KR20180043192A - 도전 재료 및 접속 구조체 - Google Patents

도전 재료 및 접속 구조체 Download PDF

Info

Publication number
KR20180043192A
KR20180043192A KR1020177023798A KR20177023798A KR20180043192A KR 20180043192 A KR20180043192 A KR 20180043192A KR 1020177023798 A KR1020177023798 A KR 1020177023798A KR 20177023798 A KR20177023798 A KR 20177023798A KR 20180043192 A KR20180043192 A KR 20180043192A
Authority
KR
South Korea
Prior art keywords
solder
conductive
electrode
particles
conductive material
Prior art date
Application number
KR1020177023798A
Other languages
English (en)
Inventor
마사히로 이또우
슈우지로우 사다나가
히데아끼 이시자와
다까시 구보따
Original Assignee
세키스이가가쿠 고교가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세키스이가가쿠 고교가부시키가이샤 filed Critical 세키스이가가쿠 고교가부시키가이샤
Publication of KR20180043192A publication Critical patent/KR20180043192A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

상하의 전극 사이에 도전성 입자에 있어서의 땜납을 선택적으로 배치할 수 있고, 가로 방향의 전극 사이에 도전성 입자에 있어서의 땜납이 배치되기 어려워, 도통 신뢰성 및 절연 신뢰성을 높일 수 있는 도전 재료를 제공한다. 본 발명에 따른 도전 재료는, 도전부의 외표면 부분에, 땜납을 갖는 복수의 도전성 입자와, 열경화성 성분을 포함하고, 25℃ 이상, 상기 도전성 입자에 있어서의 상기 땜납의 융점 ℃ 이하에서의 도전 재료의 점도의 최솟값이 25Pa·s 이상, 255Pa·s 이하이고, 상기 도전성 입자의 평균 입자 직경이 3㎛ 이상, 15㎛ 이하이며, 상기 도전성 입자의 평균 입자 직경 ㎛을 A라 하고, 상기 도전성 입자에 있어서의 상기 땜납의 융점 ℃에서의 도전 재료의 점도 Pa·s를 B라 했을 때, 상기 B가 (-5A+100) 이상, (-15A+300) 이하이다.

Description

도전 재료 및 접속 구조체
본 발명은, 땜납을 갖는 도전성 입자를 포함하는 도전 재료에 관한 것이다. 또한, 본 발명은, 상기 도전 재료를 사용한 접속 구조체에 관한 것이다.
이방성 도전 페이스트 및 이방성 도전 필름 등의 이방성 도전 재료가 널리 알려져 있다. 상기 이방성 도전 재료에서는, 결합제 중에 도전성 입자가 분산되어 있다.
상기 이방성 도전 재료는, 각종 접속 구조체를 얻기 위해서, 예를 들어 플렉시블 프린트 기판과 유리 기판의 접속(FOG(Film on Glass)), 반도체 칩과 플렉시블 프린트 기판의 접속(COF(Chip on Film)), 반도체 칩과 유리 기판의 접속(COG(Chip on Glass)), 및 플렉시블 프린트 기판과 유리 에폭시 기판의 접속(FOB(Film on Board)) 등에 사용되고 있다.
상기 이방성 도전 재료에 의해, 예를 들어 플렉시블 프린트 기판의 전극과 유리 에폭시 기판의 전극을 전기적으로 접속할 때는, 유리 에폭시 기판 위에, 도전성 입자를 포함하는 이방성 도전 재료를 배치한다. 이어서, 플렉시블 프린트 기판을 적층하고, 가열 및 가압한다. 이것에 의해, 이방성 도전 재료를 경화시키고, 도전성 입자를 통해 전극 사이를 전기적으로 접속하여 접속 구조체를 얻는다.
상기 이방성 도전 재료의 일례로서, 하기 특허문헌 1에는, 도전성 입자와, 해당 도전성 입자의 융점에서 경화가 완료되지 않는 수지 성분을 포함하는 이방성 도전 재료가 기재되어 있다. 상기 도전성 입자로서는, 구체적으로는, 주석(Sn), 인듐(In), 비스무트(Bi), 은(Ag), 구리(Cu), 아연(Zn), 납(Pb), 카드뮴(Cd), 갈륨(Ga) 및 탈륨(Tl) 등의 금속이나, 이들 금속의 합금이 예시되어 있다.
특허문헌 1에서는, 상기 도전성 입자의 융점보다도 높고, 또한 상기 수지 성분의 경화가 완료되지 않는 온도로 이방성 도전 수지를 가열하는 수지 가열 스텝과, 상기 수지 성분을 경화시키는 수지 성분 경화 스텝을 거쳐, 전극 사이를 전기적으로 접속시키는 것이 기재되어 있다. 또한, 특허문헌 1에는, 특허문헌 1의 도 8에 도시된 온도 프로파일로 실장을 행하는 것이 기재되어 있다. 특허문헌 1에서는, 이방성 도전 수지가 가열되는 온도에서 경화가 완료되지 않는 수지 성분 내에서, 도전성 입자가 용융된다.
하기 특허문헌 2에는, 열경화성 수지를 포함하는 수지층과, 땜납 분말과, 경화제를 포함하고, 상기 땜납 분말과 상기 경화제가 상기 수지층 중에 존재하는 접착 테이프가 개시되어 있다. 이 접착 테이프는 필름상이며, 페이스트상은 아니다.
일본 특허공개 제2004-260131호 공보 WO 2008/023452 A1
종래의 땜납 분말이나, 땜납층을 표면에 갖는 도전성 입자를 포함하는 이방성 도전 재료에서는, 땜납 분말 또는 도전성 입자가 상하의 전극 사이(라인)에 효율적으로 배치되지 않는 경우가 있다. 또한, 땜납이 접속되어서는 안 되는 가로 방향으로 인접하는 전극 사이(스페이스)에 많이 배치되는 경우가 있다.
또한, 특허문헌 1에 기재된 이방성 도전 재료를 사용하여, 특허문헌 1에 기재된 방법으로 전극 사이를 전기적으로 접속하면, 땜납을 포함하는 도전성 입자가 전극(라인) 위에 효율적으로 배치되지 않는 경우가 있다. 또한, 특허문헌 1의 실시예에서는, 땜납의 융점 이상의 온도에서, 땜납을 충분히 이동시키기 위해 일정 온도로 유지되어 있어, 접속 구조체의 제조 효율이 낮아진다. 특허문헌 1의 도 8에 도시된 온도 프로파일로 실장을 행하면, 접속 구조체의 제조 효율이 낮아진다.
또한, 특허문헌 2에 기재된 접착 테이프는 필름상이며, 페이스트상은 아니다. 특허문헌 2에 기재된 바와 같은 조성을 갖는 접착 테이프에서는, 땜납 분말을 상하의 전극 사이(라인)에 효율적으로 배치하는 것은 곤란하다. 예를 들어, 특허문헌 2에 기재된 접착 테이프에서는, 땜납 분말의 일부가, 가로 방향으로 인접하는 전극 사이(스페이스)에도 배치되기 쉽다. 전극이 형성되지 않은 영역에 배치된 땜납 분말은, 전극 사이의 도통에 기여하지 않는다.
본 발명의 목적은, 상하의 전극 사이에 도전성 입자에 있어서의 땜납을 선택적으로 배치할 수 있고, 가로 방향의 전극 사이에 도전성 입자에 있어서의 땜납이 배치되기 어려워, 도통 신뢰성 및 절연 신뢰성을 높일 수 있는 도전 재료를 제공하는 것이다. 또한, 본 발명의 목적은, 상기 도전 재료를 사용한 접속 구조체를 제공하는 것이다.
본 발명의 넓은 국면에 의하면, 도전부의 외표면 부분에, 땜납을 갖는 복수의 도전성 입자와, 열경화성 성분을 포함하고, 25℃ 이상, 상기 도전성 입자에 있어서의 상기 땜납의 융점 ℃ 이하에서의 도전 재료의 점도의 최솟값이 25Pa·s 이상, 255Pa·s 이하이고, 상기 도전성 입자의 평균 입자 직경이 3㎛ 이상, 15㎛ 이하이며, 상기 도전성 입자의 평균 입자 직경 ㎛을 A라 하고, 상기 도전성 입자에 있어서의 상기 땜납의 융점 ℃에서의 도전 재료의 점도 Pa·s를 B라 했을 때, 상기 B가 (-5A+100) 이상, (-15A+300) 이하인, 도전 재료가 제공된다.
본 발명에 따른 도전 재료의 어느 특정한 국면에서는, 25℃ 이상, 상기 도전성 입자에 있어서의 상기 땜납의 융점 ℃ 이하에서의 도전 재료의 점도의 최솟값과 최댓값과의 차의 절댓값이 50Pa·s 이상, 200Pa·s 이하이다.
본 발명에 따른 도전 재료의 어느 특정한 국면에서는, 상기 도전성 입자의 평균 입자 직경이 7㎛ 이상, 13㎛ 이하이다.
본 발명에 따른 도전 재료의 어느 특정한 국면에서는, 상기 도전성 입자는 땜납 입자이다.
본 발명에 따른 도전 재료의 어느 특정한 국면에서는, 상기 도전 재료는, 25℃에서 액상이며, 도전 페이스트이다.
본 발명의 넓은 국면에 의하면, 적어도 하나의 제1 전극을 표면에 갖는 제1 접속 대상 부재와, 적어도 하나의 제2 전극을 표면에 갖는 제2 접속 대상 부재와, 상기 제1 접속 대상 부재와 상기 제2 접속 대상 부재를 접속하고 있는 접속부를 구비하고, 상기 접속부가, 전술한 도전 재료의 경화물이며, 상기 제1 전극과 상기 제2 전극이 상기 접속부 중의 땜납부에 의해 전기적으로 접속되어 있는, 접속 구조체가 제공된다.
본 발명에 따른 접속 구조체의 어느 특정한 국면에서는, 상기 제1 전극과 상기 접속부와 상기 제2 전극과의 적층 방향으로 상기 제1 전극과 상기 제2 전극의 서로 대향하는 부분을 보았을 때, 상기 제1 전극과 상기 제2 전극의 서로 대향하는 부분의 면적 100% 중의 50% 이상에, 상기 접속부중의 땜납부가 배치되어 있다.
본 발명에 따른 도전 재료는, 도전부의 외표면 부분에, 땜납을 갖는 복수의 도전성 입자와, 열경화성 성분을 포함하고, 25℃ 이상, 상기 도전성 입자에 있어서의 상기 땜납의 융점 ℃ 이하에서의 도전 재료의 점도의 최솟값이 25Pa·s 이상, 255Pa·s 이하이고, 상기 도전성 입자의 평균 입자 직경이 3㎛ 이상, 15㎛ 이하이며, 상기 도전성 입자의 평균 입자 직경 ㎛을 A라 하고, 상기 도전성 입자에 있어서의 상기 땜납의 융점 ℃에서의 도전 재료의 점도 Pa·s를 B라 했을 때, 상기 B가 (-5A+100) 이상, (-15A+300) 이하이므로, 상하의 전극 사이에 도전성 입자에 있어서의 땜납을 선택적으로 배치할 수 있고, 가로 방향의 전극 사이에 도전성 입자에 있어서의 땜납이 배치되기 어려워, 도통 신뢰성 및 절연 신뢰성을 높일 수 있다.
도 1은, 본 발명의 일 실시 형태에 따른 도전 재료를 사용하여 얻어지는 접속 구조체를 모식적으로 나타내는 단면도이다.
도 2의 (a) 내지 (c)는, 본 발명의 일 실시 형태에 따른 도전 재료를 사용하여, 접속 구조체를 제조하는 방법의 일례의 각 공정을 설명하기 위한 단면도이다.
도 3은, 접속 구조체의 변형예를 나타내는 단면도이다.
도 4는, 도전 재료에 사용 가능한 도전성 입자의 제1 예를 나타내는 단면도이다.
도 5는, 도전 재료에 사용 가능한 도전성 입자의 제2 예를 나타내는 단면도이다.
도 6은, 도전 재료에 사용 가능한 도전성 입자의 제3 예를 나타내는 단면도이다.
이하, 본 발명의 상세를 설명한다.
(도전 재료)
본 발명에 따른 도전 재료는, 복수의 도전성 입자와, 결합제를 포함한다. 상기 도전성 입자는 도전부를 갖는다. 상기 도전성 입자는, 도전부의 외표면 부분에 땜납을 갖는다. 땜납은 도전부에 포함되고, 도전부의 일부 또는 전부이다. 상기 결합제는, 상기 도전 재료에 포함되는 도전성 입자를 제외한 성분이다.
본 발명에 따른 도전 재료는, 상기 결합제로서, 열경화성 성분을 포함한다. 상기 열경화성 성분은, 열경화성 화합물과 열경화제를 포함하는 것이 바람직하다.
본 발명에 따른 도전 재료에서는, 25℃ 이상, 상기 도전성 입자에 있어서의 상기 땜납의 융점 ℃ 이하에서의 도전 재료의 점도의 최솟값(ηmin)이 25Pa·s 이상, 255Pa·s 이하이다.
본 발명에 따른 도전 재료에서는, 상기 도전성 입자의 평균 입자 직경이 3㎛ 이상, 15㎛ 이하이다.
상기 도전성 입자의 평균 입자 직경 ㎛을 A라 한다. 상기 도전성 입자에 있어서의 상기 땜납의 융점 ℃에서의 도전 재료의 점도(ηmp) Pa·s를 B라 한다. 본 발명에 따른 도전 재료에서는, 상기 B가 (-5A+100) 이상, (-15A+300) 이하이다.
본 발명에서는, 상기 구성이 구비되어 있으므로, 상하의 전극 사이에 도전성 입자에 있어서의 땜납을 선택적으로 배치할 수 있다. 전극 사이를 전기적으로 접속한 경우에, 도전성 입자에 있어서의 땜납이, 상하의 대향한 전극 사이에 모이기 쉬워, 도전성 입자에 있어서의 땜납을 전극(라인) 위에 효율적으로 배치할 수 있다.
또한, 도전성 입자에 있어서의 땜납의 일부가, 전극이 형성되지 않은 영역(스페이스)에 배치되기 어려워, 전극이 형성되지 않은 영역에 배치되는 땜납의 양을 상당히 적게 할 수 있다. 본 발명에서는, 대향하는 전극 사이에 위치하지 않는 땜납을, 대향하는 전극 사이에 효율적으로 이동시킬 수 있다. 따라서, 전극 사이의 도통 신뢰성을 높일 수 있다. 게다가, 접속되어서는 안 되는 가로 방향으로 인접하는 전극 사이의 전기적인 접속을 방지할 수 있어, 절연 신뢰성을 높일 수 있다.
특히 상기 A와 상기 B가 전술한 관계를 만족함으로써, 상기 효과가 얻어지는 것을 후술하는 실시예 및 비교예에 의해 알게 되었다. 상기 A와 상기 B가 전술한 관계를 만족함으로써 상기 효과가 얻어지는 것은, 입자의 이동성은, 입자 직경과 땜납 용융 시의 점도와 상관성이 있어, 점도가 너무 낮으면 입자는 넓게 확산되어 전극에 배치되지 않고, 점도가 너무 높으면 이동하기 어렵기 때문이라고 추정된다. 특히 입자 직경이 3㎛ 이상, 15㎛ 이하인 소입자는 중량이 작기 때문에, 입자의 이동성이 크다. 이로 인해, 가열에 의해 도전 재료의 점도가 낮아지면, 도전 재료가 배치된 초기의 위치에서 입자가 흘러나와버려, 배치 정밀도가 저하된다. 본 발명에 있어서는, 종래보다도 점도를 적절하게 높게 함으로써, 입자의 과도한 이동성을 억제할 수 있어, 배치 정밀도가 향상된다.
상기 도전성 입자의 평균 입자 직경(A(㎛))은 3㎛ 이상, 15㎛ 이하이다. 땜납을 전극 위에 한층 더 효율적으로 배치하는 관점에서는, 상기 도전성 입자의 평균 입자 직경(A(㎛))은 바람직하게는 3㎛ 이상, 보다 바람직하게는 7㎛ 이상이며, 바람직하게는 15㎛ 이하, 보다 바람직하게는 13㎛ 이하이다.
상기 도전성 입자의 「평균 입자 직경」은, 수 평균 입자 직경을 나타낸다. 도전성 입자의 평균 입자 직경은, 예를 들어 임의의 도전성 입자 50개를 전자 현미경 또는 광학 현미경으로 관찰하여, 평균값을 산출함으로써 구해진다.
25℃ 이상, 상기 도전성 입자에 있어서의 상기 땜납의 융점 ℃ 이하에서의 도전 재료의 점도의 최솟값(ηmin)은 25Pa·s 이상, 255Pa·s 이하이다. 땜납을 전극 위에 한층 더 효율적으로 배치하는 관점에서는, 상기 점도의 최솟값(ηmin)은 바람직하게는 35Pa·s 이상이며, 바람직하게는 195Pa·s 이하이다.
상기 B(Pa·s)는 (-5A+100) 이상, (-15A+300) 이하이다. 이 범위에 의해 본 발명의 효과가 얻어지는 것을, 후술하는 실시예 및 비교예에 의해 이해할 수 있다. 땜납을 전극 위에 한층 더 효율적으로 배치하는 관점에서는, 상기 B(Pa·s)는 바람직하게는 25 이상이며, 바람직하게는 255 이하이다.
땜납을 전극 위에 한층 더 효율적으로 배치하는 관점에서는, 25℃ 이상, 상기 도전성 입자에 있어서의 상기 땜납의 융점 ℃에서의 도전 재료의 점도의 최솟값(ηmin)과 최댓값(ηman)과의 차의 절댓값은, 바람직하게는 50Pa·s 이상, 보다 바람직하게는 80Pa·s 이상이며, 바람직하게는 200Pa·s 이하, 보다 바람직하게는 150Pa·s 이하이다.
상기 점도는, 스트레스테크(STRESSTECH)(에올로지카(EOLOGICA)사 제조) 등을 사용하여, 변형 제어 1rad, 주파수 1㎐, 승온 속도 20℃/분 및 측정 온도 범위 25 내지 200℃(단, 땜납의 융점이 200℃를 초과한 경우에는 온도 상한을 땜납의 융점으로 함)의 조건에서 측정 가능하다. 상기 땜납의 융점은, 200℃ 이하여도 된다.
땜납을 전극 위에 한층 더 효율적으로 배치하기 위해서, 상기 도전 재료는, 25℃에서 액상인 것이 바람직하고, 도전 페이스트인 것이 바람직하다.
본 발명에 따른 도전 재료는, 전극 폭 및 전극 사이의 폭이 작은 전극 사이의 접속에 적합하게 사용된다. 전극 폭 및 전극 사이의 폭은 각각, 바람직하게는 20㎛ 이상, 보다 바람직하게는 40㎛ 이상이며, 바람직하게는 500㎛ 이하, 보다 바람직하게는 400㎛ 이하이다. 상기 전극 폭은, L/S에 있어서의 라인(L)의 폭이다. 상기 전극 사이의 폭은, L/S에 있어서의 스페이스(S)의 폭이다.
상기 도전 재료는, 도전 페이스트 및 도전 필름 등으로서 사용될 수 있다. 상기 도전 재료는 이방성 도전 재료인 것이 바람직하다. 상기 도전 페이스트는 이방성 도전 페이스트인 것이 바람직하다. 상기 도전 필름은 이방성 도전 필름인 것이 바람직하다. 상기 도전 재료는, 전극의 전기적인 접속에 적합하게 사용된다. 상기 도전 재료는, 회로 접속 재료인 것이 바람직하다.
이하, 상기 도전 재료에 포함되는 각 성분을 설명한다.
(도전성 입자)
상기 도전성 입자는, 접속 대상 부재의 전극 사이를 전기적으로 접속한다. 상기 도전성 입자는, 도전부의 외표면 부분에 땜납을 갖는다. 상기 도전성 입자는 땜납 입자여도 된다. 상기 땜납 입자는 땜납에 의해 형성되어 있다. 상기 땜납 입자는 땜납을 도전부의 외표면 부분에 갖는다. 상기 땜납 입자는, 상기 땜납 입자의 중심 부분 및 도전부의 외표면 부분 모두가 땜납인 입자이다. 상기 땜납 입자는, 중심 부분 및 도전부의 외표면 부분 모두가 땜납에 의해 형성되어 있다. 상기 도전성 입자는, 기재 입자와, 해당 기재 입자의 표면 위에 배치된 도전부를 갖고 있어도 된다. 이 경우에, 상기 도전성 입자는, 도전부의 외표면 부분에 땜납을 갖는다.
또한, 상기 땜납 입자를 사용한 경우에 비하여, 땜납에 의해 형성되지 않은 기재 입자와 기재 입자의 표면 위에 배치된 땜납부를 구비하는 도전성 입자를 사용한 경우에는, 전극 위에 도전성 입자가 모이기 어려워져 도전성 입자끼리의 땜납 접합성이 낮기 때문에, 전극 위로 이동한 도전성 입자가 전극 외부로 이동하기 쉬워지는 경향이 있어, 전극 사이의 위치 어긋남의 억제 효과도 낮아지는 경향이 있다. 따라서, 상기 도전성 입자는 땜납 입자인 것이 바람직하다.
접속 구조체에 있어서의 접속 저항을 효과적으로 낮추고, 보이드의 발생을 효과적으로 억제하는 관점에서는, 상기 도전성 입자의 외표면(땜납의 외표면)에, 카르복실기 또는 아미노기가 존재하는 것이 바람직하고, 카르복실기가 존재하는 것이 바람직하며, 아미노기가 존재하는 것이 바람직하다. 상기 도전성 입자의 외표면(땜납의 외표면)에, Si-O 결합, 에테르 결합, 에스테르 결합 또는 하기 식(X)로 표시되는 기를 통해, 카르복실기 또는 아미노기를 포함하는 기가 공유 결합되어 있는 것이 바람직하고, 에테르 결합, 에스테르 결합 또는 하기 식(X)로 표시되는 기를 통해, 카르복실기 또는 아미노기를 포함하는 기가 공유 결합되어 있는 것이 보다 바람직하다. 카르복실기 또는 아미노기를 포함하는 기는, 카르복실기와 아미노기 양쪽을 포함하고 있어도 된다. 또한, 하기 식(X)에 있어서, 우측 단부 및 좌측 단부는 결합 부위를 나타낸다.
Figure pct00001
땜납 표면에 수산기가 존재한다. 이 수산기와 카르복실기를 포함하는 기를 공유 결합시킴으로써, 다른 배위 결합(킬레이트 배위) 등으로 결합시키는 경우보다도 강한 결합을 형성할 수 있기 때문에, 전극 사이의 접속 저항을 낮추고, 또한 보이드의 발생을 억제하는 것이 가능한 도전성 입자가 얻어진다.
상기 도전성 입자에서는, 땜납 표면과, 카르복실기를 포함하는 기의 결합 형태에, 배위 결합이 포함되지 않아도 되며, 킬레이트 배위에 의한 결합이 포함되지 않아도 된다.
접속 구조체에 있어서의 접속 저항을 효과적으로 낮추고, 보이드의 발생을 효과적으로 억제하는 관점에서는, 상기 도전성 입자는, 수산기와 반응 가능한 관능기와 카르복실기 또는 아미노기를 갖는 화합물(이하, 화합물 X라고 기재하는 경우가 있음)을 사용하여, 땜납 표면의 수산기에, 상기 수산기와 반응 가능한 관능기를 반응시킴으로써 얻어지는 것이 바람직하다. 상기 반응에서는, 공유 결합을 형성시킨다. 땜납 표면의 수산기와 상기 화합물 X에 있어서의 상기 수산기와 반응 가능한 관능기를 반응시킴으로써, 땜납 표면에 카르복실기 또는 아미노기를 포함하는 기가 공유 결합되어 있는 도전성 입자를 용이하게 얻을 수 있고, 땜납 표면에 에테르 결합 또는 에스테르 결합을 통해 카르복실기 또는 아미노기를 포함하는 기가 공유 결합되어 있는 도전성 입자를 얻을 수도 있다. 상기 땜납 표면의 수산기에 상기 수산기와 반응 가능한 관능기를 반응시킴으로써, 땜납 표면에, 상기 화합물 X를 공유 결합의 형태로 화학 결합시킬 수 있다.
상기 수산기와 반응 가능한 관능기로서는, 수산기, 카르복실기, 에스테르기 및 카르보닐기 등을 들 수 있다. 수산기 또는 카르복실기가 바람직하다. 상기 수산기와 반응 가능한 관능기는, 수산기여도 되고, 카르복실기여도 된다.
수산기와 반응 가능한 관능기를 갖는 화합물로서는, 레불린산, 글루타르산, 글리콜산, 숙신산, 말산, 옥살산, 말론산, 아디프산, 5-케토헥산산, 3-히드록시프로피온산, 4-아미노부티르산, 3-머캅토프로피온산, 3-머캅토이소부틸산, 3-메틸티오프로피온산, 3-페닐프로피온산, 3-페닐이소부틸산, 4-페닐부티르산, 데칸산, 도데칸산, 테트라데칸산, 펜타데칸산, 헥사데칸산, 9-헥사데센산, 헵타데칸산, 스테아르산, 올레산, 박센산, 리놀레산, (9,12,15)-리놀렌산, 노나데칸산, 아라키드산, 데칸디오산 및 도데칸디오산 등을 들 수 있다. 글루타르산 또는 글리콜산이 바람직하다. 상기 수산기와 반응 가능한 관능기를 갖는 화합물은 1종만이 사용되어도 되고, 2종 이상이 병용되어도 된다. 상기 수산기와 반응 가능한 관능기를 갖는 화합물은, 카르복실기를 적어도 1개 갖는 화합물인 것이 바람직하다.
상기 화합물 X는, 플럭스 작용을 갖는 것이 바람직하고, 상기 화합물 X는, 땜납 표면에 결합한 상태에서 플럭스 작용을 갖는 것이 바람직하다. 플럭스 작용을 갖는 화합물은, 땜납 표면의 산화막 및 전극 표면의 산화막을 제거 가능하다. 카르복실기는 플럭스 작용을 갖는다.
플럭스 작용을 갖는 화합물로서는, 레불린산, 글루타르산, 글리콜산, 숙신산, 5-케토헥산산, 3-히드록시프로피온산, 4-아미노부티르산, 3-머캅토프로피온산, 3-머캅토이소부틸산, 3-메틸티오프로피온산, 3-페닐프로피온산, 3-페닐이소부틸산 및 4-페닐부티르산 등을 들 수 있다. 글루타르산 또는 글리콜산이 바람직하다. 상기 플럭스 작용을 갖는 화합물은 1종만이 사용되어도 되며, 2종 이상이 병용되어도 된다.
접속 구조체에 있어서의 접속 저항을 효과적으로 낮추고, 보이드의 발생을 효과적으로 억제하는 관점에서는, 상기 화합물 X에 있어서의 상기 수산기와 반응 가능한 관능기가, 수산기 또는 카르복실기인 것이 바람직하다. 상기 화합물 X에 있어서의 상기 수산기와 반응 가능한 관능기는, 수산기여도 되고, 카르복실기여도 된다. 상기 수산기와 반응 가능한 관능기가 카르복실기인 경우에는, 상기 화합물 X는, 카르복실기를 적어도 2개 갖는 것이 바람직하다. 카르복실기를 적어도 2개 갖는 화합물의 일부의 카르복실기를, 땜납 표면의 수산기에 반응시킴으로써, 땜납 표면에 카르복실기를 포함하는 기가 공유 결합되어 있는 도전성 입자가 얻어진다.
상기 도전성 입자의 제조 방법은, 예를 들어 도전성 입자를 사용하여, 해당 도전성 입자, 수산기와 반응 가능한 관능기와 카르복실기를 갖는 화합물, 촉매 및 용매를 혼합하는 공정을 구비한다. 상기 도전성 입자의 제조 방법에서는, 상기 혼합 공정에 의해, 땜납 표면에, 카르복실기를 포함하는 기가 공유 결합되어 있는 도전성 입자를 용이하게 얻을 수 있다.
또한, 상기 도전성 입자의 제조 방법에서는, 도전성 입자를 사용하여, 해당 도전성 입자, 상기 수산기와 반응 가능한 관능기와 카르복실기를 갖는 화합물, 상기 촉매 및 상기 용매를 혼합하고, 가열하는 것이 바람직하다. 혼합 및 가열 공정에 의해, 땜납 표면에, 카르복실기를 포함하는 기가 공유 결합되어 있는 도전성 입자를 한층 더 용이하게 얻을 수 있다.
상기 용매로서는, 메탄올, 에탄올, 프로판올 및 부탄올 등의 알코올 용매나, 아세톤, 메틸에틸케톤, 아세트산에틸, 톨루엔 및 크실렌 등을 들 수 있다. 상기 용매는 유기 용매인 것이 바람직하고, 톨루엔인 것이 보다 바람직하다. 상기 용매는, 1종만이 사용되어도 되며, 2종 이상이 병용되어도 된다.
상기 촉매로서는, p-톨루엔술폰산, 벤젠술폰산 및 10-캄포술폰산 등을 들 수 있다. 상기 촉매는 p-톨루엔술폰산인 것이 바람직하다. 상기 촉매는 1종만이 사용되어도 되며, 2종 이상이 병용되어도 된다.
상기 혼합 시에 가열하는 것이 바람직하다. 가열 온도는 바람직하게는 90℃ 이상, 보다 바람직하게는 100℃ 이상이고, 바람직하게는 130℃ 이하, 보다 바람직하게는 110℃ 이하이다.
접속 구조체에 있어서의 접속 저항을 효과적으로 낮추고, 보이드의 발생을 효과적으로 억제하는 관점에서는, 상기 도전성 입자는, 이소시아네이트 화합물을 사용하여, 땜납 표면의 수산기에, 상기 이소시아네이트 화합물을 반응시키는 공정을 거쳐 얻어지는 것이 바람직하다. 상기 반응에서는, 공유 결합을 형성시킨다. 땜납 표면의 수산기와 상기 이소시아네이트 화합물을 반응시킴으로써, 땜납 표면에, 이소시아네이트기에서 유래하는 기의 질소 원자가 공유 결합하고 있는 도전성 입자를 용이하게 얻을 수 있다. 상기 땜납 표면의 수산기에 상기 이소시아네이트 화합물을 반응시킴으로써, 땜납 표면에, 이소시아네이트기에서 유래하는 기를 공유 결합의 형태로 화학 결합시킬 수 있다.
또한, 이소시아네이트기에서 유래하는 기에는, 실란 커플링제를 용이하게 반응시킬 수 있다. 상기 도전성 입자를 용이하게 얻을 수 있으므로, 상기 카르복실기를 포함하는 기가, 카르복실기를 갖는 실란 커플링제를 사용한 반응에 의해 도입되어 있거나, 또는 실란 커플링제를 사용한 반응 후에, 실란 커플링제에서 유래하는 기에 카르복실기를 적어도 하나 갖는 화합물을 반응시킴으로써 도입되어 있는 것이 바람직하다. 상기 도전성 입자는, 상기 이소시아네이트 화합물을 사용하여, 땜납 표면의 수산기에, 상기 이소시아네이트 화합물을 반응시킨 후, 카르복실기를 적어도 하나 갖는 화합물을 반응시킴으로써 얻어지는 것이 바람직하다.
접속 구조체에 있어서의 접속 저항을 효과적으로 낮추고, 보이드의 발생을 효과적으로 억제하는 관점에서는, 상기 카르복실기를 적어도 하나 갖는 화합물이, 카르복실기를 복수 갖는 것이 바람직하다.
상기 이소시아네이트 화합물로서는, 디페닐메탄-4,4'-디이소시아네이트(MDI), 헥사메틸렌디이소시아네이트(HDI), 톨루엔디이소시아네이트(TDI) 및 이소포론디이소시아네이트(IPDI) 등을 들 수 있다. 이들 이외의 이소시아네이트 화합물을 사용해도 된다. 이 화합물을 땜납 표면에 반응시킨 후, 남은 이소시아네이트기와, 그 남은 이소시아네이트기와 반응성을 갖고, 또한 카르복실기를 갖는 화합물을 반응시킴으로써, 땜납 표면에 상기 식(X)로 표시되는 기를 통해 카르복실기를 도입할 수 있다.
상기 이소시아네이트 화합물로서는, 불포화 이중 결합을 갖고, 또한 이소시아네이트기를 갖는 화합물을 사용해도 된다. 예를 들어, 2-아크릴로일옥시에틸이소시아네이트 및 2-이소시아네이토에틸메타크릴레이트를 들 수 있다. 이 화합물의 이소시아네이트기를 땜납 표면에 반응시킨 후, 잔존하고 있는 불포화 이중 결합에 대하여 반응성을 갖는 관능기를 갖고, 또한 카르복실기를 갖는 화합물을 반응시킴으로써, 땜납 표면에 상기 식(X)로 표시되는 기를 통해 카르복실기를 도입할 수 있다.
상기 실란 커플링제로서는, 3-이소시아네이트프로필트리에톡시실란(신에츠 실리콘사 제조 「KBE-9007」), 및 3-이소시아네이트프로필트리메톡시실란(모멘티브(MOMENTIVE)사 제조 「Y-5187」) 등을 들 수 있다. 상기 실란 커플링제는, 1종만이 사용되어도 되며, 2종 이상이 병용되어도 된다.
상기 카르복실기를 적어도 하나 갖는 화합물로서는, 레불린산, 글루타르산, 글리콜산, 숙신산, 말산, 옥살산, 말론산, 아디프산, 5-케토헥산산, 3-히드록시프로피온산, 4-아미노부티르산, 3-머캅토프로피온산, 3-머캅토이소부틸산, 3-메틸티오프로피온산, 3-페닐프로피온산, 3-페닐이소부틸산, 4-페닐부티르산, 데칸산, 도데칸산, 테트라데칸산, 펜타데칸산, 헥사데칸산, 9-헥사데센산, 헵타데칸산, 스테아르산, 올레산, 박센산, 리놀레산, (9,12,15)-리놀렌산, 노나데칸산, 아라키드산, 데칸디오산 및 도데칸디오산 등을 들 수 있다. 글루타르산, 아디프산 또는 글리콜산이 바람직하다. 상기 카르복실기를 적어도 하나 갖는 화합물은 1종만이 사용되어도 되고, 2종 이상이 병용되어도 된다.
상기 이소시아네이트 화합물을 사용하여, 땜납 표면의 수산기에, 상기 이소시아네이트 화합물을 반응시킨 후, 카르복실기를 복수 갖는 화합물의 일부의 카르복실기를, 땜납 표면의 수산기와 반응시킴으로써, 카르복실기를 포함하는 기를 잔존시킬 수 있다.
상기 도전성 입자의 제조 방법에서는, 도전성 입자를 사용하고, 또한 이소시아네이트 화합물을 사용하여, 땜납 표면의 수산기에, 상기 이소시아네이트 화합물을 반응시킨 후, 카르복실기를 적어도 하나 갖는 화합물을 반응시켜, 땜납 표면에, 상기 식(X)로 표시되는 기를 통해, 카르복실기를 포함하는 기가 결합되어 있는 도전성 입자를 얻는다. 상기 도전성 입자의 제조 방법에서는, 상기 공정에 의해, 땜납 표면에, 카르복실기를 포함하는 기가 도입된 도전성 입자를 용이하게 얻을 수 있다.
상기 도전성 입자의 구체적인 제조 방법으로서는, 이하의 방법을 들 수 있다. 유기 용매에 도전성 입자를 분산시키고, 이소시아네이트기를 갖는 실란 커플링제를 첨가한다. 그 후, 도전성 입자의 땜납 표면의 수산기와 이소시아네이트기와의 반응 촉매를 사용하여, 땜납 표면에 실란 커플링제를 공유 결합시킨다. 이어서, 실란 커플링제의 규소 원자에 결합되어 있는 알콕시기를 가수 분해함으로써, 수산기를 생성시킨다. 생성된 수산기에, 카르복실기를 적어도 하나 갖는 화합물의 카르복실기를 반응시킨다.
또한, 상기 도전성 입자의 구체적인 제조 방법으로서는, 이하의 방법을 들 수 있다. 유기 용매에 도전성 입자를 분산시키고, 이소시아네이트기와 불포화 이중 결합을 갖는 화합물을 첨가한다. 그 후, 도전성 입자의 땜납 표면의 수산기와 이소시아네이트기와의 반응 촉매를 사용하여, 공유 결합을 형성시킨다. 그 후, 도입된 불포화 이중 결합에 대하여, 불포화 이중 결합 및 카르복실기를 갖는 화합물을 반응시킨다.
도전성 입자의 땜납 표면의 수산기와 이소시아네이트기와의 반응 촉매로서는, 주석계 촉매(디부틸주석디라우레이트 등), 아민계 촉매(트리에틸렌디아민 등), 카르복실레이트 촉매(나프텐산납, 아세트산칼륨 등), 및 트리알킬포스핀 촉매(트리에틸포스핀 등) 등을 들 수 있다.
접속 구조체에 있어서의 접속 저항을 효과적으로 낮추고, 보이드의 발생을 효과적으로 억제하는 관점에서는, 상기 카르복실기를 적어도 하나 갖는 화합물은, 하기 식(1)로 표시되는 화합물인 것이 바람직하다. 하기 식(1)로 표시되는 화합물은, 플럭스 작용을 갖는다. 또한, 하기 식(1)로 표시되는 화합물은, 땜납 표면에 도입된 상태에서 플럭스 작용을 갖는다.
Figure pct00002
상기 식(1) 중, X는, 수산기와 반응 가능한 관능기를 나타내고, R은, 탄소수 1 내지 5의 2가의 유기기를 나타낸다. 해당 유기기는, 탄소 원자와 수소 원자와 산소 원자를 포함하고 있어도 된다. 해당 유기기는 탄소수 1 내지 5의 2가의 탄화수소기여도 된다. 상기 유기기의 주쇄는 2가의 탄화수소기인 것이 바람직하다. 해당 유기기에서는, 2가의 탄화수소기에 카르복실기나 수산기가 결합되어 있어도 된다. 상기 식(1)로 표시되는 화합물에는, 예를 들어 시트르산이 포함된다.
상기 카르복실기를 적어도 하나 갖는 화합물은, 하기 식(1A) 또는 하기 식(1B)로 표시되는 화합물인 것이 바람직하다. 상기 카르복실기를 적어도 하나 갖는 화합물은, 하기 식(1A)로 표시되는 화합물인 것이 바람직하고, 하기 식(1B)로 표시되는 화합물인 것이 보다 바람직하다.
Figure pct00003
상기 식(1A) 중, R은, 탄소수 1 내지 5의 2가의 유기기를 나타낸다. 상기 식(1A) 중의 R은 상기 식(1) 중의 R과 동일하다.
Figure pct00004
상기 식(1B) 중, R은, 탄소수 1 내지 5의 2가의 유기기를 나타낸다. 상기 식(1B) 중의 R은 상기 식(1) 중의 R과 동일하다.
땜납 표면에, 하기 식(2A) 또는 하기 식(2B)로 표시되는 기가 결합되어 있는 것이 바람직하다. 땜납 표면에, 하기 식(2A)로 표시되는 기가 결합되어 있는 것이 바람직하고, 하기 식(2B)로 표시되는 기가 결합되어 있는 것이 보다 바람직하다. 또한, 하기 식(2A) 및 하기 식(2B)에 있어서, 좌측 단부는 결합 부위를 나타낸다.
Figure pct00005
상기 식(2A) 중, R은, 탄소수 1 내지 5의 2가의 유기기를 나타낸다. 상기 식(2A) 중의 R은 상기 식(1) 중의 R과 동일하다.
Figure pct00006
상기 식(2B) 중, R은, 탄소수 1 내지 5의 2가의 유기기를 나타낸다. 상기 식(2B) 중의 R은 상기 식(1) 중의 R과 동일하다.
땜납 표면의 습윤성을 높이는 관점에서는, 상기 카르복실기를 적어도 하나 갖는 화합물의 분자량은, 바람직하게는 10000 이하, 보다 바람직하게는 1000 이하, 더욱 바람직하게는 500 이하이다.
상기 분자량은, 상기 카르복실기를 적어도 하나 갖는 화합물이 중합체가 아닌 경우, 및 상기 카르복실기를 적어도 하나 갖는 화합물의 구조식을 특정할 수 있는 경우에는, 당해 구조식으로부터 산출할 수 있는 분자량을 의미한다. 또한, 상기 카르복실기를 적어도 하나 갖는 화합물이 중합체인 경우에는, 중량 평균 분자량을 의미한다.
도전 접속 시에 도전성 입자의 응집성을 효과적으로 높일 수 있는 점에서, 상기 도전성 입자는, 도전성 입자 본체와, 상기 도전성 입자 본체의 표면 위에 배치된 음이온 중합체를 갖는 것이 바람직하다. 상기 도전성 입자는, 도전성 입자 본체를 음이온 중합체 또는 음이온 중합체가 되는 화합물로 표면 처리함으로써 얻어지는 것이 바람직하다. 상기 도전성 입자는, 음이온 중합체 또는 음이온 중합체가 되는 화합물에 의한 표면 처리물인 것이 바람직하다. 상기 음이온 중합체 및 상기 음이온 중합체가 되는 화합물은 각각, 1종만이 사용되어도 되며, 2종 이상이 병용되어도 된다. 상기 음이온 중합체는, 산성기를 갖는 중합체이다.
도전성 입자 본체를 음이온 중합체로 표면 처리하는 방법으로서는, 음이온 중합체로서, 예를 들어 (메트)아크릴산을 공중합한 (메트)아크릴 중합체, 디카르복실산과 디올로부터 합성되며 또한 양쪽 말단에 카르복실기를 갖는 폴리에스테르 중합체, 디카르복실산의 분자 간 탈수 축합 반응에 의해 얻어지며 또한 양쪽 말단에 카르복실기를 갖는 중합체, 디카르복실산과 디아민으로부터 합성되며 또한 양쪽 말단에 카르복실기를 갖는 폴리에스테르 중합체, 및 카르복실기를 갖는 변성 폴리비닐알코올(닛폰 고세이 가가쿠사 제조 「고세넥스 T」) 등을 사용하여, 음이온 중합체의 카르복실기와, 도전성 입자 본체의 표면의 수산기를 반응시키는 방법을 들 수 있다.
상기 음이온 중합체의 음이온 부분으로서는, 상기 카르복실기를 들 수 있고, 그 이외에는, 토실기(p-H3CC6H4S(=O)2-), 술폰산 이온기(-SO3 -) 및 인산 이온기(-PO4 -) 등을 들 수 있다.
또한, 표면 처리의 다른 방법으로서는, 도전성 입자 본체의 표면의 수산기와 반응하는 관능기를 갖고, 추가로 부가, 축합 반응에 의해 중합 가능한 관능기를 갖는 화합물을 사용하여, 이 화합물을 도전성 입자 본체의 표면 위에서 중합체화하는 방법을 들 수 있다. 도전성 입자 본체의 표면의 수산기와 반응하는 관능기로서는, 카르복실기 및 이소시아네이트기 등을 들 수 있고, 부가, 축합 반응에 의해 중합하는 관능기로서는, 수산기, 카르복실기, 아미노기 및 (메트)아크릴로일기를 들 수 있다.
상기 음이온 중합체의 중량 평균 분자량은 바람직하게는 2000 이상, 보다 바람직하게는 3000 이상이며, 바람직하게는 10000 이하, 보다 바람직하게는 8000 이하이다. 상기 중량 평균 분자량이 상기 하한 이상 및 상기 상한 이하이면, 도전성 입자의 표면에 충분한 양의 전하, 및 플럭스성을 도입할 수 있다. 이에 의해, 도전 접속 시에 도전성 입자의 응집성을 효과적으로 높일 수 있으며, 또한, 접속 대상 부재의 접속 시에, 전극 표면의 산화막을 효과적으로 제거할 수 있다.
상기 중량 평균 분자량이 상기 하한 이상 및 상기 상한 이하이면, 도전성 입자 본체의 표면 위에 음이온 중합체를 배치하는 것이 용이하고, 도전 접속 시에 땜납 입자의 응집성을 효과적으로 높일 수 있으며, 전극 위에 도전성 입자를 한층 더 효율적으로 배치할 수 있다.
상기 중량 평균 분자량은, 겔 투과 크로마토그래피(GPC)에 의해 측정된 폴리스티렌 환산에서의 중량 평균 분자량을 나타낸다.
음이온 중합체의 중량 평균 분자량은, 도전성 입자 중의 땜납을 용해시키고, 음이온 중합체의 분해를 일으키지 않는 희염산 등에 의해, 도전성 입자를 제거한 후, 잔존하고 있는 음이온 중합체의 중량 평균 분자량을 측정함으로써 구할 수 있다.
음이온 중합체의 도전성 입자의 표면에 있어서의 도입량에 관해서는, 도전성 입자 1g당 산가가, 바람직하게는 1㎎KOH 이상, 보다 바람직하게는 2㎎KOH 이상이며, 바람직하게는 10㎎KOH 이하, 보다 바람직하게는 6㎎KOH 이하이다.
상기 산가는 이하와 같이 하여 측정 가능하다. 도전성 입자 1g을 아세톤 36g에 첨가하고, 초음파로 1분간 분산시킨다. 그 후, 지시약으로서 페놀프탈레인을 사용하여, 0.1mol/L의 수산화칼륨에탄올 용액으로 적정한다.
다음으로, 도면을 참조하면서, 도전성 입자의 구체예를 설명한다.
도 4는, 도전 재료에 사용 가능한 도전성 입자의 제1 예를 나타내는 단면도이다.
도 4에 도시한 도전성 입자(21)는 땜납 입자이다. 도전성 입자(21)는, 전체가 땜납에 의해 형성되어 있다. 도전성 입자(21)는, 기재 입자를 코어에 갖지 않으며, 코어 셸 입자가 아니다. 도전성 입자(21)는, 중심 부분 및 도전부의 외표면 부분이 모두 땜납에 의해 형성되어 있다.
도 5는, 도전 재료에 사용 가능한 도전성 입자의 제2 예를 나타내는 단면도이다.
도 5에 도시한 도전성 입자(31)는, 기재 입자(32)와, 기재 입자(32)의 표면 위에 배치된 도전부(33)를 구비한다. 도전부(33)는, 기재 입자(32)의 표면을 피복하고 있다. 도전성 입자(31)는, 기재 입자(32)의 표면이 도전부(33)에 의해 피복된 피복 입자이다.
도전부(33)는, 제2 도전부(33A)와 땜납부(33B)(제1 도전부)를 갖는다. 도전성 입자(31)는, 기재 입자(32)와 땜납부(33B)의 사이에, 제2 도전부(33A)를 구비한다. 따라서, 도전성 입자(31)는, 기재 입자(32)와, 기재 입자(32)의 표면 위에 배치된 제2 도전부(33A)와, 제2 도전부(33A)의 외표면 위에 배치된 땜납부(33B)를 구비한다.
도 6은, 도전 재료에 사용 가능한 도전성 입자의 제3 예를 나타내는 단면도이다.
상기한 바와 같이 도전성 입자(31)에 있어서의 도전부(33)는 2층 구조를 갖는다. 도 6에 도시한 도전성 입자(41)는, 단층의 도전부로서, 땜납부(42)를 갖는다. 도전성 입자(41)는, 기재 입자(32)와, 기재 입자(32)의 표면 위에 배치된 땜납부(42)를 구비한다.
상기 기재 입자로서는, 수지 입자, 금속 입자를 제외한 무기 입자, 유기 무기 하이브리드 입자 및 금속 입자 등을 들 수 있다. 상기 기재 입자는, 금속을 제외한 기재 입자인 것이 바람직하고, 수지 입자, 금속 입자를 제외한 무기 입자 또는 유기 무기 하이브리드 입자인 것이 바람직하다. 상기 기재 입자는 구리 입자여도 된다. 상기 기재 입자는, 코어와, 해당 코어의 표면 위에 배치된 셸을 갖고 있어도 되고, 코어 셸 입자여도 된다. 상기 코어가 유기 코어여도 되고, 상기 셸이 무기 셸이어도 된다.
상기 수지 입자를 형성하기 위한 수지로서, 다양한 유기물이 적합하게 사용된다. 상기 수지 입자를 형성하기 위한 수지로서는, 예를 들어 폴리에틸렌, 폴리프로필렌, 폴리스티렌, 폴리염화비닐, 폴리염화비닐리덴, 폴리이소부틸렌, 폴리부타디엔 등의 폴리올레핀 수지; 폴리메틸메타크릴레이트 및 폴리메틸아크릴레이트 등의 아크릴 수지; 폴리카르보네이트, 폴리아미드, 페놀포름알데히드 수지, 멜라민포름알데히드 수지, 벤조구아나민포름알데히드 수지, 요소포름알데히드 수지, 페놀 수지, 멜라민 수지, 벤조구아나민 수지, 요소 수지, 에폭시 수지, 불포화 폴리에스테르 수지, 포화 폴리에스테르 수지, 폴리에틸렌테레프탈레이트, 폴리술폰, 폴리페닐렌옥시드, 폴리아세탈, 폴리이미드, 폴리아미드이미드, 폴리에테르에테르케톤, 폴리에테르술폰, 디비닐벤젠 중합체, 및 디비닐벤젠계 공중합체 등을 들 수 있다. 상기 디비닐벤젠계 공중합체 등으로서는, 디비닐벤젠-스티렌 공중합체 및 디비닐벤젠-(메트)아크릴산에스테르 공중합체 등을 들 수 있다. 상기 수지 입자의 경도를 적합한 범위로 용이하게 제어할 수 있으므로, 상기 수지 입자를 형성하기 위한 수지는, 에틸렌성 불포화기를 갖는 중합성 단량체를 1종 또는 2종 이상 중합시킨 중합체인 것이 바람직하다.
상기 수지 입자를, 에틸렌성 불포화기를 갖는 중합성 단량체를 중합시켜 얻는 경우에는, 해당 에틸렌성 불포화기를 갖는 중합성 단량체로서는, 비가교성의 단량체와 가교성의 단량체를 들 수 있다.
상기 비가교성의 단량체로서는, 예를 들어 스티렌, α-메틸스티렌 등의 스티렌계 단량체; (메트)아크릴산, 말레산, 무수 말레산 등의 카르복실기 함유 단량체; 메틸(메트)아크릴레이트, 에틸(메트)아크릴레이트, 프로필(메트)아크릴레이트, 부틸(메트)아크릴레이트, 2-에틸헥실(메트)아크릴레이트, 라우릴(메트)아크릴레이트, 세틸(메트)아크릴레이트, 스테아릴(메트)아크릴레이트, 시클로헥실(메트)아크릴레이트, 이소보르닐(메트)아크릴레이트 등의 알킬(메트)아크릴레이트 화합물; 2-히드록시에틸(메트)아크릴레이트, 글리세롤(메트)아크릴레이트, 폴리옥시에틸렌(메트)아크릴레이트, 글리시딜(메트)아크릴레이트 등의 산소 원자 함유 (메트)아크릴레이트 화합물; (메트)아크릴로니트릴 등의 니트릴 함유 단량체; 메틸비닐에테르, 에틸비닐에테르, 프로필비닐에테르 등의 비닐에테르 화합물; 아세트산비닐, 부티르산비닐, 라우르산비닐, 스테아르산비닐 등의 산비닐에스테르 화합물; 에틸렌, 프로필렌, 이소프렌, 부타디엔 등의 불포화 탄화수소; 트리플루오로메틸(메트)아크릴레이트, 펜타플루오로에틸(메트)아크릴레이트, 염화비닐, 불화비닐, 클로로스티렌 등의 할로겐 함유 단량체 등을 들 수 있다.
상기 가교성의 단량체로서는, 예를 들어 테트라메틸올메탄테트라(메트)아크릴레이트, 테트라메틸올메탄트리(메트)아크릴레이트, 테트라메틸올메탄디(메트)아크릴레이트, 트리메틸올프로판트리(메트)아크릴레이트, 디펜타에리트리톨헥사(메트)아크릴레이트, 디펜타에리트리톨펜타(메트)아크릴레이트, 글리세롤트리(메트)아크릴레이트, 글리세롤디(메트)아크릴레이트, (폴리)에틸렌글리콜디(메트)아크릴레이트, (폴리)프로필렌글리콜디(메트)아크릴레이트, (폴리)테트라메틸렌글리콜디(메트)아크릴레이트, 1,4-부탄디올디(메트)아크릴레이트 등의 다관능 (메트)아크릴레이트 화합물; 트리알릴(이소)시아누레이트, 트리알릴트리멜리테이트, 디비닐벤젠, 디알릴프탈레이트, 디알릴아크릴아미드, 디알릴에테르, 및 γ-(메트)아크릴옥시프로필트리메톡시실란, 트리메톡시실릴스티렌, 비닐트리메톡시실란 등의 실란 함유 단량체 등을 들 수 있다.
상기 에틸렌성 불포화기를 갖는 중합성 단량체를, 공지된 방법에 의해 중합시킴으로써, 상기 수지 입자를 얻을 수 있다. 이 방법으로서는, 예를 들어, 라디칼 중합 개시제의 존재하에서 현탁 중합하는 방법, 및 비가교의 시드 입자를 사용하여 라디칼 중합 개시제와 함께 단량체를 팽윤시켜 중합하는 방법 등을 들 수 있다.
상기 기재 입자가 금속을 제외한 무기 입자 또는 유기 무기 하이브리드 입자인 경우에는, 기재 입자를 형성하기 위한 무기물로서는, 실리카, 알루미나, 티타늄산바륨, 지르코니아 및 카본 블랙 등을 들 수 있다. 상기 무기물은, 금속이 아닌 것이 바람직하다. 상기 실리카에 의해 형성된 입자로서는 특별히 한정되지 않지만, 예를 들어 가수 분해성 알콕시실릴기를 2개 이상 갖는 규소 화합물을 가수 분해하여 가교 중합체 입자를 형성한 후에, 필요에 따라 소성을 행함으로써 얻어지는 입자를 들 수 있다. 상기 유기 무기 하이브리드 입자로서는, 예를 들어 가교된 알콕시실릴 중합체와 아크릴 수지에 의해 형성된 유기 무기 하이브리드 입자 등을 들 수 있다.
상기 기재 입자가 금속 입자인 경우에, 해당 금속 입자를 형성하기 위한 금속으로서는, 은, 구리, 니켈, 규소, 금 및 티타늄 등을 들 수 있다. 상기 기재 입자가 금속 입자인 경우에, 해당 금속 입자는 구리 입자인 것이 바람직하다. 단, 상기 기재 입자는 금속 입자가 아닌 것이 바람직하다.
상기 기재 입자의 표면 위에 도전부를 형성하는 방법, 및 상기 기재 입자의 표면 위 또는 상기 제2 도전부의 표면 위에 땜납부를 형성하는 방법은 특별히 한정되지 않는다. 상기 도전부 및 상기 땜납부를 형성하는 방법으로서는, 예를 들어, 무전해 도금에 의한 방법, 전기 도금에 의한 방법, 물리적인 충돌에 의한 방법, 메카노케미컬 반응에 의한 방법, 물리적 증착 또는 물리적 흡착에 의한 방법, 및 금속 분말 혹은 금속 분말과 결합제를 포함하는 페이스트를 기재 입자의 표면에 코팅하는 방법 등을 들 수 있다. 무전해 도금, 전기 도금 또는 물리적인 충돌에 의한 방법이 적합하다. 상기 물리적 증착에 의한 방법으로서는, 진공 증착, 이온 플레이팅 및 이온 스퍼터링 등의 방법을 들 수 있다. 또한, 상기 물리적인 충돌에 의한 방법에서는, 예를 들어 세타 콤포저(도쿠주 고사쿠쇼사 제조) 등이 사용된다.
상기 기재 입자의 융점은, 상기 도전부 및 상기 땜납부의 융점보다도 높은 것이 바람직하다. 상기 기재 입자의 융점은, 바람직하게는 160℃를 초과하고, 보다 바람직하게는 300℃를 초과하고, 더욱 바람직하게는 400℃를 초과하며, 특히 바람직하게는 450℃를 초과한다. 또한, 상기 기재 입자의 융점은 400℃ 미만이어도 된다. 상기 기재 입자의 융점은 160℃ 이하여도 된다. 상기 기재 입자의 연화점은 260℃ 이상인 것이 바람직하다. 상기 기재 입자의 연화점은 260℃ 미만이어도 된다.
상기 도전성 입자는, 단층의 땜납부를 갖고 있어도 된다. 상기 도전성 입자는, 복수 층의 도전부(땜납부, 제2 도전부)를 갖고 있어도 된다. 즉, 상기 도전성 입자에서는, 도전부를 2층 이상 적층해도 된다. 상기 도전부가 2층 이상인 경우, 상기 도전성 입자는, 도전부의 외표면 부분에 땜납을 갖는 것이 바람직하다.
상기 땜납은, 융점이 450℃ 이하인 금속(저융점 금속)인 것이 바람직하다. 상기 땜납부는, 융점이 450℃ 이하인 금속층(저융점 금속층)인 것이 바람직하다. 상기 저융점 금속층은, 저융점 금속을 포함하는 층이다. 상기 도전성 입자에 있어서의 땜납은, 융점이 450℃ 이하인 금속 입자(저융점 금속 입자)인 것이 바람직하다. 상기 저융점 금속 입자는, 저융점 금속을 포함하는 입자이다. 해당 저융점 금속이란, 융점이 450℃ 이하인 금속을 나타낸다. 저융점 금속의 융점은 바람직하게는 300℃ 이하, 보다 바람직하게는 160℃ 이하이다. 또한, 상기 도전성 입자에 있어서의 땜납은 주석을 포함하는 것이 바람직하다. 상기 땜납부에 포함되는 금속 100중량% 중 및 상기 도전성 입자에 있어서의 땜납에 포함되는 금속 100중량% 중, 주석의 함유량은 바람직하게는 30중량% 이상, 보다 바람직하게는 40중량% 이상, 더욱 바람직하게는 70중량% 이상, 특히 바람직하게는 90중량% 이상이다. 상기 도전성 입자에 있어서의 땜납에 포함되는 주석의 함유량이 상기 하한 이상이면 도전성 입자와 전극의 도통 신뢰성이 한층 더 높아진다.
또한, 상기 주석의 함유량은, 고주파 유도 결합 플라스마 발광 분광 분석 장치(호리바 세이사쿠쇼사 제조 「ICP-AES」), 또는 형광 X선 분석 장치(시마즈 세이사쿠쇼사 제조 「EDX-800HS」) 등을 사용하여 측정 가능하다.
상기 땜납을 도전부의 외표면 부분에 갖는 도전성 입자를 사용함으로써, 땜납이 용융되어 전극에 접합되어, 땜납이 전극 사이를 도통시킨다. 예를 들어, 땜납과 전극이 점 접촉이 아니라 면 접촉되기 쉽기 때문에, 접속 저항이 낮아진다. 또한, 땜납을 도전부의 외표면 부분에 갖는 도전성 입자의 사용에 의해, 땜납과 전극의 접합 강도가 높아지는 결과, 땜납과 전극의 박리가 한층 더 발생하기 어려워져, 도통 신뢰성이 효과적으로 높아진다.
상기 땜납부 및 상기 땜납 입자를 구성하는 저융점 금속은 특별히 한정되지 않는다. 해당 저융점 금속은 주석, 또는 주석을 포함하는 합금인 것이 바람직하다. 해당 합금은 주석-은 합금, 주석-구리 합금, 주석-은-구리 합금, 주석-비스무트 합금, 주석-아연 합금, 주석-인듐 합금 등을 들 수 있다. 전극에 대한 습윤성이 우수한 점에서, 상기 저융점 금속은 주석, 주석-은 합금, 주석-은-구리 합금, 주석-비스무트 합금, 주석-인듐 합금인 것이 바람직하다. 주석-비스무트 합금, 주석-인듐 합금인 것이 보다 바람직하다.
상기 땜납(땜납부)을 구성하는 재료는, JIS Z3001: 용접 용어에 기초하여, 액상선이 450℃ 이하인 용가재(溶加材)인 것이 바람직하다. 상기 땜납의 조성으로서는, 예를 들어 아연, 금, 은, 납, 구리, 주석, 비스무트, 인듐 등을 포함하는 금속 조성을 들 수 있다. 저융점이고 납 프리인 주석-인듐계(117℃ 공정(共晶)), 또는 주석-비스무트계(139℃ 공정)가 바람직하다. 즉, 상기 땜납은, 납을 포함하지 않는 것이 바람직하고, 주석과 인듐을 포함하는 땜납, 또는 주석과 비스무트를 포함하는 땜납인 것이 바람직하다.
상기 땜납과 전극의 접합 강도를 한층 더 높이기 위해서, 상기 도전성 입자에 있어서의 땜납은, 니켈, 구리, 안티몬, 알루미늄, 아연, 철, 금, 티타늄, 인, 게르마늄, 텔루륨, 코발트, 비스무트, 망간, 크롬, 몰리브덴, 팔라듐 등의 금속을 포함하고 있어도 된다. 또한, 땜납과 전극의 접합 강도를 더한층 높이는 관점에서는, 상기 도전성 입자에 있어서의 땜납은, 니켈, 구리, 안티몬, 알루미늄 또는 아연을 포함하는 것이 바람직하다. 땜납부 또는 도전성 입자에 있어서의 땜납과 전극의 접합 강도를 한층 더 높이는 관점에서는, 접합 강도를 높이기 위한 이들 금속의 함유량은, 상기 도전성 입자에 있어서의 땜납 100중량% 중, 바람직하게는 0.0001중량% 이상이며, 바람직하게는 1중량% 이하이다.
상기 제2 도전부의 융점은, 상기 땜납부의 융점보다도 높은 것이 바람직하다. 상기 제2 도전부의 융점은 바람직하게는 160℃를 초과하고, 보다 바람직하게는 300℃를 초과하고, 더욱 바람직하게는 400℃를 초과하고, 더한층 바람직하게는 450℃를 초과하고, 특히 바람직하게는 500℃를 초과하며, 가장 바람직하게는 600℃를 초과한다. 상기 땜납부는 융점이 낮기 때문에 도전 접속 시에 용융된다. 상기 제2 도전부는 도전 접속 시에 용융되지 않는 것이 바람직하다. 상기 도전성 입자는 땜납을 용융시켜 사용되는 것이 바람직하고, 상기 땜납부를 용융시켜 사용되는 것이 바람직하고, 상기 땜납부를 용융시키고 또한 상기 제2 도전부를 용융시키지 않고 사용되는 것이 바람직하다. 상기 제2 도전부의 융점이 상기 땜납부의 융점보다도 높음으로써, 도전 접속 시에, 상기 제2 도전부를 용융시키지 않고 상기 땜납부만을 용융시킬 수 있다.
상기 땜납부의 융점과 상기 제2 도전부의 융점의 차의 절댓값은, 0℃를 초과하고, 바람직하게는 5℃ 이상, 보다 바람직하게는 10℃ 이상, 더욱 바람직하게는 30℃ 이상, 특히 바람직하게는 50℃ 이상, 가장 바람직하게는 100℃ 이상이다.
상기 제2 도전부는 금속을 포함하는 것이 바람직하다. 상기 제2 도전부를 구성하는 금속은 특별히 한정되지 않는다. 해당 금속으로서는, 예를 들어 금, 은, 구리, 백금, 팔라듐, 아연, 납, 알루미늄, 코발트, 인듐, 니켈, 크롬, 티타늄, 안티몬, 비스무트, 게르마늄 및 카드뮴, 및 이들의 합금 등을 들 수 있다. 또한, 상기 금속으로서, 주석 도프 산화인듐(ITO)을 사용해도 된다. 상기 금속은 1종만이 사용되어도 되며, 2종 이상이 병용되어도 된다.
상기 제2 도전부는, 니켈층, 팔라듐층, 구리층 또는 금층인 것이 바람직하고, 니켈층 또는 금층인 것이 보다 바람직하고, 구리층인 것이 더욱 바람직하다. 도전성 입자는, 니켈층, 팔라듐층, 구리층 또는 금층을 갖는 것이 바람직하고, 니켈층 또는 금층을 갖는 것이 보다 바람직하며, 구리층을 갖는 것이 더욱 바람직하다. 이들 바람직한 도전부를 갖는 도전성 입자를 전극 사이의 접속에 사용함으로써, 전극 사이의 접속 저항이 한층 더 낮아진다. 또한, 이들 바람직한 도전부의 표면에는, 땜납부를 한층 더 용이하게 형성할 수 있다.
상기 땜납부의 두께는, 바람직하게는 0.005㎛ 이상, 보다 바람직하게는 0.01㎛ 이상이며, 바람직하게는 10㎛ 이하, 보다 바람직하게는 1㎛ 이하, 더욱 바람직하게는 0.3㎛ 이하이다. 땜납부의 두께가 상기 하한 이상 및 상기 상한 이하이면, 충분한 도전성이 얻어지고, 또한 도전성 입자가 지나치게 단단해지지 않아 전극 사이의 접속 시에 도전성 입자가 충분히 변형된다.
상기 도전성 입자의 형상은 특별히 한정되지 않는다. 상기 도전성 입자의 형상은, 구 형상이어도 되고, 편평 형상 등의 구 형상 이외의 형상이어도 된다.
상기 도전 재료 100중량% 중, 상기 도전성 입자의 함유량은 바람직하게는 1중량% 이상, 보다 바람직하게는 2중량% 이상, 더욱 바람직하게는 10중량% 이상, 특히 바람직하게는 20중량% 이상, 가장 바람직하게는 30중량% 이상이며, 바람직하게는 80중량% 이하, 보다 바람직하게는 60중량% 이하, 더욱 바람직하게는 50중량% 이하이다. 상기 도전성 입자의 함유량이 상기 하한 이상 및 상기 상한 이하이면, 전극 위에 도전성 입자에 있어서의 땜납을 한층 더 효율적으로 배치할 수 있고, 전극 사이에 도전성 입자에 있어서의 땜납을 많이 배치하는 것이 용이하여, 도통 신뢰성이 한층 더 높아진다. 도통 신뢰성을 한층 더 높이는 관점에서는, 상기 도전성 입자의 함유량은 많은 편이 바람직하다.
(열경화성 화합물)
상기 열경화성 화합물은, 가열에 의해 경화 가능한 화합물이다. 상기 열경화성 화합물로서는, 옥세탄 화합물, 에폭시 화합물, 에피술피드 화합물, (메트)아크릴 화합물, 페놀 화합물, 아미노 화합물, 불포화 폴리에스테르 화합물, 폴리우레탄 화합물, 실리콘 화합물 및 폴리이미드 화합물 등을 들 수 있다. 도전 재료의 경화성 및 점도를 한층 더 양호하게 하고, 접속 신뢰성을 한층 더 높이는 관점에서, 에폭시 화합물 또는 에피술피드 화합물이 바람직하고, 에폭시 화합물이 보다 바람직하다. 상기 도전 재료는 에폭시 화합물을 포함하는 것이 바람직하다. 상기 열경화성 화합물은, 1종만이 사용되어도 되고, 2종 이상이 병용되어도 된다.
전극의 부식을 한층 더 억제하고, 접속 저항을 한층 더 낮게 유지하는 관점에서는, 상기 열경화성 화합물은, 질소 원자를 갖는 열경화성 화합물을 포함하는 것이 바람직하고, 트리아진 골격을 갖는 열경화성 화합물을 포함하는 것이 바람직하다.
상기 질소 원자를 갖는 열경화성 화합물로서는 트리아진트리글리시딜에테르 등을 들 수 있으며, 닛산 가가쿠 고교사 제조 TEPIC 시리즈(TEPIC-G, TEPIC-S, TEPIC-SS, TEPIC-HP, TEPIC-L, TEPIC-PAS, TEPIC-VL, TEPIC-UC) 등을 들 수 있다.
상기 에폭시 화합물로서는, 방향족 에폭시 화합물을 들 수 있다. 레조르시놀형 에폭시 화합물, 나프탈렌형 에폭시 화합물, 비페닐형 에폭시 화합물 및 벤조페논형 에폭시 화합물 등의 결정성 에폭시 화합물이 바람직하다. 상온(23℃)에서 고체이며, 또한 용융 온도가 땜납의 융점 이하인 에폭시 화합물이 바람직하다. 용융 온도는 바람직하게는 100℃ 이하, 보다 바람직하게는 80℃ 이하, 바람직하게는 40℃ 이상이다. 상기 바람직한 에폭시 화합물을 사용함으로써 접속 대상 부재를 접합한 단계에서는, 점도가 높고, 반송 등의 충격에 의해 가속도가 부여되었을 때, 제1 접속 대상 부재와 제2 접속 대상 부재의 위치의 어긋남을 억제할 수 있고, 게다가, 경화 시의 열에 의해, 도전 재료의 점도를 크게 저하시킬 수 있어, 땜납의 응집을 효율적으로 진행시킬 수 있다.
상기 도전 재료 100중량% 중, 상기 열경화성 화합물의 함유량은, 바람직하게는 20중량% 이상, 보다 바람직하게는 40중량% 이상, 더욱 바람직하게는 50중량% 이상이며, 바람직하게는 99중량% 이하, 보다 바람직하게는 98중량% 이하, 더욱 바람직하게는 90중량% 이하, 특히 바람직하게는 80중량% 이하이다. 상기 열경화성 화합물의 함유량이, 상기 하한 이상 및 상기 상한 이하이면, 도전성 입자에 있어서의 땜납을 전극 위에 한층 더 효율적으로 배치하고, 전극 사이의 위치 어긋남을 한층 더 억제하여, 전극 사이의 도통 신뢰성을 한층 더 높일 수 있다. 내충격성을 한층 더 높이는 관점에서는, 상기 열경화성 화합물의 함유량은 많은 편이 바람직하다. 도전 재료의 경화성 및 점도를 한층 더 양호하게 하여, 접속 신뢰성을 한층 더 높이는 관점에서, 상기 도전 재료 100중량% 중, 상기 에폭시 화합물의 함유량은, 바람직하게는 10중량% 이상, 보다 바람직하게는 15중량% 이상이며, 바람직하게는 50중량% 이하, 보다 바람직하게는 30중량% 이하이다.
(열경화제)
상기 열경화제는, 상기 열경화성 화합물을 열경화시킨다. 상기 열경화제로서는, 이미다졸 경화제, 페놀 경화제, 티올 경화제, 아민 경화제, 산 무수물 경화제, 열 양이온 개시제(열 양이온 경화제) 및 열 라디칼 발생제 등이 있다. 상기 열경화제는, 1종만이 사용되어도 되며, 2종 이상이 병용되어도 된다.
상기 이미다졸 경화제로서는, 특별히 한정되지 않으며, 2-메틸이미다졸, 2-에틸-4-메틸이미다졸, 1-시아노에틸-2-페닐이미다졸, 1-시아노에틸-2-페닐이미다졸륨트리멜리테이트, 2,4-디아미노-6-[2'-메틸이미다졸릴-(1')]-에틸-s-트리아진 및 2,4-디아미노-6-[2'-메틸이미다졸릴-(1')]-에틸-s-트리아진이소시아누르산 부가물 등을 들 수 있다.
상기 티올 경화제로서는, 특별히 한정되지 않으며, 트리메틸올프로판트리스-3-머캅토프로피오네이트, 펜타에리트리톨테트라키스-3-머캅토프로피오네이트 및 디펜타에리트리톨헥사-3-머캅토프로피오네이트 등을 들 수 있다.
상기 티올 경화제의 용해도 파라미터는, 바람직하게는 9.5 이상이며, 바람직하게는 12 이하이다. 상기 용해도 파라미터는, Fedors법으로 계산된다. 예를 들어, 트리메틸올프로판트리스-3-머캅토프로피오네이트의 용해도 파라미터는 9.6, 디펜타에리트리톨헥사-3-머캅토프로피오네이트의 용해도 파라미터는 11.4이다.
상기 아민 경화제로서는, 특별히 한정되지 않으며, 헥사메틸렌디아민, 옥타메틸렌디아민, 데카메틸렌디아민, 3,9-비스(3-아미노프로필)-2,4,8,10-테트라스피로[5.5]운데칸, 비스(4-아미노시클로헥실)메탄, 메타페닐렌디아민 및 디아미노디페닐술폰 등을 들 수 있다.
상기 열 양이온 개시제로서는, 요오도늄계 양이온 경화제, 옥소늄계 양이온 경화제 및 술포늄계 양이온 경화제 등을 들 수 있다. 상기 요오도늄계 양이온 경화제로서는, 비스(4-tert-부틸페닐)요오도늄헥사플루오로포스페이트 등을 들 수 있다. 상기 옥소늄계 양이온 경화제로서는, 트리메틸옥소늄테트라플루오로보레이트 등을 들 수 있다. 상기 술포늄계 양이온 경화제로서는, 트리-p-톨릴술포늄헥사플루오로포스페이트 등을 들 수 있다.
상기 열 라디칼 발생제로서는, 특별히 한정되지 않으며, 아조 화합물 및 유기 과산화물 등을 들 수 있다. 상기 아조 화합물로서는, 아조비스이소부티로니트릴(AIBN) 등을 들 수 있다. 상기 유기 과산화물로서는, 디-tert-부틸퍼옥시드 및 메틸에틸케톤퍼옥시드 등을 들 수 있다.
상기 열경화제의 반응 개시 온도는, 바람직하게는 50℃ 이상, 보다 바람직하게는 70℃ 이상, 더욱 바람직하게는 80℃ 이상이고, 바람직하게는 250℃ 이하, 보다 바람직하게는 200℃ 이하, 더욱 바람직하게는 150℃ 이하, 특히 바람직하게는 140℃ 이하이다. 상기 열경화제의 반응 개시 온도가 상기 하한 이상 및 상기 상한 이하이면, 땜납이 전극 위에 한층 더 효율적으로 배치된다. 상기 열경화제의 반응 개시 온도는 80℃ 이상, 140℃ 이하인 것이 특히 바람직하다.
땜납을 전극 위에 한층 더 효율적으로 배치하는 관점에서는, 상기 열경화제의 반응 개시 온도는, 상기 도전성 입자에 있어서의 땜납의 융점보다도 높은 것이 바람직하고, 5℃ 이상 높은 것이 보다 바람직하며, 10℃ 이상 높은 것이 더욱 바람직하다.
상기 열경화제의 반응 개시 온도는, DSC에서의 발열 피크의 상승 개시의 온도를 의미한다.
상기 열경화제의 함유량은 특별히 한정되지 않는다. 상기 열경화성 화합물 100중량부에 대하여, 상기 열경화제의 함유량은, 바람직하게는 0.01중량부 이상, 보다 바람직하게는 1중량부 이상이며, 바람직하게는 200 중량부 이하, 보다 바람직하게는 100 중량부 이하, 더욱 바람직하게는 75 중량부 이하이다. 열경화제의 함유량이 상기 하한 이상이면, 도전 재료를 충분히 경화시키는 것이 용이하다. 열경화제의 함유량이 상기 상한 이하이면, 경화 후에 경화에 관여하지 않았던 잉여의 열경화제가 잔존하기 어려워지며, 또한 경화물의 내열성이 한층 더 높아진다.
(플럭스)
상기 도전 재료는 플럭스를 포함하는 것이 바람직하다. 플럭스의 사용에 의해, 땜납을 전극 위에 한층 더 효과적으로 배치할 수 있다. 해당 플럭스는 특별히 한정되지 않는다. 플럭스로서, 땜납 접합 등에 일반적으로 사용되고 있는 플럭스를 사용할 수 있다. 상기 도전 재료는, 플럭스를 포함하지 않아도 된다.
상기 플럭스로서는, 예를 들어 염화아연, 염화아연과 무기 할로겐화물의 혼합물, 염화아연과 무기산의 혼합물, 용융염, 인산, 인산의 유도체, 유기 할로겐화물, 히드라진, 유기산 및 송지 등을 들 수 있다. 상기 플럭스는 1종만이 사용되어도 되고, 2종 이상이 병용되어도 된다.
상기 용융염으로서는, 염화암모늄 등을 들 수 있다. 상기 유기산으로서는, 락트산, 시트르산, 스테아르산, 글루탐산 및 글루타르산 등을 들 수 있다. 상기 송지로서는, 활성화 송지 및 비활성화 송지 등을 들 수 있다. 상기 플럭스는, 카르복실기를 2개 이상 갖는 유기산 또는 송지인 것이 바람직하다. 상기 플럭스는, 카르복실기를 2개 이상 갖는 유기산이어도 되고, 송지여도 된다. 카르복실기를 2개 이상 갖는 유기산, 송지의 사용에 의해, 전극 사이의 도통 신뢰성이 한층 더 높아진다.
상기 송지는 아비에트산을 주성분으로 하는 로진류이다. 플럭스는 로진류인 것이 바람직하고, 아비에트산인 것이 보다 바람직하다. 이 바람직한 플럭스의 사용에 의해, 전극 사이의 도통 신뢰성이 한층 더 높아진다.
상기 플럭스의 활성 온도(융점)는, 바람직하게는 50℃ 이상, 보다 바람직하게는 70℃ 이상, 더욱 바람직하게는 80℃ 이상이고, 바람직하게는 200℃ 이하, 보다 바람직하게는 190℃ 이하, 한층 더 바람직하게는 160℃ 이하, 더욱 바람직하게는 150℃ 이하, 더한층 바람직하게는 140℃ 이하이다. 상기 플럭스의 활성 온도가 상기 하한 이상 및 상기 상한 이하이면, 플럭스 효과가 한층 더 효과적으로 발휘되어, 땜납이 전극 위에 한층 더 효율적으로 배치된다. 상기 플럭스의 활성 온도(융점)는 80℃ 이상, 190℃ 이하인 것이 바람직하다. 상기 플럭스의 활성 온도(융점)는 80℃ 이상, 140℃ 이하인 것이 특히 바람직하다.
플럭스의 활성 온도(융점)가 80℃ 이상, 190℃ 이하인 상기 플럭스로서는, 숙신산(융점 186℃), 글루타르산(융점 96℃), 아디프산(융점 152℃), 피멜산(융점 104℃), 수베르산(융점 142℃) 등의 디카르복실산, 벤조산(융점 122℃), 말산(융점 130℃) 등을 들 수 있다.
또한, 상기 플럭스의 비점은 200℃ 이하인 것이 바람직하다.
땜납을 전극 위에 한층 더 효율적으로 배치하는 관점에서는, 상기 플럭스의 융점은, 상기 도전성 입자에 있어서의 땜납의 융점보다도 높은 것이 바람직하고, 5℃ 이상 높은 것이 보다 바람직하며, 10℃ 이상 높은 것이 더욱 바람직하다.
땜납을 전극 위에 한층 더 효율적으로 배치하는 관점에서는, 상기 플럭스의 융점은, 상기 열경화제의 반응 개시 온도보다도 높은 것이 바람직하고, 5℃ 이상 높은 것이 보다 바람직하고, 10℃ 이상 높은 것이 더욱 바람직하다.
상기 플럭스는 도전 재료 중에 분산되어 있어도 되고, 도전성 입자의 표면 위에 부착되어 있어도 된다.
플럭스의 융점이 땜납의 융점보다 높음으로써, 전극 부분에 땜납을 효율적으로 응집시킬 수 있다. 이것은, 접합 시에 열을 부여한 경우, 접속 대상 부재 상에 형성된 전극과, 전극 주변의 접속 대상 부재의 부분을 비교하면, 전극 부분의 열전도율이 전극 주변의 접속 대상 부재 부분의 열전도율보다도 높음으로써, 전극 부분의 승온이 빠른 것에 기인한다. 도전성 입자에 있어서의 땜납의 융점을 초과한 단계에서는, 도전성 입자에 있어서의 땜납은 용해되지만, 표면에 형성된 산화 피막은, 플럭스의 융점(활성 온도)에 도달해 있지 않으므로, 제거되지 않는다. 이 상태에서, 전극 부분의 온도가 먼저, 플럭스의 융점(활성 온도)에 도달하기 때문에, 우선적으로 전극 위에 도달한 도전성 입자에 있어서의 땜납 표면의 산화 피막이 제거되는 것이나, 활성화한 플럭스에 의해 도전성 입자에 있어서의 땜납 표면의 전하가 중화되는 것에 의해, 땜납이 전극의 표면 위에 번질 수 있다. 이에 의해, 전극 위에 효율적으로 땜납을 응집시킬 수 있다.
상기 플럭스는, 가열에 의해 양이온을 방출하는 플럭스인 것이 바람직하다. 가열에 의해 양이온을 방출하는 플럭스의 사용에 의해, 땜납을 전극 위에 한층 더 효율적으로 배치할 수 있다.
상기 가열에 의해 양이온을 방출하는 플럭스로서는, 상기 열 양이온 개시제를 들 수 있다.
상기 도전 재료 100중량% 중, 상기 플럭스의 함유량은 바람직하게는 0.5중량% 이상이며, 바람직하게는 30중량% 이하, 보다 바람직하게는 25중량% 이하이다. 플럭스의 함유량이 상기 하한 이상 및 상기 상한 이하이면, 땜납 및 전극의 표면에 산화 피막이 한층 더 형성되기 어려워지며, 또한, 땜납 및 전극의 표면에 형성된 산화 피막을 한층 더 효과적으로 제거할 수 있다.
(다른 성분)
상기 도전 재료는, 필요에 따라서, 예를 들어 충전제, 증량제, 연화제, 가소제, 중합 촉매, 경화 촉매, 착색제, 산화 방지제, 열 안정제, 광 안정제, 자외선 흡수제, 활제, 대전 방지제 및 난연제 등의 각종 첨가제를 포함하고 있어도 된다.
(접속 구조체 및 접속 구조체의 제조 방법)
본 발명에 따른 접속 구조체는, 적어도 하나의 제1 전극을 표면에 갖는 제1 접속 대상 부재와, 적어도 하나의 제2 전극을 표면에 갖는 제2 접속 대상 부재와, 상기 제1 접속 대상 부재와 상기 제2 접속 대상 부재를 접속하고 있는 접속부를 구비한다. 본 발명에 따른 접속 구조체에서는, 상기 접속부의 재료가 전술한 도전 재료이며, 상기 접속부가, 전술한 도전 재료의 경화물이다. 본 발명에 따른 접속 구조체에서는, 상기 제1 전극과 상기 제2 전극이, 상기 접속부 중의 땜납부에 의해 전기적으로 접속되어 있다.
상기 접속 구조체의 제조 방법은, 전술한 도전 재료를 사용하여, 적어도 하나의 제1 전극을 표면에 갖는 제1 접속 대상 부재의 표면 위에, 상기 도전 재료를 배치하는 공정과, 상기 도전 재료의 상기 제1 접속 대상 부재측과는 반대의 표면 위에, 적어도 하나의 제2 전극을 표면에 갖는 제2 접속 대상 부재를, 상기 제1 전극과 상기 제2 전극이 대향하도록 배치하는 공정과, 상기 도전성 입자에 있어서의 땜납의 융점 이상으로 상기 도전 재료를 가열함으로써, 상기 제1 접속 대상 부재와 상기 제2 접속 대상 부재를 접속하고 있는 접속부를, 상기 도전 재료에 의해 형성하고, 또한, 상기 제1 전극과 상기 제2 전극을, 상기 접속부 중의 땜납부에 의해 전기적으로 접속하는 공정을 구비한다. 바람직하게는, 상기 열경화성 성분, 열경화성 화합물의 경화 온도 이상으로 상기 도전 재료를 가열한다.
본 발명에 따른 접속 구조체 및 상기 접속 구조체의 제조 방법에서는, 특정한 도전 재료를 사용하고 있으므로, 복수의 도전성 입자에 있어서의 땜납이 제1 전극과 제2 전극의 사이에 모이기 쉬워, 땜납을 전극(라인) 위에 효율적으로 배치할 수 있다. 또한, 땜납의 일부가, 전극이 형성되지 않은 영역(스페이스)에 배치되기 어려워, 전극이 형성되지 않은 영역에 배치되는 땜납의 양을 상당히 적게 할 수 있다. 따라서, 제1 전극과 제2 전극 사이의 도통 신뢰성을 높일 수 있다. 게다가, 접속되어서는 안 되는 가로 방향으로 인접하는 전극 사이의 전기적인 접속을 방지할 수 있어, 절연 신뢰성을 높일 수 있다.
또한, 복수의 도전성 입자에 있어서의 땜납을 전극 위에 효율적으로 배치하고, 또한 전극이 형성되지 않은 영역에 배치되는 땜납의 양을 상당히 적게 하기 위해서는, 도전 필름이 아니라, 도전 페이스트를 사용하는 것이 바람직하다.
전극 사이에서의 땜납부의 두께는, 바람직하게는 10㎛ 이상, 보다 바람직하게는 20㎛ 이상이며, 바람직하게는 100㎛ 이하, 보다 바람직하게는 80㎛ 이하이다. 전극의 표면 위의 땜납 습윤 면적(전극이 노출된 면적 100% 중 땜납이 접하고 있는 면적)은, 바람직하게는 50% 이상, 보다 바람직하게는 60% 이상, 더욱 바람직하게는 70% 이상이며, 바람직하게는 100% 이하이다.
본 발명에 따른 접속 구조체의 제조 방법에서는, 상기 제2 접속 대상 부재를 배치하는 공정 및 상기 접속부를 형성하는 공정에 있어서, 가압을 행하지 않고, 상기 도전 재료에는, 상기 제2 접속 대상 부재의 중량이 가해지는 것이 바람직하고, 상기 제2 접속 대상 부재를 배치하는 공정 및 상기 접속부를 형성하는 공정에 있어서, 상기 도전 재료에는, 상기 제2 접속 대상 부재의 중량의 힘을 초과하는 가압 압력은 가해지지 않는 것이 바람직하다. 이들 경우에는, 복수의 땜납부에 있어서, 땜납량의 균일성을 한층 더 높일 수 있다. 또한, 땜납부의 두께를 한층 더 효과적으로 두껍게 할 수 있고, 복수의 도전성 입자에 있어서의 땜납이 전극 사이에 많이 모이기 쉬워져, 복수의 도전성 입자에 있어서의 땜납을 전극(라인) 위에 한층 더 효율적으로 배치할 수 있다. 또한, 복수의 도전성 입자에 있어서의 땜납의 일부가, 전극이 형성되지 않은 영역(스페이스)에 배치되기 어려워, 전극이 형성되지 않은 영역에 배치되는 도전성 입자에 있어서의 땜납의 양을 한층 더 적게 할 수 있다. 따라서, 전극 사이의 도통 신뢰성을 한층 더 높일 수 있다. 게다가, 접속되어서는 안 되는 가로 방향으로 인접하는 전극 사이의 전기적인 접속을 한층 더 방지할 수 있어, 절연 신뢰성을 한층 더 높일 수 있다.
또한, 상기 제2 접속 대상 부재를 배치하는 공정 및 상기 접속부를 형성하는 공정에 있어서, 가압을 행하지 않고, 상기 도전 재료에, 상기 제2 접속 대상 부재의 중량이 가해지면, 접속부가 형성되기 전에 전극이 형성되지 않은 영역(스페이스)에 배치되어 있던 땜납이 제1 전극과 제2 전극의 사이에 한층 더 모이기 쉬워져, 복수의 도전성 입자에 있어서의 땜납을 전극(라인) 위에 한층 더 효율적으로 배치할 수 있다는 사실도 알아내었다. 본 발명에서는, 도전 필름이 아니라, 도전 페이스트를 사용한다는 구성과, 가압을 행하지 않고, 상기 도전 페이스트에는, 상기 제2 접속 대상 부재의 중량이 가해지도록 한다는 구성을 조합하여 채용하는 것에는, 본 발명의 효과를 한층 더 높은 레벨로 얻기 위해 큰 의미가 있다.
또한, WO 2008/023452 A1에서는, 땜납 분말을 전극 표면에 흘러가게 하여 효율적으로 이동시키는 관점에서는, 접착 시에 소정의 압력으로 가압하면 되는 것이 기재되어 있으며, 가압 압력은, 땜납의 영역을 더욱 확실하게 형성하는 관점에서는, 예를 들어 0MPa 이상, 바람직하게는 1MPa 이상으로 하는 것이 기재되어 있고, 또한 접착 테이프에 의도적으로 가하는 압력이 0MPa이어도, 접착 테이프 위에 배치된 부재의 자중에 의해, 접착 테이프에 소정의 압력이 가해져도 되는 것이 기재되어 있다. WO 2008/023452 A1에서는, 접착 테이프에 의도적으로 가하는 압력이 0MPa이어도 되는 것은 기재되어 있지만, 0MPa을 초과하는 압력을 부여한 경우와 0MPa로 한 경우의 효과의 차이에 대해서는, 전혀 기재되어 있지 않다. 또한, WO 2008/023452 A1에서는, 필름상이 아니라, 페이스트상의 도전 페이스트를 사용하는 것의 중요성에 대해서도 전혀 인식되어 있지 않다.
또한, 도전 필름이 아니라, 도전 페이스트를 사용하면, 도전 페이스트의 도포량에 의해, 접속부 및 땜납부의 두께를 조정하는 것이 용이해진다. 한편, 도전 필름에서는, 접속부의 두께를 변경하거나, 조정하거나 하기 위해서는, 다른 두께의 도전 필름을 준비하거나, 소정 두께의 도전 필름을 준비하거나 해야 한다는 문제가 있다. 또한, 도전 필름에서는, 도전 페이스트와 비교하여, 땜납의 용융 온도에서, 도전 필름의 용융 점도를 충분히 낮출 수 없어, 땜납의 응집이 저해되기 쉬운 경향이 있다.
이하, 도면을 참조하면서, 본 발명의 구체적인 실시 형태를 설명한다.
도 1은, 본 발명의 일 실시 형태에 따른 도전 재료를 사용하여 얻어지는 접속 구조체를 모식적으로 나타내는 단면도이다.
도 1에 도시한 접속 구조체(1)는, 제1 접속 대상 부재(2)와, 제2 접속 대상 부재(3)와, 제1 접속 대상 부재(2)와 제2 접속 대상 부재(3)를 접속하고 있는 접속부(4)를 구비한다. 접속부(4)는, 전술한 도전 재료에 의해 형성되어 있다. 본 실시 형태에서는, 도전 재료는 도전성 입자로서 땜납 입자를 포함한다.
접속부(4)는, 복수의 땜납 입자가 모여 서로 접합된 땜납부(4A)와, 열경화성 성분이 열경화된 경화물부(4B)를 갖는다.
제1 접속 대상 부재(2)는 표면(상면)에, 복수의 제1 전극(2a)을 갖는다. 제2 접속 대상 부재(3)는 표면(하면)에, 복수의 제2 전극(3a)을 갖는다. 제1 전극(2a)과 제2 전극(3a)이, 땜납부(4A)에 의해 전기적으로 접속되어 있다. 따라서, 제1 접속 대상 부재(2)와 제2 접속 대상 부재(3)가, 땜납부(4A)에 의해 전기적으로 접속되어 있다. 또한, 접속부(4)에 있어서, 제1 전극(2a)과 제2 전극(3a)의 사이에 모인 땜납부(4A)와는 상이한 영역(경화물부(4B) 부분)에는, 땜납은 존재하지 않는다. 땜납부(4A)와는 상이한 영역(경화물부(4B) 부분)에서는, 땜납부(4A)와 이격된 땜납은 존재하지 않는다. 또한, 소량이라면, 제1 전극(2a)과 제2 전극(3a)의 사이에 모인 땜납부(4A)와는 상이한 영역(경화물부(4B) 부분)에, 땜납이 존재하고 있어도 된다.
도 1에 도시한 바와 같이, 접속 구조체(1)에서는, 제1 전극(2a)과 제2 전극(3a)의 사이에, 복수의 땜납 입자가 모이고, 복수의 땜납 입자가 용융된 후, 땜납 입자의 용융물이 전극의 표면에서 번진 후에 고화되어, 땜납부(4A)가 형성되어 있다. 이로 인해, 땜납부(4A)와 제1 전극(2a), 및 땜납부(4A)와 제2 전극(3a)의 접속 면적이 커진다. 즉, 땜납 입자를 사용함으로써, 도전부의 외표면 부분이 니켈, 금 또는 구리 등의 금속인 도전성 입자를 사용한 경우와 비교하여, 땜납부(4A)와 제1 전극(2a), 및 땜납부(4A)와 제2 전극(3a)의 접촉 면적이 커진다. 이로 인해, 접속 구조체(1)에 있어서의 도통 신뢰성 및 접속 신뢰성이 높아진다.
또한, 도전 재료는 플럭스를 포함하고 있어도 된다. 플럭스를 이용한 경우에는, 가열에 의해, 일반적으로 플럭스는 점차 실활한다.
또한, 도 1에 도시한 접속 구조체(1)에서는, 땜납부(4A)가 모두, 제1, 제2 전극(2a, 3a) 사이의 대향하고 있는 영역에 위치하고 있다. 도 3에 도시한 변형예의 접속 구조체(1X)는, 접속부(4X)만이, 도 1에 도시한 접속 구조체(1)와 상이하다. 접속부(4X)는, 땜납부(4XA)와 경화물부(4XB)를 갖는다. 접속 구조체(1X)와 같이, 땜납부(4XA)의 대부분이, 제1, 제2 전극(2a, 3a)의 대향하고 있는 영역에 위치하고 있으며, 땜납부(4XA)의 일부가 제1, 제2 전극(2a, 3a)의 대향하고 있는 영역으로부터 측방으로 비어져 나와 있어도 된다. 제1, 제2 전극(2a, 3a)의 대향하고 있는 영역으로부터 측방으로 비어져 나와 있는 땜납부(4XA)는, 땜납부(4XA)의 일부이며, 땜납부(4XA)로부터 이격된 땜납이 아니다. 또한, 본 실시 형태에서는, 땜납부로부터 이격된 땜납의 양을 적게 할 수 있는데, 땜납부로부터 이격된 땜납이 경화물부 중에 존재하고 있어도 된다.
땜납 입자의 사용량을 적게 하면, 접속 구조체(1)를 얻는 것이 용이해진다. 땜납 입자의 사용량을 많게 하면, 접속 구조체(1X)를 얻는 것이 용이해진다.
도통 신뢰성을 한층 더 높이는 관점에서는, 상기 제1 전극과 상기 접속부와 상기 제2 전극과의 적층 방향으로 상기 제1 전극과 상기 제2 전극의 서로 대향하는 부분을 보았을 때, 상기 제1 전극과 상기 제2 전극의 서로 대향하는 부분의 면적 100% 중의 50% 이상(보다 바람직하게는 60% 이상, 더욱 바람직하게는 70% 이상, 특히 바람직하게는 80% 이상, 가장 바람직하게는 90% 이상)에, 상기 접속부 중의 땜납부가 배치되어 있는 것이 바람직하다.
다음으로, 본 발명의 일 실시 형태에 따른 도전 재료를 사용하여, 접속 구조체(1)를 제조하는 방법의 일례를 설명한다.
우선, 제1 전극(2a)을 표면(상면)에 갖는 제1 접속 대상 부재(2)를 준비한다. 이어서, 도 2의 (a)에 도시한 바와 같이, 제1 접속 대상 부재(2)의 표면 위에, 열경화성 성분(11B)과, 복수의 땜납 입자(11A)를 포함하는 도전 재료(11)를 배치한다(제1 공정). 사용한 도전 재료(11)는, 열경화성 성분(11B)으로서, 열경화성 화합물과 열경화제를 포함한다.
제1 접속 대상 부재(2)의 제1 전극(2a)이 설치된 표면 위에, 도전 재료(11)를 배치한다. 도전 재료(11)의 배치 후에, 땜납 입자(11A)는, 제1 전극(2a)(라인) 위와, 제1 전극(2a)이 형성되지 않은 영역(스페이스) 위의 양쪽에 배치되어 있다.
도전 재료(11)의 배치 방법으로서는, 특별히 한정되지 않지만, 디스펜서에 의한 도포, 스크린 인쇄 및 잉크젯 장치에 의한 토출 등을 들 수 있다.
또한, 제2 전극(3a)을 표면(하면)에 갖는 제2 접속 대상 부재(3)를 준비한다. 이어서, 도 2의 (b)에 도시한 바와 같이, 제1 접속 대상 부재(2)의 표면 위의 도전 재료(11)에 있어서, 도전 재료(11)의 제1 접속 대상 부재(2)측과는 반대측의 표면 위에, 제2 접속 대상 부재(3)를 배치한다(제2 공정). 도전 재료(11)의 표면 위에, 제2 전극(3a)측으로부터, 제2 접속 대상 부재(3)를 배치한다. 이때, 제1 전극(2a)과 제2 전극(3a)을 대향시킨다.
다음으로, 땜납 입자(11A)의 융점 이상으로 도전 재료(11)를 가열한다(제3 공정). 바람직하게는, 열경화성 성분(11B)(결합제)의 경화 온도 이상으로 도전 재료(11)를 가열한다. 이 가열 시에는, 전극이 형성되지 않은 영역에 존재하고 있던 땜납 입자(11A)는, 제1 전극(2a)과 제2 전극(3a)의 사이에 모인다(자기 응집 효과). 도전 필름이 아니라, 도전 페이스트를 사용한 경우에는, 땜납 입자(11A)가, 제1 전극(2a)과 제2 전극(3a)의 사이에 효과적으로 모인다. 또한, 땜납 입자(11A)는 용융되어, 서로 접합된다. 또한, 열경화성 성분(11B)은 열경화된다. 이 결과, 도 2의 (c)에 도시한 바와 같이, 제1 접속 대상 부재(2)와 제2 접속 대상 부재(3)를 접속하고 있는 접속부(4)를, 도전 재료(11)에 의해 형성한다. 도전 재료(11)에 의해 접속부(4)가 형성되고, 복수의 땜납 입자(11A)가 접합됨으로써 땜납부(4A)가 형성되고, 열경화성 성분(11B)이 열경화됨으로써 경화물부(4B)가 형성된다.
본 실시 형태에서는, 상기 제2 공정 및 상기 제3 공정에 있어서, 가압을 행하지 않는 편이 바람직하다. 이 경우에는, 도전 재료(11)에는, 제2 접속 대상 부재(3)의 중량이 가해진다. 이로 인해, 접속부(4)의 형성 시에, 땜납 입자(11A)와, 제1 전극(2a)과 제2 전극(3a)의 사이에 효과적으로 모인다. 또한, 상기 제2 공정 및 상기 제3 공정 중 적어도 한쪽에 있어서, 가압을 행하면, 땜납 입자가 제1 전극과 제2 전극의 사이에 모이려고 하는 작용이 저해되는 경향이 높아진다.
또한, 본 실시 형태에서는, 가압을 행하지 않기 때문에, 도전 재료를 도포한 제1 접속 대상 부재에, 제2 접속 대상 부재를 중첩시킬 때, 제1 접속 대상 부재의 전극과 제2 접속 대상 부재의 전극의 얼라인먼트가 어긋난 상태에서, 제1 접속 대상 부재와 제2 접속 대상 부재가 중첩된 경우에도, 그 어긋남을 보정하여, 제1 접속 대상 부재의 전극과 제2 접속 대상 부재의 전극을 접속시킬 수 있다(셀프 얼라인먼트 효과). 이것은, 제1 접속 대상 부재의 전극과 제2 접속 대상 부재의 전극의 사이에 자기 응집된 용융된 땜납이, 제1 접속 대상 부재의 전극과 제2 접속 대상 부재의 전극 사이의 땜납과 도전 재료의 기타 성분이 접하는 면적이 최소가 되는 쪽이 에너지적으로 안정해지므로, 그 최소 면적이 되는 접속 구조인 얼라인먼트였던 접속 구조로 하는 힘이 작용하기 때문이다. 이때, 도전 재료가 경화되지 않은 것, 및 그 온도, 시간에서, 도전 재료의 도전성 입자 이외의 성분의 점도가 충분히 낮은 것이 바람직하다.
이와 같이 하여, 도 1에 도시한 접속 구조체(1)가 얻어진다. 또한, 상기 제2 공정과 상기 제3 공정은 연속해서 행해져도 된다. 또한, 상기 제2 공정을 행한 후에, 얻어지는 제1 접속 대상 부재(2)와 도전 재료(11)와 제2 접속 대상 부재(3)의 적층체를, 가열부로 이동시켜, 상기 제3 공정을 행해도 된다. 상기 가열을 행하기 위해서, 가열 부재 위에 상기 적층체를 배치해도 되고, 가열된 공간 내에 상기 적층체를 배치해도 된다.
상기 제3 공정에서의 상기 가열 온도는, 바람직하게는 140℃ 이상, 보다 바람직하게는 160℃ 이상이고, 바람직하게는 450℃ 이하, 보다 바람직하게는 250℃ 이하, 더욱 바람직하게는 200℃ 이하이다.
상기 제3 공정에서의 가열 방법으로서는, 땜납의 융점 이상 및 열경화성 성분의 경화 온도 이상으로, 접속 구조체 전체를, 리플로우로를 사용하여 또는 오븐을 사용하여 가열하는 방법이나, 접속 구조체의 접속부만을 국소적으로 가열하는 방법을 들 수 있다.
상기 제1, 제2 접속 대상 부재는, 특별히 한정되지 않는다. 상기 제1, 제2 접속 대상 부재로서는, 구체적으로는, 반도체 칩, 반도체 패키지, LED 칩, LED 패키지, 콘덴서 및 다이오드 등의 전자 부품, 및 수지 필름, 프린트 기판, 플렉시블 프린트 기판, 플렉시블 플랫 케이블, 리지드 플렉시블 기판, 유리 에폭시 기판 및 유리 기판 등의 회로 기판 등의 전자 부품 등을 들 수 있다. 상기 제1, 제2 접속 대상 부재는, 전자 부품인 것이 바람직하다.
상기 제1 접속 대상 부재 및 상기 제2 접속 대상 부재 중 적어도 한쪽이, 수지 필름, 플렉시블 프린트 기판, 플렉시블 플랫 케이블 또는 리지드 플렉시블 기판인 것이 바람직하다. 상기 제2 접속 대상 부재가, 수지 필름, 플렉시블 프린트 기판, 플렉시블 플랫 케이블 또는 리지드 플렉시블 기판인 것이 바람직하다. 수지 필름, 플렉시블 프린트 기판, 플렉시블 플랫 케이블 및 리지드 플렉시블 기판은, 유연성이 높고, 비교적 경량이라는 성질을 갖는다. 이러한 접속 대상 부재의 접속에 도전 필름을 사용한 경우에는, 땜납이 전극 위에 모이기 어려운 경향이 있다. 이에 반하여, 도전 페이스트를 사용함으로써 수지 필름, 플렉시블 프린트 기판, 플렉시블 플랫 케이블 또는 리지드 플렉시블 기판을 사용했다고 해도, 땜납을 전극 위에 효율적으로 모음으로써, 전극 사이의 도통 신뢰성을 충분히 높일 수 있다. 수지 필름, 플렉시블 프린트 기판, 플렉시블 플랫 케이블 또는 리지드 플렉시블 기판을 사용하는 경우에, 반도체 칩 등의 다른 접속 대상 부재를 사용한 경우에 비하여, 가압을 행하지 않음으로써 전극 사이의 도통 신뢰성의 향상 효과가 한층 더 효과적으로 얻어진다.
상기 접속 대상 부재의 형태에는 주변이나 에어리어 어레이(area array) 등이 존재한다. 각 부재의 특징으로서, 주변 기판에서는, 전극이 기판의 외주부에만 존재한다. 에어리어 어레이 기판에서는, 면 내에 전극이 존재한다.
상기 접속 대상 부재에 설치되어 있는 전극으로서는, 금 전극, 니켈 전극, 주석 전극, 알루미늄 전극, 구리 전극, 몰리브덴 전극, 은 전극, SUS 전극 및 텅스텐 전극 등의 금속 전극을 들 수 있다. 상기 접속 대상 부재가 플렉시블 프린트 기판인 경우에는, 상기 전극은 금 전극, 니켈 전극, 주석 전극, 은 전극 또는 구리 전극인 것이 바람직하다. 상기 접속 대상 부재가 유리 기판인 경우에는, 상기 전극은 알루미늄 전극, 구리 전극, 몰리브덴 전극, 은 전극 또는 텅스텐 전극인 것이 바람직하다. 또한, 상기 전극이 알루미늄 전극인 경우에는, 알루미늄만으로 형성된 전극이어도 되고, 금속 산화물층의 표면에 알루미늄층이 적층된 전극이어도 된다. 상기 금속 산화물층의 재료로서는, 3가의 금속 원소가 도프된 산화인듐 및 3가의 금속 원소가 도프된 산화아연 등을 들 수 있다. 상기 3가의 금속 원소로서는, Sn, Al 및 Ga 등을 들 수 있다.
상기 접속 대상 부재의 형태에는 주변이나 에어리어 어레이 등이 존재한다. 각 부재의 특징으로서, 주변 기판에서는, 전극이 기판의 외주부에만 존재한다. 에어리어 어레이 기판에서는, 면 내에 전극이 존재한다.
이하, 실시예 및 비교예를 들어, 본 발명을 구체적으로 설명한다. 본 발명은, 이하의 실시예만으로 한정되지 않는다.
열경화성 화합물:
미츠비시 가가쿠사 제조 「YL980」, 비스페놀 A형 에폭시 수지
DIC사 제조 「HP-7200H」, 디시클로펜타디엔형 에폭시 수지, 연화점 78 내지 88℃
열경화제:
아사히 가세이 이머티리얼즈사 제조 「HXA3922HP」
경화 촉진제:
시코쿠 가세이 고교사 제조 「2MA-OK」, 이미다졸 경화 촉진제
플럭스:
글루타르산
무기 필러:
아도마텍쿠스사 제조 「SE-1050-SPJ」, 평균 입자 직경 0.3㎛
도전성 입자:
SnBi 땜납 입자(평균 입자 직경 30㎛), 미츠이 긴조쿠사 제조, Sn42Bi58
SnBi 땜납 입자(평균 입자 직경 13㎛), 미츠이 긴조쿠사 제조, Sn42Bi58
SnBi 땜납 입자(평균 입자 직경 10㎛), 미츠이 긴조쿠사 제조, Sn42Bi58
SnBi 땜납 입자(평균 입자 직경 7㎛), 미츠이 긴조쿠사 제조, Sn42Bi58
SnBi 땜납 입자(평균 입자 직경 3㎛), 미츠이 긴조쿠사 제조, Sn42Bi58
(실시예 1 내지 12 및 비교예 1, 2)
(1) 이방성 도전 페이스트의 제작
하기의 표 1에 나타내는 성분을 하기의 표 1에 나타내는 배합량으로 배합하여, 이방성 도전 페이스트를 얻었다.
(2) 제1 접속 구조체(에어리어 어레이 기판)의 제작
제1 접속 대상 부재로서, 반도체 칩 본체(사이즈 5×5㎜, 두께 0.4㎜)의 표면에, 400㎛ 피치로 250㎛의 구리 전극이, 에어리어 어레이에서 배치되어 있으며, 최표면에 패시베이션막(폴리이미드, 두께 5㎛, 전극부의 개구 직경 200㎛)이 형성되어 있는 반도체 칩을 준비하였다. 구리 전극의 수는, 반도체 칩 1개당, 10개×10개의 합계 100개이다.
제2 접속 대상 부재로서, 유리 에폭시 기판 본체(사이즈 20×20㎜, 두께 1.2㎜, 재질 FR-4)의 표면에, 제1 접속 대상 부재의 전극에 대하여, 동일한 패턴이 되도록, 구리 전극이 배치되어 있으며, 구리 전극이 배치되지 않은 영역에 솔더 레지스트막이 형성되어 있는 유리 에폭시 기판을 준비하였다. 구리 전극의 표면과 솔더 레지스트막의 표면과의 단차는 15㎛이며, 솔더 레지스트막은 구리 전극보다도 돌출되어 있다.
상기 유리 에폭시 기판의 상면에, 제작 직후의 이방성 도전 페이스트를 두께 100㎛가 되도록 도공하여, 이방성 도전 페이스트층을 형성하였다. 이어서, 이방성 도전 페이스트층의 상면에 반도체 칩을 전극끼리 대향하도록 적층하였다. 이방성 도전 페이스트층에는, 상기 반도체 칩의 중량은 가해진다. 그 상태로부터, 이방성 도전 페이스트층의 온도가, 승온 개시로부터 5초 후에 139℃(땜납의 융점)가 되도록 가열하였다. 또한, 승온 개시로부터 15초 후에, 이방성 도전 페이스트층의 온도가 160℃가 되도록 가열하여, 이방성 도전 페이스트를 경화시켜, 접속 구조체를 얻었다. 가열 시에는, 가압을 행하지 않았다.
(3) 제2 접속 구조체(주변 기판)의 제작
제1 접속 대상 부재로서, 반도체 칩 본체(사이즈 5×5㎜, 두께 0.4㎜)의 표면에, 400㎛ 피치로 250㎛의 구리 전극이, 칩 외주부에 배치(주변)되어 있고, 최표면에 패시베이션막(폴리이미드, 두께 5㎛, 전극부의 개구 직경 200㎛)이 형성되어 있는 반도체 칩을 준비하였다. 구리 전극의 수는, 반도체 칩 1개당, 10개×4변의 합계 36개이다.
제2 접속 대상 부재로서, 유리 에폭시 기판 본체(사이즈 20×20㎜, 두께 1.2㎜, 재질 FR-4)의 표면에, 제1 접속 대상 부재의 전극에 대하여, 동일한 패턴이 되도록, 구리 전극이 배치되어 있고, 구리 전극이 배치되지 않은 영역에 솔더 레지스트막이 형성되어 있는 구리 전극의 표면과 솔더 레지스트막의 표면과의 단차는 15㎛이며, 솔더 레지스트막은 구리 전극보다도 돌출되어 있다.
상기 유리 에폭시 기판의 상면의 주변 부분에, 제작 직후의 이방성 도전 페이스트를 두께 100㎛가 되도록 도공하여, 이방성 도전 페이스트층을 형성하였다. 이어서, 이방성 도전 페이스트층의 상면에 반도체 칩을 전극끼리 대향하도록 적층하였다. 이방성 도전 페이스트층에는, 상기 반도체 칩의 중량은 가해진다. 그 상태로부터, 이방성 도전 페이스트층의 온도가, 승온 개시로부터 5초 후에 139℃(땜납의 융점)가 되도록 가열하였다. 또한, 승온 개시로부터 15초 후에, 이방성 도전 페이스트층의 온도가 160℃가 되도록 가열하여, 이방성 도전 페이스트를 경화시켜, 접속 구조체를 얻었다. 가열 시에는, 가압을 행하지 않았다.
(평가)
(1) 점도
상기 도전성 입자에 있어서의 상기 땜납의 융점 ℃ 이하에서의 도전 재료의 점도(ηmp)와, 25℃ 이상, 도전성 입자에 있어서의 땜납의 융점 ℃ 이하에서의 도전 재료의 점도의 최솟값(ηmin) 및 최댓값(ηmax)을, 스트레스테크(STRESSTECH)(에올로지카(EOLOGICA)사 제조)를 사용하여, 변형 제어 1rad, 주파수 1㎐, 승온 속도 20℃/분 및 측정 온도 범위 25 내지 200℃의 조건에서 측정하였다.
(2) 전극 위의 땜납의 배치 정밀도
얻어진 제1, 제2 접속 구조체에 있어서, 제1 전극과 접속부와 제2 전극과의 적층 방향으로 제1 전극과 제2 전극의 서로 대향하는 부분을 보았을 때, 제1 전극과 제2 전극과의 서로 대향하는 부분의 면적 100% 중의, 접속부 중의 땜납부가 배치되어 있는 면적의 비율 X를 평가하였다. 전극 위의 땜납의 배치 정밀도를 하기의 기준으로 판정하였다.
[전극 위의 땜납의 배치 정밀도의 판정 기준]
○○: 비율 X가 90% 이상
○: 비율 X가 80% 이상, 90% 미만
△: 비율 X가 60% 이상, 80% 미만
×: 비율 X가 60% 미만
(3) 상하의 전극 사이의 도통 신뢰성
얻어진 제1, 제2 접속 구조체(n=15개)에 있어서, 상하의 전극 사이의 접속 저항을 각각, 4단자법에 의해 측정하였다. 접속 저항의 평균값을 산출하였다. 또한, 전압=전류×저항의 관계로부터, 일정한 전류를 흘렸을 때의 전압을 측정함으로써 접속 저항을 구할 수 있다. 도통 신뢰성을 하기의 기준으로 판정하였다.
[도통 신뢰성의 판정 기준]
○○: 접속 저항의 평균값이 8.0Ω 이하
○: 접속 저항의 평균값이 8.0Ω 초과, 10.0Ω 이하
△: 접속 저항의 평균값이 10.0Ω 초과, 15.0Ω 이하
×: 접속 저항의 평균값이 15.0Ω 초과
(4) 인접하는 전극 사이의 절연 신뢰성
얻어진 제1, 제2 접속 구조체(n=15개)에 있어서, 온도 85℃ 및 습도 85%의 분위기 중에 100시간 방치 후, 인접하는 전극 사이에, 5V를 인가하고, 저항값을 25개소에서 측정하였다. 절연 신뢰성을 하기의 기준으로 판정하였다.
[절연 신뢰성의 판정 기준]
○○: 접속 저항의 평균값이 107Ω 이상
○: 접속 저항의 평균값이 106Ω 이상, 107Ω 미만
△: 접속 저항의 평균값이 105Ω 이상, 106Ω 미만
×: 접속 저항의 평균값이 105Ω 미만
결과를 하기의 표 1에 나타낸다.
Figure pct00007
플렉시블 프린트 기판, 수지 필름, 플렉시블 플랫 케이블 및 리지드 플렉시블 기판을 사용한 경우에도, 마찬가지의 경향이 보였다.
1, 1X: 접속 구조체
2: 제1 접속 대상 부재
2a: 제1 전극
3: 제2 접속 대상 부재
3a: 제2 전극
4, 4X: 접속부
4A, 4XA: 땜납부
4B, 4XB: 경화물부
11: 도전 재료
11A: 땜납 입자(도전성 입자)
11B: 열경화성 성분
21: 도전성 입자(땜납 입자)
31: 도전성 입자
32: 기재 입자
33: 도전부(땜납을 갖는 도전부)
33A: 제2 도전부
33B: 땜납부
41: 도전성 입자
42: 땜납부

Claims (7)

  1. 도전부의 외표면 부분에, 땜납을 갖는 복수의 도전성 입자와, 열경화성 성분을 포함하고,
    25℃ 이상, 상기 도전성 입자에 있어서의 상기 땜납의 융점 ℃ 이하에서의 도전 재료의 점도의 최솟값이 25Pa·s 이상, 255Pa·s 이하이고,
    상기 도전성 입자의 평균 입자 직경이 3㎛ 이상, 15㎛ 이하이며,
    상기 도전성 입자의 평균 입자 직경 ㎛을 A라 하고, 상기 도전성 입자에 있어서의 상기 땜납의 융점 ℃에서의 도전 재료의 점도 Pa·s를 B라 했을 때, 상기 B가 (-5A+100) 이상, (-15A+300) 이하인, 도전 재료.
  2. 제1항에 있어서, 25℃ 이상, 상기 도전성 입자에 있어서의 상기 땜납의 융점 ℃ 이하에서의 도전 재료의 점도의 최솟값과 최댓값과의 차의 절댓값이 50Pa·s 이상, 200Pa·s 이하인, 도전 재료.
  3. 제1항 또는 제2항에 있어서, 상기 도전성 입자의 평균 입자 직경이 7㎛ 이상, 13㎛ 이하인, 도전 재료.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 도전성 입자는 땜납 입자인, 도전 재료.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 25℃에서 액상이며, 도전 페이스트인, 도전 재료.
  6. 적어도 하나의 제1 전극을 표면에 갖는 제1 접속 대상 부재와,
    적어도 하나의 제2 전극을 표면에 갖는 제2 접속 대상 부재와,
    상기 제1 접속 대상 부재와 상기 제2 접속 대상 부재를 접속하고 있는 접속부를 구비하고,
    상기 접속부가, 제1항 내지 제5항 중 어느 한 항에 기재된 도전 재료의 경화물이며,
    상기 제1 전극과 상기 제2 전극이 상기 접속부 중의 땜납부에 의해 전기적으로 접속되어 있는, 접속 구조체.
  7. 제6항에 있어서, 상기 제1 전극과 상기 접속부와 상기 제2 전극과의 적층 방향으로 상기 제1 전극과 상기 제2 전극의 서로 대향하는 부분을 보았을 때, 상기 제1 전극과 상기 제2 전극의 서로 대향하는 부분의 면적 100% 중의 50% 이상에, 상기 접속부 중의 땜납부가 배치되어 있는, 접속 구조체.
KR1020177023798A 2015-08-24 2016-08-23 도전 재료 및 접속 구조체 KR20180043192A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2015-165221 2015-08-24
JP2015165221 2015-08-24
PCT/JP2016/074528 WO2017033931A1 (ja) 2015-08-24 2016-08-23 導電材料及び接続構造体

Publications (1)

Publication Number Publication Date
KR20180043192A true KR20180043192A (ko) 2018-04-27

Family

ID=58100309

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177023798A KR20180043192A (ko) 2015-08-24 2016-08-23 도전 재료 및 접속 구조체

Country Status (5)

Country Link
JP (1) JPWO2017033931A1 (ko)
KR (1) KR20180043192A (ko)
CN (1) CN107636772A (ko)
TW (1) TW201721662A (ko)
WO (1) WO2017033931A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020242053A1 (en) 2019-05-28 2020-12-03 Samsung Electronics Co., Ltd. Display apparatus, source substrate structure, driving substrate structure, and method of manufacturing display apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2055756A1 (en) * 2006-08-25 2009-05-06 Sumitomo Bakelite Company, Ltd. Adhesive tape, joint structure, and semiconductor package
JP5093482B2 (ja) * 2007-06-26 2012-12-12 ソニーケミカル&インフォメーションデバイス株式会社 異方性導電材料、接続構造体及びその製造方法
JP2011175846A (ja) * 2010-02-24 2011-09-08 Hitachi Chem Co Ltd 回路部材接続用接着フィルム、回路部材接続構造体及び回路部材接続構造体の製造方法
JP2012169263A (ja) * 2011-01-24 2012-09-06 Sekisui Chem Co Ltd 異方性導電材料、接続構造体の製造方法及び接続構造体
JP5869911B2 (ja) * 2012-02-23 2016-02-24 株式会社タムラ製作所 熱硬化性樹脂組成物
JP6114627B2 (ja) * 2012-05-18 2017-04-12 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法

Also Published As

Publication number Publication date
WO2017033931A1 (ja) 2017-03-02
TW201721662A (zh) 2017-06-16
CN107636772A (zh) 2018-01-26
JPWO2017033931A1 (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
KR20180044224A (ko) 도전 재료 및 접속 구조체
JP7425824B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
KR102605942B1 (ko) 도전 재료 및 접속 구조체
WO2017179532A1 (ja) 導電材料及び接続構造体
WO2017033932A1 (ja) 導電材料及び接続構造体
JP2017195180A (ja) 導電材料及び接続構造体
KR102618237B1 (ko) 도전 재료 및 접속 구조체
JP2018006084A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP6734141B2 (ja) 導電材料及び接続構造体
KR102569944B1 (ko) 도전 재료 및 접속 구조체
JP2017224602A (ja) 導電材料、接続構造体及び接続構造体の製造方法
KR20180043192A (ko) 도전 재료 및 접속 구조체
KR20180043191A (ko) 도전 재료 및 접속 구조체
WO2017033933A1 (ja) 導電材料及び接続構造体
JP2018060786A (ja) 導電材料及び接続構造体
KR102605910B1 (ko) 도전 재료 및 접속 구조체
KR20180029945A (ko) 도전 재료 및 접속 구조체
JP2017191685A (ja) 導電材料及び接続構造体
JP2018006085A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP2018046003A (ja) 導電材料及び接続構造体
JP2017045543A (ja) 導電材料及び接続構造体