KR20170001611A - 연료 전지 시스템 - Google Patents

연료 전지 시스템 Download PDF

Info

Publication number
KR20170001611A
KR20170001611A KR1020160077804A KR20160077804A KR20170001611A KR 20170001611 A KR20170001611 A KR 20170001611A KR 1020160077804 A KR1020160077804 A KR 1020160077804A KR 20160077804 A KR20160077804 A KR 20160077804A KR 20170001611 A KR20170001611 A KR 20170001611A
Authority
KR
South Korea
Prior art keywords
fuel cell
command value
output
value
current
Prior art date
Application number
KR1020160077804A
Other languages
English (en)
Other versions
KR101858809B1 (ko
Inventor
요헤이 오카모토
히로유키 이마니시
히로유키 스즈키
다카시 야마다
Original Assignee
도요타지도샤가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도요타지도샤가부시키가이샤 filed Critical 도요타지도샤가부시키가이샤
Publication of KR20170001611A publication Critical patent/KR20170001611A/ko
Application granted granted Critical
Publication of KR101858809B1 publication Critical patent/KR101858809B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04597Current of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • Y02E60/521

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)

Abstract

실출력값이 출력 명령값보다도 작은 경우(S310, "예"), 전류 명령값을 증대시킨다(S320). 실출력값이 출력 명령값 이상인 경우(S310, "아니오"), 실출력값이 불감대의 범위 내인지를 판정한다(S330). 실출력값이 불감대의 범위 밖인 경우(S330, "아니오"), 전류 명령값을 저하시킨다(S340). 실출력값이 불감대의 범위 내인 경우(S330, "예"), 전류 명령값을 유지한다.

Description

연료 전지 시스템{FUEL CELL SYSTEM}
본 발명은 연료 전지에 관한 것이다.
연료 전지의 난기 운전이 필요한 경우, 연료 전지를 저효율의 동작점에 의해 운전하는 방법이 알려져 있다(일본 특허 공개 제2007-184243). 일본 특허 공개 제2007-184243에 개시된 방법은, 저효율의 동작점에 의한 운전을 위하여, 컨버터를 사용하여 발전 전압을 저하시킴과 함께, 에어 컴프레서에 의한 캐소드 가스의 공급량을 교축한다. 이러한 제어에 의해, 출력을 일정하게 유지하면서 동작점을 변경하여, 난기 운전으로 이행한다.
상기 연료 전지에서는, 난기 운전을 안정적으로 계속하는 것에 대하여 충분히 고려되어 있지 않았다. 예를 들어, 난기 운전의 계속 중에 출력을 변경하고자 하는 경우, 컨버터와 에어 컴프레서를 제어하여, 연료 전지의 동작점을 변경하게 된다. 예를 들어, 컨버터가 발전 전류를 목표값에 근접하도록 제어하는 구성인 경우, 출력을 증대시키는 경우에는 발전 전류의 목표값도 증대시키고, 출력을 저하시키는 경우에는 발전 전류의 목표값도 저하시킨다. 에어 컴프레서에 의한 캐소드 가스의 공급량은, 컨버터의 제어와 병행하여, 목표가 되는 출력이 실현되도록 조정된다. 또한, 연료 전지에 있어서, 그 발전 전류 및 발전 전압은, 공급되는 수소와 산소의 양이 일정하면 특정한 상관 관계를 나타내는 것이 알려져 있다. 이 상관 관계를, 이하, I-V 특성이라고 칭한다.
단, 에어 컴프레서에 의한 캐소드 가스의 공급량의 제어는, 컨버터에 의한 제어보다도 응답성이 나쁘기 때문에, 경우에 따라서는 컨버터에 의한 발전 전류의 제어가 지배적인 상황에서, 동작점의 변경이 실행된다.
그런데, 연료 전지의 동작점에 따라서는, 발전 전류가 낮아지면, 도리어 출력이 상승되는 경우가 있다(상세하게는 도 4와 함께 설명함). 따라서, 이러한 동작점으로부터 출력을 저하시키기 때문에, 발전 전류의 저하에 의해서만 출력을 저하시키는 경우, 출력이 피크가 되는 동작점보다도 더욱 발전 전류가 낮은 동작점으로 변경하게 된다. 일반적으로 I-V 특성은, 발전 전류가 작은 영역에서는 발전 전류가 작을수록 발전 전압이 커지는 경향을 나타내기 때문에, 상기한 바와 같이 동작점을 변경하면, 발전 전압이 높아진다. 한편, 상세하게 후술하는 바와 같이, 발전 전압이 높으면 발열량은 낮아진다. 따라서, 상기한 바와 같이 동작점을 변경하면, 발열량이 작아져, 난기 운전이 중단되어 버리게 된다.
본원 발명은 난기 운전을 중단시키지 않고, 안정적으로 계속시키는 기술을 제공한다.
본 발명의 형태는, 애노드 가스와 캐소드 가스의 공급을 받아 발전하는 연료 전지와; 상기 연료 전지에 의해 발전된 전력을 소비하는 부하와; 상기 연료 전지에 의해 발전된 전력을 축전하는 이차 전지와; 상기 부하 및 상기 이차 전지로부터 취득한 정보에 기초하여, 상기 연료 전지에의 요구 출력을 나타내는 값인 출력 명령값을 산출하는 출력 명령값 산출부와; 상기 연료 전지의 출력이 상기 출력 명령값 산출부에 의해 상기 산출된 출력 명령값에 근접하도록, 상기 연료 전지에 상기 캐소드 가스를 공급하는 컴프레서와; 상기 연료 전지에 의한 발전 전류의 목표값인 전류 명령값을 결정하는 전류 명령값 결정부와; 상기 결정된 전류 명령값에 따라, 상기 연료 전지에 의한 발전 전류를 제어하는 컨버터를 구비하는 연료 전지 시스템에 관한 것이다. 이 연료 전지 시스템에 있어서; 상기 전류 명령값 결정부는, 상기 애노드 가스의 공급량에 대한 상기 캐소드 가스의 공급량을 저감시킴으로써, 상기 연료 전지의 발전 효율을 저하시키는 저효율 발전 운전 시의 경우, 상기 연료 전지로부터의 출력이 상기 출력 명령값 산출부에 의해 산출된 출력 명령값보다도 소정값 이상 큰 것과, 상기 출력 명령값보다도 작은 것 중 어느 1개가 만족되는 제1 상태일 때는, 상기 연료 전지의 출력이 상기 출력 명령값 산출부에 의해 산출된 출력 명령값에 근접하도록 산출한 전류값을 상기 전류 명령값으로서 결정하고, 상기 연료 전지에 의한 출력이 상기 출력 명령값 산출부에 의해 산출된 출력 명령값보다도 상기 소정값 미만만큼 큰 제2 상태일 때는, 가장 가까운 상기 제1 상태 시에 산출된 전류값을 상기 전류 명령값으로서 결정한다.
상기 형태에 의하면, 저효율 발전 운전 시에 있어서, 연료 전지에 의한 출력이 출력 명령값보다도 소정값 미만만큼 큰 경우는, 전류 명령값을 유지한다. 이로 인해, 연료 전지에 의한 출력이 출력 명령값보다도 소정값 미만만큼 큰 것을 해소하기 위하여, 발열량이 작은 고효율 운전으로 이행하는 것이 회피된다.
본 발명은, 상기 이외의 다양한 형태로 실현할 수 있다. 예를 들어, 연료 전지의 난기 방법이나, 이 방법을 실현하기 위한 컴퓨터 프로그램, 이 컴퓨터 프로그램을 기억한 일시적이지 않은 기억 매체 등의 형태로 실현할 수 있다.
본 발명의 예시적 실시예의 특징, 이점 및 기술적 및 산업적 의의에 대하여 첨부 도면을 참조하여 이하에 설명한다.  상기 도면에서 유사한 부호는 유사한 구성 요소를 지칭한다.
도 1은 연료 전지 시스템의 구성을 도시하는 개략도.
도 2는 연료 전지 시스템의 전기적 구성을 도시하는 개략도.
도 3은 연료 전지의 I-V 특성을 나타내는 그래프.
도 4는 연료 전지의 출력-전류 특성을 나타내는 그래프.
도 5는 전류 명령값 결정 처리를 나타내는 흐름도.
도 1은 연료 전지 시스템(100)의 구성을 도시하는 개략도이다. 연료 전지 시스템(100)은, 연료 전지(10)와, 제어부(20)와, 캐소드 가스 공급부(30)와, 캐소드 가스 배출부(40)와, 애노드 가스 공급부(50)와, 애노드 가스 순환 배출부(60)와, 냉매 공급부(70)를 구비한다.
연료 전지(10)는 반응 가스로서 수소(애노드 가스)와 공기(캐소드 가스)의 공급을 받아 발전하는 고체 고분자형 연료 전지이다. 연료 전지(10)는, 복수(예를 들어 400)의 셀(11)이 적층된 스택 구조를 갖는다. 각 셀(11)은 전해질막의 양면에 전극을 배치한 발전체인 막전극 접합체와, 막전극 접합체를 끼움 지지하는 2매의 세퍼레이터를 갖는다.
전해질막은, 습윤 상태에서 양호한 프로톤 전도성을 나타내는 고체 고분자 박막에 의해 구성된다. 전극은 카본에 의해 구성된다. 전극의 전해질막측의 면에는 발전 반응을 촉진시키기 위한 백금 촉매가 담지되어 있다. 각 셀(11)에는 반응 가스나 냉매를 위한 매니폴드(도시하지 않음)가 설치되어 있다. 매니폴드의 반응 가스는, 각 셀(11)에 형성된 가스 유로를 통하여, 각 셀(11)의 발전 영역에 공급된다.
제어부(20)는 이하에 설명하는 연료 전지 시스템(100)의 각 구성부를 제어하고, 연료 전지(10)에 의한 발전을 실현한다.
캐소드 가스 공급부(30)는 캐소드 가스 배관(31)과, 에어 컴프레서(32)와, 분류(分流) 밸브(34)를 구비한다. 캐소드 가스 배관(31)은 연료 전지(10)의 캐소드측에 접속된 배관이다. 에어 컴프레서(32)는 캐소드 가스 배관(31)을 개재하여 연료 전지(10)와 접속되어 있고, 외기를 도입하여 압축한 공기를, 캐소드 가스로서 연료 전지(10)에 공급한다. 에어 컴프레서(32)는 발전에 의한 출력값(이하, 실출력값이라고 함)이 출력 명령값에 근접하도록 회전수를 제어함으로써, 캐소드 가스의 유량을 제어한다. 출력 명령값이란, 연료 전지(10)에 의한 출력의 목표값이 되는 값이며, 부하(200)의 요구 등에 기초하여, 제어부(20)가 구비하는 출력 명령값 산출부(22)에 따라 결정된다.
분류 밸브(34)는 에어 컴프레서(32)와 연료 전지(10) 사이에 설치되어 있고, 또한 바이패스(35)에 접속된다. 바이패스(35)는 분류 밸브(34)와, 후술하는 캐소드 배기 가스 배관(41)을 접속하는 유로이다. 분류 밸브(34)는 에어 컴프레서(32)로부터의 압축 공기를 연료 전지(10)에 공급하는 경우는, 바이패스(35)측에의 공기의 흐름을 차단하고, 캐소드 가스 배관(31)의 상류측과 하류측을 연통시킨다. 분류 밸브(34)는 에어 컴프레서(32)로부터의 압축 공기를 연료 전지(10)에 공급하지 않는 경우는, 캐소드 가스 배관(31)의 하류측으로의 공기의 흐름을 차단하고, 캐소드 가스 배관(31)의 상류측과 바이패스(35)를 연통시킨다.
캐소드 가스 배출부(40)는 캐소드 배기 가스 배관(41)과, 압력 조절 밸브(43)를 구비한다. 캐소드 배기 가스 배관(41)은, 연료 전지(10)의 캐소드측에 접속된 배관이며, 캐소드 배기 가스를 연료 전지 시스템(100)의 외부로 배출한다. 압력 조절 밸브(43)는 캐소드 배기 가스 배관(41)에 있어서의 캐소드 배기 가스의 압력(연료 전지(10)의 배압)을 조정한다.
애노드 가스 공급부(50)는 애노드 가스 배관(51)과, 수소 탱크(52)와, 개폐 밸브(53)와, 레귤레이터(54)와, 인젝터(55)를 구비한다. 수소 탱크(52)는 애노드 가스 배관(51)을 개재하여 연료 전지(10)의 애노드와 접속되어 있고, 탱크 내에 충전된 수소를 연료 전지(10)에 공급한다.
개폐 밸브(53), 레귤레이터(54), 인젝터(55)는 애노드 가스 배관(51)에, 이 순서로 상류측(즉 수소 탱크(52)에 가까운 측)부터 설치되어 있다. 개폐 밸브(53)는 제어부(20)로부터의 명령에 의해 개폐하여, 수소 탱크(52)로부터 인젝터(55)의 상류측으로의 수소의 유입을 제어한다. 레귤레이터(54)는 인젝터(55)의 상류측에 있어서의 수소의 압력을 조정하기 위한 감압 밸브이다.
인젝터(55)는 제어부(20)에 의해 설정된 구동 주기나 밸브 개방 시간에 따라, 밸브체가 전자적으로 구동하는 전자 구동식의 개폐 밸브이다. 제어부(20)는 인젝터(55)의 구동 주기나 밸브 개방 시간을 제어함으로써, 연료 전지(10)에 공급되는 수소의 양을 제어한다.
애노드 가스 순환 배출부(60)는 애노드 배기 가스 배관(61)과, 기액 분리부(62)와, 애노드 가스 순환 배관(63)과, 수소 순환용 펌프(64)와, 애노드 배수 배관(65)과, 배수 밸브(66)를 구비한다. 애노드 배기 가스 배관(61)은, 연료 전지(10)의 애노드 출구와 기액 분리부(62)를 접속하는 배관이며, 발전 반응에 사용되는 일이 없던 미반응 가스(수소나 질소 등)를 포함하는 애노드 배기 가스를 기액 분리부(62)로 유도한다.
기액 분리부(62)는 애노드 가스 순환 배관(63)과, 애노드 배수 배관(65)에 접속되어 있다. 기액 분리부(62)는 애노드 배기 가스에 포함되는 기체 성분과 수분을 분리하여, 기체 성분에 대해서는 애노드 가스 순환 배관(63)으로 유도하고, 수분에 대해서는 애노드 배수 배관(65)으로 유도한다.
애노드 가스 순환 배관(63)은, 애노드 가스 배관(51)의 인젝터(55)보다 하류에 접속되어 있다. 애노드 가스 순환 배관(63)에는 수소 순환용 펌프(64)가 설치되어 있고, 이 수소 순환용 펌프(64)에 의해 기액 분리부(62)에 있어서 분리된 기체 성분에 포함되는 수소는 애노드 가스 배관(51)으로 송출된다. 이와 같이, 이 연료 전지 시스템(100)에서는, 애노드 배기 가스에 포함되는 수소를 순환시켜, 다시 연료 전지(10)에 공급함으로써, 수소의 이용 효율을 향상시키고 있다.
애노드 배수 배관(65)은 기액 분리부(62)에 있어서 분리된 수분을 연료 전지 시스템(100)의 외부로 배출하기 위한 배관이다. 배수 밸브(66)는 애노드 배수 배관(65)에 설치되어 있고, 제어부(20)로부터의 명령에 따라 개폐한다. 제어부(20)는 연료 전지 시스템(100)의 운전 중에는, 통상 배수 밸브(66)를 폐쇄해 두고, 미리 설정된 소정의 배수 타이밍이나, 애노드 배기 가스 중의 불활성 가스의 배출 타이밍에 배수 밸브(66)를 개방한다.
냉매 공급부(70)는 냉매용 배관(71)과, 라디에이터(72)와, 냉매 순환용 펌프(73)를 구비한다. 냉매용 배관(71)은, 연료 전지(10)에 설치된 냉매용 입구 매니폴드와 출구 매니폴드를 연결하는 배관이며, 연료 전지(10)를 냉각하기 위한 냉매를 순환시킨다. 라디에이터(72)는 냉매용 배관(71)에 설치되어 있고, 냉매용 배관(71)을 흐르는 냉매와 외기 사이에서 열교환시킴으로써, 냉매를 냉각한다.
냉매 순환용 펌프(73)는 냉매용 배관(71)에 있어서, 라디에이터(72)보다 하류측(라디에이터(72)와 연료 전지(10)의 냉매 입구 사이의 위치)에 설치되어 있고, 라디에이터(72)에 있어서 냉각된 냉매를 연료 전지(10)에 송출한다.
도 2는 연료 전지 시스템(100)의 전기적 구성을 도시하는 개략도이다. 연료 전지 시스템(100)은, 상술한 제어부(20) 등 외에, 이차 전지(81)와, FDC(82)와, DC/AC 인버터(83)와, BDC(85)와, 셀 전압 계측부(91)와, 전류 계측부(92)를 구비한다.
셀 전압 계측부(91)는 연료 전지(10)의 각 셀(11)과 접속되어 있고, 각 셀(11)의 전압(셀 전압)을 계측한다. 셀 전압 계측부(91)는 그 계측 결과를 제어부(20)에 송신한다. 전류 계측부(92)는 연료 전지(10)에 의한 발전 전류의 값을 계측하여, 제어부(20)에 송신한다.
FDC(82) 및 BDC(85)는 DC/DC 컨버터로서 구성된 회로이다. FDC(82)는 제어부(20)가 구비하는 전류 명령값 결정부(24)로부터 송신되는 전류 명령값에 기초하여, 연료 전지(10)에 의한 발전 전류를 제어한다. 전류 명령값이란, 연료 전지(10)에 의한 발전 전류의 목표값이 되는 값이며, 제어부(20)에 의해 결정된다. 또한 FDC(82)는 발전 전압을 변압하여 DC/AC 인버터(83)에 공급하고, 발전 전압의 값을 측정하여 제어부(20)에 송신한다. BDC(85)는 제어부(20)의 제어에 기초하여 이차 전지(81)의 충방전을 제어한다. 이차 전지(81)는 리튬 이온 전지로 구성되고, 연료 전지(10)의 보조 전원으로서 기능한다.
DC/AC 인버터(83)는 연료 전지(10)와 부하(200)에 접속되어 있다. DC/AC 인버터(83)는 연료 전지(10)와 이차 전지(81)로부터 얻어진 직류 전력을 교류 전력으로 변환하여, 부하(200)에 공급한다. 부하(200)에 있어서 발생한 회생 전력은, DC/AC 인버터(83)에 의해 직류 전류로 변환되어, BDC(85)에 의해 이차 전지(81)에 충전된다. 출력 명령값 산출부(22)는 부하(200) 외에, 이차 전지(81)의 SOC(잔류 용량)도 가미하여, 출력 명령값을 산출한다.
여기서, 급속 난기에 대하여 설명한다. 급속 난기란, 연료 전지(10)를 저효율의 발전 조건(후술)에서 운전함으로써, 연료 전지(10)의 온도를 상승시키는 운전 모드를 의미한다. 급속 난기는, 애노드 가스의 공급량에 대한 캐소드 가스의 공급량을 저감시킴으로써 실현된다. 급속 난기에 대하여 도 3, 도 4를 사용하여 설명한다.
도 3은 연료 전지(10)의 I-V 특성을 나타내는 그래프이다. 곡선(1v)은 캐소드 가스의 유량이 유량 F1(이하, 간단히 「유량」이라고 하면, 캐소드 가스의 유량을 의미함)인 경우, 곡선(2v)은 유량이 유량 F2(>F1)인 경우, 곡선(3v)은 유량이 유량 F3(>F2)인 경우를 나타낸다. 또한, 애노드 가스의 유량은 윤택하여, 발전에 충분한 양이 확보되고 있다.
도 4는 연료 전지(10)의 출력-전류 특성을 나타내는 그래프이다. 곡선(1p)은 유량이 유량 F1인 경우, 곡선(2p)은 유량이 유량 F2인 경우, 곡선(3p)은 유량이 유량 F3인 경우를 나타낸다.
도 4에 도시한 바와 같이, 출력 명령값이 출력 P0이면서, 또한 유량 F2인 경우, 이론상, 전류 I0(동작점 A1)와, 전류 I0'(동작점 A2) 중 어느 하나로 제어하면, 실출력값이 출력 명령값과 동등해진다.
그런데, 연료 전지(10)에 의한 발열량은, 발전 전압이 발열 기준 전압에 근접함에 따라 작아진다. 발열량의 이론값은, 하기 식 (1)로 산출되기 때문이다.
발열량=(발열 기준 전압-발전 전압)×발전 전류…(1)
여기서, 발열 기준 전압이란, 수소와 산소의 반응에 있어서의 엔탈피 변화로부터 산출되는 에너지를 전압으로 나타낸 것이며, 엔탈피를 패러데이 상수와 수소가 갖는 전자수로 나눈 값으로 표현된다. 발열 기준 전압은, 통상 개방 전압인 OCV보다도 높은 값을 취한다.
한편, 급속 난기에 있어서는, 동작점을 곡선(2p)의 피크에 대응하는 전류값보다도 고전류측이며, 보다 발전 전압이 작아지는 전류 I0로 제어함으로써 발열량을 증대시켜, 연료 전지(10)의 온도를 상승시킨다.
동작점 A1의 경우, 도 3, 도 4에 도시한 바와 같이, 발전 전압은 하한 전압 Vmin이다. FDC(82)는, 하한 전압 Vmin을 하회하지 않도록 발전 전류를 제어하도록 구성되어 있다. 급속 난기를 실시하기 위한 동작점 A1의 발전 전압이 하한 전압 Vmin인 것은, 발열량을 증대시키기 위하여, 가능한 한 발전 전압을 작게 하고 있기 때문이다. 유량 F2는, 하한 전압 Vmin의 조건 하에서 출력 P0을 실현하기 위하여 제어된 유량이다. 이와 같은 제어에 의해, 실출력값을 출력 명령값에 근접하면서, 급속 난기에 요구되는 발열량을 확보한다.
이하, 상기한 제어에 대하여 더욱 상세하게 설명한다. 도 5는 전류 명령값 결정 처리를 나타내는 흐름도이다. 전류 명령값 결정 처리는, 제어부(20)의 전류 명령값 결정부(24)가, 연료 전지(10)의 급속 난기 중에 반복하여 실행하는 처리이다.
먼저, 실출력값이 출력 명령값보다도 작은지를 판정한다(S310). 실출력값이 출력 명령값보다도 작은 경우(S310, "예"), 실출력값이 출력 명령값에 근접하도록 전류 명령값을 증대시키고(S320), 전류 명령값 결정 처리를 종료한다. 전류 명령값을 증대시키는 경우에 대하여, 도 3, 도 4를 사용하여 설명한다.
도 4에 도시한 바와 같이, 실출력값이 동작점 A1에 의한 출력 P0, 출력 명령값이 출력 P1(>출력 P0)인 경우를 예로 들어 설명한다. 동작점 A1인 경우, 발전 전압이 하한 전압 Vmin이므로, FDC(82)는 전류 명령값이 증대된 경우에도 유량이 유지되고 있을 때에는 발전 전류를 증대시킬 수 없다. 단, 에어 컴프레서(32)가 유량을 증대시킴으로써 하한 전압 Vmin에 대응하는 발전 전류가 서서히 증대된다. 이와 같이 하여 동작점 B에 도달하면, 출력 P1이 실현된다.
한편, 실출력값이 출력 명령값 이상인 경우(S310, "아니오"), 실출력값이 불감대의 범위 내인지를 판정한다(S330). 불감대에 대하여 도 4를 사용하여 설명한다. 출력 명령값이 출력 P2라고 하자. 불감대의 하한값은 출력 P2이다. 불감대의 상한값은 출력(P2+Pth1)이다. 출력 Pth1은 정(+)의 출력값이다. 즉, 불감대는 출력 명령값의 정(+)의 측에만 설정된다. 또한, 출력 Pth1은 출력 P2에 비교하면 미소한 값이지만, 도 4에서는 보기 쉽게 하기 위하여, 출력 Pth1을 실제보다도 큰 값으로 하여 나타내고 있다.
실출력값이 불감대의 범위 밖인 경우(S330, "아니오"), 실출력값이 출력 명령값에 근접하도록 전류 명령값을 저하시키고(S340), 전류 명령값 결정 처리를 종료한다. 실출력값이 불감대의 범위 밖인 경우는 실출력값이 출력 명령값보다도 소정값 Pth1 이상, 큰 경우라고 해도 된다. 전류 명령값을 저하시키는 경우에 대하여, 도 3, 도 4를 사용하여 설명한다.
도 4에 도시한 바와 같이, 실출력값이 출력 P1(동작점 B)에서 불감대 밖이며, 출력 명령값이 출력 P2(<출력 P1)인 경우를 예로 들어 설명한다. 이 경우, 급속 난기를 위하여 하한 전압 Vmin을 유지하면서, 출력 P2를 실현하기 위해서는, 도 4에 도시한 바와 같이, 캐소드 가스의 유량을 유량 F1(곡선(1p) 상)로 제어하고, 전류 명령값을 전류 I2a로 설정함으로써 동작점 C1로 제어하면 된다.
그러나, 유량 제어의 응답성은 전류 제어의 응답성에 비하여 나쁘다. 따라서, FDC(82)는 유량의 저하에 의해 동작점 B로부터 동작점 C1로 이행하는 것보다도 빠르게, 발전 전류를 저하시켜 버린다. 이 결과, 실제의 동작점은, 유량 F3으로부터 거의 변화하지 않는 동안, 유량 F3이면서 또한 출력 P2에 대응하는 동작점 C2에 근접해 간다. 단, 불감대가 설정되어 있으므로, 도 4에 도시한 바와 같이 출력(P2+Pth1)이 실현되는 동작점 C3(전류 I2b)에 도달하면, 발전 전류의 저하는 정지한다.
동작점 C3의 경우, 발전 전압은 전압 V3(도 3)이며, 개방 전압 OCV에 가까운 값이다. 이로 인해, 발열량이 작아져 버린다. 단, 실출력값이 불감대 밖인 경우는 실출력값과 출력 명령값의 괴리가 크기 때문에, 급속 난기보다도 출력값의 제어를 우선하여, 상기한 바와 같이 제어한다.
한편, 실출력값이 불감대의 범위 내인 경우(S330, "예"), 전류 명령값을 저하시키지 않고 유지하고(S350), 전류 명령값 결정 처리를 종료한다. 실출력값이 불감대의 범위 내인 경우(S330, "예"), 실출력값이 출력 명령값에 일치하지 않아도, 실출력값을 출력 명령값에 근접하기 위한 전류 명령값의 산출을 하지 않고, 바로 근처에서 실행한 S320 또는 S330에 있어서 산출한 전류 명령값을 유지하는 상태이다. 본 실시 형태에서는 불감대가 출력 명령값의 정(+)의 측에만 설정되므로, 실출력값이 출력 명령값보다도 크게 된다.
상기한 실출력값이 불감대의 범위 내인 경우는, 실출력값이 출력 명령값보다도 소정값 Pth1 미만만큼 큰 경우라고 해도 된다. 실출력값이 불감대의 범위 내인 경우에 대하여, 도 3, 도 4를 사용하여 설명한다.
도 4에 도시한 바와 같이, 실출력값이 출력 P0(동작점 A1)이고, 출력 명령값이 출력 P2이며, (P2+Pth1)>P0>P2인 경우를 예로 들어 설명한다. 이 경우, 전류 명령값을 유지하므로, 실출력값이나 발전 전압이 급상승하는 것은 회피된다. 또한, 이와 같이 전류 명령값의 저하가 회피되고 있는 경우에도 실출력값과 출력 명령값에 차가 있는 조건에서는 에어 컴프레서(32)에 의한 유량이 변동할 수 있으므로, 동작점도 변동할 수 있다.
상기한 바와 같이 실출력값이 출력 명령값보다 큼에도 불구하고, 전류 명령값을 유지하는 경우, 잉여의 전력이 발생한다. 이 잉여 전력은, 이차 전지(81)에 축전된다. 이로 인해, 상기한 바와 같이 불감대를 설정해도 연료 전지 시스템(100)의 작동에 문제가 발생하는 일은 없다.
또한, 실출력값이 출력 명령값과 동등한 경우, S330에서 "예"라고 판정하게 된다. 따라서, 이 경우, 전류 명령값을 유지함으로써, 실출력값이 출력 명령값과 동등한 상태를 유지할 수 있다.
실시 형태에 따르면, 실출력값이 출력 명령값보다 커도, 그 차가 출력 Pth1 이하인 경우는 전류 명령값이 유지된다. 이로 인해, 약간 출력값을 저하시키기 때문에, 발전 전압이 대폭 상승하여 급속 난기가 중단되는 것을 회피할 수 있다. 또한, 출력 명령값의 부(-)의 측에는 불감대가 설정되어 있지 않으므로, 출력을 상승시키고자 하는 경우에 대해서는, 응답성을 악화시키지 않는다.
본 발명은, 본 명세서의 실시 형태에 한정되는 것은 아니고, 그 취지를 일탈하지 않는 범위에서 다양한 구성으로 실현할 수 있다.
유량의 제어는, 출력값 이외에 기초하는 방법이어도 된다. 예를 들어, 전류 명령값을 증대시키는 경우에 유량도 증대시키고, 전류 명령값을 저하시키는 경우에 유량도 저하시키도록 제어해도 된다. 이 경우, 전류 명령값이 유지되고 있는 경우는, 유량도 유지되므로, 나아가서는 동작점도 유지되게 된다.
출력 명령값의 결정, FDC에 지시하는 전류 명령값의 결정 및 에어 컴프레서의 유량 제어는, 실시 형태와 같이 제어부(20)가 통괄적으로 실행되어도 되고, 복수의 제어 장치(ECU 등)가 협조하여 실행되어도 된다. 복수의 제어 장치(ECU 등)가 협조하여 실행하는 경우, 이들 복수의 제어 장치를 통합하여 제어부로 파악해도 된다. 현재의 출력이 요구 출력보다도 높은 경우의 불감대를, 낮은 경우의 불감대보다도 불감대의 폭을 넓게 해도 된다.
연료 전지는 자동차용이 아니어도 되고, 다른 수송용 기기(이륜차, 전철 등)에 탑재되는 것이나, 거치의 것이어도 된다.

Claims (1)

  1. 연료 전지 시스템에 있어서,
    애노드 가스와 캐소드 가스의 공급을 받아 발전하는 연료 전지(10)와,
    상기 연료 전지에 의해 발전된 전력을 소비하는 부하(200)와,
    상기 연료 전지에 의해 발전된 전력을 축전하는 이차 전지(81)와,
    상기 부하 및 상기 이차 전지로부터 취득한 정보에 기초하여, 상기 연료 전지에의 요구 출력을 나타내는 값인 출력 명령값을 산출하도록 구성된 출력 명령값 산출부(22)와,
    상기 연료 전지의 출력이 상기 출력 명령값 산출부에 의해 상기 산출된 출력 명령값에 근접하도록, 상기 연료 전지에 상기 캐소드 가스를 공급하는 컴프레서(32)와,
    상기 연료 전지에 의한 발전 전류의 목표값인 전류 명령값을 결정하도록 구성된 전류 명령값 결정부(24)와,
    상기 결정된 전류 명령값에 따라, 상기 연료 전지에 의한 발전 전류를 제어하는 컨버터(82)를 포함하고,
    상기 전류 명령값 결정부(24)는
    상기 애노드 가스의 공급량에 대한 상기 캐소드 가스의 공급량을 저감시킴으로써, 상기 연료 전지(10)의 발전 효율을 저하시키는 저효율 발전 운전 시,
    i) 상기 연료 전지(10)로부터의 출력이 상기 출력 명령값 산출부(22)에 의해 산출된 출력 명령값보다도 소정값 이상 크다는 조건과, 상기 출력 명령값보다도 작다는 조건 중 어느 하나가 만족되는 제1 상태일 때는, 상기 연료 전지(10)의 출력이 상기 출력 명령값 산출부(22)에 의해 산출된 출력 명령값에 근접하도록 산출한 전류값을 상기 전류 명령값으로서 결정하고,
    ii) 상기 연료 전지(10)에 의한 출력이 상기 출력 명령값 산출부(22)에 의해 산출된 출력 명령값보다도 상기 소정값 미만만큼 큰 제2 상태일 때는, 가장 가까운 상기 제1 상태일 때에 산출된 전류값을 상기 전류 명령값으로서 결정하도록 구성되어 있는 연료 전지 시스템.
KR1020160077804A 2015-06-25 2016-06-22 연료 전지 시스템 KR101858809B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015127688A JP6299684B2 (ja) 2015-06-25 2015-06-25 燃料電池システム
JPJP-P-2015-127688 2015-06-25

Publications (2)

Publication Number Publication Date
KR20170001611A true KR20170001611A (ko) 2017-01-04
KR101858809B1 KR101858809B1 (ko) 2018-05-16

Family

ID=57537186

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160077804A KR101858809B1 (ko) 2015-06-25 2016-06-22 연료 전지 시스템

Country Status (5)

Country Link
US (1) US10014539B2 (ko)
JP (1) JP6299684B2 (ko)
KR (1) KR101858809B1 (ko)
CN (1) CN106299403B (ko)
DE (1) DE102016111219B4 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11695130B2 (en) 2017-09-29 2023-07-04 Nissan Motor Co., Ltd. Fuel cell system and fuel cell system control method
CN111258365B (zh) * 2020-03-04 2021-11-16 北京亿华通科技股份有限公司 一种燃料电池***的功率控制方法
JP7238848B2 (ja) * 2020-04-20 2023-03-14 トヨタ自動車株式会社 燃料電池システム
CN111546946B (zh) * 2020-05-13 2023-09-22 上海亿氢科技有限公司 一种改善燃料电池在轻负载时工作特性的方法
JP7306327B2 (ja) * 2020-05-29 2023-07-11 トヨタ自動車株式会社 燃料電池システム
CN115528281A (zh) * 2021-06-25 2022-12-27 卡明斯公司 使用能量存储设备来辅助喷射器的***和方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184442A (ja) * 2000-12-13 2002-06-28 Mitsubishi Heavy Ind Ltd 燃料電池制御システム
JP2004152679A (ja) * 2002-10-31 2004-05-27 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP2004335343A (ja) * 2003-05-09 2004-11-25 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP5071879B2 (ja) 2005-12-07 2012-11-14 トヨタ自動車株式会社 燃料電池システム
JP5120594B2 (ja) 2006-10-20 2013-01-16 トヨタ自動車株式会社 燃料電池システム及びその運転方法
JP4936126B2 (ja) 2007-04-16 2012-05-23 トヨタ自動車株式会社 燃料電池システム
JP4329043B2 (ja) * 2007-08-28 2009-09-09 トヨタ自動車株式会社 燃料電池システム
JP4827023B2 (ja) * 2007-12-27 2011-11-30 トヨタ自動車株式会社 燃料電池システム
JP2011233439A (ja) * 2010-04-28 2011-11-17 Tokyo Gas Co Ltd 燃料電池の運転制御方法及びシステム
JP6314799B2 (ja) 2014-11-13 2018-04-25 トヨタ自動車株式会社 燃料電池システム及び燃料電池の制御方法

Also Published As

Publication number Publication date
US10014539B2 (en) 2018-07-03
CN106299403A (zh) 2017-01-04
CN106299403B (zh) 2018-11-20
DE102016111219B4 (de) 2019-11-21
US20160380290A1 (en) 2016-12-29
KR101858809B1 (ko) 2018-05-16
JP6299684B2 (ja) 2018-03-28
DE102016111219A1 (de) 2016-12-29
DE102016111219A8 (de) 2017-02-16
JP2017010875A (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
KR101858809B1 (ko) 연료 전지 시스템
AU2011259799B2 (en) Fuel cell system and control method therefor
KR101151749B1 (ko) 연료전지시스템
KR101859803B1 (ko) 연료 전지 시스템 및 연료 전지 시스템의 운전 제어 방법
KR101798718B1 (ko) 연료 전지 시스템 및 연료 전지 시스템의 운전 제어 방법
JP5273595B2 (ja) 燃料電池システム
WO2009017139A1 (ja) 燃料電池システム及びその制御方法
WO2007119688A1 (ja) 燃料電池用の温度制御システム
US11962048B2 (en) Fuel cell system with improved low temperature operation
US11476478B2 (en) Fuel cell system
JP2007220538A (ja) 燃料電池システム
CN105047962B (zh) 燃料电池***及其控制方法
JP2020102420A (ja) 燃料電池システム
JP5570508B2 (ja) 燃料電池システム
US10424799B2 (en) Fuel cell system and control method thereof
JP2021190175A (ja) 燃料電池システム
JP6304366B2 (ja) 燃料電池システム
JP5720584B2 (ja) 燃料電池システムおよびその制御方法
US11424463B2 (en) Fuel cell system and control method thereof
KR101847690B1 (ko) 연료 전지 시스템 및 연료 전지의 제어 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right