KR20160087899A - 탁산(Taxane) 화합물 및 제조방법과 그 이용 - Google Patents

탁산(Taxane) 화합물 및 제조방법과 그 이용 Download PDF

Info

Publication number
KR20160087899A
KR20160087899A KR1020167016613A KR20167016613A KR20160087899A KR 20160087899 A KR20160087899 A KR 20160087899A KR 1020167016613 A KR1020167016613 A KR 1020167016613A KR 20167016613 A KR20167016613 A KR 20167016613A KR 20160087899 A KR20160087899 A KR 20160087899A
Authority
KR
South Korea
Prior art keywords
group
compound
reaction
pcmi
taxane
Prior art date
Application number
KR1020167016613A
Other languages
English (en)
Inventor
웨이 주
연롱 징
용펑 왕
구오청 왕
Original Assignee
장쑤 태슬리 디이 파마슈티컬 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장쑤 태슬리 디이 파마슈티컬 컴퍼니 리미티드 filed Critical 장쑤 태슬리 디이 파마슈티컬 컴퍼니 리미티드
Publication of KR20160087899A publication Critical patent/KR20160087899A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/08Bridged systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/443Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with oxygen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia

Abstract

화학식 Ⅰ 의 구조를 가지는 탁산화합물, 그의 제조방법, 그리고 탁산화합물, 약학적 염, 그리고 구강항암제의 제조에 있어 유효성분으로서의 그의 용매를 포함하는 조성물의 용도를 제공한다.
화학식에서, R1 은 -COR6, -COOR6,그리고 -CONR7aR7b이고; R2 는 C1-C6 알킬(alkyl), C1-C6 알케닐(alkenyl)그룹, 치환된 하이드로카본(hydrocarbon)그룹, 헤테로시클릭(heterocyclic)그룹, 방향족(aromatic)그룹 또는 치환된 방향족그룹이고; R3 는 -OR6, -OCOOR6, -OCOSR6, 그리고 -OCONR7aR7b 이고; R4 는 -OR6, -OCOOR6, -OCOSR6, -OCONR7aR7b, H, 그리고 OH이며; R6 는 C1-C6 알킬(alkyl), C1-C6 알케닐(alkenyl), C1-C6 알키닐(alkynyl)그룹, 치환된 하이드로카본(hydrocarbon) 그룹, 방향족(aromatic)그룹 또는 헤테로시클릭 그룹이고; 그리고 R7a 와 R7b 는 각각 하이드로젠, 하이드로카본 그룹, 치환된 하이드로카본 그룹 또는 헤테로시클릭 그룹이다.
[화학식Ⅰ]
Figure pct00083

Description

탁산(Taxane) 화합물 및 제조방법과 그 이용{TAXANE COMPOUND, AND PREPARATION METHOD AND USE THEREOF}
본 발명은 약학 화학분야로써 특정한 신규화합물, 특히 탁산 화합물에 관련된 것이다.
본 발명은 또한 탁산 화합물의 제조방법 및 구강 항암제의 제조에 있어 유효성분으로서 사용에 관한 것이다.
파클리탁셀(Paclitaxel, PTX)은 다음과 같은 구조를 가지고 있다.
Figure pct00001
파클리탁셀은 1971년 Taxus brevifolia 라는 주목나무껍질에서 추출된 것으로 독특한 항암 메커니즘을 가지고 있는 활성 항암화합물이며 다양한 암에서 치료효과가 입증되었다. 현재 임상에서, 파클리탁셀은 보통 정맥내주사로 주입된다. 그러나, 저수분 용해도 때문에, 파클리탁셀은 파클리탁셀 주입을 준비하기 위해서 보통 폴리옥시에틸레이트 캐스터 오일(Chremophor EL)과 에탄올 (1:1, v/v) 혼합용매에서 용해되며 시판되는 상표 이름이 “Taxol” 또는 “Paxene”이다.
비록 임상응용프로그램에서 큰 성공을 성취해 왔지만, 파클리탁셀은 그동안 많은 요소들에 의해 제한되었다.
(1) 첫째, 파클리탁셀 그 자체는 투여량 제한 독성과 골수억제를 포함하여 독성과 부작용을 가지고 있고, (임상적으로, 치료를 위해서 성장인자와 조합으로 사용되는 것이 필요하다.), 정상조직과 세포에서, 그리고 혈액-뇌 장벽 등 등을 통과할 수 없다.
(2) Chremophor EL의 사용은 심각한 알러지 반응, 일차성(원발성) 고지혈증, 중추신경계(CNS) 독성과 파클리탁셀의 약동학적 변화를 일으킨다. [ten Tije AJ, et al, Clin Pharmacokinet 42, 655-685, 2003; H. Gelderblom, et al, Eur. J. Cancer 37 (13), 1590-1598, 2001; van Zuylen L, et al, Invest New Drugs 19, 125-141, 2001; R. B. Weiss, et al, J. Clin. Oncol.8 (7), 1263-1268, 1990] ;
(3) 다약물 내성은 장그룹간의 치료에 의해 발생된다.
상기의 문제들을 해결하기 위해서 국내외 많은 학자들이 약학 투여 형태의 변화, 파클리탁셀의 전구약물의 변화, 탁산 유도체의 합성, P-gp 저해제(inhibitor)와의 조합을 통한 치료 등과 같은 것을 포함하여 파클리탁셀의 구조-활성과의 관계에 관해서 깊이 있는 연구를 해오고 있다.
구강의 탁산 유도체에 관한 연구는 큰 실용적인 의미를 가지고 있다. 왜냐하면 탁산 화합물 자체의 변경은 근본적으로 그것들의 낮은 물에 대한 용해도, 높은 독성과 같은 구강의 생체이용율을 증가시키거나 독성과 부작용을 낮추고 치료효과를 높이그룹 위한 문제를 해결할 수 있기 때문이다.
게다가, 그것은 보조용매에 의해 가져오는 이상반응을 피할 수 있도록 할 것이고, 치료효과를 연장시키고 구강 투여로 투여 방법을 변경함으로써 환자의 인내력을 강화시키도록 할 것이다.
연구자들은 파클리탁셀 분자의 구조변화에 대한 연구에서, C7, C9 와 C10 위치의 치환체의 다양성은 파클리탁셀의 활성과 관련이 없으나, 이 위치에는 P-gp 단백질과의 결합부위가 있다는 것을 발견했다. 파클리탁셀 분자와 P-gp 단백질과의 친화력은 크기, 전기적 특성, 그 위치에서 치환체와의 수소결합 형성능력에 따라 영향을 받는다.
그래서 이 그룹들의 변경은 P-gp의 과발현을 일으킴으로써 다양한 약의 내성을 극복할 수 있게 하고 낮은 구강내 생체이용율과 같은 문제를 해결할 수 있게 한다.
14β-하이드로 바카틴 III (14β-hydroxy baccatin III, 14β-OH-DAB)는 다음과 같은 구조를 가지고 있다.
Figure pct00002
14β-하이드로 바카틴 III (14β-OH-DAB)는 T. wallichiana Zucc의 침엽수로부터 추출된 자연 탁산 유도체이다. 14β-하이드로 바카틴 III (14β-OH-DAB)는 물에 대한 좋은 용해도를 가지고 있고, 주로 이는 14번 탄소에 하이드록시 그룹이 도입 되었기 때문이다.
이 점에서, 14β-OH-DAB로부터 유도된 그러한 화합물은 향상된 물에 대한 용해도와 증가된 구강내의 생체이용율을 가지고 있음이 예상된다(Appendino, G. et al, J. Chem. Soc., Perkins Trans, 1, 2925-2929, 1992).
이러한 견해는, 발명자들을 14β-OH-DAB의 유도체들에 대한 연구를 하도록 이끌었고, 결국 향상된 구강내 생체이용율을 가진 신규한 일련의 화합물이 발견되었다. 약리 실험이 보여주듯이, 선행문헌과 비교하여, 이러한 본 발명에서 합성된 1,14-카보네이트 바카틴 III(1,14-carbonate baccatin III)의 구조를 가지고 있는 탁산 유도체들은 다양한 인간 암세포 라인에 대하여 강력한 세포독성 및 넓은 스펙트럼의 항암 효과를 가지고 있다.
MCF-7 유방암세포에서의 생체 내 활성 데이터에서, 세포독성이 유지되는 것을 볼 수 있었고, 반면 몇몇의 유도체들은 선행문헌에서 보다 세포독성이 훨씬 더 나아진 것을 볼 수 있었다. 탁산 유도체들의 생체내 에서 흡수와 수송은 인간 직장 선암 세포 라인 (human-derived colorectal adenocarcinoma cell line) Caco-2 세포 단층모델을 사용하여 예측되었다. 실험결과로부터, 선행문헌과 비교할 때, 탁산 유도체들의 대부분은 향상된 구강 내 생체이용율을 가지고 있음을 볼 수 있었다. 그러므로 1,14-카보네이트 바카틴 III 구조를 가지고 있는 탁산 유도체들의 세포독성은 유지된다(또는 심지어 향상된다.). 게다가, 그들의 생체적합성은 또한 크게 향상된다.
본 발명은 다음과 같이 하기 화학식 1의 구조를 가지고 있는 탁산 화합물을 제공한다.
[화합물Ⅰ]
Figure pct00003
상기 화학식의
R1 은 -COR6, -COOR6, 또는 -CONR7aR7b 이고 ;
R2 은 C1-C6 알킬(alkyl), C1-C6 알케닐그룹(alkenyl group), 치환된 하이드로카본 그룹(hydrocarbon group), 헤테로시클릭 그룹(heterocyclic group), 방향족그룹(aromatic group) 또는 치환된 방향족 그룹(aromatic group)이고 ;
R3 는 -OR6, -OCOOR6, -OCOSR6, 또는 -OCONR7aR7b 이고;
R4 은 -OR6, -OCOOR6, -OCOSR6, -OCONR7aR7b, H 또는 OH 이며;
상기 R6 는 C1-C6 알킬(alkyl), C1-C6 알케닐(alkenyl), C1-C6 알키닐 그룹(alkynyl group), 치환된 하이드로카본 그룹(hydrocarbon group), 방향족 그룹(aromatic group) 또는 헤테로시클릭 그룹(heterocyclic group)이고;
R7a 과 R7b 은 각각 수소, 하이드로카본 그룹(hydrocarbon group), 치환된 하이드로카본 그룹(hydrocarbon group) 또는 헤테로시클릭 그룹(heterocyclic group)이다.
본 발명에서는 탁산 화합물의 제조방법 또한 제공한다.
상기 탁산 화합물의 제조방법은 다음의 단계를 포함하는 상기 탁산 화합물의 제조방법:
1)탁산의 모핵부분 합성단계:
10-디아세틸 바카틴(10-deacetyl baccatin III, 10-DAB)을 원재료로 사용하여 첫번째로, 모핵부분의 C7 과 C10 번 위치에 하이드록실 그룹이 선택적으로 치환체로 보호되며, 다음으로 C13번 위치에 하이드록실 그룹이 케토-카보닐(keto-carbonyl) 그룹으로 산화되고, 이어서 N-(술포닐)옥사지리딘(N-(sulfonyl)oxaziridine)을 이용하여 14번 탄소에 베타 구조를 가지도록 하이드록실 그룹이 매우 입체선택적으로 도입됨에 따라, CDI의 반응 하에 1,14-카보네이트(1,14-carbonate) 구조를 형성 되며, 마지막으로 13번 탄소의 케토-카보닐 그룹은 CBS 환원방법에 의해 매우 입체선택적으로 알파 구조를 가진 하이드록실 그룹으로 환원되어 탁산모핵 부분을 합성하는 단계 및;
2)오원고리 옥사졸리딘 산(oxazolidine acid) 사이드 체인 전구체의 합성단계:
오원고리의 옥사졸리딘 산 사이트 체인의 전구체는 보호그룹의 도입, 첨가축합, 산분해, 알돌축합, 촉매수소화반응과 같은 반응을 포함하는 일련의 반응을 통해 제조되는 단계 및;
3)탁산 유도체의 합성단계;
오원고리 옥사졸리딘 산 사이드 체인의 전구체는 탁산 모핵부분과 에스터화반응에 의해 연결되어있고, 일련의 탁산 유도체들은 산분해 반응에 의해 보호그룹이 제거되는 것에 의해 생성되는 단계.
더 자세하게는, 다음의 단계를 포함하는 본 발명의 탁산유도체의 제조방법:
1)탁산의 모핵부분 합성단계:
10-디아세틸 바카틴(10-deacetyl baccatin III, 10-DAB)을 원재료로 사용하여 첫번째로, 모핵부분의 C7 과 C10 번 위치에 하이드록실 그룹이 선택적으로 치환체로 보호되며, 다음으로 C13번 위치에 하이드록실 그룹이 케토-카보닐(keto-carbonyl) 그룹으로 산화되고, 이어서 N-(술포닐)옥사지리딘(N-(sulfonyl)oxaziridine)을 이용하여 14번 탄소에 베타 구조를 가지도록 하이드록실 그룹이 매우 입체선택적으로 도입됨에 따라, CDI의 반응 하에 1,14-카보네이트(1,14-carbonate) 구조를 형성 되며, 마지막으로 13번 탄소의 케토-카보닐 그룹은 CBS 환원방법에 의해 매우 입체선택적으로 알파 구조를 가진 하이드록실 그룹으로 환원되어 탁산모핵 부분을 합성하는 단계 및;
2)오원고리 옥사졸리딘 산 사이드 체인 전구체의 합성단계:
원재료로 글리콜산(glycolic acid)을 사용되고 글리콜산은 벤질 그룹과 부틸옥시카보닐그룹(butyloxycarbonyl(Boc) group)이 부틸옥시카보닐로 보호된 벤질글리콜레이트(Boc-protected benzyl glycolate)를 생성하면서 연속적으로 보호되고; 다른 치환된 알데히드(aldehydes) 그룹들은 (SR)-t-부틸술피나미드((SR)-t-butyl sulfinamide)로 축합하여 대응되는 엔아민(enamine) 화합물을 형성하며; 상기 부틸옥시카보닐로 보호된 벤질글리콜레이트와 엔아민 화합물은 리튬염 존재하에서 첨가반응을 하고, 그리고 난 다음 산분해 반응 이후에 카이랄 중간체가 얻어지고, 얻어진 중간체는 피리디늄 p-톨루엔술포네이트(pyridinium p-toluenesulfonate, PPTS)의 촉매하에서 1,1'-(디메톡시메틸) p-메톡시벤젠(1,1'-(dimethoxymethyl) p-methoxybenzene)과 알돌 축합반응을 하여 축합 화합물을 얻으며; 축합된 화합물의 아미노그룹은 다른 치환체로 치환되고, 그리고 촉매수소화반응 후에 오원고리의 옥사졸리딘산 사이드체인의 전구체가 마지막으로 얻어지는 단계 및;
3)탁산 유도체의 합성단계;
오원고리 옥사졸리딘 산 사이드 체인의 전구체는 탁산 모핵부분과 에스터화반응에 의해 연결되어있고, 일련의 탁산 유도체들은 산분해 반응에 의해 보호그룹이 제거되는 것에 의해 생성된다.
게다가, 본 발명은 구강 항암제의 제조와 같은 사용뿐 아니라, 상기 정의된 화학식 1의 화합물, 약학적으로 허용되는 염 또는 유효 성분으로써 용매화합물을 포함하는 약제학적 조성물을 제공한다.
본 발명은 다음과 같은 이점을 가지고 있다:
1. 본 발명은 13번 탄소의 케토-카보닐 그룹의 입체선택적인 환원에 의해 선택되는 CBS 환원방법이다.
금속 보로하이드라이드(metal borohydride)를 사용하는 전통적인 환원 방법과 비교할 때, CBS 환원방법은 매우 입체선택적으로 환원하여 광학적 순도(ee value) 99. 9% 와 90% 또는 그 이상의 산출량을 가지는 13번 탄소의 알파 구조를 갖는 하이드록실 그룹을 얻는 것이 가능하다.
1,14-카보네이트 바카틴 III 을 포함하는 일련의 탁산 유도체는 파클리탁셀 의 C7, C10, C14, C3'N 과 C3' 의 다수의 위치에서 동시에 치환그룹의 변화에 의해 생성된다. 생체 외에서 다양한 암세포 라인의 세포독성 실험에서, 탁산 유도체는 좋은 항암 효과를 보여주었다.
탁산 유도체들의 생체 외에서의 구강내 생체이용율은 Caco-2 세포의 단층 막간 전송 연구를 통해 측정되었고, 실험결과로부터 보여주는 것은 대부분의 탁산 유도체의 막간의 투과성은 파클리탁셀보다 높았으며 구강내 생체이용율은 다른 레벨보다 향상된 것으로 예측되었다.
양방향수송에서의 유출비율의 결과를 분석하는 것을 통해, 탁산 유도체들이 다른 농도로 P-gp의 유출효과를 저해할 수 있으며, 탁산 유도체들의 구강내 흡수 용량이 향상되는 것이 입증되었음을 보여준다.
게다가, PCMI-08 화합물은, 생체외 실험에서 가장 높은 막투과성을 보여주며, 이는 생체 외에서 쥐의 구강 내 생체이용율을 도출하기 위해 선택되었다.
실험결과로부터 절대적 구강 내 생체이용율(경구흡수율)은 65.8%로 증가되었음을 볼 수 있었고, 생체 내에서 구강내 흡수용량에 대해 나타내는 지표는 파클리탁셀과 비교할 때 상당한 정도로 향상되었음을 볼 수 있었다.
게다가, 본 발명에서 1,14-카보네이트 바카틴 III을 포함하는 탁산 유도체는 구강 항암제로써 사용될 수 있다.
도. 1 은 PCMI-08의 혈장농도곡선이다.
도. 2 는 PCMI-01의 1H NMR 스펙트럼이다.
도. 3 은 PCMI-01의 13C NMR 스펙트럼이다.
도. 4 은 PCMI-01의 MS 스펙트럼이다.
도. 5 은 PCMI-02의 1H NMR 스펙트럼이다.
도. 6 은 PCMI-02의 13C NMR 스펙트럼이다.
도. 7 은 PCMI-03의 1H NMR 스펙트럼이다.
도. 8 은 PCMI-03의 13C NMR 스펙트럼이다.
도. 9 은 PCMI-04의 1H NMR 스펙트럼이다.
도. 10 은 PCMI-04의 13C NMR 스펙트럼이다.
도. 11 은 PCMI-04의 MS 스펙트럼이다.
도. 12 은 PCMI-04의 IR 스펙트럼이다.
도. 13 은 PCMI-05의 1H NMR 스펙트럼이다.
도. 14 은 PCMI-05의 13C NMR 스펙트럼이다.
도. 15 은 PCMI-05의 MS 스펙트럼이다.
도. 16 은 PCMI-05의 IR 스펙트럼이다.
도. 17 은 PCMI-06의 1H NMR 스펙트럼이다.
도. 18 은 PCMI-06의 13C NMR 스펙트럼이다.
도. 19 은 PCMI-06의 MS 스펙트럼이다.
도. 20 은 PCMI-07의 1H NMR 스펙트럼이다.
도. 21 은 PCMI-07의 13C NMR 스펙트럼이다.
도. 22 은 PCMI-07의 MS 스펙트럼이다.
도. 23 은 PCMI-08의 1H NMR 스펙트럼이다.
도. 24 은 PCMI-08의 13C NMR 스펙트럼이다.
도. 25 은 PCMI-08의 MS 스펙트럼이다.
도. 26 은 PCMI-09의 1H NMR 스펙트럼이다.
도. 27 은 PCMI-09의 13C NMR 스펙트럼이다.
도. 28 은 PCMI-09의 MS 스펙트럼이다.
도. 29 은 PCMI-10의 1H NMR 스펙트럼이다.
도. 30 은 PCMI-10의 13C NMR 스펙트럼이다.
도. 31 은 PCMI-10의 MS 스펙트럼이다.
도. 32 은 PCMI-11의 1H NMR 스펙트럼이다.
도. 33 은 PCMI-11의 13C NMR 스펙트럼이다.
도. 34 은 PCMI-12의 1H NMR 스펙트럼이다.
도. 35 은 PCMI-12의 13C NMR 스펙트럼이다.
도. 36 은 PCMI-12의 MS 스펙트럼이다.
도. 37 은 PCMI-13의 1H NMR 스펙트럼이다.
도. 38 은 PCMI-13의 13C NMR 스펙트럼이다.
도. 39 은 PCMI-14의 1H NMR 스펙트럼이다.
도. 40 은 PCMI-14의 13C NMR 스펙트럼이다.
도. 41 은 PCMI-14의 MS 스펙트럼이다.
도. 42 은 PCMI-15의 1H NMR 스펙트럼이다.
도. 43 은 PCMI-15의 13C NMR 스펙트럼이다.
도. 44 은 PCMI-15의 MS 스펙트럼이다.
도. 45 은 PCMI-16의 1H NMR 스펙트럼이다.
도. 46 은 PCMI-16의 13C NMR 스펙트럼이다.
도. 47 은 PCMI-16의 MS 스펙트럼이다.
도. 48 은 PCMI-17의 1H NMR 스펙트럼이다.
도. 49 은 PCMI-17의 13C NMR 스펙트럼이다.
도. 50 은 PCMI-17의 MS 스펙트럼이다.
도. 51 은 PCMI-17의 IR 스펙트럼이다.
도. 52 은 PCMI-18의 1H NMR 스펙트럼이다.
도. 53 은 PCMI-18의 13C NMR 스펙트럼이다.
도. 54 은 PCMI-18의 MS 스펙트럼이다.
도. 55 은 PCMI-19의 1H NMR 스펙트럼이다.
도. 56 은 PCMI-19의 13C NMR 스펙트럼이다.
도. 57 은 PCMI-19의 MS 스펙트럼이다.
도. 58 은 PCMI-20의 1H NMR 스펙트럼이다.
도. 59 은 PCMI-20의 13C NMR 스펙트럼이다.
도. 60 은 PCMI-20의 MS 스펙트럼이다.
도. 61 은 PCMI-21의 1H NMR 스펙트럼이다.
도. 62 은 PCMI-21의 13C NMR 스펙트럼이다.
본 발명에서 사용되는 용어에 대한 정의는 이하와 같다.
본 발명에서 “알킬(alkyl)”이라는 용어는 다른 불포화도(이중결합, 삼중결합 또는 고리와 같은)없이 탄소와 수소원자만을 의미하며, 모든 가능한 종류의 기하이성질체(geometric isomers) 및 입체이성질체(stereo-isomers)를 포함한다. 상기 알킬 그룹은 단일결합에 의해 분자의 나머지에 결합된다.
본 발명에서 “C1-C6 알킬”이라는 용어는 상기에서 정의된 알킬 그룹을 가진 1번에서 6번의 탄소를 나타낸다.
제한이 없는 C1-C6 알킬의 예로써 일직선의 체인이나 가지 구조의 체인을 가진 다음의 그룹들이 열거될 수 있다: n-헥실(n-hexyl) 그리고 이들의 이성질체뿐 아니라, 메틸(methyl), 에틸(ethyl), n-프로필(n-propyl), 아이소프로필(isopropyl), n-부틸(n-butyl), 아이소부틸(isobutyl), sec-부틸(sec-butyl), t-부틸(t-butyl), n-펜틸(n-pentyl) 그리고 이들의 이성질체.
본 발명에서 “알케닐(alkenyl)”이라는 용어는 상기 언급된 알킬 그룹의(메틸을 제외한) 그룹들이 하나 또는 그 이상의 이중결합을 가지는 형태를 의미한다.
"C1-C6 알케닐"이라는 용어는 탄소번호가 1-6인 상기에서 정의된 알케닐을 의미한다.
본 발명에서 "알키닐(alkynyl)" 이라는 용어는 상기 언급된 알킬 그룹의(메틸을 제외한)그룹이 하나 또는 그 이상의 삼중결합을 가지는 형태를 의미한다. "C1-C6 알키닐"이라는 용어는 탄소번호가 1-6인 상기에서 정의된 알키닐을 의미한다.
본 발명에서 "하이드로카본 그룹(hydrocarbon group)" 라는 용어는 탄소와 수소원자만을 포함하는 그룹을 의미한다. "치환된 하이드로카본 그룹"는 상기 정의된 알킬, 알케닐 또는 알키닐 그룹과 치환체를 가지고 있는 이들과 같은 것들을 의미한다. 치환체들은 하이드록실 그룹, 아미노 그룹 그리고 이와 이들과 같은 것들 일 수 있다.
본 발명에서 "헤테로시클릭 그룹(heterocyclic group)"는 탄소원자와 질소, 산소, 황으로부터 독립적으로 선택되는 헤테로원자들을 포함하는 방향족 5-14의 고리 또는 비방향족 3-15의 고리를 의미한다.
방향족 고리는 모노시클릭(monocyclic), 바이시클릭(bicyclic) 또는 폴리시클릭(polycyclic) 일 수 있고, 여기서 바이시클릭과 폴리시클릭그룹은 단일결합 또는 접합된 형태로 다른 시클릭그룹과 결합된 모노시클릭그룹의 형태이다.
헤테로아릴 그룹(heteroaryl groups)의 일 예로써, 다음과 같은 그룹이 열거될 수 있고 이에 한정되지 않는다. : 옥사졸릴(oxazolyl), 아이소옥사졸릴(isoxazolyl), 이미다졸릴(imidazolyl), 푸릴 (furyl), 인돌릴(indolyl), 아이소인돌릴 (isoindolyl), 피롤릴(pyrrolyl), 트리아졸일(triazolyl), 트리아지닐(triazinyl), 테트라졸일(tetrazolyl), 티에닐(thienyl), 티아졸일(thiazolyl), 아이소티아졸일(isothiazolyl), 피리디닐(pyridinyl), 피리미디닐(pyrimidinyl), 피라진일(pyrazinyl), 피리다진일(pyridazinyl), 벤조퓨란일(benzofuranyl), 벤조티아졸일(benzothiazolyl), 벤조옥사졸릴(benzoxazolyl), 벤즈이미다졸릴(benzimidazolyl), 벤조티에닐(benzothienyl), 벤조피란일(benzopyranyl), 카바졸일(carbazolyl), 퀴놀리닐(quinolinyl), 아이소퀴놀리닐(isoquinolinyl), 퀴나졸리닐(quinazolinyl), 시놀리닐(cinnolinyl), 나프티리디닐(naphthyridinyl), 프테리딘일(pteridinyl), 푸리닐(purinyl), 퀴노살리닐(quinoxalinyl), 티아디아졸일(thiadiazolyl), 인돌리진일(indolizinyl), 아크리디닐(acridinyl), 페나지닐(phenazinyl), 프탈라지닐(phthalazinyl), 쿠마리닐(coumarinyl), 피라졸로피리디닐(pyrazolopyridinyl), 피리디노피리다지닐(pyridinopyridazinyl), 피놀로피리디닐(pyrrolopyridinyl), 이미다조피리디닐(imidazopyridinyl), 피라졸로피리다지닐(pyrazolopyridazinyl); 및 단일결합 또는 접합된 형태로 다른 그룹들과 결합된 상기의 헤테로아릴 그룹의 형태를 띈 그룹.
비방향족고리는 모노시클릭, 바이시클릭 또는 폴리시클릭 일 수 있고, 접합된 고리, 브리지 된 고리 또는 스피로 고리일 수 있으며 이들은 선택적으로 하나 또는 그 이상의 이중결합을 가지고 있을 수 있다.
헤테로시클릭 그룹의 일 예로 다음과 같은 그룹이 열거될 수 있고 이에 한정되지 않는다. : 아제피닐(azepinyl), 아크리디닐(acridinyl), 벤조디오솔릴(benzodioxolyl), 벤조디올사닐(benzodioxanyl), 크로마닐(chromanyl), 디옥솔라닐(dioxolanyl), 디옥사포스포라닐(dioxaphospholanyl), 데카하이드로 아이소 퀴놀리닐(decahydro isoquinolinyl), 인다닐(indanyl), 인돌리닐(indolinyl), 아이소인돌리닐(isoindolinyl), 아이소크로마닐(isochromanyl), 아이소티아졸리디닐(isothiazolidinyl), 아이소옥사졸리디닐(isoxazolidinyl), 모르폴리닐(morpholinyl), 옥사졸리닐(oxazolinyl), 옥사졸리디닐(oxazolidinyl), 옥사다이아졸일(oxadiazolyl), 2-옥소-피퍼라지닐(2-oxo-piperazinyl), 2-옥소-피퍼리디닐(2-oxo-piperidinyl), 2-옥소-피롤리디닐(2-oxopyrrolidinyl), 2-옥소-아제피닐(2-oxo-azepinyl), 옥타하이드로인돌일(octahydroindolyl), 옥타하이드로아이소인돌일(octahydroisoindolyl), 퍼하이드로아제피닐(perhydroazepinyl), 피퍼라지닐(piperazinyl), 4-피퍼리도닐(4-piperidonyl), 피퍼리디닐(piperidinyl), 페노티아지닐(phenothiazinyl), 페녹사지닐(phenoxazinyl), 퀴누클리디닐(quinuclidinyl), 테트라하이드로아이소퀴놀리닐(tetrahydroisoquinolinyl), 테트라하이드로퓨라닐(tetrahydrofuranyl), 테트라하이드로피란일(tetrahydropyranyl), 테트라하이드로피놀리디닐(tetrahydropyrrolidinyl), 티아졸리닐(thiazolinyl), 티아졸리디닐(thiazolidinyl), 싸이오모르폴리닐(thiomorpholinyl), 싸이오모르폴리닌 설폭사이드(thiomorpholine sulfoxide) 그리고 싸이오모르폴리닐 설폰(thiomorpholinyl sulfone).
본 발명에서 "아릴(aryl)" 이라는 용어는 적어도 6개의 탄소원자를 가진 방향족고리를 의미하며 방향족 고리는 모노시클릭, 바이시클릭 또는 폴리시클릭일 수 있고, 상기 바이시클릭과 폴리시클릭 고리는 단일결합 또는 접합된 형태로 다른 고리와 결합된 모노시클릭 고리의 형태를 할 수 있다.
아릴 그룹의 일 예로써 다음의 그룹이 열거될 수 있고 이에 한정되지 않는다:
페닐(phenyl), 나프틸(naphthyl), 안트릴(anthryl), 펜안트릴(phenanthryl), 인덴일(indenyl), 피렌일(pyrenyl), 피리렌일(perylenyl), 아줄렌일(azulenyl), 아세나프텐일(acenaphthenyl), 플루오렌일(fluorenyl), 벤조아세나프텐일(benzoacenaphthenyl), 트리페닐렌일(triphenylenyl), 크라이세닐(chrysenyl), 바이페닐(biphenyl), 바이나프틸(binaphthyl) 그리고 이들과 같은 것들.
본 발명의 “치환된 방향족 그룹”라는 용어는 치환그룹을 가지고 있는 상기 정의된 방향족고리를 의미한다. 치환그룹이란 알킬, 알케닐, 알키닐, 하이드록실, 아미노 그리고 이들과 같은 것들 일 수 있다.
이하, 본 발명을 상세히 설명한다.
본 발명은 다음의 화학식 I에 의해 제시되는 구조를 가지고 있는 탁산 화합물을 제공한다.
[화합물Ⅰ]
Figure pct00004
여기에서,
R1 은 -COR6, -COOR6, 또는 -CONR7aR7b 이고;
R2 는 C1-C6 의 알킬 그룹, C1-C6 알케닐 그룹, 치환된 하이드로카본 그룹, 헤테로시클릭 그룹, 방향족 그룹 또는 치환된 방향족 그룹이고;
R3 는 -OR6, -OCOOR6, -OCOSR6, 또는 -OCONR7aR7b 이고;
R4 는 -OR6, -OCOOR6, -OCOSR6, -OCONR7aR7b, H, 또는 OH 이고 ;
상기 R6 는 C1-C6 알킬 그룹, C1-C6 알케닐 그룹, C1-C6 알키닐 그룹, 치환된 하이드로카본 그룹, 방향족 그룹 또는 헤테로시클릭 그룹 이고; R7a 과 R7b 는 각각 하이드로젠, 하이드로카본그룹, 치환된 하이드로카본그룹 또는 헤테로시클릭그룹인 화합물.
바람직하게는, R1 은 벤조일(benzoyl), t-뷰틸옥시카보닐(t-butyloxycarbonyl) 또는 N,N'-디메틸카바모일(N,N'-dimethylcarbamoyl) 이고;
R2 는 페닐,
Figure pct00005
또는
Figure pct00006
이고 ;
R3 는 -OMe, -OCOOCH3, -OCON(CH3)2, 또는 -OCOSC2H5이고;
R4 는 -OMe, -OCOOCH3, -OCON(CH3)2, -OCOSC2H5, H, 또는 OH 인 화합물.
가장 바람직하게는, 본 발명의 탁산 화합물은 다음의 구조를 가지는 화합물 중에서 선택된다.
Figure pct00007
Figure pct00008
Figure pct00009
Figure pct00010
본 발명에 따르면, 일반 화학식 (I)로 나타내어지는 구조를 가진 화합물은 이 화합물과 이들의 이성질체 그리고 이성질체의 혼합물을 또한 포함한다.
만약 필요하다면, 일반 화학식 (I)로 나타내어지는 구조를 가진 화합물은 약학적으로 허용 가능한 무독성의 염의 형태로 존재할 수 있다.
본 발명에 따르면 일반 화학식 (I)로 나타내어지는 구조를 가진 화합물은 선택적으로 용매의 형태로 존재할 수 있다. (하이드레이트(hydrates)와 같이). 그러므로 상기 용매(하이드레이트와 같은)는 또는 본 발명의 화합물 안에 포함된다.
게다가, 본 발명은 구강 항암제의 제조에 있어서의 사용 뿐 아니라, 상기 정의된 일반 화학식 (I)로 나타내어지는 구조를 가진 화합물, 약학적으로 허용 가능한 염 또는 활성성분으로써의 용매화합물을 포함하는 약학적 조성물을 제공한다.
본 발명의 약학적 조성물에는 본 발명의 화합물은 약학적으로 허용 가능한 담체와의 중량비가 0.01%-99.99%이다. 약학적 조성물은 적합한 제제 형태로 존재한다.
상기의 제제 형태는 정제, 캡슐, 과립제, 환제(pills), 분말제, 슬러리제, 현탁제, 주사제, 주사용 분말, 좌제, 크림제, 점적제 또는 패치제를 포함한다. 여기서 정제는 당 코팅정제, 필름 코팅 정제, 장용 코팅정제 또는 점진적으로 감소되는 정제(sustained release capsules); 캡슐은 경질 캡슐, 연질 캡슐 또는 점진적으로 감소되는 캡슐; 주사용 분말제는 동결 건조된 주사용 분말제이다.
본 발명의 약학적 조성물의 투여 용량에서, 각각의 투여용량은 본 발명 화합물이 0.1mg 내지 1000mg의 효과적인 용량을 포함한다. 여기서 각각의 투여 용량은 정제에서의 각 정제, 캡슐에서의 각 캡슐 등 각각의 단위를 의미한다. 대안으로, 이는 또한 매회 주입되는 용량을 의미할 수 있다. (예를 들어, 매회 100mg의 투여량)
본 발명의 약학적 조성물이 분말제, 정제, 분산될 수 있는 분말제, 캡슐제, 카시에제(cachets), 좌제, 연고제와 같은 고체 또는 반고체의 제제일 때, 고체의 담체가 사용될 수 있다.
사용가능한 고체 담체는 희석제, 첨가제, 용해제, 윤활제, 현탁화제, 결합제, 증량제 그리고 이들과 같은 것들로부터 선택되는 하나 또는 그 이상의 물질에서 선택되는 것이 바람직하며 또는 물질들은 캡슐화될 수 있다. 가루 제조방법에 있어서, 담체 안에 5-70%의 나노화 된 활성입자가 포함된다. 적합한 고체 담체는 마그네슘카보네이트(magnesium carbonate), 마그네슘스테아레이트(magnesium stearate), 탈크파우더(talc powder), 수크로즈(sucrose), 락토오즈(lactose), 팩틴(pectin), 덱스트린(dextrin), 스타치(starch), 젤라틴(gelatin), 메틸 셀룰로즈(methyl cellulose), 소듐 카복시메틸 셀룰로즈(sodium carboxymethyl cellulose), 끓는 점 낮춤 왁스(low boiling point wax), 코코아버터와 이와 이들과 같은 것들을 포함한다.
정제, 분말제, 카시에제, 캡슐제는 쉽게 투여 될 수 있으므로 경구 고체제제에 가장 큰 이점이 있다.
본 발명의 액상 제조방법은 용해제, 현탁화제 그리고 에멀젼을 포함한다. 예를들어, 비경구적투여를 위한 주사제 제조방법은 수용액 또는 수화프로필렌 글리콜 용액이 될 수 있고 이는 생체에 생리적인 조건과 맞추기 위한 등장, pH 등등을 조정하는 데에 사용된다. 다시 말해서, 액상 제조방법은 폴리에틸렌글리콜 또는 수용액의 형태로 제조될 수 있다. 경구 수용액은 활성물질을 물 안에서 희석시키고 적절한 양의 착삭제, 첨가제, 안정화제 그리고 농후제 (thickening agents)를 포함시킴으로써 만들 수 있다. 게다가, 경구현탁액은 소립자화 된 활성물질을 자연적인 그리고 합성된 검, 소듐 카복시메틸 셀룰로즈(sodium carboxymethyl cellulose) 그리고 다른 알려진 현탁제와 같은 점성물질 안에 분산시키는 것에 의해 제조될 수 있다.
주입의 편의성과 투여양의 획일화를 위해, 제조 단위의 형태로 전술한 약학적 제조방법을 준비하는 것은 특히 유리하다. 제조 단위은 일회 양을 포함하는 신체적으로 분리될 수 있는 과정을 의미한다.
각각의 단위는 면밀히 계산된 미리 결정된 활성물질의 양을 포함하며 활성물질의 양은 바라던 치료효과를 제공할 수 있다. 이 제조 단위는 포장된 형태, 예를 들면 테블릿, 캡슐, 작은 튜브 또는 병에 담긴 파우더 또는 튜브나 병에 담긴 연고, 겔 또는 크림의 형태가 될 수 있다.
비록 제조과정에서 활성물질의 양이 다양하게 된다 하더라도, 일반적으로 선택 된 활성물질의 효능에 기초하면 1mg-1000mg의 범위 내에 있다.
화학식 (I)에 의해 나타내어지는 본 발명의 화합물이 항암제로 사용 되었을 때, 그 양은 환자의 필요, 병증의 상태, 선택되는 화합물 등 이와 유사한 것에 따라 달라질 것이다.
본 발명에 따르면, 탁산 화합물은 다음단계에 의해 포함되는 방법에 의해 제조된다.
1)탁산의 모핵부분 합성단계:
10-디아세틸 바카틴(10-deacetyl baccatin III, 10-DAB)을 원재료로 사용하여 첫번째로, 모핵부분의 C7 과 C10 번 위치에 하이드록실 그룹이 선택적으로 치환체로 보호되며, 다음으로 C13번 위치에 하이드록실 그룹이 케토-카보닐(keto-carbonyl) 그룹으로 산화되고, 이어서 N-(술포닐)옥사지리딘(N-(sulfonyl)oxaziridine)을 이용하여 14번 탄소에 베타 구조를 가지도록 하이드록실 그룹이 매우 입체선택적으로 도입됨에 따라, CDI의 반응 하에 1,14-카보네이트(1,14-carbonate) 구조를 형성 되며, 마지막으로 13번 탄소의 케토-카보닐 그룹은 CBS 환원방법에 의해 매우 입체선택적으로 알파 구조를 가진 하이드록실 그룹으로 환원되어 탁산모핵 부분을 합성하는 단계 및;
2)오원고리 옥사졸리딘산 사이드 체인 전구체의 합성단계:
오원고리 옥사졸리딘산 사이드 체인 전구체는 보호그룹의 도입, 첨가 축합, 산분해반응, 알돌축합반응, 촉매수소화반응 그리고 그와 유사한 것을 포함하는 일련의 반응에 의해 제조되는 단계 및;
3)탁산 유도체의 합성단계:
오원고리 옥사졸리딘 산 사이드 체인의 전구체는 탁산의 모핵부분과 에스터화반응에 의해 연결되어있고, 일련의 탁산 유도체들은 산분해 반응에 의해 보호그룹이 제거되는 것에 의해 생성되는 것을 특징으로 하는 방법
바람직하게는, 다음의 단계를 따르는 본 발명의 탁산화합물 제조방법:
1)탁산의 모핵부분 합성단계:
10-디아세틸 바카틴(10-deacetyl baccatin III, 10-DAB)을 원재료로 사용하여 첫번째로, 모핵부분의 C7 과 C10 번 위치에 하이드록실 그룹이 선택적으로 치환체로 보호되며, 다음으로 C13번 위치에 하이드록실 그룹이 케토-카보닐(keto-carbonyl) 그룹으로 산화되고, 이어서 N-(술포닐)옥사지리딘(N-(sulfonyl)oxaziridine)을 이용하여 14번 탄소에 베타 구조를 가지도록 하이드록실 그룹이 매우 입체선택적으로 도입됨에 따라, CDI의 반응 하에 1,14-카보네이트(1,14-carbonate) 구조를 형성 되며, 마지막으로 13번 탄소의 케토-카보닐 그룹은 CBS 환원방법에 의해 매우 입체선택적으로 알파 구조를 가진 하이드록실 그룹으로 환원되어 탁산모핵 부분을 합성하는 단계 및;
2)오원고리 옥사졸리딘 산 사이드 체인 전구체의 합성단계:
원재료로 글리콜산(glycolic acid)을 사용되고 글리콜산은 벤질 그룹과 부틸옥시카보닐그룹(butyloxycarbonyl(Boc) group)이 부틸옥시카보닐로 보호된 벤질글리콜레이트(Boc-protected benzyl glycolate)를 생성하면서 연속적으로 보호되고; 다른 치환된 알데히드(aldehydes) 그룹들은 (SR)-t-부틸술피나미드((SR)-t-butyl sulfinamide)로 축합하여 대응되는 엔아민(enamine) 화합물을 형성하며; 상기 부틸옥시카보닐로 보호된 벤질글리콜레이트와 엔아민 화합물은 리튬염 존재하에서 첨가반응을 하고, 그리고 난 다음 산분해 반응 이후에 카이랄 중간체가 얻어지고, 얻어진 중간체는 피리디늄 p-톨루엔술포네이트(pyridinium p-toluenesulfonate, PPTS)의 촉매하에서 1,1'-(디메톡시메틸) p-메톡시벤젠(1,1'-(dimethoxymethyl) p-methoxybenzene)과 알돌 축합반응을 하여 축합 화합물을 얻으며; 축합된 화합물의 아미노그룹은 다른 치환체로 치환되고, 그리고 촉매수소화반응 후에 오원고리의 옥사졸리딘산 사이드체인의 전구체가 마지막으로 얻어진다. 반응루트는 다음과 같다.
Figure pct00011
3)탁산 유도체의 합성단계: 오원고리 옥사졸리딘 산 사이드 체인의 전구체는 탁산 모핵부분과 에스터화반응에 의해 연결되어있고, 일련의 탁산 유도체들은 산분해 반응에 의해 보호그룹이 제거되는 것에 의해 생성된다.
상기 1)단계에서, 치환그룹에 의해 보호되는 7번 탄소와 10번 탄소의 하이드록실 그룹은,
(1)R3 과 R4가 -OR6 일 때, 다음과 같은 반응이 포함하는 방법: 먼저, 실온에서 0℃까지 에서, 테트라하이드로퓨란(tetrahydrofuran) 또는 디클로로메탄(dichloromethane) 용매조건 그리고 알칼리로써 피리딘(pyridine, Py)조건 하에, 하이드록시 그룹은 p-톨루엔술포닐 클로라이드(p-toluenesulfonyl chloride, TsCl)와 반응하여 p-톨루엔술포네이트(p-toluenesulfonate)을 얻으며, 또한 이는 그리냐드 시약과 더 반응하여 대응되는 에터(ether) -OR6를 얻는 단계 및;
(2)R3 과 R4 이 -OCOOR6 또는 -OCONR7aR7b일 때, 다음과 같은 반응이 포함되는 방법: 실온에서부터 -70℃까지 에서 알칼리 조건 하에, 테트라하이드로퓨란의 용매조건에서, 하이드록실 그룹은 대응되는 아실 클로라이드(acyl chloride)와 반응하는 단계 및;
(3)R3 과 R4 이 -OCOSR6일 때, 다음과 같은 반응을 포함되는 방법: 실온조건에서 테트라하이드로퓨란의 용매조건에서, 하이드록실 그룹은 N,N'-카보닐디이미다졸(N,N'-carbonyldiimidazole, CDI)과 반응되며 얻어진 생성물은 메르캅탄(mercaptan)과 치환반응을 통해 다시 반응되는 단계 및;
1단계에서, 13번 탄소의 CBS 환원방법에 의한 케토-카보닐 그룹 입체선택적인 환원은 다음과 같은 특정한 단계를 포함하는 방법:
실온조건에서 -70℃까지의 조건에서, 용매로써 기체상태의 디클로로메탄 또는 알코올, 촉매로 (R)-2-메틸 옥사자보롤리딘((R)-2-methyl oxazaborolidine)과 환원제로 보레인 조건 하에, 13번 탄소의 산소는 무수 테트라하이드로퓨란(anhydrous tetrahydrofuran)을 사용함으로써 입체선택적으로 C13-α-OH로 환원되는 단계 및;
2 단계에서, 상기 다른 치환된 알데히드는 C1-C6 의 하이드로카보닐 알데히드, C1-C6 의 치환된 하이드로카빌 알데히드, 방향족 알데히드, 치환된 방향족 알데히드와 헤테로방향족 알데히드를 포함하며; 위 반응은 알칼리 조건하에, 테트라하이드로퓨란, 디클로로메탄 또는 다이옥산(dioxane)을 용매로써 사용하여 얻어진 카이랄 중간체의 아미노 그룹의 치환을 포함되며, 실온에서부터 -70℃까지의 조건에서 대응되는 아실 클로라이드와 반응하는 단계 및;
촉매수소화반응에서, 팔라듐-차콜(palladium-charcoal) 또는 팔라듐 하이드록사이드(palladium hydroxide)는 촉매제로 사용되고, 수소는 일반적인 압력 또는 고압 조건에서 도입되며, 그리고 위 반응은 알코올, 테트라하이드로퓨란 또는 디클로로메탄의 용매 조건 하에 수행되는 단계.
바람직하게는,
상기 1)단계에서, 치환그룹에 의해 보호되는 7번 탄소와 10번 탄소의 하이드록실 그룹은,
(1) R3 과 R4 가 -OR6일 때, 디클로로메탄이 용매로 사용되고, 0℃ 조건이며, 그리냐드 시약(Grignard reagent)은 R6MgBr을 포함하는 단계 및;
(2) R3 과 R4 가 -OCOOR6 또는 -OCONR7aR7b 일 때, 리튬 헥사메틸디살라자이드(lithium hexamethyldisilazide)가 알칼리로 사용되며, -40℃ 조건에서; 아실 클로라이드는 R6OCOCl 과 R7aR7bNCOCl을 포함하는 단계 및;
(3) R3 과 R4 가 -OCOSR6 일 때, 메르캅탄(mercaptan)은 R6SH을 포함하는 단계 및;
상기 1)단계에서, CBS 환원방법을 통한 13번 탄소의 케토-카보닐그룹의 입체선택적 환원반응은 실온조건에서 무수 테트라하이드로퓨란 용매 조건하에 반응되는 단계 및 ;
상기 2)단계에서 중간체의 아미노그룹의 치환을 포함하는 반응은, 리튬 헥사메틸디살라자이드가 알칼리로 사용되며, 테트라하이드로퓨란이 용매로써 사용되는 단계 및; -40℃조건 하에서, 아실 클로라이드는 R6COCl, R6OCOCl 과 R7aR7bNCOCl을 포함하는 단계 및; 촉매수소화반응에서, 팔라듐 하이드록사이드는 촉매로 사용되고, 수소(hydrogen)는 압력 20psi하에 도입되고 알코올 용매 하에 반응되는 단계.
본 발명의 탁산 화합물은 구강 항암효과를 가지고 있으며 본 발명의 효과는 다음의 실험데이터에 의해 설명된다.
실험방법
1. 인간 암세포를 이용한 세포독성 실험.
파클리탁셀은 양성 대조군으로 사용되었다.
MTT assay 는 본 발명의 1,14-카보네이트 바카틴 III를 포함하는 탁산 유도체의 16 암세포에서의 (including MCF-7, MDA-MB-436 유방암세포; A549, NCI-H460 소세포폐암; A2780 난소암; A375, B16 흑색종; HCT 116, HT-29 대장암; 자국경부암 헬라세포; HL-60, K562 백혈병; LNCaP, Du145 전립선암; LN-18, BGC-823 위암) 1μM의 농도하에서 증식억제비율을 조사하기 위해 사용되었고 실험결과는 표1에 나타나있다.
[표 1]16개 암세포에서 본 발명의 탁산 화합물의 증식억제비율
Figure pct00012
사전 효능 평가는 그런 탁산 유도체가 대부분의 암세포에서 양성대조군 보다 유사하거나 더 강력한 세포독성을 보여준다는 것을 나타냈다. A549과 B16 둘의 암세포의 경우에만 탁산 유도체의 세포독성이 양성대조군보다 약간 낮았다. 실험결과는 본 발명의 그런 탁산 유도체는 뛰어난 항암 효과를 가지고 있다는 것을 보여주었다.
상기 언급된 사전 스크린 효능 평가로부터, 본 발명에 의해 합성되는 일련의 탁산유도체들은 효능을 가지고 있음을 보여주었다. 후에, 유방암세포인 MCF-7에서 화합물의 IC50 수치를 측정하기 위하여 상기 탁산 유도체를 조사하였다. 파클리탁셀은 양성대조군으로 사용하였다.
개개의 화합물의 실험은 독립적으로 3번씩 반복되며 다수의 관통들이 각 실험마다 사용되었다. 약에 노출되는 시간은 72시간으로 하였다. 중간치사량은(IC50) 평균값과 표준편차로 표현되며 실험데이터는 표2에서 볼 수 있다.
[표 2]유방암세포 MCF-7 에서의 발명의 탁산 화합물의 IC50 수치
Figure pct00013
표2에서 볼 수 있듯이, 양성대조군 파클리탁셀의 IC50 수치는 7.05nM 이다. 본 발명의 1,14-카보네이트 바카틴 III를 포함하는 탁산 유도체의 IC50 수치는 같은 크기 순서를 유지하면서 파클리탁셀과 거의 동등하다. 반면에 몇몇의 유도체의 IC50수치가 파클리탁셀 보다 더 낫다. 그래서, 본 발명의 생체외에서 유도체의 효능은 파클리탁셀 비교할 때 변함없이 유지되거나 심지어 향상된다.
2. Caco -2 세포 단층막 수송 실험
인간유래 대장선암 세포인 Caco-2 세포단층막 모델은 정면(AP)에서부터 반대면 (BL)까지 그리고 반대면에서부터 정면까지의 타겟 화합물의 양방향 수송에 관한 연구에 사용되었다. HPLC는 수송 파라미터, 겉보기투과계수(Papp) 와 유출비율을 측정하기 위한 수송 정량적인 분석에 사용되었다.
파클리탁셀은 양성대조군으로 사용되고 P-gp 기질 에리트로마이신은 생체 내에서 탁산유도체의 구강내 생체이용율과 탁산 유도체와 P-gp 와의 친화성을 측정하기 위한 기준으로 쓰였다.
[표 3]Caco-2 세포모델에서 본 발명의 탁산 유도체의 정면에서 반대편까지의 겉보기투과계수(Papp).
Figure pct00014
*: 최소한계보다 더 낮은 측정수치 ; N/A: 기존의 방법으로는 측정될 수 없는 것을 의미한다.
[표 4]Caco-2 세포모델에서 본 발명의 탁산 유도체의 막간 질량회수율
Figure pct00015
*: 최소한계보다 더 낮은 측정수치 ; N/A: 기존의 방법으로는 측정될 수 없는 것을 의미한다
[표 5]Ca-2 세포모델에서 본 발명의 대표적인 탁산 유도체의 유출비율
Figure pct00016
유출비율(efflux ratio) = 겉보기투과계수(Papp)B -A/ 겉보기투과계수(Papp)A -B
실험 결과는 표 3에서 볼 수 있다. 본 발명의 대부분의 탁산 유도체의 정면에서 반대면까지의 겉보기투과계수가 파클리탁셀보다 (Papp A-to-B=0.97) 높은 것을 볼 수 있다. 특히, PCMI-08에서, 겉보기투과계수 > 10×10-6 cm/s 이상이며, 이는 매우 투과력이 높은 물질에 속한다. 이 실험 데이터는 1,14-카보네이트 바카틴 III를 포함하고 있는 탁산 유도체가 좋은 막투과 능력을 가지고 있음을 나타내며, 그래서 본 발명의 탁산 유도체는 생체내에서 파클리탁셀보다 흡수가 더 좋을 것으로 예측된다.
본 발명의 탁산 유도체의 막간 질량회복율은 표 4에서 볼 수 있다. 21개의 탁산 유도체에서 선별된 10개의 화합물의 양방향수송이 평가되었고 이는 표5에서 볼 수 있다. 파클리탁셀과 비교해 볼 때, 본 발명의 탁산 유도체의 유출비율은 다른 레벨로 감소되는 것을 볼 수 있다. 따라서, 생체내에서 구강내 흡수는 향상될 것으로 예측된다.
3. 생체 내 구강 생체이용율
실험재료
PCMI-08화합물은 본 발명에서 제시된 방법에 따라 합성되고 측정된다. 내부표준인 파클리탁셀은 China's National Institute for the Control of Pharmaceutical and Biological Products (NICPBP)에서 구입하였다 Chromatography-grade 아세토니트릴은 Sigma-Aldrich Inc.에서 구입하였다. 트윈80과 에틸아세테이트는 Aladdin reagent Inc.에서 구입되었다. Male S.D. 쥐는 Beijing Weitonglihua Inc.에서 구입하였고 2주동안 사육장에서 길러졌다.
실험장치
Agilent 1100 series HPLC, Agilent G1313A 자동샘플러, Thermo Finnigan TSQ 사중극자 질량분석계(quadrupole mass spectrometer) (San Jose, CA, USA), Xcalibur® (version 1.3) software (Thermo Finnigan) 데이터분석 소프트웨어.
실험방법
PCMI-08 의 200mg 은 저장용액 50mg/ml 을 제조하기 위해서 트윈80과 무수 에탄올(1:1)의 혼합용액의 4ml안에서 용해되고 생리식염수는 적절한 농도를 조정하기 위해서 첨가되었다. 야간 공복 이후에 준비된 12 male S.D. 쥐 (300g의 몸무게)를 두 그룹으로 나누었다. 한 그룹은 정맥내주사(5mg/kg)에 의하고 나머지 한 그룹은 구강(60mg/kg)으로 투여하였다. 정맥 투여한 그룹의 혈액은 0분, 5분, 10분, 20분, 40분, 1시간, 2시간, 4시간, 6시간, 8시간, 12시간, 24시간째로 샘플화하고, 반면에 구강 투여한 그룹은 5분, 15분, 30분, 45분, 1시간, 2시간, 4시간, 6시간, 8시간, 12시간, 24시간째로 샘플화 하였다. 4500rpm으로 혈장을 10분간 원심분리한 후, 위쪽의 혈청을 얻어 EP 튜브에 옮기고 실험을 위해 -40℃ 냉동고에 보관하였다.
PCMI - 08 의 표준곡선 형성
Agilent 1100 series 구성 : Agilent G1313A 고성능 액체 크로마토그래피(HPLC) 자동샘플러장치, 150mm×2.1mm C18 Thermo column (particle size 3μm) 역상의 컬럼, 검출파장은 230nm, 컬럼 온도는 30℃, 아세토나이트릴 / 물(7:3)의 이동상, 이동률0.2ml/min, 주입량 20μl. 질량분석기 (MS)는 양이온모드에서 전기분무이온화로(ESI)구성된 Thermo Finnigan TSQ Quantum triple quadrupole이다. 질량분석(MS analysis)의 파라미터는 다음과 같다: 스프레이 챔버 전압은 4.0kv; 열이 가해진 모세관 온도, 350℃; 보호용 가스(질소); 20psi; 보조가스 (질소): 5psi; 충돌 가스(아르곤); 압력: 1.5mmTorr.; 충돌에너지: CA 17eV; FA (형광분석기)와 IFA(면역형광분석기)는 19eV; IS 는 15eV.
파클리탁셀은 3.07분의 머무름 시간을(retention time) 가진 내부표준으로 선택되었다. PCMI-08의 머무름 시간은 5.13분이었다. PCMI-08를 위한 질량분석기 검출 상태는 다음과 같이 맞추었다: 957→901m/z, 파클리탁셀은 내부표준으로써. 검출 상태: 876→308m/z. PCMI-08의 표준곡선의 농도범위는 5-10,000ng/ml (γ2>0.99) 이고 최소검출한계는 5ng/ml이었다.
혈장 샘플의 추출 및 분석
혈장샘플 100μl를 채취하고, 내부표준 (파클리탁셀, 500ng/ml의 아세토나이트릴용액)을 100μl 첨가하고, 이어서 보텍스를 통해 균질화한 이후 3ml의 에틸아세테이트를 첨가하고, 5분 동안의 쉐이킹 이후에 4500rpm으로 8분 동안의 원심분리하였다. ?상층액을 질소와 함께 깨끗한 EP 튜브로 옮겨서 이동시켜 열 조건하에서 농축 건조시켰다. 120μl의 이동상(CH3CN / H2O=7:3)으로 재구성 이후에, 용액은 12,000rpm 에서 3분 동안 원심분리하고, 상층액 100μl를 채취해서 자동샘플러 바이알(vial)로 옮겼다. LC-MS/MS 검출 이후에, 통계 자료 및 약동학 파라미터는 Xcalibur® (version 1.3) software (Thermo Finnigan)로 수행되었다.
실험결과
구강 또는 정맥 내 투여에 의한 PCMI-08 화합물의 의한 약물 농도-시간 그래프는 도1에서 볼 수 있다. PCMI-08의 연관된 약동학 파라미터는 다음의 표에서 볼 수 있다. PCMI-08의 반감기는 대체적으로 길고, 일반적으로 10시간이며, 평균 머뭄시간은(mean retention time) 또한 대체적으로 10시간 또는 그 이상까지 연장되었다. 경구흡수양은 (F%) 65.8%까지였다. 보고된 파클리탁셀의 경구흡수양이 6% 보다 적은 것과 비교해 볼 때, 동물에서 PCMI-08의 경구흡수양은 상당한 정도로 향상되었다.
[표 6]관련된 정맥과 구강내 투여에 의한 PCMI-08 약동학적 파라미터
Figure pct00017
AUC0 -t: 0-24 시간 곡선아래 면적; AUC0 -8: 곡선아래면적; Cmax: 정점의 농도; tmax: 정점의 시간; MRT:평균머무름시간; t1/2: 반감기시간; F: 절대적 구강내 생체이용율(경구흡수양), F = (AUCp.o×dosei.v)/(AUCi.v ×dosep.o)×100%
실시예
하기 실시예는 본 발명을 예시하기 위해 제공되고, 어떠한 방식으로도 본 발명을 한정하지 않는다.
실시예 1. PCMI -01의 준비
Figure pct00018
1) (4S,5R)-3-t-부틸옥시카보닐-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butyloxycarbonyl-2-(4-methoxyphenyl)-4-phenyl-5-oxazolidine carboxylic acid)의 준비
Figure pct00019
a. 벤질 글리콜레이트(benzyl glycolate)의 준비
Figure pct00020
글리콜산(Glycolic acid, 7.60g, 0.10mol)을 벤질 브로마이드(benzyl bromide, 13.60g, 0.08mol)가 추가되어 균일하게 교반된 아세톤나이트릴(acetonitrile) 10ml에서 용해시켰다. DBU (12.16g, 0.08mol)을 0℃에서 반응액으로 천천히 적가하여 추가하였다. 그 후에, 반응액은 실온에서 밤새 교반하였다. 상기 반응액을 얼음물로 끼얹고, 에틸 아세테이트(ethyl acetate)로 추출하며, 상기 조합된 결과로 얻어진 유기상을 1M 염산(hydrochloric acid) 용액과 포화 식염수로 연속적으로 세척해주었고, 무수 황산 나트륨(anhydrous sodium sulfate)으로 건조하고 회전 증발에 의해 농축하여 노란색 오일(yellow oil, 12.50g, 94%)로 된 화합물을 수득하였다.
b. 부틸옥시카보닐-보호된 벤질 글리콜레이트(Boc-protected benzyl glycolate)의 준비
Figure pct00021
벤질 글리콜레이트(30g, 0.25mol) 및 부틸옥시카보닐 무수물(Boc anhydride, 39.1g, 0.19mol)을 디클로로메탄(dichloromethane) 30ml로 용해시켰다. 디클로로메탄 용액에 녹인 DMAP (4.62g, 0.038 mol) 5ml을 80℃에서 상기 얻어진 반응액에 적가하여 추가하였다. 그 후에, 상기 반응액을 15℃에서 30분동안 반응시켰다. 반응이 완료된 후에, 상기 반응액을 얼음물로 끼얹고, 에틸 아세테이트로 추출하였으며, 조합된 결과로 얻어진 유기상을 물과 포화 식염수로 연속적으로 세척해주었다. 상기 유기상을 농축하였고, 10:1 비율의 석유 에테르(petroleum ether)/에틸 아세테이트로 재결정화시켜 흰 고체(32.5g, 66%)를 수득하였다.
c. N-t-부틸 술피닐 벤질렌아민(N-t-butyl sulfinyl benzylenamine)의 준비
Figure pct00022
(SR)-t- 부틸 술핀아마이드((SR)-t-butyl sulfinamide, 5.22g, 0.043mol) 및 벤즈알데히드(benzaldehyde, 5.51g, 0.052mol)를 디클로로메탄 20ml로 용해시키고, 상기 용액에 황산 마그네슘(magnesium sulfate, 25.90g, 0.22mol)과 PPTS (0.54g, 2.20mmol)를 추가하였다. 상기 반응액은 24시간동안 실온에서 교반하였고, 여과하여서 얻어진 상기 필터 케이크를 디클로로메탄으로 20ml씩 3번 헹구고, 농축한 후 조생성물을 수득하였다. 상기 조생성물은 컬럼 크로마토그래피(석유 에테르/에틸 아세테이트=15:1)로 정제하여 무색 오일(colorless oil, 7.71g, 85.8%)을 수득하였다.
d. 벤질 2R-t-부틸옥시카보닐-3S-t-부틸 술핀아마이드-페닐 프로피오네이트(benzyl 2R-t-butyloxycarbonyl-3S-t-butyl sulfinamide-phenyl propionate)의 준비
Figure pct00023
부틸옥시카보닐-보호된 벤질 글리콜레이트(32.5g, 0.12mol)을 테트라하이드로퓨란(tetrahydrofuran) 15ml에 용해시키고 LHMDS(120ml, 0.12mol)을 -70℃에서 상기 반응액에 천천히 적가하여 추가하였다. 그 후에, 상기 반응액을 30분동안 교반하였고, 다음에 THF 용액(5.02g, THF 8ml에 0.024mol의 용액)에 녹인 N-t-부틸 술피닐 벤질렌아민을 천천히 적가하여 추가하였고 4시간 후에 반응을 마쳤다. 상기 반응액을 포화된 암모늄 클로라이드(ammonium chloride) 용액 50ml로 끼얹고 에틸 아세테이트로 30ml씩 3번 추출하였다(30ml×3). 상기 조합된 유기상을 건조하고, 회전 증발로 농축한 후 컬럼 크로마토그래피(석유 에테르/에틸 아세테이트=10:1)로 정제하여 흰 고체(white solid, 5.25g, 46%)를 수득하였다.
e. 벤질 2R-하이드록시-3S-아미노페닐 프로피오네이트(benzyl 2R-hydroxy-3S-aminophenyl propionate)의 준비
Figure pct00024
이전 단계에서 얻은 상기 생성물(5.25g, 0.011mol)을 2N HCl/EtOAc 용액 20ml에 용해시켰고 10시간동안 실온에서 반응시켰다. 상기 반응이 완료된 후에, 상기 반응액은 농축하였고, 얻어진 상기 농축물은 디클로로메탄/물(50ml/100ml)로 추출하였다. 상기 수상을 획득하였고, 디클로로메탄으로 추출하였으며, 그것의 pH 값은 28% 암모니아수로 pH9-10으로 조정하였다. 마지막으로, 상기 수상은 디클로로메탄으로 20ml씩 3번동안 추출하였다(20ml×3). 상기 조합된 유기상은 건조하여 여과하고 농축하여 흰 고체(2.85g, 95.7%)를 수득하였다.
f. 벤질(4S,5R)-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실레이트(benzyl (4S,5R)-2-(4-methoxyphenyl)-4-phenyl-5-oxazolidine carboxylate)의 준비
Figure pct00025
벤질 2R-하이드록시-3S-아미노페닐 프로피오네이트(2.66g, 9.84mmol) 및 촉매제 PPTS(0.24g, 0.93mmol)를 톨루엔(toluene) 10ml로 용해시켰고, 상기 반응액에 1,1-디메톡시메틸-4-메톡시벤젠(2.15g, 11.79mmol)을 100℃에서 천천히 적가하여 첨가하였다. 그 후에 상기 반응액을 90-100℃에서 2시간동안 유지시켰고, 이는 1,1-디메톡시메틸-4-메톡시벤젠 2.4g를 보충하고 그 다음에 반응이 마무리되기 전에 약 2시간동안 반응시키는 것이다. 얻어진 상기 반응액은 농축하여, 분리하고 컬럼 크로마토그래피(석유 에테르/에틸 아세테이트=10:1)로 정제하여 노란색 오일(yellow oil, 3.52g, 92%)을 수득하였다. 상기 노란색 오일은 p-메톡시벤즈알데히드(p-methoxybenzaldehyde)를 함유하였다.
g. 벤질 (4S,5R)-3-t-부톡시카르보닐-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실레이트(benzyl (4S,5R)-3-t-butoxycarbonyl-2-(4-methoxyphenyl)-4-phenyl-5-oxazolidine carboxylate)의 준비
Figure pct00026
상기 과정에서 수득한 오일(4.07g, 10.47mmol), t-부틸옥시 포밀 클로라이드(t-butyloxy formyl chloride, 1.56g, 12.57mmol) 및 트리이틸아민(triethylamine, 2.64g, 26.17mol)을 디클로로메탄 10ml로 용해시키고 실온에서 밤새도록 교반시켰다. 상기 반응액은 농축하여, 분리하고 컬럼 크로마토그래피(석유 에티르/에틸 아세테이트=10:1)로 정제하여 노란색 오일(yellow oil, 4.83g, 94.4%)을 수득하였다.
h. (4S,5R)-3-t-부톡시카보닐-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butoxycarbonyl-2-(4-methoxyphenyl)-4-phenyl-5-oxazolidine carboxylic acid)의 준비
Figure pct00027
상기 과정에서 수득한 생성물(4.83g, 9.88mmol)을 메탄올 10ml로 용해시키고, 이 때 수산화팔라듐(palladium hydroxide) 1.0g을 첨가하였다. 수소는 실온에서 (20psi) 도입되고, 약 1시간동안 반응시켰으며, 반응 완료는 TLC로 확인하였다. 상기 반응액은 여과하고 농축하여, 분리하고 컬럼 크로마토그래피(석유 에테르/에틸 아세테이트=5:1)로 정제하여 최종 생성물인 흰 고체(white solid, 2.68g, 67.9%)를 수득하였다.
2) 7,10-디메톡실-1,14-카르보네이트 바카틴III(7,10-dimethoxyl-1,14-carbonate baccatin III)의 준비
Figure pct00028
10-DAB (1 당량)을 원재료로 사용하였고, 용매로 사용한 디클로로메탄에 용해시켰고, 0℃에서 피리딘 3당량을 첨가하였다. 그런 다음, 얻어진 반응액에 p-톨루엔술포닐 클로라이드(p-toluenesulfonyl chloride) 3당량을 적가하여 추가하고 4시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 1을 85-90%의 수율로 획득하였다.
상기 화합물 1(1 당량)은 무수 테트라하이드로퓨란(anhydrous tetrahydrofuran)에 용해시키고, 질소의 보호 조건에서 3시간동안 실온에서 메틸 마그네슘 브로마이드(2.5 당량)과 반응시켰다. 마지막 처리 후에, 건조하여 조 화합물 2를 수득하였다.
상기 화합물 2(1 당량)은 아세톤 용액에 용해시켰고, 이산화망간(manganese dioxide) 10 당량을 실온에서 첨가하고 4시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 3을 85%의 수율로 획득하였다.
상기 화합물 3(1 당량)은 드라이 THF/DMPU(4:1) 용액에 용해시켰고, 칼륨 t-부톡사이드(potassium t-butoxide) 1.2 당량을 -70℃에서 첨가하고 20분동안 반응시켰다. 얻어진 상기 반응액은 N-(술포닐) 옥사지리딘(N-(sulfonyl) oxaziridine) 2 당량을 천천히 적가하여 첨가하고 2시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 4를 75%의 수율로 획득하였다.
상기 화합물 4(1 당량)은 드라이 테트라하이드로퓨란에서 N,N'-카르보닐디이미다졸(N,N'-carbonyldiimidazole, CDI) 2 당량과 반응시켰고, 화합물 5를 95%의 수율로 획득하였다.
상기 화합물 5(1 당량)은 드라이 테트라하이드로퓨란에 용해시켰고, (R)-2-메틸 옥사자보로딘(R)-2-methyl oxazaborodine) 0.2 당량을 촉매로 첨가하였고, 이어서 보란(borane)/THF 용액 5당량을 추가하여 실온에서 8시간동안 반응시켰다. 반응이 완료된 후, 컬럼 크로마토그래피로 정제하여서, 7,10-디메톡실-1,14-카르보네이트 바카틴III인 화합물 6을 최총 생성물로 86%의 수율로 획득하였다.
Figure pct00029
3) PCMI-01의 준비
7,10-디메톡실-1,14-카르보네이트 바카틴III(1 당량) 및 (4S,5R)-3-t-부틸옥시카보닐-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실산(4 당량)을 용매로 사용한 디클로로메탄에 용해시키고, DMAP 0.5 당량과 DCC 2.0 당량을 연속적으로 첨가하고 실온에서 밤새도록 반응시켰다. 상기 얻어진 생성물은 최종 생성물인 탁산 유도체 PCMI-01을 수득하기 위해 아세틸 클로라이드(acetyl chloride)/메탄올(methanol) 용액 2 당량에서 반응시켰다. 상기 두 단계의 전체의 수득율은 71%이고, 상기 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-01: mp: 242-243℃;
MS (m/z) ESI: 900.4 (M+Na)+;
1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 7.3 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 7.47 - 7.33 (m, 5H), 6.47 (d, J = 5.7 Hz, 1H), 6.09 (d, J = 7.5 Hz, 1H), 5.50 (d, J = 9.0 Hz, 1H), 5.34 (s, 1H), 4.96 (d, J = 8.0 Hz, 1H), 4.78 (d, J = 6.8 Hz, 1H), 4.74 (s, 1H), 4.72 (s, 1H), 4.30 (d, J= 8.5 Hz, 1H), 4.25 (d, J = 8.5 Hz, 1H), 3.86 (dd, J = 10.8, 6.3 Hz, 1H), 3.71 (d, J = 7.5 Hz, 1H), 3.49 (s, 3H), 3.32 (s, 3H), 2.75-2.67 (m, 1H), 2.45 (s, 3H), 1.93 (s, 3H), 1.87 - 1.78 (m, 1H), 1.77 (s, 3H), 1.41 (s, 9H), 1.33 (s, 3H), 1.31 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 203.51, 171.19, 164.63, 151.96, 135.97, 134.09, 129.92, 128.95, 128.12, 126.67, 88.08, 83.97, 82.17, 81.17, 80.51, 79.69, 75.99, 74.94, 74.42, 69.18, 57.88, 57.08, 46.76, 41.90, 31.83, 29.69, 28.25, 26.06, 22.61, 22.14, 14.56, 10.39.
실시예 2. PCMI -02의 준비
Figure pct00030
1) (4S,5R)-3-벤조일-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실산((4S,5R)-3-benzoyl-2-(4-methoxyphenyl)-4-phenyl-5-oxazolidine carboxylic acid)의 준비
Figure pct00031
(4S,5R)-3-벤조일-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실산은 실시예 1에서 나타낸 단계 g를 제외하고, 실질적으로 같은 방법으로 준비되었다. 다른 단계들은 상기 실시예 1의 상기 반응에서 볼 수 있다.
g. 벤질(4S,5R)-3-벤조일-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실레이트(benzyl (4S,5R)-3-benzoyl-2-(4-methoxyphenyl)-4-phenyl-5-oxazolidine carboxylate)의 준비
Figure pct00032
벤질(4S,5R)-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실레이트(1 당량)은 드라이 테트라하이드로퓨란에 용해시켰고, LHMDS 1.5 당량을 -40℃에서 첨가하였다. 반응 1시간 후에, 상기 반응액은 벤조일 클로라이드(benzoyl chloride)를 적가하여 첨가하였고, 3시간동안 반응을 시키고, 반응을 마쳤다. 컬럼 크로마토그래피로 정제한 후, 상기 생성물을 85%의 수율로 획득하였다.
상기 단계 2)에서 7,10-디메톡실-1,14-카르보네이트 바카틴III의 준비 및 상기 단계 3)에서 PCMI-02의 준비는 실시예 1에서의 단계2)와 단계3)과 같은 절차를 따랐다. 상기 절차는 실시예 1에서 단계2)와 단계3)에서 구체적으로 볼 수 있으며, 상기 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-02: mp: 234-235℃;
MS (m/z) ESI: 904.3 (M+Na)+;
1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 7.9 Hz, 2H), 7.62 (t, J = 7.1 Hz, 1H), 7.53-7.44 (m, 7H), 7.38 (t, J = 7.4 Hz, 3H), 7.20 (d, J = 8.9 Hz, 1H), 6.49 (d, J = 6.6 Hz, 1H), 6.08 (d, J = 7.6 Hz, 1H), 5.95 (dd, J = 8.8, 3.0 Hz, 1H), 4.97 (d, J = 8.8 Hz, 1H), 4.92-4.88 (m, 2H, H-2'), 4.71 (s, 1H), 4.29 (q, J = 8.5 Hz, 2H), 3.98 (d, J = 5.1 Hz, 1H), 3.86 (m, 1H), 3.73 (d, J = 7.5 Hz, 1H), 3.48 (s, 3H), 3.31 (s, 3H), 2.78 - 2.65 (m, 1H), 2.56 (s, 3H), 1.88 (s, 3H), 1.85 - 1.74 (m, 4H), 1.31 (s, 3H), 1.28 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 203.54, 172.05, 171.20, 167.55, 164.79, 151.88, 137.66, 136.28, 135.77, 134.10, 133.55, 131.98, 130.12, 129.03, 128.61, 128.30, 128.05, 127.33, 126.86, 88.25, 84.07, 82.08, 81.10, 80.39, 79.82, 76.07, 74.88, 73.97, 69.25, 57.92, 57.08, 55.02, 46.81, 41.86, 31.79, 29.70, 25.98, 24.89 , 22.70, 22.28, 14.49, 10.46.
실시예 3. PCMI -03의 준비
Figure pct00033
1) (4S,5R)-3-디메틸카르바모일-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실산((4S,5R)-3-dimethylcarbamoyl-2-(4-methoxyphenyl)-4-phenyl-5- oxazolidine carboxylic acid)의 준비
Figure pct00034
(4S,5R)-3-디메틸카르바모일-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실산은 실시예 1에서 단계g를 제외하고 실질적으로 같은 방법으로 준비되었다. 다른 단계들은 실시예 1의 상기 반응에서 볼 수 있다.
g. 벤질(4S,5R)-3-디메틸카르바모일-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실레이트(benzyl (4S,5R)-3-dimethylcarbamoyl-2-(4-methoxyphenyl)-4-phenyl-5-oxazolidine carboxylate)의 준비
Figure pct00035
벤질(4S,5R)-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실레이트 1 당량을 드라이 테트라하이드로퓨란에 용해시켰고, LHMDS 1.5 당량을 -40℃에서 첨가하였다. 반응 1시간 후에, 상기 반응액은 디메틸카르바모일 클로라이드(dimethylcarbamoyl chloride) 2 당량을 적가하여 첨가하고, 3시간동안 반응시키고 상기 반응을 마무리하였다. 컬럼 크로마토그래피로 정제를 하여, 상기 생성물을 80%의 수율로 획득하였다.
상기 단계 2)에서 7,10-디메톡실-1,14-카르보네이트 바카틴III의 준비 및 상기 단계 3)에서 PCMI-03의 준비는 실시예 1에서의 단계2)와 단계3)과 같은 절차를 따랐다. 상기 절차는 실시예 1에서 단계2)와 단계3)에서 구체적으로 볼 수 있으며, 상기 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-03: mp: 205-206℃;
MS (m/z) ESI: 871.5 (M+Na)+;
1H NMR (400 MHz, CDCl3) δ 8.10 (d, J = 7.2 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.43 (d, J = 7.2 Hz, 2H), 7.38 (t, J = 7.4 Hz, 2H), 7.35 - 7.29 (m, 1H), 6.11 (t, J = 8.1 Hz, 1H), 5.97 - 5.88 (m, 1H), 5.80 (d, J = 6.1 Hz, 1H), 5.67 (d, J = 9.7 Hz, 1H), 5.30 (d, J = 9.3 Hz, 1H), 4.93 (d, J = 8.7 Hz, 1H), 4.63 (s, 1H), 4.29 (d, J = 8.3 Hz, 1H), 4.17 (d, J = 8.3 Hz, 1H), 3.97 (t, J = 11.1 Hz, 1H), 3.01 (d, J = 6.0 Hz, 1H), 2.64 - 2.52 (m, 1H), 2.38 (dd, J = 15.3, 10.0 Hz, 1H), 2.28 (d, J = 11.0 Hz, 5H), 2.16-2.10 (m, 1H), 2.11 (s, 3H), 1.88-1.82 (m, 1H) 1.73 (s, 6H), 1.42 (s, 12H), 1.25 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 171.64, 171.21, 170.78, 170.62, 167.10, 155.18, 138.80, 137.60, 136.85, 133.72, 130.09, 129.20, 128.65, 128.58, 127.82, 127.04, 84.73, 82.82, 79.96, 78.61, 76.58, 73.96, 72.18, 70.96, 69.23, 60.42, 55.89, 44.99, 42.98, 42.33, 37.36, 36.66, 35.66, 29.70, 28.30, 22.60, 21.81, 21.40, 16.71, 14.94.
실시예 4. PCMI -04의 준비
Figure pct00036
1) (4S,5R)-3-t-부틸옥시카보닐-2-(4-메톡시페닐)-4-(2-피리딜)-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butyloxycarbonyl-2-(4-methoxyphenyl)-4-(2-pyridyl)-5- oxazolidine carboxylic acid)의 준비
Figure pct00037
(4S,5R)-3-t-부틸옥시카보닐-2-(4-메톡시페닐)-4-(2-피리딜)-5-옥사졸리딘 카르복실산은 실시예 1에서 단계c를 제외하고 실질적으로 같은 방법으로 준비되었다. 다른 단계들은 실시예 1의 상기 반응에서 볼 수 있다.
c. N-t-부틸 술피닐-2-피리디닐 카르복센아민(N-t-butyl sulfinyl-2-pyridinyl carboxaenamine)의 준비
Figure pct00038
(SR)-t-부틸 술핀아마이드((SR)-t-butyl sulfinamide, 5.22g, 0.043mol) 및 2-피리딘 카르복사알데히드(2-pyridine carboxaldehyde, 4.47g, 0.052mol)를 디클로로메탄 20ml에 용해시켰고, 황산 마그네슘(magnesium sulfate, 25.90g, 0.22mol) 및 PPTS(0.54g, 2.20mmol)를 추가하였다. 상기 반응액은 24시간동안 실온에서 교반하였고, 여과하여 얻어진 상기 필터 케이크를 디클로로메탄으로 20ml씩 3번 헹구고, 농축한 후 조생성물을 수득하였다. 상기 조생성물은 컬럼 크로마토그래피(석유 에테르/에틸 아세테이트=15:1)로 정제하여 무색 오일(7.13g, 80.2%)을 수득하였다.
상기 단계 2)에서 7,10-디메톡실-1,14-카르보네이트 바카틴III의 준비 및 상기 단계 3)에서 PCMI-04의 준비는 실시예 1에서의 단계2)와 단계3)과 같은 절차를 따랐다. 상기 절차는 실시예 1에서 단계2)와 단계3)에서 구체적으로 볼 수 있으며, 상기 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-04: mp: 244-245℃;
MS (m/z) ESI: 901.3 (M+Na)+;
1H NMR (400 MHz, CDCl3) δ 8.46 (d, J = 4.5 Hz, 1H), 8.06 - 7.99 (m, 2H), 7.83 - 7.75 (m, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.49 (t, J = 7.8 Hz, 3H), 7.29 (m, 1H), 6.39 (dd, J = 6.7, 1.4 Hz, 1H), 6.08 (d, J = 7.4 Hz, 1H), 5.81 (d, J = 10.0 Hz, 1H), 5.49 - 5.39 (m, 1H), 4.99 (d, J = 8.2 Hz, 1H), 4.82 (d, J = 6.7 Hz, 1H), 4.78 (s, 1H), 4.73 (s, 1H), 4.30 (d, J = 8.3 Hz, 1H), 4.22 (d, J = 8.2 Hz, 1H), 3.89 (dd, J = 10.8, 6.3 Hz, 1H), 3.72 (d, J = 3.7 Hz, 1H), 3.45 (s, 3H), 3.31 (s, 3H), 2.77 - 2.67 (m, 1H, H-6), 2.52 (s, 3H), 1.92 (d, J = 1.0 Hz, 3H), 1.82-1.77 (dd, J = 19.3, 7.9 Hz, 1H), 1.76 (s, 3H), 1.48 (s, 9H), 1.30 (s, 3H), 1.24 (s, J = 8.0 Hz, 3H).
13C NMR (101 MHz, CDCl3) δ 203.62 , 171.02 , 164.65, 159.41, 152.08, 148.04 , 137.91 , 136.46, 136.21, 134.12, 129.86, 128.90, 123.04, 122.28, 88.26, 83.97, 82.23, 80.91, 80.40, 80.05, 75.93, 73.92, 69.37 , 57.87, 57.10, 57.03, 46.82 , 41.85, 31.82, 29.68, 28.34, 26.00, 22.07, 14.55 , 10.37.
실시예 5. PCMI -05의 준비
Figure pct00039
1) (4S,5R)-3-t-부틸옥시카보닐-2-(4-메톡시페닐)-4-아이소부틸-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butyloxycarbonyl-2-(4-methoxyphenyl)-4-isobutyl-5-oxazolidine carboxylic acid)의 준비
Figure pct00040
(4S,5R)-3-t-부틸옥시카보닐-2-(4-메톡시페닐)-4-아이소부틸-5-옥사졸리딘 카르복실산은 실시예 1에서 단계c를 제외하고 실질적으로 같은 방법으로 준비되었다. 다른 단계들은 실시예 1의 상기 반응에서 볼 수 있다.
c. N-t-부틸 술피닐 피리딜 아이소부틸 카르복센아민(N-t-butyl sulfinyl pyridyl isobutyl carboxaenamine)
Figure pct00041
(SR)-t-부틸 술핀아마이드(5.22g, 0.043mol) 및 아이소발렐알데히드(isovaleraldehyde, 5.51g, 0.052mol)를 디클로로메탄 20ml에 용해시켰고, 황산 마그네슘(magnesium sulfate, 25.90g, 0.22mol) 및 PPTS(0.54g, 2.20mmol)를 추가하였다. 상기 반응액은 24시간동안 실온에서 교반하였고, 여과하여 얻어진 상기 필터 케이크를 디클로로메탄으로 20ml씩 3번 헹구고, 농축한 후 조생성물을 수득하였다. 상기 조생성물은 컬럼 크로마토그래피(석유 에테르/에틸 아세테이트=15:1)로 정제하여 무색 오일(7.26g, 89.3%)을 수득하였다.
상기 단계 2)에서 7,10-디메톡실-1,14-카르보네이트 바카틴III의 준비 및 상기 단계 3)에서 PCMI-05의 준비는 실시예 1에서의 단계2)와 단계3)과 같은 절차를 따랐다. 상기 절차는 실시예 1에서 단계2)와 단계3)에서 구체적으로 볼 수 있으며, 상기 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-05: mp: 237-238℃;
MS (m/z) ESI: 880.4 (M+Na)+;
1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 7.5 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 6.46 (d, J = 6.2 Hz, 1H), 6.08 (d, J = 7.5 Hz, 1H), 4.97 (d, J = 7.9 Hz, 1H), 4.84 (d, J = 6.8 Hz, 1H), 4.80 (d, J = 9.1 Hz, 1H), 4.74 (s, 1H), 4.33 (dd, J = 6.2, 3.2 Hz, 1H), 4.29 (d, J = 8.4 Hz, 1H), 4.23 (d, J = 8.4 Hz, 1H), 4.17 - 4.07 (m, 1H), 4.03 (d, J = 6.2 Hz, 1H), 3.86 (dd, J = 10.7, 6.4 Hz, 1H), 3.71 (d, J = 7.4 Hz, 1H), 3.47 (s, 3H), 3.30 (s, 3H), 2.70 (ddd, J = 14.3, 9.8, 6.3 Hz, 1H), 2.49 (s, 3H), 1.96 (d, J = 1.2 Hz, 3H), 1.86 -1.77(m, 1H), 1.76 (s, 3H),1.73-1.67(m, 2H) 1.521.42 (m, 1H), 1.39 (s, 9H), 1.31 (d, J = 5.9 Hz, 6H), 0.99 (t, J = 6.5 Hz, 6H).
13C NMR (101 MHz, CDCl3) δ 203.58, 172.84, 170.75 , 164.68, 156.23, 152.06, 136.25, 134.08, 129.92 , 128.93, 128.06, 88.16, 83.98, 82.17, 81.03, 80.36, 79.73, 75.95, 74.73, 73.81, 69.22, 57.85, 57.09, 57.07, 46.74, 41.92 , 31.80, 29.69, 28.24 , 26.04, 24.86, 23.25, 22.55, 22.16, 14.66, 10.41.
실시예 6. PCMI -06의 준비
Figure pct00042
1) (4S,5R)-3-t-부틸옥시카보닐-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butyloxycarbonyl-2-(4-methoxyphenyl)-4-phenyl-5-oxazolidine carboxylic acid)의 준비
상기 구체적인 방법은 실시예 1에서 볼 수 있다.
2) 10-메톡실-7-트리에틸실리칸-1,14-카르보네이트 바카틴 III(10-methoxyl-7-triethylsilicane-1,14-carbonate baccatin III)의 준비
Figure pct00043
10-DAB(1 당량)을 원재료로 사용하였고, DMF에 용해시키고 이미다졸(imidazole) 2.5 당량 및 트리에틸 클로로실란(triethyl chlorosilane) 2.5 당량을 연속적으로 첨가하였다. 후처리 후, 조화합물 7을 수득하였다.
상기 화합물 7은 용매로 사용한 디클로로메탄으로 용해시켰고, 피리딘(pyridine) 2 당량을 0℃에서 첨가하였다. 연속하여, 상기 반응액은 p-톨루엔술포닐 클로라이드 2 당량을 적가하여 첨가하고 4시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 8을 85-90%의 수율로 획득하였다.
상기 화합물 8(1 당량)을 무수 테트라하이드로퓨란에 용해시키고 질소의 보호 아래 3시간동안 실온에서 메틸 마크네슘 브로마이드(methyl magnesium bromide, 2 당량)과 반응시켰다. 후처리 후, 조화합물 9를 건조하여 수득하였다.
상기 화합물 9(1 당량)은 아세톤 용액으로 용해시켰고, 망간 디옥사이드(manganese dioxide) 10 당량을 첨가하여 실온에서 4시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 10을 75%의 수율로 획득하였다.
상기 화합물 10(1 당량)은 드라이 THF/DMPU (4:1) 용액에 용해시켰고, 칼륨 t-부톡사이드(potassium t-butoxide) 1.2 당량을 -70℃에서 첨가하여 20분동안 반응시켰다. 얻어진 상기 반응액은 N-(술포닐)옥사지리딘(N-(sulfonyl)oxaziridine) 2 당량을 천천히 적가하여 첨가하였고 2시간동안 반응시켰다. 컬럼 크로마토크래피로 정제하여서, 화합물 11을 75%의 수율로 획득하였다.
상기 화합물 11(1 당량)은 드라이 테트라하이드로퓨란에서 N,N'-카르보닐디이미다졸(N,N'-carbonyldiimidazole, CDI) 2 당량과 반응시켜서 화합물 12를 95%의 수율로 획득하였다.
상기 화합물 12(1 당량)은 드라이 테트라하이드로퓨란에 용해시켰고, 촉매로 (R)-2-메틸 옥사자보로딘((R)-2-methyl oxazaborodine) 0.2 당량을 실온에서 첨가하였고, 이어서 보란/THF 용액 5 당량을 첨가하여 8시간동안 반응시켰다. 반응이 완료된 후 컬럼 크로마토그래피로 정제하여서, 10-메톡실-1,14-카르보네이트 바카틴 III(10-methoxyl-1,14-carbonate baccatin III)인 화합물 13을 최종 생성물로서 80%의 수율로 획득하였다.
Figure pct00044
3) PCMI-06의 준비
상기 구체적인 방법은 실시예 1에 단계3)에서 볼 수 있고, 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-06: mp: 233-235℃;
MS (m/z) ESI: 886.3 (M+Na)+;
1H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 7.5 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.46 - 7.37 (m, 4H), 7.37 - 7.30 (m, 1H), 6.46 (d, J = 6.2 Hz, 1H), 6.10 (d, J = 7.6 Hz, 1H), 5.51 (d, J = 7.4 Hz, 1H), 5.33 (s, 1H), 4.92 (d, J = 7.9 Hz, 1H), 4.87 (s, 1H), 4.78 (d, J = 6.8 Hz, 1H), 4.71 (s, 1H), 4.28 (d, J = 8.5 Hz, 1H), 4.22 (t, J = 6.8 Hz, 2H), 3.73 (d, J = 7.4 Hz, 1H), 3.44 (s, 3H), 2.55 (ddd, J = 15.8, 9.6, 6.5 Hz, 1H), 2.43 (s, 3H), 1.91 - 1.79 (m, 4H), 1.73 (s, 3H), 1.38 (s, 9H), 1.30 (d, J = 2.5 Hz, 6H).
13C NMR (101 MHz, CDCl3) δ 205.25, 170.66, 164.75, 151.96, 136.44, 135.77, 134.17, 129.95, 128.98, 128.17, 127.99, 126.66, 88.11, 84.13, 82.19, 80.74, 79.63, 76.07, 74.41, 71.66, 69.34, 60.46, 58.02, 57.36, 46.23, 41.77, 36.79, 28.25, 25.73, 22.54, 22.22, 14.51, 9.83.
실시예 7. PCMI -07의 준비
Figure pct00045
1) (4S,5R)-3-t-부틸옥시카르보닐-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butyloxycarbonyl-2-(4-methoxyphenyl)-4-phenyl-5-oxazolidine carboxylic acid)의 준비
상기 구체적인 방법은 실시예 1에서 볼 수 있다.
2) 10-메톡실-7-디하이드로-1,14-카르보네이트 바카틴 III(10-methoxyl-7-dihydro-1,14-carbonate baccatin III)의 준비
Figure pct00046
10-DAB(1 당량)을 원재료로 사용하여, DMF에 용해시켰고 이미다졸 2.5 당량 및 트리에틸 클로로실란 2.5 당량을 연속적으로 첨가하였다. 후처리 후, 조화합물 7을 수득하였다.
상기 화합물 7은 용매로 사용한 디클로로메탄에 용해시켰고, 피리딘 2 당량을 0℃에서 첨가하였다. 연속하여, 상기 반응액은 p-톨루엔술포닐 클로라이드 2 당량을 적가하여 첨가하고 4시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 8을 85-90%의 수율로 획득하였다.
상기 화합물 8(1 당량)은 무수 테트라하이드로퓨란에 용해시켰고 질소의 보호 아래 실온에서 3시간동안 메틸 마그네슘 브로마이드 2 당량과 반응시켰다. 후처리 후, 조화합물 9를 건조하여 수득하였다.
상기 화합물 9(1 당량)은 드라이 THF로 용해시켰고, 테트라부틸암모늄 플로라이드(tetrabutylammonium fluoride, THF에 용액 형태로 있음) 1.5 당량을 실온에서 첨가하였다. 반응 1시간 후에, 상기 반응을 완료시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 14를 92%의 수율로 획득하였다.
상기 화합물 14(1 당량)을 드라이 THF에 용해시켰고, N,N'-카르보닐디이미다졸(CDI) 8 당량을 실온에서 첨가하였다. 반응 2시간 후, 상기 반응을 완료시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 15를 78%의 수율로 획득하였다.
상기 화합물 15(1 당량)은 다이옥산(dioxane)/테트라하이드로퓨란 (10:1) 용액에 용해시켰다. 촉매로 아조비스이소부티로나이트릴(azobisisobutyronitrile) 0.2 당량을 100℃에서 첨가하여 자유 라디칼 반응(free radicals reactions)을 유도하였다. 그 후에, 상기 반응액은 n-부틸 틴 하이드라이드(n-butyl tin hydride, Bu3SnH) 4 당량을 첨가하여 1시간동안 반응시켰고, 실온에서 밤새도록 식혔다. 컬럼 크로마토그래피로 정제하여서, 화합물 16을 52%의 수율로 획득하였다.
상기 화합물 16(1 당량)은 아세톤 용액으로 용해시켰고, 망간 디옥사이드 10 당량을 실온에서 첨가하여 4시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 17을 75%의 수율로 획득하였다.
상기 화합물 17(1 당량)은 드라이 THF/DMPU (4:1) 용액에 용해시켰고, 칼륨 t-부톡사이드 1.2 당량을 -70℃에서 첨가하여 20분동안 반응시켰다. 서, 화합물 22를 75%의 수율로 획득하였다.
상기 화합물 22(1 당량)은 드라이 THF에 용해시켰고, 테트라부틸암모늄 플로라이드(THF에서 용액 형태로 있음) 1.5 당량을 실온에서 첨가하였다. 반응 1시간 후에, 상기 반응을 완료시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 23을 90%의 수율로 획득하였다.얻어진 상기 반응액은 N-(술포닐)옥사지리딘 2 당량을 천천히 적가하여 첨가하고 2시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 18을 75%의 수율로 획득하였다.
상기 화합물 18(1 당량)은 드라이 테트라하이드로퓨란에서 N,N'-카르보닐디이미다졸(CDI) 2 당량과 반응시켰고 화합물 19를 95%의 수율로 획득하였다.
상기 화합 물19(1 당량)은 드라이 테트라하이드로퓨란으로 용해시켰고, 촉매로 (R)-2-메틸 옥사자보로딘 0.2 당량을 실온에서 첨가하였으며, 이어서 보란/THF 용액 5 당량을 첨가하고 8시간동안 반응시켰다. 반응이 완료된 후, 컬럼 크로마토그래피로 정제하여서, 10-메톡실-7-디하이드로-1,14-카르보네이트 바카틴 III인 화합물 20을 최종 생성물로서 80%의 수율로 획득하였다.
Figure pct00047
3) PCMI-07의 준비
상기 구체적인 방법은 실시예 1의 단계3)에서 볼 수 있으며, 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-07: mp: 226-227℃;
MS (m/z) ESI: 870.3 (M+Na)+;
1H NMR (400 MHz, CDCl3) δ 8.05 (d, J = 7.4 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 3H), 7.47 - 7.31 (m, 5H), 6.46 (d, J = 6.3 Hz, 1H), 6.09 (d, J = 7.8 Hz, 1H), 5.43 (d, J = 9.0 Hz, 1H,), 5.35 (s, 1H), 4.90 (d, J = 8.0 Hz, 1H), 4.86 (s, 1H), 4.82 (d, J = 7.0 Hz, 1H), 4.70 (s, 1H), 4.28 (s, 2H), 3.66 (d, J = 7.7 Hz, 1H), 3.58 (s, 1H), 3.46 (s, 3H), 2.43 (s, 3H), 2.23 (dd, J = 15.0, 6.1 Hz, 1H), 2.04 - 1.93 (m, 2H), 1.89 (d, J = 1.1 Hz, 3H), 1.80 (s, 3H), 1.59 (dd, J = 11.9, 5.7 Hz, 1H), 1.38 (s, 9H), 1.30 (s, 3H), 1.26 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 207.81, 171.18, 164.83, 151.95, 136.00, 134.05, 129.97, 129.01, 128.94, 128.19, 128.16, 126.59, 88.25, 84.31, 81.75, 81.02, 80.67, 79.59, 76.20, 74.43, 70.08, 57.20, 53.30, 41.52, 35.53, 31.93, 29.70, 28.23, 27.02, 25.35, 22.70, 22.10, 14.93, 14.31.
실시예 8. PCMI -08의 준비
Figure pct00048
1) (4S,5R)-3-t-부틸옥시카르보닐-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butyloxycarbonyl-2-(4-methoxyphenyl)-4-phenyl-5- oxazolidine carboxylic acid)의 준비
상기 구체적인 방법은 실시예 1의 단계1)에서 볼 수 있다.
2) 10-디메틸카르바모일-7-메톡실-1,14-카르보네이트 바카틴 III(10-dimethylcarbamoyl-7-methoxyl-1,14-carbonate baccatin III)의 준비
Figure pct00049
10-DAB(1 당량)을 원재료로 사용하여, DMF에 용해시켰고 이미다졸 2.5 당량 및 트리에틸 클로로실란 2.5 당량을 연속적으로 첨가하였다. 후처리 후, 조화합물 7을 수득하였다.
상기 화합물 7(1 당량)은 용매로 사용한 드라이 THF에 용해시켰고, LHMDS 1.5 당량을 0℃에서 첨가하였다. 반응 1시간 후에, 디메틸카르바모일 클로라이드(dimethylcarbamoyl chloride) 2당량을 상기 반응액에 천천히 적가하여 첨가하고 2시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 21을 87%의 수율로 획득하였다.
상기 화합물 21(1 당량)은 아세톤 용액에 용해시켰고, 망간 디옥사이드 10 당량을 실온에서 첨가하여 4시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여
상기 화합물 23은 p-톨루엔술포닐 클로라이드와 반응시켜서 화합물 24를 수득하였다.
상기 화합물 24(1 당량)은 무수 테트라하이드로퓨란에 용해시켜서 질소의 보호 아래 실온에서 3시간동안 메틸 마그네슘 브로마이드 2 당량과 반응시켰다. 후처리 후, 조화합물 25를 건조하여 수득하였다.
상기 화합물 25(1 당량)은 드라이 THF/DMPU (4:1) 용액에 용해시켰고, 칼륨 t-부톡사이드 1.2 당량을 -70℃에서 첨가하여 20분동안 반응시켰다. 얻어진 상기 반응액은 N-(술포닐)옥사지리딘 2 당량을 천천히 적가하여 첨가하고 2시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 26을 75%의 수율로 획득하였다.
상기 화합물 26(1 당량)은 드라이 테트라하이드로퓨란에서 N,N'-카르보닐디이미다졸(CDI) 2 당량과 반응시켰고 화합물 27을 95%의 수율로 획득하였다.
상기 화합물 27(1 당량)은 드라이 테트라하이드로퓨란에 용해시켰고, 촉매로 (R)-2-메틸 옥사자보로딘 0.2 당량을 실온에서 첨가하였으며, 이어서 보란/THF 용액 5 당량을 첨가하고 8시간동안 반응시켰다. 반응이 완료된 후, 컬럼 크로마토그래피로 정제하여서, 10-디메틸카르바모일-7-메톡실-1,14-카르보네이트 바카틴 III(10-dimethylcarbamoyl-7-methoxyl-1,14-carbonate baccatin III)인 화합물 28을 최종 생성물로서 80%의 수율로 획득하였다.
Figure pct00050
3) PCMI-08의 준비
상기 구체적인 방법은 실시예1의 단계3)에서 볼 수 있으며 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-08: mp: 246-247℃;
MS (m/z) ESI: 957.5 (M+Na)+;
1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 7.5 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 7.45 - 7.31 (m, 5H), 6.45 (d, J = 6.0 Hz, 1H), 6.39 (s, 1H), 6.11 (d, J = 7.4 Hz, 1H), 5.55 (d, J = 8.7 Hz, 1H), 5.35 (s, 1H), 4.96 (d, J = 8.2 Hz, 1H), 4.82 (d, J = 6.6 Hz, 1H), 4.71 (s, 1H), 4.29 (d, J = 8.5 Hz, 1H), 4.22 (d, J = 8.4 Hz, 1H), 3.86 (dd, J = 10.6, 6.5 Hz, 1H), 3.78 (d, J = 7.8 Hz, 1H), 3.35 (s, 3H), 3.07 (s, 3H), 2.98 (s, 3H), 2.72 (ddd, J = 14.6, 9.7, 6.5 Hz, 1H), 2.46 (s, 3H), 1.98 (d, J = 0.9 Hz, 3H), 1.85 - 1.74 (m, 4H), 1.40 (s, 9H), 1.36 (s, 3H), 1.32 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 202.12, 171.91, 171.24, 170.81, 164.68, 155.71, 154.81, 151.92, 138.16, 137.39, 134.64, 134.15, 129.93, 128.95, 128.12, 128.01, 126.63, 88.01, 84.02, 81.04, 80.60, 80.16, 79.68, 75.91, 75.00, 74.74, 74.34, 69.12, 57.81, 57.36, 46.68, 41.83, 36.81, 36.21, 32.12, 28.26, 25.87, 22.75, 22.62, 14.55, 10.39.
실시예 9. PCMI -09의 준비
Figure pct00051
1) (4S,5R)-3-t-부틸옥시카르보닐-2-(4-메톡시페닐)-4-(2-피리딜)-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butyloxycarbonyl-2-(4-methoxyphenyl)-4-(2-pyridyl)-5-oxazolidine carboxylic acid의 준비
상기 구체적인 방법은 실시예 4의 단계1)에서 볼 수 있다.
2) 10-디메틸카르바모일-7-메톡실-1,14-카르보네이트 바카틴 III(10-dimethylcarbamoyl-7-methoxyl-1,14-carbonate baccatin III)의 준비
상기 구체적인 방법은 실시예 8의 단계 2)에서 볼 수 있다.
3) PCMI-09의 준비
상기 구체적인 방법은 실시예 1의 단계 3)에서 볼 수 있으며, 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-09: mp: 241-242℃;
MS (m/z) ESI: 958.3 (M+Na)+;
1H NMR (400 MHz, CDCl3) δ 8.06 (d, J = 7.6 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 6.48 (d, J = 6.3 Hz, 1H), 6.42 (s, 1H), 6.14 (d, J = 7.4 Hz, 1H), 4.95 (d, J = 8.3 Hz, 1H), 4.89 (d, J = 6.9 Hz, 1H), 4.77 (d, J = 9.0 Hz, 1H), 4.33 (dd, J = 8.9, 5.8 Hz, 2H), 4.27 (d, J = 8.4 Hz, 1H), 4.22 - 4.09 (m, 1H), 3.93 - 3.83 (m, 2H, H-7), 3.77 (d, J = 7.3 Hz, 1H), 3.41 (s, 3H), 2.88 (s, 6H), 2.60 - 2.41 (m, 4H), 2.02 (s, 3H), 1.96 (dd, J = 19.7, 7.7 Hz, 1H), 1.85 (s, 3H), 1.75 - 1.69 (m, 1H), 1.52 - 1.37 (m, 11H), 1.30 (s, 3H), 1.27 (s, 3H), 1.01 (t, J = 6.3 Hz, 6H).
13C NMR (101 MHz, CDCl3) δ 205.08, 172.96, 170.35, 164.81, 154.97, 152.01, 136.39, 134.05, 129.95, 128.94, 128.11, 88.09, 84.03, 80.96, 80.39, 80.16, 79.69, 75.89, 75.02, 74.64, 73.84, 69.17, 57.29, 57.07, 51.49, 45.88, 41.76, 40.57, 36.54, 35.86, 33.76, 29.67, 28.24, 25.57, 24.85, 23.24, 22.46, 22.08, 14.42, 10.90.
실시예 10. PCMI -10의 준비
Figure pct00052
1) (4S,5R)-3-t-부틸옥시카르보닐-2-(4-메톡시페닐)-4-아이소부틸-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butyloxycarbonyl-2-(4-methoxyphenyl)-4-isobutyl-5-oxazolidine carboxylic acid)의 준비
상기 구체적인 방법은 실시예 5의 단계 1)에서 볼 수 있다.
2) 10-디메틸카르바모일-7-메톡실-1,14-카르보네이트 바카틴III(10-dimethylcarbamoyl-7-methoxyl-1,14-carbonate baccatin III)의 준비
상기 구체적인 방법은 실시예 8의 단계 2)에서 볼 수 있다.
3) PCMI-10의 준비
상기 구체적인 방법은 실시예 1의 단계 3)에서 볼 수 있으며, 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-10: mp: 236-237℃;
MS (m/z) ESI: 937.4 (M+Na)+;
1H NMR (400 MHz, CDCl3) δ 8.05 (d, J = 7.4 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 6.47 (d, J = 6.3 Hz, 1H), 6.41 (s, 1H), 6.13 (d, J = 7.4 Hz, 1H), 4.98 (d, J = 8.0 Hz, 1H), 4.89 (d, J = 6.8 Hz, 1H), 4.77 (d, J = 9.0 Hz, 1H), 4.37 - 4.32 (m, 1H), 4.30 (d, J = 8.5 Hz, 1H), 4.24 (d, J = 8.5 Hz, 1H), 4.17 - 4.06 (m, 1H), 4.04 (d, J = 6.2 Hz, 1H), 3.88 (dd, J = 10.6, 6.5 Hz, 1H), 3.77 (d, J = 7.3 Hz, 1H), 3.36 (s, 3H), 3.08 (s, 3H), 2.99 (s, 3H), 2.74 (ddd, J = 14.5, 9.7, 6.4 Hz, 1H), 2.52 (s, 3H), 2.04 (d, J = 1.2 Hz, 3H), 1.88 - 1.77 (m, 5H), 1.77 - 1.66 (m, 3H), 1.41 (s, 11H), 1.37 (s, 3H), 1.34 (s, 3H), 1.01 (t, J = 6.7 Hz, 6H).
13C NMR (101 MHz, CDCl3) δ 202.17, 172.86, 170.75, 164.73, 156.27, 154.81, 151.99, 137.55, 134.58, 134.12, 129.94, 128.96, 128.03, 88.09, 84.03, 80.96, 80.39, 80.16, 79.69, 75.89, 75.02, 74.64, 73.84, 69.17, 57.83, 57.35, 51.68, 46.68, 41.86, 40.30, 36.81, 36.21, 32.10, 29.70, 28.24, 25.87, 24.87, 23.23, 22.56, 22.20, 14.65, 10.41.
실시예 11. PCMI -11의 준비
Figure pct00053
1) (4S,5R)-3-디메틸카르바모일-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실산((4S,5R)-3-dimethylcarbamoyl-2-(4-methoxyphenyl)-4-phenyl-5-oxazolidine carboxylic acid)의 준비
상기 구체적인 방법은 실시예 3의 단계 1)에서 볼 수 있다.
2) 10-디메틸카르바모일-7-메톡실-1,14-카르보네이트 바카틴 III(10-dimethylcarbamoyl-7-methoxyl-1,14-carbonate baccatin III)의 준비
상기 구체적인 방법은 실시예 8의 단계 2)에서 볼 수 있다.
3) PCMI-11의 준비
상기 구체적인 방법은 실시예 1의 단계 3)에서 볼 수 있으며, 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-11: mp: 241-242℃;
MS (m/z) ESI: 928.5 (M+Na)+;
1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 7.3 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 6.08 (d, J = 7.2 Hz, 1H), 5.49 (dd, J = 10.7, 7.2 Hz, 1H), 5.23 (s, 1H), 5.04 (t, 1H), 4.97 (d, J = 8.3 Hz, 1H), 4.80 (d, J = 5.8 Hz, 1H), 4.32 (d, J = 8.4 Hz, 1H), 4.22 (d, J = 8.4 Hz, 1H), 3.87 (d, J = 7.2 Hz, 1H), 3.67 (d, J = 5.3 Hz, 1H), 3.40 (s, 3H), 2.87 (s, 6H), 2.54 (m, J = 14.5, 9.5, 7.3 Hz, 1H), 2.31 (s, 3H), 2.17 (s, 3H), 1.92 (ddd, J = 14.2, 8.1, 2.6 Hz, 1H), 1.81 (s, 3H), 1.24 (s, 3H), 1.14 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 205.73 , 171.28, 170.21, 164.84, 155.01 , 152.98 , 141.50 , 134.17, 133.99 , 129.83 , 128.91, 128.14 , 88.54 , 84.21, 83.86, 82.88, 80.06, 75.99, 72.28, 71.79 , 69.45, 57.11, 57.00, 46.25, 41.32 , 36.53, 35.89 , 33.73 , 25.62, 22.21, 21.33, 14.91, 10.85.
실시예 12. PCMI -12의 준비
Figure pct00054
1) (4S,5R)-3-t-부틸옥시카르보닐-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butyloxycarbonyl-2-(4-methoxyphenyl)-4-phenyl-5-oxazolidine carboxylic acid)의 준비
상기 구체적인 방법은 실시예 1의 단계 1)에서 볼 수 있다.
2) 10-메톡실 포르밀-7-메톡실-1,14-카르보네이트 바카틴 III(10-methoxyl formyl-7-methoxyl-1,14-carbonate baccatin III)의 준비
Figure pct00055
10-DAB(1 당량)을 원재료로 사용하여, DMF에 용해시켰고 이미다졸 2.5 당량 및 트리에틸 클로로실란 2.5 당량을 연속적으로 첨가하였다. 후처리 후, 조화합물 7을 수득하였다.
상기 화합물 7(1 당량)은 용매로 사용한 드라이 THF에 용해시켰고, LHMDS 1.5 당량을 0℃에서 첨가하였다. 반응 1시간 후에, 메톡실 포르밀 클로라이드 2 당량을 상기 반응액에 천천히 적가하여 첨가하고 2시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 29를 62%의 수율로 획득하였다.
상기 화합물 29(1 당량)은 아세톤 용액에 용해시켰고, 망간 디옥사이드 10 당량을 실온에서 첨가하여 4시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 30을 75%의 수율로 획득하였다.
상기 화합물 30(1 당량)은 드라이 THF에 용해시켰고, 테트라부틸암모늄 플로라이드(THF에서 용액 형태로 있음) 1.5 당량을 실온에서 첨가하였다. 반응 1시간 후에, 상기 반응을 완료시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 31을 90%의 수율로 획득하였다.
상기 화합물 31은 p-톨루엔술포닐 클로라이드와 반응시켜서 화합물 32를 수득하였다.
상기 화합물 32(1 당량)은 무수 테트라하이드로퓨란에 용해시켰고 질소의 보호 아래서 메틸 마그네슘 브로마이드(2 당량)와 실온에서 3시간동안 반응시켰다. 후처리 후, 조화합물 33을 건조하여 수득하였다.
상기 화합물 33(1 당량)은 드라이 THF/DMPU (4:1) 용액에 용해시켰고, 칼륨 t-부톡사이드 1.2 당량을 -70℃에서 첨가하여 20분동안 반응시켰다. 얻어진 상기 반응액은 N-(술포닐)옥사지리딘 2 당량을 천천히 적가하여 첨가하고 2시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 34를 75%의 수율로 획득하였다.
상기 화합물 34(1 당량)은 드라이 테트라하이드로퓨란에서 N,N'-카르보닐디이미다졸(CDI) 2 당량과 반응시켜서 화합물 35를 95%의 수율로 획득하였다.
상기 화합물 35(1 당량)은 드라이 테트라하이드로퓨란에 용해시켰고, 촉매로 (R)-2-메틸 옥사자보로딘 0.2 당량을 실온에서 첨가하였으며, 다음에 보란/THF 용액 5 당량을 첨가하여 8시간동안 반응시켰다. 반응이 완료된 후에, 컬럼 크로마토그래피로 정제하여서, 10-메톡실 포르밀-7-메톡실-1,14-카르보네이트 바카틴 III(10-methoxyl formyl-7-methoxyl-1,14-carbonate baccatin III)인 화합물 36을 최종 생성물로서 80%의 수율로 획득하였다.
Figure pct00056
3) PCMI-12의 준비
상기 구체적인 방법은 실시예 1의 단계 3)에서 볼 수 있으며, 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-12: mp: 231-232℃;
MS (m/z) ESI: 944.4 (M+Na)+;
1H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 7.3 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 7.45 - 7.30 (m, 5H), 6.44 (d, J = 6.1 Hz, 1H, H-13), 6.15 (s, 1H, H-10), 6.09 (d, J = 7.5 Hz, 1H, H-2), 5.47 (d, J = 9.0 Hz, 1H, NH-3'), 5.33 (s, 1H, H-3'), 4.94 (d, J = 7.9 Hz, 1H, H-5), 4.78 (d, J = 6.7 Hz, 1H, H-14), 4.71 (s, 1H, H-2'), 4.28 (d, J = 8.4 Hz, 1H, H-20), 4.21 (d, J = 8.3 Hz, 1H, H-20), 3.92 - 3.80 (m, 4H, OH-2'), 3.70 (d, J = 7.4 Hz, 1H, H-3), 3.35 (s, 3H), 2.72 (ddd, J = 14.5, 9.8, 6.4 Hz, 1H, H-6), 2.44 (s, 3H), 1.94 (d, J = 1.1 Hz, 3H), 1.86 - 1.73 (m, 4H, H-6), 1.40 (s, 9H), 1.32 (s, 6H).
13C NMR (101 MHz, CDCl3) δ 200.44, 171.89, 170.88, 164.62, 154.60, 151.81, 138.29, 134.17 , 133.84, 129.94, 129.03, 128.95, 128.23, 127.97, 126.65, 87.92, 83.94, 81.04, 80.72, 80.10, 79.56 , 75.91, 74.74, 74.40, 69.00, 57.67, 57.38, 55.41, 46.62, 41.79, 32.06, 29.70, 28.25, 25.74, 22.62, 22.35 , 14.71, 10.40.
실시예 13. PCMI -13의 준비
Figure pct00057
1) (4S,5R)-3-t-부틸옥시카르보닐-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butyloxycarbonyl-2-(4-methoxyphenyl)-4-phenyl-5-oxazolidine carboxylic acid)의 준비
상기 구체적인 방법은 실시예 1의 단계 1)에서 볼 수 있다.
2) 10-에틸싸이오포르밀-7-메톡실-1,14-카르보네이트 바카틴III(10-ethylthioformyl-7-methoxyl-1,14-carbonate baccatin III)의 준비
Figure pct00058
10-DAB(1 당량)을 원재료로 사용하여, DMF에 용해시켰고 이미다졸 2.5 당량 및 트리에틸 클로로실란 2.5 당량을 연속적으로 첨가하였다. 후처리 후, 조화합물7을 수득하였다.
상기 화합물7(1 당량)은 용매로 사용한 드라이 THF에 용해시켰고, 먼저 N,N'-카르보닐디이미다졸 2 당량과 실온에서 2시간동안 반응시켰다. 그런 다음 상기 반응액에 에탄싸이올(ethanethiol) 2 당량을 첨가하였다. 반응 4시간 후에, 컬럼 크로마토그래피로 정제하여서, 화합물 37을 72%의 수율로 획득하였다.
상기 화합물 37(1 당량)은 아세톤 용액에 용해시켰고, 망간 디옥사이드 10당량을 실온에서 첨가하여 4시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 38을 86%의 수율로 획득하였다.
상기 화합물 38(1 당량)은 드라이 THF에 용해시켰고, 테트라부틸암모늄 플로라이드(THF에서 용액 형태로 있음) 1.5 당량을 실온에서 첨가하였다. 반응 1시간 후에, 상기 반응을 완료시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 39를 90%의 수율로 획득하였다.
상기 화합물 39는 p-톨루엔술포닐 클로라이드와 반응시켜서 화합물 40을 수득하였다.
상기 화합물 40(1 당량)은 무수 테트라하이드로퓨란에 용해시켰고, 질소의 보호 아래서 메틸 마그네슘 브로마이드(2 당량)과 실온에서 3시간동안 반응시켰다. 후처리 후에, 조화합물 41을 건조하여 수득하였다.
상기 화합물 41(1 당량)은 드라이 THF/DMPU (4:1) 용액에 용해시켰고, 칼륨 t-부톡사이드 1.2 당량을 -70℃에서 첨가하여 20분동안 반응시켰다. 얻어진 상기 반응액은 N-(술포닐)옥사지리딘 2 당량을 천천히 적가하여 첨가하여 2시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 42를 75%의 수율로 획득하였다.
상기 화합물 42(1 당량)은 드라이 테트라하이드로퓨란에서N,N'-카르보닐디이미다졸(CDI) 2 당량과 반응시켜서 화합물 43을 95%의 수율로 획득하였다.
상기 화합물 43(1 당량)은 드라이 테트라하이드로퓨란에 용해시켰고, 촉매로 (R)-2-메틸 옥사자보로딘 0.2 당량 실온에서 첨가하였으며, 다음에 보란/THF 용액 5 당량을 첨가하여 8시간동안 반응시켰다. 반응이 완료된 후에, 컬럼 크로마토그래피로 정제하여서, 10-에틸싸이오포르밀-7-메톡실-1,14-카르보네이트 바카틴III(10-ethylthioformyl-7-methoxyl-1,14-carbonate baccatin III)인 화합물 44를 최종 생성물로서 80%의 수율로 획득하였다.
Figure pct00059
3) PCMI-13의 준비
상기 구체적인 방법은 실시예 1의 단계 3)에서 볼 수 있으며, 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-13: mp: 215-216℃;
MS (m/z) ESI: 974.4 (M+Na)+;
1H NMR (400 MHz, MeOD) δ 8.14 (d, J = 7.6 Hz, 2H), 7.69 (t, J = 7.4 Hz, 1H), 7.58 (t, J = 7.7 Hz, 2H), 7.44 - 7.36 (m, 4H), 7.34 - 7.27 (m, 1H), 6.39 (d, J = 10.7 Hz, 1H), 6.15 (t, J = 8.9 Hz, 1H), 5.87 (d, J = 6.3 Hz, 1H), 5.23 (d, J = 10.7 Hz, 1H), 5.15 (s, 1H), 4.99 (d, J = 9.0 Hz, 1H), 4.89 (m, 1H), 4.56 (d, J = 2.3 Hz, 1H), 4.25 (d, J = 8.3 Hz, 1H), 4.19 (d, J = 8.3 Hz, 1H), 3.33 (s, 1H), 3.24 (d, J = 6.1 Hz, 1H), 2.77 - 2.62 (m, 1H), 2.34 (s, 3H), 2.22 (t, J = 9.2 Hz, 2H), 2.14 (s, 3H), 1.99 - 1.88 (m, 4H), 1.78 (s, 3H), 1.66 (s, 3H), 1.39 (s, 9H), 1.27 (s, 3H).
13C NMR (101 MHz, MeOD) δ 173.20, 171.57, 170.61, 170.09, 166.07, 156.40, 146.86, 141.17, 139.00, 133.34, 129.90, 129.68, 128.29, 127.40, 126.90, 84.25, 83.21, 80.84, 79.21, 79.01, 77.19, 75.68, 73.67, 73.54, 71.10, 70.96, 60.15, 56.99, 45.14, 42.88, 38.23, 34.89, 33.87, 33.37, 27.33, 26.98, 25.37, 24.68, 22.31, 21.85, 19.53, 13.59, 13.12, 12.31.
실시예 14. PCMI -14의 준비
Figure pct00060
1) (4S,5R)-3-t-부틸옥시카르보닐-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butyloxycarbonyl-2-(4-methoxyphenyl)-4-phenyl-5- oxazolidine carboxylic acid)의 준비
상기 구체적인 방법은 실시예 1의 단계 1)에서 볼 수 있다.
2) 7-디메틸카르바모일-10-메톡실-1,14-카르보네이트 바카틴III(7-dimethylcarbamoyl-10-methoxyl-1,14-carbonate baccatin III)의 준비
Figure pct00061
10-DAB(1 당량)을 원재료로 사용하여, DMF에 용해시켰고 이미다졸 2.5 당량 및 트리에틸 클로로실란 2.5 당량을 연속적으로 첨가하였다. 후처리 후, 조화합물7을 수득하였다.
상기 화합물 7을 용매로 사용한 디클로로메탄에 용해시켰고, 피리딘 2 당량을 0℃에서 첨가하였다. 연속적으로, 상기 반응액에 p-톨루엔술포닐 클로라이드 2 당량을 적가하여 첨가하였다. 반응 4시간 후에, 컬럼 크로마토그래피로 정제하여서, 화합물 8을 85-90%의 수율로 획득하였다.
상기 화합물 8(1 당량)은 무수 테트라하이드로퓨란에 용해시켰고, 질소 보호 아래서 메틸 마그네슘 브로마이드(2 당량)와 실온에서 3시간동안 반응시켰다. 후처리 후에, 조화합물 9를 건조하여 수득하였다.
상기 화합물 9(1 당량)은 아세톤 용액에 용해시켰고, 망간 디옥사이드 10 당량을 실온에서 첨가하여 4시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 10을 75%의 수율로 획득하였다.
상기 화합물 10(1 당량)은 드라이 THF에 용해시켰고, 테트라부틸암모늄 플로라이드(THF에서 용액 형태로 있음) 1.5 당량을 실온에서 첨가하였다. 반응 1시간 후에, 상기 반응은 완료시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 45를 90%의 수율로 획득하였다.
상기 화합물 45(1 당량)은 용매로 사용한 드라이 THF에 용해시켰으며, LHMDS 1.5 당량을 0℃에서 첨가하였다. 반응 1시간 후에, 디메틸카르바모일 클로라이드 2 당량을 상기 반응액에 천천히 적가하여 첨가하고 2시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 46을 87%의 수율로 획득하였다.
상기 화합물 46(1 당량)은 드라이 THF/DMPU (4:1) 용액에 용해시켰고, 칼륨 t-부톡사이드 1.2 당량을 -70℃에서 첨가하여 20분동안 반응시켰다. 얻어진 상기 반응액은 N-(술포닐)옥사지리딘 2 당량을 천천히 적가하여 첨가하고 2시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 47을 75%의 수율로 획득하였다.
상기 화합물 47(1 당량)은 드라이 테트라하이드로퓨란에서 N,N'-카르보닐디이미다졸(CDI) 2 당량과 반응시켜서 화합물 48을 95%의 수율로 획득하였다.
상기 화합물 48은 드라이 테트라하이드로퓨란에 용해시켰고, 촉매로 (R)-2-메틸 옥사자보로딘 0.2 당량을 실온에서 첨가하였으며, 다음에 보란/THF 용액 5 당량을 첨가하고 8시간동안 반응시켰다. 반응이 완료된 후에, 컬럼 크로마토그래피로 정제하여서, 7-디메틸카르바모일-10-메톡실-1,14-카르보네이트 바카틴III인 화합물 49를 최종 생성물로서 80%의 수율로 획득하였다.
Figure pct00062
3) PCMI-14의 준비
상기 구체적인 방법은 실시예 1의 단계 3)에서 볼 수 있으며, 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-14: mp: 236-237℃;
MS (m/z) ESI: 957.3 (M+Na)+;
1H NMR (400 MHz, CDCl3) δ 8.05 (d, J = 7.3 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.7 Hz, 2H), 7.47 - 7.31 (m, 5H), 6.48 (d, J = 6.1 Hz, 1H, H-13), 6.12 (d, J = 7.4 Hz, 1H, H-2), 5.54 (d, J = 9.1 Hz, 1H, NH-3'), 5.46 (dd, J = 10.7, 7.2 Hz, 1H, H-7), 5.38 (s, 1H, H-3'), 5.23 (s, 1H, H-10), 4.93 (d, J = 8.0 Hz, 1H, H-5), 4.82 (d, J = 6.8 Hz, 1H, H-14), 4.73 (d, J = 4.1 Hz, 1H, H-2'), 4.31 (d, J = 8.4 Hz, 1H, H-20), 4.26 (d, J = 8.5 Hz, 1H, H-20), 3.85 (d, J = 7.4 Hz, 1H, H-3), 3.68 (s, 1H, OH-2'), 3.40 (s, 3H), 2.88 (s, 6H), 2.59 - 2.49 (m, 1H, H-6), 2.00 - 1.94 (m, 4H, H-6), 1.84 (s, 3H), 1.40 (s, 9H), 1.30 (d, J = 3.2 Hz, 6H).
13C NMR (101 MHz, CDCl3) δ 205.07, 172.08, 170.45, 164.78, 154.96, 151.98, 136.29, 135.82, 134.15, 129.96, 128.97, 128.12, 128.02, 126.64, 88.12, 83.89, 82.34, 80.59, 80.41, 79.67, 76.06, 74.87, 74.27, 71.99, 69.33, 57.30, 57.07, 45.85, 41.72, 36.57, 35.89, 33.90, 33.76, 29.70, 28.25, 25.60, 25.55, 24.94, 22.56, 22.04, 14.38, 10.91.
실시예 15. PCMI -15의 준비
Figure pct00063
1) (4S,5R)-3-t-부틸옥시카르보닐-2-(4-메톡시페닐)-4-(2-피리딜)-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butyloxycarbonyl-2-(4-methoxyphenyl)-4-(2-pyridyl)-5-oxazolidine carboxylic acid)의 준비
상기 구체적인 방법은 실시예 4의 단계 1)에서 볼 수 있다.
2) 7-디메틸카르바모일-10-메톡실-1,14-카르보네이트 바카틴 III(7-dimethylcarbamoyl-10-methoxyl-1,14-carbonate baccatin III)의 준비
상기 구체적인 방법은 실시예 14의 단계 2)에서 볼 수 있다.
3) PCMI-15의 준비
상기 구체적인 방법은 실시예 1의 단계 3)에서 볼 수 있으며, 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-15: mp: 231-232℃;
MS (m/z) ESI: 958.3 (M+Na)+;
1H NMR (400 MHz, CDCl3) δ 8.50 (d, J = 4.6 Hz, 1H), 8.10 - 8.01 (m, 2H), 7.80 (td, J = 7.8, 1.6 Hz, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.51 (dd, J = 16.2, 8.2 Hz, 3H), 7.30 (d, J = 9.9 Hz, 1H), 6.40 (d, J = 6.2 Hz, 1H), 6.13 (d, J = 7.4 Hz, 1H), 5.85 (d, J = 10.0 Hz, 1H), 5.55 - 5.42 (m, 2H, H-7), 5.24 (s, 1H), 4.98 (d, J = 8.2 Hz, 1H), 4.88 (d, J = 6.9 Hz, 1H), 4.80 (s, 1H), 4.34 (d, J = 8.3 Hz, 1H), 4.26 (d, J = 8.4 Hz, 1H), 3.87 (d, J = 7.5 Hz, 1H), 3.38 (s, 3H), 2.88 (t, J = 3.5 Hz, 6H), 2.61 - 2.51 (m, 4H), 2.01 - 1.91 (m, 4H), 1.85 (s, 3H), 1.51 (s, 9H), 1.27 (s, 3H), 1.25 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 205.25, 172.80, 170.69, 164.80, 159.45, 154.99, 152.14, 148.17, 137.90, 136.87, 135.58, 134.23, 129.89, 128.97, 128.02, 123.07, 122.09, 88.33, 83.89, 82.38, 80.49, 80.10, 80.00, 76.01, 74.20, 72.05, 69.52, 57.24, 57.09, 55.40, 45.87, 41.64, 36.57, 35.92, 33.79, 31.93, 29.70, 28.34, 25.47, 22.70, 22.00, 21.93, 14.36, 14.13, 10.89.
실시예 16. PCMI -16의 준비
Figure pct00064
1) (4S,5R)-3-t-부틸옥시카르보닐-2-(4-메톡시페닐)-4-아이소부틸-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butyloxycarbonyl-2-(4-methoxyphenyl)-4-isobutyl-5-oxazolidine carboxylic acid)의 준비
상기 구체적인 방법은 실시예 5의 단계 1)에서 볼 수 있다.
2) 7-디메틸카르바모일-10-메톡실-1,14-카르보네이트 바카틴III(7-dimethylcarbamoyl-10-methoxyl-1,14-carbonate baccatin III)의 준비
상기 구체적인 방법은 실시예 14의 단계 2)에서 볼 수 있다.
3) PCMI-16의 준비
상기 구체적인 방법은 실시예 1의 단계 3)에서 볼 수 있으며, 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-16: mp: 227-228℃;
MS (m/z) ESI: 937.2 (M+Na)+;
1H NMR (400 MHz, CDCl3) δ 8.06 (d, J = 7.6 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 6.48 (d, J = 6.3 Hz, 1H), 6.13 (d, J = 7.4 Hz, 1H), 5.48 (dd, J = 10.6, 7.2 Hz, 1H), 5.25 (s, 1H), 4.95 (d, J = 8.3 Hz, 1H), 4.89 (d, J = 6.9 Hz, 1H), 4.77 (d, J = 9.0 Hz, 1H), 4.33 (dd, J = 8.9, 5.8 Hz, 2H), 4.27 (d, J = 8.4 Hz, 1H), 4.22 - 4.09 (m, 1H), 3.93 - 3.83 (m, 2H, H-3), 3.41 (s, 3H), 2.88 (s, 6H), 2.60 - 2.41 (m, 4H), 2.02 (s, 3H), 1.96 (dd, J = 19.7, 7.7 Hz, 1H), 1.85 (s, 3H), 1.75 - 1.69 (m, 1H), 1.52 - 1.37 (m, 11H), 1.30 (s, 3H), 1.27 (s, 3H), 1.01 (t, J = 6.3 Hz, 6H).
13C NMR (101 MHz, CDCl3) δ 205.08, 172.96, 170.35, 164.81, 154.97, 152.01, 136.39, 134.05, 129.95, 128.94, 128.11, 88.19, 83.90, 82.39, 80.25, 79.67, 76.04, 74.74, 73.71, 71.99, 69.44, 57.29, 57.07, 54.34, 51.49, 45.88, 41.76, 40.57, 36.54, 35.86, 33.76, 29.67, 28.24), 25.57, 24.85, 23.24, 22.46, 22.08, 14.42, 10.90.
실시예 17. PCMI -17의 준비
Figure pct00065
1) (4S,5R)-3-t-부틸옥시카르보닐-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butyloxycarbonyl-2-(4-methoxyphenyl)-4-phenyl-5-oxazolidine carboxylic acid)의 준비
상기 구체적인 방법은 실시예 1의 단계 1)에서 볼 수 있다.
2) 7-메톡시포르밀-10-메톡실-1,14-카르보네이트 바카틴 III(7-methoxyformyl-10-methoxyl-1,14-carbonate baccatin III)의 준비
Figure pct00066
10-DAB(1 당량)을 원재료로 사용하여, DMF에 용해시켰고 이미다졸 2.5 당량 및 트리에틸 클로로실란 2.5 당량을 연속적으로 첨가하였다. 후처리 후, 조화합물7을 수득하였다.
상기 화합물 7을 용매로 사용한 디클로로메탄에 용해시켰고, 피리딘 2 당량을 0℃에서 첨가하였다. 연속적으로, 상기 반응액에 p-톨루엔술포닐 클로라이드 2 당량을 적가하여 첨가하였다. 반응 4시간 후에, 컬럼 크로마토그래피로 정제하여서, 화합물 8을 85-90%의 수율로 획득하였다.
상기 화합물 8(1 당량)은 무수 테트라하이드로퓨란에 용해시켰고, 질소 보호 아래서 메틸 마그네슘 브로마이드(2 당량)와 실온에서 3시간동안 반응시켰다. 후처리 후에, 조화합물 9를 건조하여 수득하였다.
상기 화합물 9(1 당량)은 아세톤 용액에 용해시켰고, 망간 디옥사이드 10 당량을 실온에서 첨가하여 4시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 10을 75%의 수율로 획득하였다.
상기 화합물 10(1 당량)은 드라이 THF에 용해시켰고, 테트라부틸암모늄 플로라이드(THF에서 용액 형태로 있음) 1.5 당량을 실온에서 첨가하였다. 반응 1시간 후에, 상기 반응은 완료시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 45를 90%의 수율로 획득하였다.
상기 화합물 45(1 당량)은 용매로 사용한 드라이 THF에 용해시켰고, LHMDS 1.5 당량을 0℃에서 첨가하였다. 반응 1시간 후에, 메톡시포르밀 클로라이드 2 당량을 상기 반응액에 천천히 적가하여 첨가하고 2시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 50을 71%의 수율로 획득하였다.
상기 화합물 50(1 당량)은 드라이 THF/DMPU (4:1) 용액에 용해시켰고, 칼륨 t-부톡사이드 1.2 당량을 -70℃에서 첨가하여 20분동안 반응시켰다. 얻어진 상기 반응액은 N-(술포닐)옥사지리딘 2 당량을 천천히 적가하여 첨가하고 2시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 51을 75%의 수율로 획득하였다.
상기 화합물 51(1 당량)은 드라이 테트라하이드로퓨란에서N,N'-카르보닐디이미다졸(CDI) 2 당량과 반응시켜 화합물 52를 95%의 수율로 획득하였다.
상기 화합물 52(1 당량)은 드라이 테트라하이드로퓨란에 용해시켰고, 촉매로 (R)-2-메틸 옥사자보로딘 0.2 당량을 실온에서 첨가하였으며, 다음에 보란/THF 용액 5 당량을 첨가하고 8시간동안 반응시켰다. 반응이 완료된 후에, 컬럼 크로마토그래피로 정제하여서, 7-메톡시포르밀-10-메톡실-1,14-카르보네이트 바카틴 III인 화합물 53을 최종 화합물로서 80%의 수율로 획득하였다.
Figure pct00067
3) PCMI-17의 준비
상기 구체적인 방법은 실시예 1의 단계 3)에서 볼 수 있으며, 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-17: mp: 233-234℃;
MS (m/z) ESI: 944.4 (M+Na)+;
IR: 3411, 2979, 2933, 1820, 1731, 1712, 1490, 1367, 1259, 1163, 1085, 713.
1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 7.4 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.45 - 7.37 (m, 4H), 7.37 - 7.30 (m, 1H), 6.46 (d, J = 6.1 Hz, 1H), 6.12 (d, J = 7.4 Hz, 1H), 5.58 (d, J = 8.6 Hz, 1H), 5.35 (dd, J = 10.6, 7.2 Hz, 2H), 5.14 (s, 1H), 4.95 - 4.86 (m, 1H), 4.80 (d, J = 6.8 Hz, 1H), 4.71 (s, 1H), 4.30 (d, J = 8.4 Hz, 1H), 4.23 (d, J = 8.5 Hz, 1H), 3.89 - 3.78 (m, 2H), 3.75 (s, 3H), 3.41 (s, 3H), 2.56 (ddd, J = 14.6, 9.5, 7.3 Hz, 1H), 2.46 (s, 3H), 2.08 - 1.98 (m, 1H), 1.95 (d, J = 1.1 Hz, 3H), 1.83 (s, 3H), 1.39 (s, 9H), 1.29 (s, 3H), 1.28 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 204.25, 172.06, 171.24, 170.73, 164.70, 155.73, 155.00, 151.92, 136.31, 135.79, 134.19, 129.95, 128.98, 128.94, 128.10, 127.93, 126.63, 88.09, 83.49, 82.19, 80.58, 80.25, 79.61, 76.01, 75.28, 74.71, 74.36, 69.24, 57.45, 56.89, 55.31, 49.22, 45.77, 41.63, 33.83, 33.25 , 29.68, 28.24, 25.57, 25.51, 24.90, 22.48, 22.10, 14.33, 10.78.
실시예 18. PCMI -18의 준비
Figure pct00068
1) (4S,5R)-3-t-부틸옥시카르보닐-2-(4-메톡시페닐)-4-(2-피리딜)-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butyloxycarbonyl-2-(4-methoxyphenyl)-4-(2-pyridyl)-5-oxazolidine carboxylic acid)의 준비
상기 구체적인 방법은 실시예 4의 단계 1)에서 볼 수 있다.
2) 7-메톡시포르밀-10-메톡실-1,14-카르보네이트 바카틴 III(7-methoxyformyl-10-methoxyl-1,14-carbonate baccatin III)의 준비
상기 구체적인 방법은 실시예 17의 단계 2)에서 볼 수 있다.
3) PCMI-18의 준비
상기 구체적인 방법은 실시예 1의 단계 3)에서 볼 수 있으며, 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-18: mp: 235-236℃;
MS (m/z) ESI: 923.4 (M+H)+;
1H NMR (400 MHz, CDCl3) δ 8.50 (d, J = 4.6 Hz, 1H), 8.10 - 8.01 (m, 2H), 7.80 (td, J = 7.8, 1.6 Hz, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.51 (dd, J = 16.2, 8.2 Hz, 3H), 7.30 (d, J = 9.9 Hz, 1H), 6.46 (d, J = 6.1 Hz, 1H), 6.12 (d, J = 7.4 Hz, 1H), 5.58 (d, J = 8.6 Hz, 1H), 5.35 (dd, J = 10.6, 7.2 Hz, 2H), 5.14 (s, 1H), 4.95 - 4.86 (m, 1H), 4.80 (d, J = 6.8 Hz, 1H), 4.71 (s, 1H), 4.30 (d, J = 8.4 Hz, 1H), 4.23 (d, J = 8.5 Hz, 1H), 3.89 - 3.78 (m, 2H, H-3), 3.75 (s, 3H), 3.41 (s, 3H), 2.56 (ddd, J = 14.6, 9.5, 7.3 Hz, 1H), 2.46 (s, 3H), 2.08 - 1.98 (m, 1H), 1.95 (d, J = 1.1 Hz, 3H), 1.83 (s, 3H), 1.39 (s, 9H), 1.29 (s, 3H), 1.28 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 205.25, 172.80, 170.69, 164.80, 159.45, 154.99, 152.14, 148.17, 137.90, 136.87, 135.58, 134.23, 129.89, 128.97, 128.02, 123.07, 122.09, 88.09, 83.49, 82.19, 80.58, 80.25, 79.61, 76.01, 75.28, 74.71, 74.36, 69.24, 57.45, 56.89, 55.31, 49.22, 45.77, 41.63, 33.83, 33.25 , 29.68, 28.24, 25.57, 25.51, 24.90, 22.48, 22.10, 14.33, 10.78.
실시예 19. PCMI -19의 준비
Figure pct00069
1) (4S,5R)-3-디메틸카르바모일-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실산((4S,5R)-3-dimethylcarbamoyl-2-(4-methoxyphenyl)-4-phenyl-5-oxazolidine carboxylic acid)의 준비
상기 구체적인 방법은 실시예 3의 단계 1에서 볼 수 있다.
2) 7-메톡시포르밀-10-메톡실-1,14-카르보네이트 바카틴 III(7-methoxyformyl-10-methoxyl-1,14-carbonate baccatin III)의 준비
상기 구체적인 방법은 실시예 17의 단계 2)에서 볼 수 있다.
3) PCMI-19의 준비
상기 구체적인 방법은 실시예 1의 단계 3)에서 볼 수 있으며, 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-19: mp: 213-214℃;
MS (m/z) ESI: 894.3 (M+H)+;
1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 7.5 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 6.47 (d, J = 6.1 Hz, 1H), 6.27 (s, 1H), 6.11 (d, J = 7.5 Hz, 1H), 4.94 (d, J = 7.9 Hz, 1H), 4.87 (d, J = 6.9 Hz, 1H), 4.75 (d, J = 8.9 Hz, 1H), 4.39 (dd, J = 10.0, 5.2 Hz, 1H), 4.36 - 4.31 (m, 1H), 4.30 (d, J = 8.6 Hz, 1H), 4.24 (d, J = 8.4 Hz, 1H), 4.14 - 4.06 (m, 1H), 4.00 (d, J = 6.0 Hz, 1H), 3.71 (d, J = 7.4 Hz, 1H), 2.61 - 2.43 (m, 4H), 2.38 (d, J = 3.7 Hz, 1H), 2.26 (s, 3H), 1.95 - 1.84 (m, 4H), 1.71 (d, J = 12.4 Hz, 4H), 1.52 - 1.37 (m, 11H), 1.34 (s, 3H), 1.28 (s, 3H), 0.99 (t, J = 6.8 Hz, 6H).
13C NMR (101 MHz, CDCl3) δ 202.19 , 172.97, 170.93, 170.65, 164.76, 156.27, 151.87, 139.79, 134.15, 133.52, 129.97, 129.00, 127.95, 88.19, 84.23, 80.46, 79.63, 75.94, 74.79, 74.59, 73.87, 71.73, 69.45, 58.71, 51.67, 45.05, 41.78, 40.42, 35.46, 29.70, 28.24, 25.98, 24.85, 23.23, 22.50, 22.15, 20.76, 15.01, 9.70.
실시예 20. PCMI -20의 준비
Figure pct00070
1) (4S,5R)-3-t-부틸옥시카르보닐-2-(4-메톡시페닐)-4-아이소부틸-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butyloxycarbonyl-2-(4-methoxyphenyl)-4-isobutyl-5-oxazolidine carboxylic acid)의 준비
상기 구체적인 방법은 실시예 5의 단계 1)에서 볼 수 있다.
2) 7-메톡시포르밀-10-메톡실-1,14-카르보네이트 바카틴 III(7-methoxyformyl-10-methoxyl-1,14-carbonate baccatin III)의 준비
상기 구체적인 방법은 실시예 17의 단계 2)에서 볼 수 있다.
3) PCMI-20의 준비
상기 구체적인 방법은 실시예 1의 단계 3)에서 볼 수 있으며, 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-20: mp: 229-230℃;
MS (m/z) ESI: 924.4 (M+Na)+;
1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 7.5 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 6.47 (d, J = 6.3 Hz, 1H), 6.13 (d, J = 7.4 Hz, 1H), 5.36 (dd, J = 10.6, 7.2 Hz, 1H), 5.15 (s, 1H), 4.93 (d, J = 7.8 Hz, 1H), 4.88 (d, J = 6.9 Hz, 1H), 4.80 (d, J = 9.3 Hz, 1H), 4.39 - 4.28 (m, 2H), 4.25 (d, J = 8.5 Hz, 1H), 4.13 (m, 1H), 4.01 (d, J = 5.4 Hz, 1H), 3.84 (d, J = 7.3 Hz, 1H), 3.75 (s, 3H), 3.41 (s, 3H), 2.62 - 2.47 (m, 4H), 2.10 - 2.03 (m, 1H), 1.99 (d, J = 1.1 Hz, 3H), 1.83 (s, 3H), 1.71 (dd, J = 11.2, 4.6 Hz, 1H), 1.44 (dd, J = 10.1, 3.6 Hz, 2H), 1.41 (d, J = 14.4 Hz, 9H), 1.30 (s, 3H), 1.29 (s, 3H), 0.99 (t, J = 6.4 Hz, 6H).
13C NMR (101 MHz, CDCl3) δ 204.27, 172.97, 171.21, 170.71, 164.75, 156.21, 155.00, 151.99, 136.46, 134.15, 129.96, 128.99, 127.95, 88.18, 83.51, 82.20, 80.34, 80.19,79.63, 76.73, 76.01, 75.27, 74.61, 73.82, 69.29, 57.43, 56.89, 55.30, 51.61, 45.76, 41.66, 40.44, 33.25, 29.69, 28.24, 25.51, 24.85, 23.25, 22.44, 22.16, 14.41, 10.81.
실시예 21. PCMI -21의 준비
1) (4S,5R)-3-t-부틸옥시카르보닐-2-(4-메톡시페닐)-4-페닐-5-옥사졸리딘 카르복실산((4S,5R)-3-t-butyloxycarbonyl-2-(4-methoxyphenyl)-4-phenyl-5-oxazolidine carboxylic acid)의 준비
상기 구체적인 방법은 실시예 1의 단계 1)에서 볼 수 있다.
2) 7-에틸싸이오포르밀-10-메톡시-1,14-카르보네이트 바카틴 III(7-ethylthioformyl-10-methoxy-1,14-carbonate baccatin III)의 준비
Figure pct00072
10-DAB(1 당량)을 원재료로 사용하여, DMF에 용해시켰고 이미다졸 2.5 당량 및 트리에틸 클로로실란 2.5 당량을 연속적으로 첨가하였다. 후처리 후, 조화합물7을 수득하였다.
상기 화합물 7을 용매로 사용한 디클로로메탄에 용해시켰고, 피리딘 2 당량을 0℃에서 첨가하였다. 연속적으로, 상기 반응액에 p-톨루엔술포닐 클로라이드 2 당량을 적가하여 첨가하였다. 반응 4시간 후에, 컬럼 크로마토그래피로 정제하여서, 화합물 8을 90%의 수율로 획득하였다.
상기 화합물 8(1 당량)은 무수 테트라하이드로퓨란에 용해시켰고, 질소 보호 아래서 메틸 마그네슘 브로마이드(2 당량)와 실온에서 3시간동안 반응시켰다. 후처리 후에, 조화합물 9를 건조하여 수득하였다.
상기 화합물 9(1 당량)은 아세톤 용액에 용해시켰고, 망간 디옥사이드 10 당량을 실온에서 첨가하여 4시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 10을 75%의 수율로 획득하였다.
상기 화합물 10(1 당량)은 드라이 THF에 용해시켰고, 테트라부틸암모늄 플로라이드(THF에서 용액 형태로 있음) 1.5 당량을 실온에서 첨가하였다. 반응 1시간 후에, 상기 반응은 완료시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 45를 90%의 수율로 획득하였다.
상기 화합물 45(1 당량)은 용매로 사용한 드라이THF에 용해시켰고, 처음에 N,N'-카르보닐디이미다졸 2 당량과 실온에서 2시간동안 반응시켰다. 그런 다음에 상기 반응액에 에탄싸이올 2 당량을 첨가하였다. 반응 4시간 후에, 컬럼 크로마토그래피로 정제하여서, 화합물 54를 78%의 수율로 획득하였다.
상기 화합물 54(1 당량)은 드라이 THF/DMPU (4:1) 용액에 용해시켰고, 칼륨 t-부톡사이드 1.2 당량을 -70℃에서 첨가하여 20분동안 반응시켰다. 얻어진 상기 반응액은 N-(술포닐)옥사지리딘 2 당량을 천천히 적가하여 첨가하고 2시간동안 반응시켰다. 컬럼 크로마토그래피로 정제하여서, 화합물 55를 75%의 수율로 획득하였다.
상기 화합물 55(1 당량)은 드라이 테트라하이드로퓨란에서 N,N'-카르보닐디이미다졸(CDI) 2 당량과 반응시켜서 화합물 56을 95%의 수율로 획득하였다.
상기 화합물 56(1 당량)은 드라이 테트라하이드로퓨란에 용해시켰고, 촉매로 (R)-2-메틸 옥사자보로딘 0.2 당량을 실온에서 첨가하였으며, 다음에 보란/THF 용액 5 당량을 첨가하고 8시간동안 반응시켰다. 반응이 완료된 후에, 컬럼 크로마토그래피로 정제하여서, 7-에틸싸이오포르밀-10-메톡시-1,14-카르보네이트 바카틴 III인 화합물 57을 최종 생성물로서 80%의 수율로 획득하였다.
Figure pct00073
3) PCMI-21의 준비
상기 구체적인 방법은 실시예 1의 단계 3)에서 볼 수 있으며, 최종 생성물의 순도는 95% 또는 그 이상이었다.
PCMI-21: mp: 238-239℃;
MS (m/z) ESI: 974.4 (M+Na)+;
1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 7.4 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.45 - 7.37 (m, 4H), 7.37 - 7.30 (m, 1H), 6.46 (d, J = 6.1 Hz, 1H), 6.12 (d, J = 7.4 Hz, 1H), 5.58 (d, J = 8.6 Hz, 1H), 5.35 (dd, J = 10.6, 7.2 Hz, 2H), 5.14 (s, 1H), 4.95 - 4.86 (m, 1H), 4.80 (d, J = 6.8 Hz, 1H), 4.71 (s, 1H), 4.30 (d, J = 8.4 Hz, 1H), 4.23 (d, J = 8.5 Hz, 1H), 3.89 - 3.78 (m, 2H), 3.75 (s, 3H), 3.41 (s, 3H), 2.56 (ddd, J = 14.6, 9.5, 7.3 Hz, 1H), 2.46 (s, 3H), 2.08 - 1.98 (m, 1H), 1.95 (d, J = 1.1 Hz, 3H), 1.83 (s, 3H), 1.39 (s, 9H), 1.29 (s, 3H), 1.28 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 204.25, 172.06, 171.24, 170.73, 164.70, 155.73, 155.00, 151.92, 136.31, 135.79, 134.19, 129.95, 128.98, 128.94, 128.10, 127.93, 126.63, 88.09, 83.49, 82.19, 80.58, 80.25, 79.61, 76.01, 75.28, 74.71, 74.36, 69.24, 57.45, 56.89, 55.31, 49.22, 45.77, 41.63, 33.83, 33.25 , 29.68, 28.24, 25.57, 25.51, 24.90, 22.48, 22.10, 14.33, 10.78.

Claims (12)

  1. 하기와 같은 화학식으로 나타내어지는 구조를 가지고 있는 탁산(Taxane) 화합물.
    [화학식Ⅰ]
    Figure pct00074

    여기에서,
    R1 은 -COR6, -COOR6, 또는 -CONR7aR7b 이고;
    R2 는 C1-C6 의 알킬(alkyl) 그룹, C1-C6 알케닐(alkenyl) 그룹, 치환된 하이드로카본(hydrocarbon) 그룹, 헤테로시클릭(heterocyclic) 그룹, 방향족(aromatic) 그룹 또는 치환된 방향족 그룹이고;
    R3 는 -OR6, -OCOOR6, -OCOSR6, 또는 -OCONR7aR7b 이고;
    R4 는 -OR6, -OCOOR6, -OCOSR6, -OCONR7aR7b, H, 또는 OH 이고 ;
    상기 R6 는 C1-C6 알킬 그룹, C1-C6 알케닐 그룹, C1-C6 알키닐그룹, 치환된 하이드로카본 그룹, 방향족 그룹 또는 헤테로시클릭 그룹이고; R7a 과 R7b 는 각각 수소(hydrogen), 하이드로카본 그룹, 치환된 하이드로카본 그룹 또는 헤테로시클릭 그룹인 화합물.
  2. 제 1항에 있어서, 탁산 화합물은
    상기 R1 은 벤조일(benzoyl), t-부틸옥시카보닐(t-butyloxycarbonyl) 또는 N,N'-디메틸카바모일(N,N'-dimethylcarbamoyl)이고;
    R2 는 페닐(phenyl),
    Figure pct00075
    또는
    Figure pct00076
    이고 ;
    R3 는 -OMe, -OCOOCH3, -OCON(CH3)2, 또는 -OCOSC2H5이고;
    R4 는 -OMe, -OCOOCH3, -OCON(CH3)2, -OCOSC2H5, H, 또는 OH 인 화합물.
  3. 제 1항에 있어서, 탁산 화합물은 하기의 구조를 가진 화합물에서 선택되는 화합물.

    Figure pct00077
    '
    Figure pct00078

    Figure pct00079

    Figure pct00080

    Figure pct00081
    그리고
    Figure pct00082

  4. 제 1항 내지 3항 중 어느 한 항에 있어서, 여기서 탁산 화합물은 상기 탁산 화합물들과 이성질체들 간의 혼합물의 모든 이성질체를 더 포함하는 화합물.
  5. 제 1항 내지 3항 중 어느 한 항에 있어서, 여기서 탁산 화합물은 약학적으로 허용 가능한 무독성의 염의 형태를 하고 있는 화합물.
  6. 제 1항 내지 3항 중 어느 한 항에 있어서, 상기 탁산 화합물은 용매의 형태로 존재하는 화합물.
  7. 제 1항 내지 6항 중 어느 한 항에 있어서, 화학식 Ⅰ의 탁산 화합물을 포함하고 있는 항암 약제학적 조성물은 약제학적으로 허용가능한 염 또는 유효성분으로서의 용매인 항암 약제학적 조성물.
  8. 제 7항에 있어서, 여기서 상기 약제학적 조성물은 화학식Ⅰ의 탁산 화합물, 약제학적으로 허용가능한 염 또는 용매로써 중량비가 0.01% 에서 99.99% 이며 약제학적으로 허용 가능한 담체를 포함하는 조성물.
  9. 제 1항 내지 6항 중 어느 한 항에 있어서 상기 탁산 화합물의 용도는, 구강 항암제를 제조하는데에 있어서 약제학적으로 허용 가능한 염, 용매와 제 7항 또는 제 8항의 약제학적 조성물을 포함하는 것을 특징으로 하는 탁산 화합물.
  10. 제 1항 내지 3항 중 어느 한 항에 있어서, 다음과 같은 단계를 포함하는 탁산 화합물 제조방법:
    1)탁산의 모핵부분 합성단계:
    10-디아세틸 바카틴(10-deacetyl baccatin III, 10-DAB)을 원재료로 사용하여 첫번째로, 모핵부분의 C7 과 C10 번 위치에 하이드록실 그룹이 선택적으로 치환체로 보호되며, 다음으로 C13번 위치에 하이드록실 그룹이 케토-카보닐(keto-carbonyl) 그룹으로 산화되고, 이어서 N-(술포닐)옥사지리딘(N-(sulfonyl)oxaziridine)을 이용하여 14번 탄소에 베타 구조를 가지도록 하이드록실 그룹이 매우 입체선택적으로 도입됨에 따라, CDI의 반응 하에 1,14-카보네이트(1,14-carbonate) 구조를 형성 되며, 마지막으로 13번 탄소의 케토-카보닐 그룹은 CBS 환원방법에 의해 매우 입체선택적으로 알파 구조를 가진 하이드록실 그룹으로 환원되어 탁산모핵 부분을 합성하는 단계 및;
    2)오원고리 옥사졸리딘산(oxazolidine acid) 사이드 체인 전구체의 합성단계:
    원재료로 글리콜산(glycolic acid)을 사용되고 글리콜산은 벤질 그룹과 부틸옥시카보닐그룹(butyloxycarbonyl(Boc) group)이 부틸옥시카보닐로 보호된 벤질글리콜레이트(Boc-protected benzyl glycolate)를 생성하면서 연속적으로 보호되고; 다른 치환된 알데히드(aldehydes) 그룹들은 (SR)-t-부틸술피나미드((SR)-t-butyl sulfinamide)로 축합하여 대응되는 엔아민(enamine) 화합물을 형성하며; 상기 부틸옥시카보닐로 보호된 벤질글리콜레이트와 엔아민 화합물은 리튬염 존재하에서 첨가반응을 하고, 그리고 난 다음 산분해 반응 이후에 카이랄 중간체가 얻어지고, 얻어진 중간체는 피리디늄 p-톨루엔술포네이트(pyridinium p-toluenesulfonate, PPTS)의 촉매하에서 1,1'-(디메톡시메틸) p-메톡시벤젠(1,1'-(dimethoxymethyl) p-methoxybenzene)과 알돌 축합반응을 하여 축합 화합물을 얻으며; 축합된 화합물의 아미노그룹은 다른 치환체로 치환되고, 그리고 촉매수소화반응 후에 오원고리의 옥사졸리딘산 사이드체인의 전구체가 마지막으로 얻어지는 단계 및;
    3)탁산 유도체의 합성단계:
    오원고리 옥사졸리딘 산 사이드 체인의 전구체는 탁산의 모핵부분과 에스터화 반응에 의해 연결되어있고, 일련의 탁산 유도체들은 산 분해 반응에 의해 보호그룹이 제거되는 것에 의해 생성되는 것을 특징으로 하는 방법
  11. 제 10항에 있어서, 다음과 같은 단계를 포함하는 것을 특징으로 하는 탁산 화합물의 제조방법.
    상기 1)단계에서, 치환그룹에 의해 보호되는 7번 탄소와 10번 탄소의 하이드록실그룹은,
    (1) R3 과 R4가 -OR6 일 때, 다음과 같은 반응이 포함하는 방법: 먼저, 실온에서 0℃까지 에서, 테트라하이드로퓨란(tetrahydrofuran) 또는 디클로로메탄(dichloromethane) 용매조건 그리고 알칼리로써 피리딘(pyridine, Py)조건 하에, 하이드록시 그룹은 p-톨루엔술포닐 클로라이드(p-toluenesulfonyl chloride, TsCl)와 반응하여 p-톨루엔술포네이트(p-toluenesulfonate)을 얻으며, 또한 이는 그리냐드 시약과 더 반응하여 대응되는 에터(ether) -OR6를 얻는 단계 및;
    (2) R3 과 R4 이 -OCOOR6 또는 -OCONR7aR7b일 때, 다음과 같은 반응이 포함되는 방법: 실온에서부터 -70℃까지 에서 알칼리 조건 하에, 테트라하이드로퓨란의 용매조건에서, 하이드록실 그룹은 대응되는 아실 클로라이드(acyl chloride)와 반응하는 단계 및;
    (3) R3 과 R4 이 -OCOSR6일 때, 다음과 같은 반응을 포함되는 방법: 실온조건에서 테트라하이드로퓨란의 용매조건에서, 하이드록실 그룹은 N,N'-카보닐디이미다졸(N,N'-carbonyldiimidazole, CDI)과 반응되며 얻어진 생성물은 메르캅탄(mercaptan)과 치환반응을 통해 다시 반응되는 단계 및;
    1단계에서, 13번 탄소의 CBS 환원방법에 의한 케토-카보닐 그룹 입체선택적인 환원은 다음과 같은 특정한 단계를 포함하는 방법:
    실온조건에서 -70℃까지의 조건에서, 용매로써 기체상태의 디클로로메탄 또는 알코올, 촉매로 (R)-2-메틸 옥사자보롤리딘((R)-2-methyl oxazaborolidine)과 환원제로 보레인 조건 하에, 13번 탄소의 산소는 무수 테트라하이드로퓨란(anhydrous tetrahydrofuran)을 사용함으로써 입체선택적으로 C13-α-OH로 환원되는 단계 및;
    2 단계에서, 상기 다른 치환된 알데히드는 C1-C6 의 하이드로카보닐 알데히드, C1-C6 의 치환된 하이드로카빌 알데히드, 방향족 알데히드, 치환된 방향족 알데히드와 헤테로방향족 알데히드를 포함하며; 위 반응은 알칼리 조건하에, 테트라하이드로퓨란, 디클로로메탄 또는 다이옥산(dioxane)을 용매로써 사용하여 얻어진 카이랄 중간체의 아미노 그룹의 치환을 포함되며, 실온에서부터 -70℃까지의 조건에서 대응되는 아실 클로라이드와 반응하는 단계 및;
    촉매수소화반응에서, 팔라듐-차콜(palladium-charcoal) 또는 팔라듐 하이드록사이드(palladium hydroxide)는 촉매제로 사용되고, 수소는 일반적인 압력 또는 고압 조건에서 도입되며, 그리고 위 반응은 알코올, 테트라하이드로퓨란 또는 디클로로메탄의 용매 조건 하에 수행되는 단계.
  12. 제 11항에 있어서, 다음과 같은 단계를 포함하는 것을 특징으로 하는 탁산 화합물의 제조방법.
    상기 1)단계에서, 치환그룹에 의해 보호되는 7번 탄소와 10번 탄소의 하이드록실 그룹은,
    (1) R3 과 R4 가 -OR6일 때, 디클로로메탄이 용매로 사용되고, 0℃ 조건이며, 그리냐드 시약(Grignard reagent)은 R6MgBr을 포함하는 단계 및;
    (2) R3 과 R4 가 -OCOOR6 또는 -OCONR7aR7b 일 때, 리튬 헥사메틸디살라자이드(lithium hexamethyldisilazide)가 알칼리로 사용되며, -40℃ 조건에서; 아실 클로라이드는 R6OCOCl 과 R7aR7bNCOCl을 포함하는 단계 및;
    (3) R3 과 R4 가 -OCOSR6 일 때, 메르캅탄(mercaptan)은 R6SH을 포함하는 단계 및;
    상기 1)단계에서, CBS 환원방법을 통한 13번 탄소의 케토-카보닐그룹의 입체선택적 환원반응은 실온조건에서 무수 테트라하이드로퓨란 용매 조건하에 반응되는 단계 및 ;
    상기 2)단계에서 중간체의 아미노그룹의 치환을 포함하는 반응은, 리튬 헥사메틸디살라자이드가 알칼리로 사용되며, 테트라하이드로퓨란이 용매로써 사용되는 단계 및; -40℃조건 하에서, 아실 클로라이드는 R6COCl, R6OCOCl 과 R7aR7bNCOCl을 포함하는 단계 및; 촉매수소화반응에서, 팔라듐 하이드록사이드는 촉매로 사용되고, 수소(hydrogen)는 압력 20psi하에 도입되고 알코올 용매 하에 반응되는 단계.



KR1020167016613A 2013-11-22 2014-11-21 탁산(Taxane) 화합물 및 제조방법과 그 이용 KR20160087899A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201310594994.XA CN104650109B (zh) 2013-11-22 2013-11-22 紫杉烷类化合物
CN201310594994.X 2013-11-22
PCT/CN2014/091911 WO2015074606A1 (zh) 2013-11-22 2014-11-21 紫杉烷类化合物、其制备方法和用途

Publications (1)

Publication Number Publication Date
KR20160087899A true KR20160087899A (ko) 2016-07-22

Family

ID=53178985

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167016613A KR20160087899A (ko) 2013-11-22 2014-11-21 탁산(Taxane) 화합물 및 제조방법과 그 이용

Country Status (11)

Country Link
US (1) US9890175B2 (ko)
EP (1) EP3072896B1 (ko)
JP (1) JP6573900B2 (ko)
KR (1) KR20160087899A (ko)
CN (1) CN104650109B (ko)
AU (1) AU2014352372B2 (ko)
CA (1) CA2931366C (ko)
DK (1) DK3072896T5 (ko)
RU (1) RU2686459C1 (ko)
WO (1) WO2015074606A1 (ko)
ZA (1) ZA201603990B (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107056767B (zh) * 2015-12-04 2022-07-15 江苏恩华络康药物研发有限公司 用于制备水溶性紫杉烷类衍生物的方法及中间体
CN110143934B (zh) * 2018-08-29 2023-03-28 牡丹江师范学院 一种含氟紫杉烷类化合物及其制备方法与应用
CN110590793A (zh) * 2019-08-30 2019-12-20 浙江工业大学 一种2,4-二苯基吡啶并[3,2-c]香豆素的合成方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2698363B1 (fr) * 1992-11-23 1994-12-30 Rhone Poulenc Rorer Sa Nouveaux dérivés du taxane, leur préparation et les compositions qui les contiennent.
US5475011A (en) * 1993-03-26 1995-12-12 The Research Foundation Of State University Of New York Anti-tumor compounds, pharmaceutical compositions, methods for preparation thereof and for treatment
IT1275435B (it) * 1995-05-19 1997-08-07 Indena Spa Derivati della 10-desacetil-14beta-idrossibaccatina iii,loro metodo di preparazione e formulazioni che li contengono
EP0747372A1 (en) * 1995-06-06 1996-12-11 Dr. Reddy's Research Foundation Taxane derivatives from 14-beta-hydroxy-10 deacetybaccatin III
ITMI991483A1 (it) * 1999-07-06 2001-01-06 Indena Spa Derivati tassanici e procedimenti per la loro preparazione
DK1221445T3 (da) * 1999-10-15 2008-11-24 Daiichi Sankyo Co Ltd Pentacykliske taxanforbindelser
IT1320107B1 (it) * 2000-11-28 2003-11-18 Indena Spa Procedimento per la preparazione di derivati tassanici.
CN1960721A (zh) * 2004-03-05 2007-05-09 佛罗里达州立大学研究基金有限公司 C7乳酰氧基取代的紫杉烷类
CN1923189A (zh) * 2005-08-30 2007-03-07 孔庆忠 一种紫杉碱类抗癌药物的缓释注射剂
EP2080764B1 (en) * 2008-01-18 2012-08-22 INDENA S.p.A. Solid forms of ortataxel
EP2080763A1 (en) * 2008-01-18 2009-07-22 INDENA S.p.A. Crystalline form I of ortataxel
CN101353333B (zh) * 2008-09-08 2010-08-11 上海大学 10-去乙酰基-9(r)-氢化-1-去氧紫杉醇类似物及其制备方法
AU2012364858A1 (en) * 2011-04-07 2013-11-21 Arbor Therapeutics, LLC Taxane and abeo-taxane analogs

Also Published As

Publication number Publication date
RU2016124631A (ru) 2017-12-27
CA2931366C (en) 2019-09-24
RU2686459C1 (ru) 2019-04-26
EP3072896B1 (en) 2021-01-06
DK3072896T3 (da) 2021-04-06
JP2016539187A (ja) 2016-12-15
US20160340365A1 (en) 2016-11-24
US9890175B2 (en) 2018-02-13
ZA201603990B (en) 2019-04-24
CN104650109B (zh) 2019-01-01
AU2014352372A1 (en) 2016-06-16
CN104650109A (zh) 2015-05-27
DK3072896T5 (da) 2021-05-31
WO2015074606A1 (zh) 2015-05-28
CA2931366A1 (en) 2015-05-28
EP3072896A4 (en) 2017-09-06
JP6573900B2 (ja) 2019-09-11
AU2014352372B2 (en) 2018-08-30
EP3072896A1 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
ES2426482T3 (es) Inhibidor de IGF-1R
JP5465006B2 (ja) キナーゼおよびhsp90の阻害剤として有用な大環状化合物
JP6159350B2 (ja) 治療薬として有用なレゾルシン酸ラクトンの合成
JP2002069057A (ja) ピペリジン誘導体
AU2020382214B2 (en) Novel salt of terphenyl compound
KR102142797B1 (ko) 피리디닐아미노피리미딘 유도체의 메실레이트 염의 결정질 형태, 그의 제조 방법, 및 그의 용도
CN113912663A (zh) 白桦脂酸衍生物,其制备方法、药物组合物和应用
ES2755396T3 (es) Formas cristalinas de grapiprant
KR20160087899A (ko) 탁산(Taxane) 화합물 및 제조방법과 그 이용
WO2013107428A1 (zh) 7-位取代的汉防己乙素衍生物、及其制备方法和应用
CN111196790B (zh) 新型紫杉烷类衍生物及其药物组合物和用途
Kletskov et al. Synthesis and biological activity of novel comenic acid derivatives containing isoxazole and isothiazole moieties
EP3081560B1 (en) Taxanes compounds, preparation method therefor, and uses thereof
WO2015096553A1 (zh) 抗多药耐药紫杉烷类抗肿瘤化合物及其制备方法
CN112225730A (zh) 一种稠环化合物的晶型、其组合物、制备方法及其应用
WO2013162922A1 (en) Taxane compounds, compositions and methods
CN110730775A (zh) 抗癌密瘤杀内酰胺

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application