, 고상 반응법A secondary battery, an active material, a precursor, a lithium ion, a coprecipitation reaction method,

리튬계 이차전지는 여러 가지 전자제품들, 예를 들면 전기 자동차, 휴대 전화기, 노트북 등에 현재 사용되고 있으며 그 수요가 빠르게 증가하고 있다. 이와 같은 전자제품들은 더 많은 에너지와 더 빠른 에너지공급을 요구하여 고성능과 고용량을 가진 이차전지들의 수요가 증대되고 있다. 이런 고성능, 고용량 이차전지들은 재료들의 최적화로 제조될 수 있다. 이 중에 전지 활물질을 최적화된 형태로 제조하면 리튬 이온들이 활물질의 결정 구조 안으로 인터칼레이션 (Intercalation) 되는 시간과 전지 내 양극과 음극의 계면반응들을 최소화할 수 있다. 이런 기능들을 가진 활물질들은 전지의 성능과 수명에 큰 영향을 미친다. 현 전지 산업체에서는 도 1에서와같이 앞서 기술한 기능을 갖도록 전지용 활물질들을 전구체형태로 대량생산하기 위해 시설투자를 하고 있다. 또한, 높은 양산효율을 얻기 위해 지속적으로 연구 개발중에 있다. 그 전지용 구형분말은 먼저 공침 반응법 (Co-precipitation)으로 전위금속 화합물들을 전구체분말로 제조하고 리튬 화합물과 그 전구체분말을 섞어 고온에서 고상 반응법으로 제조한다. 이 공침 반응법은 전위금속 화합물들의 반응 후 폐수처리를 해야 한다. 최근에는 Combustion Chemical Vapor Deposition 방법으로도 시도되고 있다. 이 방법은 현재 대량생산을 위해 개발 중에 있다. BACKGROUND ART [0002] Lithium secondary batteries are currently used in various electronic products such as electric vehicles, mobile phones, notebooks, and the demand thereof is rapidly increasing. Such electronic products require more energy and faster energy supply, and the demand for high performance and high capacity secondary batteries is increasing. These high-performance, high-capacity secondary cells can be manufactured with optimization of materials. When the battery active material is prepared in an optimized form, the time during which the lithium ions are intercalated into the crystal structure of the active material and the interfacial reactions between the positive and negative electrodes in the battery can be minimized. Active materials with these functions have a significant impact on battery performance and lifetime. The present battery industry has invested facilities to mass produce battery active materials in the form of precursors so as to have the functions described above as in Fig. In addition, it is under continuous research and development to obtain high mass productivity. The spherical powder for a battery is prepared by first preparing a precursor powder of a dislocation metal compound by Co-precipitation and a solid compound at a high temperature by mixing a lithium compound and a precursor powder thereof. This coprecipitation process requires wastewater treatment after reaction of dislocation metal compounds. Recently, it has been tried by Combustion Chemical Vapor Deposition method. This method is currently being developed for mass production.

현재 이차전지용 활물질들은 대부분 고상 반응법 (Solid-state reaction)으로 대량생산되고 있으며, 이 방법으로 제조된 활물질의 형태는 도 2에서와같이 비교적 큰 입자들로 구성되어 있다. 이는 리튬이온들이 그 입자 내부로 인터칼레이션되는 시간이 길어 전지의 충방전율이 느리다. 만약 고상 반응법으로 전지용 활물질 전구체분말을 제조할 수 있다면, 부가적인 시설투자 없이 기존 설비들을 이용해 활물질을 전구체분말로 대량생산할 수 있다. 이는 전구체 활물질 분말의 제조원가를 절감시킬 수 있다. 또한, 고상 반응법은 건식으로 활물질을 제조될 수 있어 활물질 반응 후 폐수처리가 요구되지 않는다. 이에 본 발명은 산업체에서 널리 쓰이는 고상 반응법으로 활물질 전구체분말들의 제조법을 고안하였다. At present, active materials for secondary batteries are mass-produced in a solid-state reaction, and the active material produced by this method is composed of relatively large particles as shown in FIG. This is because the time for lithium ions to intercalate into the particles is long and the charge / discharge rate of the battery is slow. If the solid reaction method can produce precursor powder for a battery, the active material can be mass-produced as a precursor powder using existing equipment without additional facility investment. This can reduce the manufacturing cost of the precursor active material powder. In addition, the solid-phase reaction method can dry-form an active material and does not require wastewater treatment after reacting the active material. Accordingly, the present invention has devised a process for producing active material precursor powders by a solid phase reaction method widely used in industry.

본 발명은 이차전지용 활물질 전구체 분말제조를 상분리 (Phase separation)와 고상 반응법으로 해결하고자 한다.The present invention aims to solve the problem of the preparation of active material precursor powder for secondary battery by phase separation and solid phase reaction method.

전이금속 화합물 전구체분말제조는, 아래 화학반응식과 같이 전이금속 화합물의 상분리을 해야 한다.The preparation of the transition metal compound precursor powder requires phase separation of the transition metal compound as shown in the following chemical reaction formula.

LxMyOz → a(LOi) + b(MjOk) (1)L x M y O z - a (LO i ) + b (M j O k ) (1)

여기서 L은 Li (혹은 Na) 이고, O는 산소원자이고, M은 전이금속, B, F, Cl, Br, I, Al, Si, P, S, Ga, Ge, As, Se, In, Sn, 혹은 그 원자들의 혼합원자들이고, a와 b는 몰수이다. 위 화학반응식에서 i, j, k, x, y, z는 화학적당량이다. 예를 들면, 이차전지에 사용되는 활물질들은 LiCoO2, xLi2MnO3-(1-x)LiMnaNibCocO2, LiNixMnyCozO2, LiNixCoyAlzO2, LiMn2O4, LiNixMn2 - xO4, LiFexMnyPO4, Li4Ti5O12 등이 될 수 있다. 또한, 위 화학반응식 (1)에서 보면, 다른 활물질들의 상분리도 가능하다.Wherein L is Li (or Na), O is an oxygen atom and M is a transition metal, B, F, Cl, Br, I, Al, Si, P, S, Ga, Ge, As, , Or mixed atoms of the atoms, and a and b are moles. In the above equation, i, j, k, x, y and z are chemical quantities. For example, the active materials used in the secondary battery include LiCoO 2 , LiNi 2 MnO 3 - (1-x) LiMn a Ni b Co c O 2 , LiNi x Mn y Co z O 2 , LiNi x Co y Al z O 2 , LiMn 2 O 4 , LiNi x Mn 2 - x O 4 , LiFe x Mn y PO 4 , Li 4 Ti 5 O 12, and the like. In addition, from the above chemical reaction formula (1), phase separation of other active materials is also possible.

구체적으로, 리튬이온 이차전지 양극 활물질인 LiCoO2이 진공분위기에서 900oC 보다 고온으로 가열하면 상분리가 아래와 같이 일어난다.Specifically, when LiCoO 2 , a cathode active material of a lithium ion secondary battery, is heated to a temperature higher than 900 ° C in a vacuum atmosphere, phase separation occurs as follows.

2·LiCoO2 → Li2O + 2/3·(Co3O4) + 0.17·O2↑ (2)2 LiCoO 2 Li 2 O + 2/3 (Co 3 O 4 ) + 0.17 O 2 (2)

이렇게 LiCoO2가 상이 분리되면, 공기 중에서 결정화 온도로 열처리하면 원래의 결정상으로 회복시킬 수 있다. 이 과정에서 LiCoO2는 전구체로 변환될 수 있다.When the phase of LiCoO 2 is separated, it can be recovered to the original crystal phase by heat treatment at the crystallization temperature in the air. In this process, LiCoO 2 can be converted to a precursor.

본 발명으로 산업체에서 널리 사용되는 제조방법인 고상 반응법과 활물질의 상분리을 이용하여 전구체분말을 제조할 수 있다. 이는 부가적인 설비투자 없이 기존의 고상 반응법으로 사용되어온 양산장비들을 이용하여 이차전지용 전구체 활물질들을 양산할 수 있다. 또한, 현재 제조방법으로 사용중인 공침 반응법과 달리 폐수처리가 요구되지 않아 원가절감의 효과와 함께 환경오염물질의 배출을 최소화할 수 있다.According to the present invention, the precursor powder can be prepared by using the solid-phase reaction method which is widely used in industry and the phase separation of the active material. It is possible to mass-produce the precursor active materials for the secondary battery by using the mass production equipments which have been used as the solid state reaction method without additional facility investment. Also, unlike the coprecipitation reaction method currently used as the production method, waste water treatment is not required, so that the cost reduction effect and the emission of environmental pollutants can be minimized.

도 1은 전이금속화합물 전구체분말인 LiNi0 . 33Mn0 . 33Co0 . 33O2의 전자현미경사진이다.
도 2는 이차전지 활물질인 LiCoO2의 전자현미경사진이다.
도 3은 전구체 활물질 제조법을 보이는 개략도이다.
FIG. 1 is a graph showing the relationship between the transition metal compound precursor powder, LiNi 0 . 33 Mn 0 . 33 Co 0 . 33 is an electron micrograph of O 2 .
2 is an electron micrograph of LiCoO 2 as a secondary battery active material.
FIG. 3 is a schematic view showing a method for manufacturing a precursor active material. FIG.

본 발명은 탄소나 수소 혹은 탄소와 수소를 포함하는 물질들을 촉매로 이용하여 화학반응식 (1)과 유사하게 전지 활물질의 상분리를 낮은 온도에서 발생시켜 전구체분말을 제조하는 방법이다. 도 3은 전구체제조법에 관한 전체적인 개략도이다. 이해를 돕기 위해, 탄소와 수소를 포함하는 물질을 전지 활물질의 상분리에 이용한다고 가정하자. 먼저 그 상분리 촉매물질과 활물질을 섞어 오븐에 넣은 후에 그 촉매물질이 열적으로 분해되는 온도까지 가열하여, 도 3 개략도의 1단계처럼 활물질의 상을 분리시킨다. 예를 들어 탄소와 수소를 포함하는 물질은 주로 고분자이며, 이 경우 대부분 400 oC 이상에서 열분해가 된다. 이 열처리는 산소가 제한적으로 존재하는 진공 혹은 불활성 기체 분위기에서 효과적으로 발생한다. 탄소와 수소를 포함하는 물질은 열처리가 이루어지는 동안 활물질내의 산소원자들과 반응하여 상분리를 촉진 시킬 수 있다. 만약 리튬을 포함하는 활물질이 상분리되면, 아래와 같은 화학반응식으로 일어날 수 있다.The present invention is a method for producing a precursor powder by generating phase separation of a battery active material at a low temperature similar to the chemical reaction formula (1) using carbon or hydrogen or a material containing carbon and hydrogen as a catalyst. Figure 3 is an overall schematic diagram of a precursor preparation process. For the sake of understanding, suppose that a material containing carbon and hydrogen is used for phase separation of a battery active material. First, the phase separation catalyst material and the active material are mixed and placed in an oven, followed by heating to a temperature at which the catalytic material is thermally decomposed, thereby separating the phase of the active material as in step 1 of FIG. For example, a substance containing carbon and hydrogen is mainly a polymer, o C or higher. This heat treatment is effective in a vacuum or inert gas atmosphere in which oxygen is limited. Materials containing carbon and hydrogen can react with oxygen atoms in the active material during the heat treatment to promote phase separation. If the lithium-containing active material is phase-separated, the following chemical reaction can occur.

LiMO2 + C-H 고분자 → a(LixO) + b(MyOz) + cCO (or CO2) + dH2O (3)LiMO 2 + CH polymer + a (Li x O) + b (M y O z ) + cCO (or CO 2 ) + dH 2 O (3)

여기서 a, b, c, d는 몰수이고, x, y, z는 화학적당량이고, M은 화학반응식 (1)에 제시된 원소들이다. 도 3에서와같이 활물질이 1단계에서 α와 β 상들로 분리된 후, 2단계에서는 그 활물질을 결정화 온도에서 다시 열처리해 원래의 결정상으로 회복시킬 수 있고 동시에 활물질은 전구체형태로 변형된다.Where a, b, c, and d are the number of moles, x, y, and z are chemical quantities, and M is the element shown in the chemical reaction equation (1). As shown in FIG. 3, after the active material is separated into α and β phases in the first stage, the active material can be recovered to the original crystal phase by heat treatment at the crystallization temperature in the second stage, and at the same time, the active material is transformed into the precursor form.

이차전지용 활물질의 상분리에 사용되는 탄소나 수소를 포함하는 물질은 다음과 같다. 탄소, 탄소 나노튜브, 그래핀, Graphite, Polyvinylidene fluoride (PVDF), Polyvinyl alcohol (PVA), Polyvinyl butyral (PVB), Polyvinylpyrrolidone (PVP), Polyethylene oxide (PEO), 탄소나 수소를 포함하는 모든 물질들, 그리고 이 물질들의 혼합물들이 사용될 수 있다.The material containing carbon or hydrogen used for phase separation of the active material for secondary battery is as follows. All materials including carbon, carbon nanotubes, graphene, graphite, polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinylpyrrolidone (PVP) And mixtures of these materials may be used.

활물질의 상분리는 수소기체 혹은 수소나 탄소를 포함하는 기체들을 이용하여 고온이나 플라즈마 (Plasma) 상태에서 유도할 수 있다. 활물질의 상분리에 사용되는 기체들은 수소, CxHy 기체, 혹은 탄소나 수소를 포함하는 모든 기체들이다. 만약 수소기체을 사용하여 상분리를 하면, 화학반응식(3)에서 주된 부산물이 H2O가 되어 환경오염기체인 CO2 혹은 CO 기체들이 배출되지 않는다.The phase separation of the active material can be induced at a high temperature or in a plasma state using hydrogen gas or gases containing hydrogen or carbon. The gases used for the phase separation of the active material are hydrogen, C x H y gas, or all gases including carbon or hydrogen. If phase separation is carried out using hydrogen gas, the main by-product in the chemical reaction equation (3) becomes H 2 O, so that CO 2 or CO gases, which are environmentally polluted gases, are not discharged.

이차전지용 활물질 열처리는 여러 가지 가열방법이 사용될 수 있다. 예를 들면, 열적 가열(Thermal heating), 초단파 가열 (Microwave heating), 유도 가열(Induction heating), 급속 열처리 (Rapid thermal process), 플라즈마 가열 (Plasma heating) 등이 있다.As the heat treatment of the active material for the secondary battery, various heating methods can be used. For example, thermal heating, microwave heating, induction heating, rapid thermal process, plasma heating, and the like.

활물질의 상분리는 불활성 기체 분위기 혹은 진공 중에서 발생할 수 있다. 이런 공정 분위기에서 활물질들을 고온에서 상분리를 일으키면 주된 부산물이 O2가 되어, 이 또한 CO2 혹은 CO 기체들이 배출되지 않아 환경오염을 최소화할 수 있다. 불활성 기체로는 He, N2, Ne, Ar, Ke, Xe, 그리고 이들의 혼합가스들을 이용할 수 있다.The phase separation of the active material can occur in an inert gas atmosphere or in a vacuum. In this process atmosphere, when the active materials are phase separated at high temperature, the main by-product is O 2 , which can also minimize CO 2 or CO gases, thereby minimizing environmental pollution. As the inert gas, He, N 2 , Ne, Ar, Ke, Xe, and mixed gases thereof can be used.

탄소가 들어 있는 고분자물질을 적당한 용매에 녹인 후 활물질을 그 용액에 섞어 활물질의 표면에 코팅하여 상분리를 유도할 수 있다. 사용되는 용매는 H2O, Methanol, Ethanol, Acetone, Isopropanol, Acetonitrile, Toluene, N-Methyl-2-pyrrolidone (NMP), Dimethyl sulfoixde (DMSO), Dimethylformamide (DMF), N-Methylformamide (NMF), Tetrahydrofuran (THF), Dimethoxyethane (DME)등이 될 수 있고 탄소와 수소를 골격으로 하는 모든 용매가 사용될 수 있다. 부가적으로 활물질과 탄소를 포함하는 물질을 용매가 없는 건식으로 Ball Milling 이나 다른 기계적인 방법으로 섞은 후 온도를 올려서 활물질의 상분리를 발생시킬 수 있다. 이 경우 용매없이 상분리가 가능하므로 비용절감의 효과를 볼 수 있다.The polymer containing carbon may be dissolved in an appropriate solvent, and the active material may be mixed with the solution to coat the surface of the active material to induce phase separation. The solvents used are H 2 O, methanol, ethanol, acetone, isopropanol, acetonitrile, toluene, N-methylpyrrolidone (THF), dimethoxyethane (DME), and the like. Any solvent having a carbon-hydrogen skeleton may be used. In addition, the active material and the carbon containing material may be mixed with a solvent free dry ball milling or other mechanical method, and then the temperature may be raised to cause phase separation of the active material. In this case, the phase separation can be performed without a solvent, so that the cost reduction effect can be obtained.

Claims (10)

이차전지용 전구체 분발제조법에 관련된 전이금속 화합물들은 다음과 같은 화학식을 갖는다.
LxM1 iM2 jM3 kM4 lOz
여기서 L은 Li (혹은 Na) 이고, O는 산소원자이고, M은 전이금속, B, F, Cl, Br, I, Al, Si, P, S, Ga, Ge, As, Se, In, Sn, 혹은 그 원자들의 혼합원자들이다. 그리고 위 화학식에서 x, i, j, k, l, z는 화학적당량이다. 예를 들면, 이차전지에 사용되는 활물질들은 LiCoO2, xLi2MnO3·(1-x)LiMnaNibCocO2, LiNixMnyCozO2, LiNixCoyAlzO2, LiMn2O4, LiNixMn2 - xO4, LiFexMnyPO4, Li4Ti5O12 등이 될 수 있다. 위 화학구조식을 기초로 하여 다른 전이금속 화합물도 전구체분말로 제조될 수 있다. 전구체의 직경은 4-200μm 이내이고 전구체내에 있는 입자의 직경은 5-3000nm 사이이다.
The transition metal compounds involved in the preparation of precursors for secondary batteries have the following chemical formulas.
L x M 1 i M 2 j M 3 k M 4 l O z
Wherein L is Li (or Na), O is an oxygen atom and M is a transition metal, B, F, Cl, Br, I, Al, Si, P, S, Ga, Ge, As, , Or mixed atoms of the atoms. In the above formula, x, i, j, k, l, and z are chemical amounts. For example, the active material used in the secondary battery are LiCoO 2, xLi 2 MnO 3 · (1-x) LiMn a Ni b Co c O 2, LiNi x Mn y Co z O 2, LiNi x Co y Al z O 2 , LiMn 2 O 4 , LiNi x Mn 2 - x O 4 , LiFe x Mn y PO 4 , Li 4 Ti 5 O 12, and the like. Other transition metal compounds may also be prepared as precursor powders based on the above chemical structural formula. The diameter of the precursor is within 4-200 μm and the diameter of the particles within the precursor is between 5-3000 nm.
제 1 청구항에 있어서,
전지용 전구체는 활물질들을 수소나 탄소를 포함하는 물질 (혹은 기체)과 용매 혹은 용매 없이 혼합 후 고온과 진공 상태 (혹은 불활성 기체 분위기)에서 상분리 후 다시 공기중 (Ambient atmosphere)이나 혹은 산소분위기에서 결정화 온도로 열처리하여 제조한다.
In the first aspect,
The battery precursor is prepared by mixing the active materials with a substance (or gas) containing hydrogen or carbon without a solvent or solvent, separating them in a high temperature and a vacuum state (or an inert gas atmosphere) .
제 2 청구항에 있어서,
수소 혹은 탄소를 포함하는 물질은 탄소, 탄소 나노튜브, 그래핀, Graphite, Polyvinylidene fluoride (PVDF), Polyvinyl alcohol (PVA), Polyvinyl butyral (PVB), Polyvinylpyrrolidone (PVP), Polyethylene oxide (PEO), 수소나 탄소를 포함하는 모든 물질들, 그리고 이 물질들의 혼합물들이 사용될 수 있다.
In the second aspect,
Hydrogen or carbonaceous materials can be used in various applications such as carbon, carbon nanotubes, graphene, graphite, polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinylpyrrolidone (PVP) All materials, including carbon, and mixtures of these materials may be used.
제 2 청구항에 있어서,
활물질의 상분리는 수소기체나 수소와 탄소를 포함하는 기체들을 이용하여 고온이나 플라즈마 상태에서 유도할 수 있다. 예를 들어, 수소기체, CxHy 기체, 혹은 탄소나 수소를 포함하는 모든 기체들이나 혼합기체들이 이용될 수 있다.
In the second aspect,
The phase separation of the active material can be induced at high temperature or in a plasma state using hydrogen gas or gases containing hydrogen and carbon. For example, all gases or mixed gases can be used, including hydrogen gas, C x H y gas, or carbon or hydrogen.
제 2 청구항에 있어서,
불활성 기체로는 He, N2, Ne, Ar, Ke, Xe, 혹은 이 가스들의 혼합가스가 될 수 있다.
In the second aspect,
The inert gas may be He, N 2 , Ne, Ar, Ke, Xe, or a mixed gas of these gases.
제 2 청구항에 있어서,
열처리 온도는 200 - 1500oC 사이이다.
In the second aspect,
The heat treatment temperature is between 200 - 1500 ° C.
제 2 청구항에 있어서,
진공은 1-10- 8Torr 사이다.
In the second aspect,
The vacuum is between 1-10 and 8 Torr.
제 2 청구항에 있어서,
용매는 H2O, Methanol, Ethanol, Acetone, Isopropanol, Acetonitrile, Toluene, N-Methyl-2-pyrrolidone (NMP), Dimethyl sulfoixde (DMSO), Dimethylformamide (DMF), N-Methylformamide (NMF), Tetrahydrofuran (THF), Dimethoxyethane (DME)등이 될 수 있고 탄소와 수소를 화학구조로 하는 모든 용매들이 사용될 수 있다.
In the second aspect,
The solvent can be selected from the group consisting of H 2 O, Methanol, Ethanol, Acetone, Isopropanol, Acetonitrile, Toluene, N-methyl-2-pyrrolidone (NMP), Dimethyl sulfoixde (DMSO), Dimethylformamide ), Dimethoxyethane (DME), etc., and all solvents having a chemical structure of carbon and hydrogen can be used.
제2 청구에 있어서,
열처리 시간은 1초에서 500시간이다.
In the second aspect,
The heat treatment time is 1 second to 500 hours.
제 2 청구항에 있어서,
활물질 가열방법들로는 열적 가열(Thermal heating), 초단파 가열 (Microwave heating), 유도 가열(Induction heating), 플라즈마 가열 (Plasma heating), 급속 열처리 (Rapid thermal process) 등이 사용될 수 있다.
In the second aspect,
Examples of the active material heating methods include thermal heating, microwave heating, induction heating, plasma heating, and rapid thermal processing.
KR1020160181778A 2016-12-29 2016-12-29 Synthesis Method of Spherical Bulk Powders KR20180089581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160181778A KR20180089581A (en) 2016-12-29 2016-12-29 Synthesis Method of Spherical Bulk Powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160181778A KR20180089581A (en) 2016-12-29 2016-12-29 Synthesis Method of Spherical Bulk Powders

Publications (1)

Publication Number Publication Date
KR20180089581A true KR20180089581A (en) 2018-08-09

Family

ID=63251254

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160181778A KR20180089581A (en) 2016-12-29 2016-12-29 Synthesis Method of Spherical Bulk Powders

Country Status (1)

Country Link
KR (1) KR20180089581A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111333048A (en) * 2020-03-10 2020-06-26 桑顿新能源科技(长沙)有限公司 Method for preparing lithium manganese iron phosphate by using waste lithium iron phosphate and lithium manganate materials
WO2021227213A1 (en) * 2020-05-11 2021-11-18 湖南大学 Catalyst for use in removing antibiotics in water body by activating peroxymonosulfate, preparation method therefor, and application thereof
CN114583313A (en) * 2022-03-11 2022-06-03 江苏协鑫锂电科技有限公司 Method for recycling waste phosphate positive electrode material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111333048A (en) * 2020-03-10 2020-06-26 桑顿新能源科技(长沙)有限公司 Method for preparing lithium manganese iron phosphate by using waste lithium iron phosphate and lithium manganate materials
WO2021227213A1 (en) * 2020-05-11 2021-11-18 湖南大学 Catalyst for use in removing antibiotics in water body by activating peroxymonosulfate, preparation method therefor, and application thereof
CN114583313A (en) * 2022-03-11 2022-06-03 江苏协鑫锂电科技有限公司 Method for recycling waste phosphate positive electrode material
CN114583313B (en) * 2022-03-11 2024-02-20 江苏协鑫锂电科技有限公司 Method for recycling waste phosphate cathode material

Similar Documents

Publication Publication Date Title
KR101586816B1 (en) Negative active material for non-aqueous electrolyte rechargeable battery, the preparation method thereof, and rechargeable battery including the same
JP5553004B2 (en) Sulfide solid electrolyte material, lithium solid battery, and method for producing sulfide solid electrolyte material
CN107735888B (en) Negative active material for lithium secondary battery and method for preparing same
JP6252524B2 (en) Method for producing positive electrode active material for solid state battery
WO2012001773A1 (en) Process for production of sulfide solid electrolyte material, and process for production of lithium solid-state battery
US20150093652A1 (en) Sulfide solid electrolyte, method of preparing the same, and solid state battery including the same
WO2015065095A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
WO2012060295A1 (en) Composite metal oxide, process for producing the composite metal oxide, positive active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery
US10347910B2 (en) Nano silicon material, method for producing same, and negative electrode of secondary battery
KR20140119621A (en) Precusor for lithium rich active material and lithium rich active material made by the same
JP2013045642A (en) Battery active material, method for producing battery active material, and battery
KR100805910B1 (en) Olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
CN110679017A (en) Negative electrode active material, negative electrode including the same, and secondary battery including the negative electrode
KR20180089581A (en) Synthesis Method of Spherical Bulk Powders
US10164255B2 (en) Silicon material and negative electrode of secondary battery
KR20150050152A (en) Manufacturing method of cathode active material, and cathode active material for lithium secondary battery manufactured thereby
KR20170069951A (en) Negative electrode active material particle and method of preparing for the same
CN115336043A (en) Negative electrode active material, negative electrode including the same, and secondary battery including the negative electrode
KR101431879B1 (en) Cathode material for lithium second battery and manufacturing method thereof
JP2014182890A (en) Negative electrode active material, process of manufacturing the same, and power storage device
JP2013203565A (en) Complex metal oxide, positive electrode active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery
CN114641874A (en) Positive electrode active material for lithium secondary battery and method for preparing same
KR20100029501A (en) Olivine type positive active material for lithium second battery, method for preparing the same, and lithium battery comprising the same
KR101480216B1 (en) Silicon oxide anode active material, method for preparing the same, and secondary battery using the same
US10217990B2 (en) Silicon material and negative electrode of secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application