KR20170129819A - 유리 성형 장치 및 방법 - Google Patents

유리 성형 장치 및 방법 Download PDF

Info

Publication number
KR20170129819A
KR20170129819A KR1020177029661A KR20177029661A KR20170129819A KR 20170129819 A KR20170129819 A KR 20170129819A KR 1020177029661 A KR1020177029661 A KR 1020177029661A KR 20177029661 A KR20177029661 A KR 20177029661A KR 20170129819 A KR20170129819 A KR 20170129819A
Authority
KR
South Korea
Prior art keywords
die
heating element
temperature
glass sheet
tool
Prior art date
Application number
KR1020177029661A
Other languages
English (en)
Other versions
KR102491898B1 (ko
Inventor
조세 페이젠블륌
Original Assignee
록툴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 록툴 filed Critical 록툴
Publication of KR20170129819A publication Critical patent/KR20170129819A/ko
Application granted granted Critical
Publication of KR102491898B1 publication Critical patent/KR102491898B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0258Gravity bending involving applying local or additional heating, cooling or insulating means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/0086Heating devices specially adapted for re-forming shaped glass articles in general, e.g. burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/0235Re-forming glass sheets by bending involving applying local or additional heating, cooling or insulating means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0252Re-forming glass sheets by bending by gravity by gravity only, e.g. sagging
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/035Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/02Annealing glass products in a discontinuous way
    • C03B25/025Glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/02Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it by lubrication; Use of materials as release or lubricating compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • C03B2215/06Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • C03B2215/07Ceramic or cermets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2225/00Transporting hot glass sheets during their manufacture
    • C03B2225/02Means for positioning, aligning or orientating the sheets during their travel, e.g. stops
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • General Induction Heating (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

본 발명은 유리 시트를 성형하기 위한 공구에 관한 것이다:
a. 전기적 도전성 물질로 제조된 성형 다이:
ai. 성형 표면;
aii. 성형 표면으로부터 멀어지고 대향되는 유리 시트를 보유하기에 적합한 수단;
aiii. 상기 성형 다이의 공동에 연장되는 인덕터를 포함하는 유도 회로;
b. 상기 성형로부터 이격되고, 다음의 구성을 포함하는 발열체:
bi. 상기 성형 표면에 대향되는 열 복사를 생성하기에 적합한 표면;
bii. 상기 발열체의 공동에 연장되는 인덕터를 포함하는 유도 회로;
c. 상기 유도 회로를 고주파 전류 생성기에 접속하기 위한 수단.

Description

유리 성형 장치 및 방법
본 발명은 유리를 열성형하기 위한 장치 및 방법에 관한 것이다.
보다 구체적으로, 본 발명은 디스플레이 스크린을 제조하기 위한 유리 시트의 성형에 관한 것이지만, 이에 한정되지는 않는다.
문서 전체에 걸쳐서, 유리에 적용되는 '성형(forming)' 및 '열성형(thermoforming)'이라는 용어는, 유리 시트의 일부분을 큰 거리로 이동시키지 않고, 초기에 고체 상태인 유리 시트를 또 다른 형태를 따르도록 제조하는 것과 관련된 방법을 지칭한다. 따라서, 본 발명에 따른 방법은, 예를 들면, 송풍 또는 원심 분리에 의해 덩어리로부터 물체를 성형하는 것과 관련되지 않는데, 이들 방법은 초기 대상물의 일부분을 큰 거리로 이동시키는 것과 연관된다.
유리 열성형 방법은 종래기술로 공지되어 있으며, 성형되어질 유리 시트를 성형가능하게 제조하기에 충분한 온도, 다시 말하면 유리 전이온도 이상이지만 유리의 융해온도 미만의 온도로 가열하는 것으로 구성되고, 상기 온도는 1011 내지 107 포이즈(poise) (1010 내지 106 Pa.s) 사이의 점도에 도달하는 것을 가능하게 한다. 따라서, 일반적으로 700℃ 내지 800℃의 온도 범위로 가열되면, 상기 시트는 중력, 압력, 펀치와 같은 보조 도구, 또는 이들 수단의 임의의 조합의 효과로, 공구(tooling), 일반적으로 다이의 형태를 따르도록 제조된다. 그리고 나서, 그 응용분야에 따라, 상기 성형된 물품에서 달성되는 응력의 내부 상태를 달성하기 위하여, 냉각 속도 및 냉각의 공간상 균일성이 모두 제어되는 냉각 공정을 사용하여 상기 성형된 시트가 냉각된다.
문서 US 2010000259호는 예열된 공구에서 그 연화 온도 미만의 온도에서 평평한 유리 시트를 배치하는 구성의 성형 공정을 기술한다. 그리고 나서, 상기 공구 및 시트는 노(furnace)에서, 구체적으로 적외선에 의해 가열된다. 상기 유리 시트는 그 점도가 약 109 포이즈 (108 Pa.s)가 될 때의 온도에서 상기 공구의 형태를 따르도록 제조된다. 그리고 나서, 상기 조립품을 노에서 꺼내고 금형에 공기 또는 가스를 불어 넣음에 의해, 자연적 또는 강제 대류중 하나에 의해 시트가 여전히 상기 금형에 남아있는 상태에서 냉각시킨다. 종래 기술의 이러한 방법에서, 공구는 상당한 시간 동안 고온에 노출된다. 고온에 상기 공구의 이러한 노출은, 특히 성형된 유리와의 산화 또는 화학적 상호작용에 의해, 보다 구체적으로는 유리 시트가 상기 성형 작업중에 접촉되는 공구의 성형 표면에서, 공구를 손상시킨다. 이 표면에 대한 최소한의 손상조차도 유리에 전달됨으로써 용인할 수 없는 표면 결함을 일으킬 수 있다. 니켈-기반 초합금과 같은 고온에서 부식에 견디는 내화 재료를 사용함으로써, 복사에 의해 다이가 가열되는 것을 어렵게 할 수 있다.
이러한 단점을 회피하기 위한 종래 기술의 해결책은, 첫째 공구는 열-화학적 손상 현상에 덜 노출되고, 둘째 유리의 표면은 표면 결함을 재생성하지 못하도록 충분히 단단하도록 하기 위하여, 보다 낮은 온도에서 유리를 성형하는 것으로 구성된다.
그러나, 이 해결책은 보다 큰 성형력과 반응기(effector)의 사용 또는 가스 압력의 적용을 필요로 하고, 이것은 상기 공구를 보다 복잡하고 보다 비용이 과다하게 소요되게 한다.
문서 WO 2012-118612호는, 유리 시트가 흑연과 같은 고온에 견디는 유리에 대하여 불활성 재료로 제조된 공구상에 배치된 상기 시트를 열성형하는 방법을 기술한다.
유리 시트 및 공구는 복사에 의해 상기 유리 시트 및 공구를 가열하는 적외선 가열 수단을 포함하는 진공 벨(vacuum bell)에 놓여진다. 이러한 가열은 상기 흑연이 산화되지 않도록 불활성 대기하에서 수행된다. 성형은 유리 시트하의 진공 및 다른 측면에서 고온 가스 압력의 조합된 적용에 의해 수행된다.
종래 기술의 이러한 장치는 긴 사이클 시간, 및 가열 및 냉각과 같은 열 사이클의 섬세한 제어와 관련된다. 또한, 종래 기술의 이러한 방법은 생산이 집중되는 엔클로저(enclosure) 또는 특수 장비를 사용하고, 이것이 생산성에 결정적이다.
본 발명은 상기 종래 기술의 단점을 개선하는 것을 목적으로 하며, 따라서 하기의 구성을 포함하는 유리 시트를 성형하기 위한 공구와 관련된다:
a. 고온에 견딜 수 있는 금속으로 제조된 성형 다이로서, 하기의 구성을 포함한다:
ai. 성형 표면;
aii. 상기 성형 표면으로부터 멀어지고 대향되는 유리 시트를 보유하기에 적합한 수단;
aiii. 상기 성형 다이내 공동(cavity)으로 연장되는 인덕터(inductor)를 포함하는 유도 회로
b. 상기 성형 다이로부터 이격된 발열체(heating unit)로서, 하기의 구성을 포함한다:
bi. 상기 성형 표면에 대향되는 열 복사를 생성하기에 적합한 표면;
bii. 상기 발열체의 공동으로 연장되는 인덕터를 포함하는 유도 회로
c. 2개의 유도 회로를 고주파 전류 생성기에 접속시키는 수단.
따라서, 발열체 및 공구의 유도 가열은 상기 공구의 온도를 유리를 성형하기에 필요로 되는 온도까지 빠르게 상승시키는 것을 가능하게 하고, 따라서 장시간 동안 상기 공구가 고온에 노출되는 것을 방지한다. 발열체와 다이의 직접적인 가열은 이들의 온도를 제어하는 것을 가능하게 한다. 다이에 금속을 사용하면 적절한 표면 상태를 얻기 위하여 성형 표면을 가공하는 것을 가능하게 한다. 발열체 및 다이 전체를 가열하는 것은 성형된 유리 시트의 전체 표면에 걸쳐 온도를 고르게 분포시키는 것을 가능하게 한다. 공구는 독립적인 공구로 작동하기에 적합하며 단지 고주파 전류 생성기에 연결할 필요가 있다.
본 발명은 공구가 고온에서 유지되는 시간을 줄이고, 동시에 열성형을 위한 열적 사이클을 면밀히 제어하는 것을 가능하게 한다.
도 1은 유리 시트를 성형하기 전에, 본 발명에 따른 공구의 예시적인 실시 예의 단면도이며, 상기 시트는 공구상에 위치된다;
도 2는 본 발명에 따른 공구의 다이내 유도 회로의 예시적인 실시예를 도시한 도 1과 동일한 단면의 상세도이다;
도 3은 본 발명에 따른 방법을 예시하는 차트이다.
본 발명은 개별적으로 또는 어떠한 기술적으로 작동가능한 조합으로 고려될 수 있는, 바람직하게는 하기에서 설명되는 실시예에서 구현될 수 있다.
일 실시예에서, 다이는 마르텐사이트계 스테인리스강(martensitic stainless steel)으로 제조된다. 이 유형의 강철은 약 700℃의 온도까지 강자성체이다. 강자성 상태에서의 높은 투자율(magnetic permeability)은 인덕터가 필드 라인(field line)을 집중시킴으로써 연장되는 공동의 말단을 신속하게 가열하는 것을 가능하게 한다. 성형 표면에 전도에 의해 열을 전달함으로써 그 표면에서 온도를 균일하게 하는 것을 가능하게 한다.
다른 실시예에서, 다이는 니켈(Ni), 철(Fe), 크롬(Cr) 및 니오븀(Nb)으로 이루어진 합금으로 제조된다. 이 유형의 니켈-기반 초합금은 700℃에서 장시간 동안 노출시 또는 단기간의 노출의 경우에는 그 이상의 온도까지 크리프(creep) 및 부식을 견딜 수 있다. 재료는 전기적으로 전도성이며 유도에 의해 가열될 수 있다.
하나의 다른 실시예에서, 인덕터가 연장되는 공동은 인덕터와 상기 공동의 벽 사이에 강자성 물질로 이루어진 층을 포함한다. 니켈-기반 합금은 낮은 투자율을 가지므로, 본 실시예는 공동의 말단에 가열을 집중시킨 다음 전도에 의해 성형 표면으로 열을 전달하며 따라서 보다 효율적인 유도 가열을 달성하는 것을 가능하게 한다.
바람직하게는, 발열체는 흑연으로 제조된다. 흑연은 열 적외선 범위에서 높은 방사율 계수를 가지며, 매우 높은 온도까지 유도 가열에 적합하며 기계 가공이 용이하다. 이 기술 해결책은 복사에 의한 유리 시트의 빠르고 균일한 가열을 가능하게 한다.
바람직하게는, 흑연 발열체는 1200℃에서 산화에 견딜 수 있고 3 ㎛와 50 ㎛ 사이의 파장에서 높은 방사율을 갖는 코팅을 포함한다. 이 실시예는 산화로부터 발열체를 보호하는 것을 가능하게 하며, 따라서 본 발명에 따른 공구가 엔클로저(enclosure) 외부에서 독립적으로 작동하게 한다.
특정 실시예에서, 본 발명에 따른 공구는 다이 및 발열체 주위에 밀폐쇄 엔클로져(containment enclosure)를 포함하며, 상기 엔클로저는 중성 가스, 특히 불활성 가스로 충전된다. 따라서, 발열체 및 다이는 산화로부터 보호되고 그 수명이 증가된다. 본 발명의 맥락에서, 중성 가스는 특정 상황에서 유해한 영향을 미치지 않는 조성물을 갖는 가스이다.
바람직하게는, 상기 다이는 상기 다이와의 접촉으로부터 상기 유리 시트를 분리하기에 적합한 단열 지지체를 포함한다. 따라서, 유리 시트는 상기 유리 시트가 성형 온도에 도달하기 전에 다이와의 접촉에 의한 가능한 열 충격으로부터 보호된다.
바람직하게는, 본 발명에 따른 공구는 다음을 포함한다:
d. 발열체의 온도를 측정하기 위한 고온측정 센서. 바람직하게는, 본 발명에 따른 공구는 또한 다음을 포함한다:
e. 상기 성형 표면의 온도를 측정하기 위해 상기 다이내와 상기 성형 표면 근처에 통합된 열전대(thermocouple).
이 측정 장치를 사용하면 유리 시트를 열성형하기 위한 열순환을 제어하고 정밀하게 조절하는 것이 가능하다.
바람직하게는, 본 발명에 따른 공구내 다이는 다음을 포함한다:
aiv. 가스 순환용 냉각 도관.
바람직하게는, 본 발명에 따른 공구의 발열체는 다음을 포함한다:
biii. 가스 순환용 냉각 도관.
이러한 수단은 열성형을 위한 열순환의 조절에 기여하고 유리 시트가 적재되고 성형 사이클 후에 성형된 시트가 언로드(unload)될 때, 공구, 특히 다이를 조작하는 것을 보다 용이하게 해 준다.
본 발명은 또한 앞선 실시예 중 어느 하나에 따른 공구를 사용하는 유리 시트를 열성형하는 방법에 관한 것으로, 상기 방법은 하기의 단계를 포함한다:
i. 다이에 유리 시트를 적재시키는 단계;
ii. 각각의 유도 회로에 고주파 전류를 통과시킴으로써, 다이와 발열체를 동시에 가열하는 단계.
iii. 유리 시트를 다이의 성형 표면의 형태로 성형하는 단계
iv. 상기 낮은 어닐링 온도로 제어된 속도에서 상기 다이를 냉각시키는 단계;
v. 다이를 냉각시키는 단계
vi. 성형된 유리 시트를 제거하는 단계.
따라서, 본 발명에 따른 방법은 열성형 사이클의 엄격한 제어를 가능하게 한다.
바람직하게는, 본 발명에 따른 방법의 단계 (ⅱ)는 유리 시트를 구성하는 유리의 연화 온도로 공지된 온도로 발열체를 가열하고 보다 높은 어닐링 온도와 동일한 온도로 상기 다이를 가열하는 것을 포함한다. 따라서, 유리 시트의 거동은 중력 성형을 가능하게 하도록 충분히 유연하다(plastic).
본 발명은 어떠한 방식으로 제한되지 않으며, 도 1 내지 도 3을 참조하여, 다음과 같이 특징되는 바람직한 실시예로서 하기에 설명된다:
- 도 1은 유리 시트를 성형하기 전에, 본 발명에 따른 공구의 예시적인 실시 예의 단면도이며, 상기 시트는 공구상에 위치된다;
- 도 2는 본 발명에 따른 공구의 다이내 유도 회로의 예시적인 실시예를 도시한 도 1과 동일한 단면의 상세도이다;
- 그리고, 도 3은 본 발명에 따른 방법을 예시하는 차트이다.
이 문서 전체에서 달리 명시되지 않는 한:
- 유리 연화 온도는 성형된 유리의 점도가 107 포이즈 (106 Pa.s)인 온도이다;
- 보다 높은 어닐링 온도는 성형된 유리의 점도가 1013 포이즈 (1012 Pa.s) 인 온도이다;
- 그리고 낮은 어닐링 온도는 성형된 유리의 점도가 1014 포이즈 (1014 Pa.s) 인 온도이다.
예시적인 실시예의 도 1에서, 본 발명에 따른 공구는 발열체(110)를 포함하고 성형 다이(120)는 성형 표면 (125)을 포함한다. 이 예시적인 실시예에서, 상기 성형 표면(125)은 함몰된다. 대안적으로, 상기 성형 표면은 상승된다.
본 발명에 따른 공구는 성형 동작의 시작시에 여기에 나타낸 바와 같이, 이 예시적인 구현예에서 초기에 평평한 유리 시트(100)는 공동(125) 위에 배치되고 단열 패드(130)의 말단에 놓여진다 . 비-제한적인 예로서, 상기 패드(130)는 세라믹 또는 실리콘 매트릭스에 90% 또는 그 이상의 운모(백운모)를 포함하는 복합 재료로 제조된다. 예시적인 실시예에서, 다이(120)는 17 내지 21%의 크롬(Cr), 2.8 내지 3.3%의 몰리브덴(Mo), 4.75 내지 5.5%의 니오븀(Nb), 17 내지 19%의 철(Fe) 및 50 내지 55%의 니켈(Ni)을 포함하는, 상업적으로 인코넬(Inconel) 718®로 공지된 니켈-기반 구조의 강화 초합금으로 제조된다. 대안적으로, 상기 다이는 0.16% 탄소(C), 2% 니켈(Ni) 및 17% 크롬(Cr)을 포함하는 AISI 431 유형의 페라이트 마르텐사이트계 스테인레스강(ferrite martensitic stainless steel)으로 제조된다. 이 물질은 일정한 기계적 특성, 구체적으로 스테인레스강에 대해 400℃까지와 인코넬 718®)에 대해 700℃까지의 고온에서, 그리고 단기간 노출시 보다 고온에서 내마모성 및 내크리프성(creep resistance) 및 내식성을 갖는다. 상기 다이는 유도 회로를 구성하는 인덕터를 포함한 복수의 도관(140)을 포함한다. 예를 들면, 상기 인덕터는 세라믹 튜브(142), 예를 들면 실리카 슬리브에 의해 다이의 벽으로부터 절연된 구리 튜브(141)로 제조될 수 있다. 바람직하게는, 상기 다이(120)는 2개의 부분(121, 122)으로 이루어진다; 따라서 인덕터를 통과시키기 위한 도관(140)은 조립되기 전에 상기 부품을 그루빙(grooving)함으로써 제조된다.
유도 회로의 다른 실시예의 도 2에서, 보다 구체적으로 다이를 구성하는 물질이 강자성체가 아닌 경우에 적합하며, 도관은 고온, 예를 들면 700℃까지 그 강자성 특성을 유지하는 높은 투자율을 갖는 강철층(243)으로 덮여진다. 따라서, 인덕터(241)에 의해 생성된 자기장은 재킷팅(jacketing)(243)에 집중되어 급속 가열되고 열은 전도에 의해 다이에 전달된다. 열은 전도에 의해 성형 표면까지 전달되며 인덕터의 적절한 배열은 이 성형 표면의 온도를 균일하게 하는 것을 가능하게 한다.
도 1을 참조하면, 이 예시적인 실시예에서, 인덕터를 수용하는 도관과 같이, 냉각 도관(152)의 네트워크는 드릴링 또는 그루빙 및 조립에 의해 다이(120) 내에 배치된다. 이러한 도관은 다이 및 구체적으로 성형 표면을 냉각시키기 위해 공기 또는 중성 열-전달 가스를 송풍하는 것을 가능하게 한다. 공기 송풍 및 유도 가열은 온도 또는 냉각 속도를 조절하기 위해 함께 사용될 수 있다. 열전쌍(162)은 그 온도를 측정하고 가열 및 냉각 조건을 제어하기 위해 성형 표면(125) 근처에 유리하게 배치된다. 다이는 지르코니아로 제조된 복합 플레이트 또는 운모(백운모) 및 실리콘 결합제를 포함하는 복합 물질로 제조된 플레이트와 같은, 단열 지지체(180) 상에 배치된다. 예시적인 실시예에서, 공구내 유리 시트의 적재 및 배출을 위한 작동을 촉진하기 위하여, 상기 지지체(180)는 발열체(110)에 관하여 다이(181)를 변위시키는 것을 가능하게 하는 수단(미도시)상에 장착된다.
발열체(110)는 흑연으로 제조된다. 다이의 성형 표면(125)에 대향하는 방사 표면(115)과 유리 시트(100) 사이의 거리를 조정하기 위한 수단(미도시)에 의해, 구체적으로 5 mm와 50 mm 사이의 범위내에서 다이로부터 거리를 두고 유지된다.
다이(120)와 유사하게, 상기 발열체(110)은, 이 예시적인 실시예에서, 유도 가열 회로와 열-전달 가스가 순환하는 냉각 도관(151)의 네트워크를 통과시키기 위한 도관(145)의 네트워크를 포함한다. 하나의 예시적인 실시예에서, 상기 발열체은, 모든 면 또는 일부면에, 열 적외선 복사 밴드에서 고온 및 고 방사율로 인한 산화로부터 흑연을 보호하는데 적합한 코팅(131), 예를 들면 탄화규소(SiC)의 코팅을 포함한다. 이러한 코팅은 약 1600℃의 온도까지 산화로부터 흑연을 보호하는 것을 가능하게 한다. 따라서, 본 발명에 따른 공구는 손상 없이 공기 중에서 작동하기에 적합하다. 대안적으로, 본 발명에 따른 공구의 수명을 연장하기 위해 엔클로저내에 배치되고, 상기 엔클로저는, 아르곤 또는 질소와 같은 작동 온도에서 중성인 가스 또는 헬륨과 같은 불활성 가스로 충전된다. 발열체의 온도는 이 예시적인 실시예에서 적외선 고온계(161)에 의해 측정된다.
본 발명에 따른 공구의 발열체(110) 및 다이(120)의 유도 회로는 그 결과되는 공진 회로, 특히 커패시터 및 임피던스 적응 코일 세트를 튜닝하기에 적합한 수단(미제시)을 통하여 전형적으로 10 kHz와 200 kHz 사이의 주파수에서 작동하는 고주파 전류 발생기에 연결된다.
도 3에서, 본 발명에 따른 방법의 예시적인 실시예에 따라, 상기 방법은 공구상에 성형될 유리 시트를 적재하는 단계로 구성되는 제 1 로딩 단계(310)를 포함한다. 특정 실시예에서, 이 단계(310)는 다이가 발열체로부터 일정 거리에 있을 때 수행된다. 다른 실시예에서, 상기 유리 시트는 상온에서 다이 또는 유리의 보다 낮은 어닐링 온도와 같거나 그 보다 낮은 온도의 다이에 상온에서 배치된다. 다른 실시예에서, 인라인 공정에서, 유리 시트는 보다 낮은 유리 어닐링 온도 이하 또는 동일한 온도, 또는 600℃ 이하의 온도에서 다이에 배치된다. 유리 시트는 성형 표면 바로 위의 절연 패드에 닿지 않으면서 위치된다. 가열 단계(320)에서, 유리 시트를 지지하는 다이는 발열체 아래에 있고, 상기 발열체 및 다이는 유도에 의해 가열된다. 방사 전력(radiation power)을 증가시키기 위하여, 발열체는 적어도 유리의 연화 온도와 동일한 온도, 또는 유리의 유형에 따라 800℃ 내지 850℃ 또는 흑연 발열체의 경우 통상 1200℃ 내지 1600℃의 높은 온도 범위로 가열된다. 다이는 열성형된 유리의 성질에 따라 보다 낮은 온도, 일반적으로 유리의 보다 높은 어닐링 온도 또는 600℃ 내지 700℃로 가열된다. 유리 시트는 발열체로부터 복사에 의해 가열된다. 성형 단계(330) 동안, 가열로 인해 연화됨으로써, 유리 시트는 다이의 성형 표면 상에 크리프(creep)되고, 그 형태를 따른다. 그것은 다이와 접촉할 때 냉각되지만, 그 온도는 유리 시트의 응력을 완화시키는 데 충분하게 유지된다. 냉각 단계(340) 동안, 예시적인 실시예에서, 발열체의 가열이 중단되고 상기 발열체는 냉각 도관을 순환하는 가스에 의해 냉각된다. 유리 시트의 냉각은 다이에 의해 조절된다. 따라서, 냉각 단계(340)는, 시트를 구성하는 유리의 보다 낮은 어닐링 온도, 일반적으로 유리의 유형에 따라 500℃ 내지 600℃로 느리고 제어된 냉각 단계를 포함하고, 그리고 나서, 냉각은 언로딩 온도까지 가속된다. 언로딩 온도에 도달될 때, 언로딩 단계(350)에서, 다이는 예시적인 실시예에서 언로딩 위치로 이동되고 성형된 유리 시트는 흡착 패드 장치와 같은 적절한 수단을 사용하여 다이로부터 제거된다. 공구는 이제 새로운 사이클에 대한 준비가 되어 있다.
상기 설명 및 예시적인 실시예는 본 발명이 그 설정된 목적을 달성하는 것을 나타낸다; 구체적으로, 이것은 공구가 고온에서 유지되는 시간을 줄이고, 동시에 열성형을 위한 열적 사이클을 면밀히 제어하는 것을 가능하게 한다. 본 발명에 따른 공구는, 구체적인 실시예에서, 특별한 엔클러저 없이도 독립적으로 작동하기에 적합하다.

Claims (14)

  1. a. 전기적 도전성 물질로 제조된 성형 다이(120):
    ai. 성형 표면(125);
    aii. 상기 성형 표면으로부터 멀어지고 서로 마주보는 유리 시트를 보유하기에 적합한 수단(130);
    aiii. 상기 성형 다이내의 공동(cavity)(140)에 연장되는 인덕터(inductor)(141, 241)를 포함하는 유도 회로;
    b. 상기 성형 다이로부터 이격된 발열체(110):
    bi. 상기 성형 표면(125)에 대향되는 열복사를 생성하기에 적합한 표면(115);
    bii. 상기 발열체의 공동(145)에 연장되는 인덕터를 포함하는 유도 회로
    c. 상기 유도 회로를 고주파 전류 생성기에 접속하기 위한 수단;을 포함하는 것을 특징으로 하는 유리 시트(100)를 성형하기 위한 공구.
  2. 제 1 항에 있어서,
    상기 다이(120)는 마르텐사이트계 스테인레스강(martensitic stainless steel)으로 제조되는 것을 특징으로 하는 공구.
  3. 제 1 항에 있어서,
    상기 다이(120)는 니켈(Ni), 철(Fe), 크롬(Cr) 및 니오븀(Nb)으로 이루어진 합금으로 제조되는 것을 특징으로 하는 공구.
  4. 제 3 항에 있어서,
    상기 인덕터가 연장되는 공동(140, 145)은 상기 인덕터와 상기 공동 벽 사이에 강자성 물질로 구성된 층(243)을 포함하는 것을 특징으로 하는 공구.
  5. 제 1 항에 있어서,
    상기 발열체(110)은 흑연으로 제조되는 것을 특징으로 하는 공구.
  6. 제 5 항에 있어서,
    상기 발열체(110)는 1200℃에서 산화에 견딜 수 있고 3 ㎛ 내지 50 ㎛ 사이의 파장에서 높은 방사율을 갖는 코팅(131)을 포함하는 것을 특징으로 하는 공구.
  7. 제 5 항에 있어서,
    상기 다이(120) 및 상기 발열체(110) 주위의 밀폐쇄 엔클로져(containment enclosure)를 포함하며, 상기 엔클로저는 중성 가스, 특히 불활성 가스로 채워지는 것을 특징으로 하는 공구.
  8. 제 1 항에 있어서,
    상기 다이(120)는 다이와의 접촉으로부터 유리 시트(100)를 분리하기에 적합한 단열 지지체(130)를 포함하는 것을 특징으로 하는 공구.
  9. 제 1 항에 있어서,
    상기 공구는 발열체의 온도를 측정하기 위한 고온측정 센서(161)를 포함하는 것을 특징으로 하는 공구.
  10. 제 1 항에 있어서,
    상기 공구는 성형 표면의 온도를 측정하기 위해 다이내 및 성형 표면 근처에 통합된 열전쌍(thermocouple)을 포함하는 것을 특징으로 하는 공구.
  11. 제 1 항에 있어서,
    상기 다이는 가스를 순환시키기 위한 냉각 도관(152)을 포함하는 것을 특징으로 하는 공구.
  12. 제 1 항에 있어서,
    상기 발열체는 가스를 순환시키기 위한 냉각 도관(151)을 포함하는 것을 특징으로 하는 공구.
  13. i. 다이에 유리 시트를 배치하는 단계(310);
    ii. 각각의 유도 회로에 고주파 전류를 통과시킴에 의해, 상기 다이 및 발열체를 동시에 가열하는 단계(320);
    iii. 상기 유리 시트를 다이의 성형 표면의 형태로 성형하는 단계(330);
    iv. 보다 낮은 어닐링 온도로 제어된 속도에서 상기 다이를 냉각하는 단계 (340);
    v. 다이를 냉각하는 단계; 및
    vi. 성형된 유리 시트를 제거하는 단계 (350);를 포함하는, 제 1 항의 공구를 사용한 유리 시트의 열성형 방법.
  14. 제 13 항에 있어서,
    상기 ii 단계(320)는 상기 발열체를 유리 시트를 구성하는 유리의 연화 온도로 공지된 온도로 가열하고, 보다 높은 어닐링 온도와 동일한 온도로 상기 다이를 가열하는 단계를 포함하는 것을 특징으로 하는 유리 시트의 열성형 방법.
KR1020177029661A 2015-03-24 2016-03-24 유리 성형 장치 및 방법 KR102491898B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1552470A FR3034093B1 (fr) 2015-03-24 2015-03-24 Dispositif et procede pour le formage du verre
FR1552470 2015-03-24
PCT/EP2016/056685 WO2016151127A1 (fr) 2015-03-24 2016-03-24 Dispositif et procédé pour le formage du verre

Publications (2)

Publication Number Publication Date
KR20170129819A true KR20170129819A (ko) 2017-11-27
KR102491898B1 KR102491898B1 (ko) 2023-01-25

Family

ID=53541741

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177029661A KR102491898B1 (ko) 2015-03-24 2016-03-24 유리 성형 장치 및 방법

Country Status (6)

Country Link
US (1) US11505488B2 (ko)
JP (1) JP6686128B2 (ko)
KR (1) KR102491898B1 (ko)
CN (1) CN107592856B (ko)
FR (1) FR3034093B1 (ko)
WO (1) WO2016151127A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102085022B1 (ko) * 2018-10-24 2020-03-05 (주)애드파인테크놀러지 3d 곡면 커브드 유리 가공 시스템 및 방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3051136A1 (fr) * 2016-05-10 2017-11-17 Roctool Procede et dispositif pour le chauffage d’un moule
FR3069479B1 (fr) * 2017-07-25 2020-07-17 Roctool Procede et dispositif pour la fabrication d’une piece composite de forme complexe
US11673824B2 (en) * 2017-10-06 2023-06-13 Corning Incorporated Process and system for forming curved glass via differential heating of edge region
CN109354391A (zh) * 2018-12-14 2019-02-19 东莞市凯迪碳素有限公司 车载3d玻璃模具以及用其制造车载3d玻璃的方法
FR3097542B1 (fr) * 2019-06-19 2021-06-18 Saint Gobain Dispositif de refroidissement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202828A (ja) * 1986-02-26 1987-09-07 Nippon Sheet Glass Co Ltd ガラス製品の成形方法
JPH10218630A (ja) * 1997-02-04 1998-08-18 A F C Ceramic:Kk 鏡面成形型
CN202099183U (zh) * 2011-01-12 2012-01-04 可成科技股份有限公司 立体玻璃壳体的制造装置及具有立体玻璃壳体的电子产品
KR20140039216A (ko) * 2011-05-27 2014-04-01 코닝 인코포레이티드 유리 몰딩 시스템과, 그 연관 장치 및 방법
US20140157828A1 (en) * 2012-12-10 2014-06-12 Corning Incorporated Method and system for making a glass article with uniform mold temperature
WO2015022643A1 (en) * 2013-08-12 2015-02-19 Istituto Nazionale Di Astrofisica A process for manufacturing an optical element by hot forming a glass sheet using pressure difference

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414416A (en) * 1977-07-05 1979-02-02 Asahi Glass Co Ltd Method of bending glass sheet
GB9210327D0 (en) * 1992-05-14 1992-07-01 Tsl Group Plc Heat treatment facility for synthetic vitreous silica bodies
FR2867939B1 (fr) * 2004-03-18 2007-08-10 Roctool Procede pour chauffer des materiaux en vue de produire des objets et dispositif mettant en oeuvre de procede
US10232530B2 (en) * 2005-06-22 2019-03-19 Roctool Induction heating device and method for making a workpiece using such a device
US9010153B2 (en) * 2008-07-02 2015-04-21 Corning Incorporated Method of making shaped glass articles
IT1401071B1 (it) * 2010-08-02 2013-07-12 Tecno Sun S R L Dispositivo per l'erogazione di sale medicale micronizzato
WO2012118612A1 (en) 2011-02-28 2012-09-07 Corning Incorporated Method of forming a 3d glass article from a 2d glass sheet
FR2991902A1 (fr) * 2012-06-18 2013-12-20 Roctool Procede et dispositif pour le prechauffage d'un moule notamment de moulage par injection
CA2875235C (fr) 2012-06-19 2021-06-22 Roctool Moule a chauffage et refroidissement rapides
TWI643983B (zh) * 2013-03-14 2018-12-11 美商希利柯爾材料股份有限公司 定向凝固系統及方法
US9505648B2 (en) * 2014-05-19 2016-11-29 Corning Incorporated Mold assemblies for forming shaped glass articles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202828A (ja) * 1986-02-26 1987-09-07 Nippon Sheet Glass Co Ltd ガラス製品の成形方法
JPH10218630A (ja) * 1997-02-04 1998-08-18 A F C Ceramic:Kk 鏡面成形型
CN202099183U (zh) * 2011-01-12 2012-01-04 可成科技股份有限公司 立体玻璃壳体的制造装置及具有立体玻璃壳体的电子产品
KR20140039216A (ko) * 2011-05-27 2014-04-01 코닝 인코포레이티드 유리 몰딩 시스템과, 그 연관 장치 및 방법
US20140157828A1 (en) * 2012-12-10 2014-06-12 Corning Incorporated Method and system for making a glass article with uniform mold temperature
WO2015022643A1 (en) * 2013-08-12 2015-02-19 Istituto Nazionale Di Astrofisica A process for manufacturing an optical element by hot forming a glass sheet using pressure difference

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102085022B1 (ko) * 2018-10-24 2020-03-05 (주)애드파인테크놀러지 3d 곡면 커브드 유리 가공 시스템 및 방법
WO2020085622A1 (ko) * 2018-10-24 2020-04-30 (주)애드파인테크놀러지 3d 곡면 커브드 유리 가공 시스템 및 방법

Also Published As

Publication number Publication date
US11505488B2 (en) 2022-11-22
JP6686128B2 (ja) 2020-04-22
FR3034093B1 (fr) 2021-01-29
US20180057389A1 (en) 2018-03-01
KR102491898B1 (ko) 2023-01-25
CN107592856B (zh) 2021-02-09
JP2018509374A (ja) 2018-04-05
CN107592856A (zh) 2018-01-16
FR3034093A1 (fr) 2016-09-30
WO2016151127A1 (fr) 2016-09-29

Similar Documents

Publication Publication Date Title
KR102491898B1 (ko) 유리 성형 장치 및 방법
TWI744228B (zh) 用於玻璃成型的設備及方法
US9657992B2 (en) System for maintaining interior volume integrity in an induction vacuum furnace and method of making same
KR102149867B1 (ko) 사출 성형을 위하여 제조된 주형을 예열하기 위한 방법 및 장치
KR101617255B1 (ko) 흑연화 노 및 흑연을 제조하는 방법
JP5226206B2 (ja) 誘導加熱を用いた熱処理方法および熱処理装置
TWI769158B (zh) 用於加熱模具的方法和裝置
KR101959451B1 (ko) 대량 생산용으로 인덕션 가열에 의한 연료전지 전극의 소결 및 전해액 파우더를 가진 다공성 전극을 함침하기 위한 방법 및 제조 장치
US20050092024A1 (en) Method and device for non-contact moulding of fused glass gobs
JP4266115B2 (ja) モールドプレス成形装置及びガラス光学素子の製造方法
JPH04279259A (ja) セラミツク成形体又は異形断面体を製造する方法
JP2001192728A (ja) 円筒状金属コイルの加熱装置、及び加熱方法
JP4261331B2 (ja) 誘導加熱成形装置
JP5595017B2 (ja) 板状ワークの熱処理方法
TWI580919B (zh) 複合坩鍋結構及其電弧加熱過程中的高溫絕熱方法
JP2005179084A (ja) 誘導加熱成形装置
WO2013108572A1 (ja) 離型シート及びガラス成形品の成形方法
JP4549798B2 (ja) モールドプレス成形装置及び光学素子の製造方法
JP4041342B2 (ja) 円筒状金属コイルの熱処理方法
JP2018184647A (ja) 金属粉末成形体の熱処理装置
JP2001180947A (ja) 精密ガラス光学素子の製造方法およびその方法を用いた精密ガラス光学素子の製造装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant