KR20160038702A - Preparation method of patterened substrate - Google Patents

Preparation method of patterened substrate Download PDF

Info

Publication number
KR20160038702A
KR20160038702A KR1020150079469A KR20150079469A KR20160038702A KR 20160038702 A KR20160038702 A KR 20160038702A KR 1020150079469 A KR1020150079469 A KR 1020150079469A KR 20150079469 A KR20150079469 A KR 20150079469A KR 20160038702 A KR20160038702 A KR 20160038702A
Authority
KR
South Korea
Prior art keywords
block
group
block copolymer
atom
chain
Prior art date
Application number
KR1020150079469A
Other languages
Korean (ko)
Inventor
구세진
이미숙
유형주
김정근
윤성수
박노진
이제권
최은영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PCT/KR2015/010330 priority Critical patent/WO2016053007A1/en
Priority to TW104132197A priority patent/TWI577703B/en
Priority to EP15846126.9A priority patent/EP3203497B1/en
Priority to KR1020150138200A priority patent/KR101756538B1/en
Priority to JP2017517268A priority patent/JP6633062B2/en
Priority to CN201580059713.8A priority patent/CN107077066B9/en
Priority to US15/514,929 priority patent/US10370529B2/en
Publication of KR20160038702A publication Critical patent/KR20160038702A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00388Etch mask forming
    • B81C1/00428Etch mask forming processes not provided for in groups B81C1/00396 - B81C1/0042
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/14Organic medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/022Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations
    • C08F299/024Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations the unsaturation being in acrylic or methacrylic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F32/02Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
    • C08F32/06Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having two or more carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/005Modified block copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/165Monolayers, e.g. Langmuir-Blodgett
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • H01L21/31056Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching the removal being a selective chemical etching step, e.g. selective dry etching through a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31058After-treatment of organic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0147Film patterning
    • B81C2201/0149Forming nanoscale microstructures using auto-arranging or self-assembling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1426Side-chains containing oxygen containing carboxy groups (COOH) and/or -C(=O)O-moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers

Abstract

The present invention relates to a method for manufacturing a patterned substrate. The method for manufacturing a patterned substrate can be applied to a manufacturing process, for example, a manufacturing process of a device, such as an electronic device and an integrated circuit, or to other purposes such as manufacturing an integrated optical system, a guidance and a detection pattern for a magnetic domain memory, a flat panel display, a liquid crystal display (LCD), a thin film magnetic head or an organic light emitting diode or the like. In addition, the method for manufacturing a patterned substrate may be used to construct a pattern on a surface used to manufacture a discrete track medium of a magnetic storage device or the like, such as an integrated circuit, a bit-patterned medium and/or a hard drive. The method for manufacturing a patterned substrate comprises a step of forming a polymer film including a block copolymer induced with a self-assembled structure, on the surface of a substrate that has undergone oxygen plasma treatment.

Description

패턴화 기판의 제조 방법{PREPARATION METHOD OF PATTERENED SUBSTRATE}[0001] PREPARATION METHOD OF PATTERENED SUBSTRATE [0002]

본 출원은, 패턴화 기판의 제조 방법에 관한 것이다.The present application relates to a method of manufacturing a patterned substrate.

블록 공중합체는 서로 다른 화학적 구조를 가지는 고분자 블록들이 공유 결합을 통해 연결되어 있는 분자 구조를 가지고 있다. 블록 공중합체는 상분리에 의해서 스피어(sphere), 실린더(cylinder) 또는 라멜라(lamella) 등과 같은 주기적으로 배열된 구조를 형성할 수 있다. 블록 공중합체의 자기 조립 현상에 의해 형성된 구조의 도메인의 형태 및 크기는, 예를 들면, 각 블록을 형성하는 단량체의 종류 또는 블록간의 상대적 비율 등에 의해 광범위하게 조절될 수 있다.The block copolymer has a molecular structure in which polymer blocks having different chemical structures are linked via covalent bonds. The block copolymer can form a periodically arranged structure such as a sphere, a cylinder or a lamella by phase separation. The shape and size of the domain of the structure formed by the self-assembly phenomenon of the block copolymer can be extensively controlled by, for example, the kind of the monomer forming each block or the relative ratio between the blocks.

이러한 특성으로 인하여, 블록 공중합체는, 나노선 제작, 양자점 또는 금속점 등과 같은 다양한 차세대 나노 소자의 제작이나 소정의 기판 상에 고밀도의 패턴을 형성할 수 있는 리소그래피법 등으로의 적용이 검토되고 있다(예를 들면, 비특허문헌 1 등 참조).Due to these properties, the block copolymer is considered to be applied to a variety of next generation nano devices such as nanowire fabrication, quantum dots or metal dots, or to a lithography method capable of forming a high-density pattern on a predetermined substrate (See, for example, Non-Patent Document 1, etc.).

블록 공중합체의 자기 조립된 구조의 배향을 다양한 기판 위에 수평 혹은 수직으로 조절하는 기술은 블록 공중합체의 실제적 응용에서 매우 큰 비중을 차지한다. 통상적으로 블록 공중합체의 막에서 나노 구조체의 배향은 블록 공중합체의 어느 블록이 표면 혹은 공기 중에 노출되는 가에 의해 결정된다. 일반적으로 다수의 기판이 극성이고, 공기는 비극성이기 때문에 블록 공중합체의 블록 중에서 더 큰 극성을 가지는 블록이 기판에 웨팅(wetting)하고, 더 작은 극성을 가지는 블록이 공기와의 계면에서 웨팅(wetting)하게 된다. 따라서, 블록 공중합체의 서로 다른 특성을 가지는 블록이 동시에 기판측에 웨팅하도록 하기 위하여 다양한 기술이 제안되어 있으며, 가장 대표적인 기술은 중성 표면 제작을 적용한 배향의 조절이다.The technique of adjusting the orientation of the self-assembled structure of the block copolymer horizontally or vertically on various substrates occupies a very large proportion in the practical application of the block copolymer. Typically, the orientation of the nanostructure in the film of the block copolymer is determined by which block of the block copolymer is exposed to the surface or air. In general, since a plurality of substrates are polar and air is non-polar, a block having a larger polarity among the blocks of the block copolymer is wetted to the substrate, and a block having a smaller polarity is wetted at the interface with air ). Therefore, various techniques have been proposed to allow the blocks having different characteristics of the block copolymer to be wetted simultaneously on the substrate side, and the most representative technique is the adjustment of the orientation using neutral surface preparation.

Chaikin and Register. et al., Science 276, 1401 (1997) Chaikin and Register. et al., Science 276, 1401 (1997)

본 출원은, 패턴화 기판의 제조 방법을 제공한다.The present application provides a method of manufacturing a patterned substrate.

본 명세서에서 용어 알킬기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기를 의미할 수 있다. 상기 알킬기는 직쇄형, 분지형 또는 고리형 알킬기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.As used herein, the term alkyl group may mean an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms, unless otherwise specified. The alkyl group may be a straight chain, branched or cyclic alkyl group and may be optionally substituted by one or more substituents.

본 명세서에서 용어 알콕시기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기를 의미할 수 있다. 상기 알콕시기는 직쇄형, 분지형 또는 고리형 알콕시기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.As used herein, unless otherwise specified, the term alkoxy group may mean an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms. The alkoxy groups may be straight, branched or cyclic alkoxy groups and may optionally be substituted by one or more substituents.

본 명세서에서 용어 알케닐기 또는 알키닐기는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐기 또는 알키닐기를 의미할 수 있다. 상기 알케닐기 또는 알키닐기는 직쇄형, 분지형 또는 고리형일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.As used herein, the term alkenyl or alkynyl group means an alkenyl group or alkynyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms unless otherwise specified can do. The alkenyl or alkynyl group may be linear, branched or cyclic and may optionally be substituted by one or more substituents.

본 명세서에서 용어 알킬렌기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기를 의미할 수 있다. 상기 알킬렌기는 직쇄형, 분지형 또는 고리형 알킬렌기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.As used herein, unless otherwise specified, the alkylene group may mean an alkylene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms. The alkylene group may be a straight, branched or cyclic alkylene group and may optionally be substituted by one or more substituents.

본 명세서에서 용어 알케닐렌기 또는 알키닐렌기는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐렌기 또는 알키닐렌기를 의미할 수 있다. 상기 알케닐렌기 또는 알키닐렌기는 직쇄형, 분지형 또는 고리형일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.As used herein, the term alkenylene group or alkynylene group means an alkenylene group or an alkynylene group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, It can mean a group. The alkenylene or alkynylene group may be linear, branched or cyclic and may optionally be substituted by one or more substituents.

본 명세서에서 용어 아릴기 또는 아릴렌기는, 특별히 달리 규정하지 않는 한, 하나의 벤젠 고리 구조, 2개 이상의 벤젠 고리가 하나 또는 2개의 탄소 원자를 공유하면서 연결되어 있거나, 또는 임의의 링커에 의해 연결되어 있는 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 1가 또는 2가 잔기를 의미할 수 있다. 상기 아릴기 또는 아릴렌기는, 특별히 달리 규정하지 않는 한, 예를 들면, 탄소수 6 내지 30, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 13의 아릴기일 수 있다.As used herein, the term "aryl" group or "arylene group" means, unless otherwise specified, one benzene ring structure, two or more benzene rings connected together sharing one or two carbon atoms, Or a monovalent or di-valent residue derived from a compound or a derivative thereof. The aryl group or the arylene group may be, for example, an aryl group having 6 to 30 carbon atoms, 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 13 carbon atoms unless otherwise specified.

본 출원에서 용어 방향족 구조는 상기 아릴기 또는 아릴렌기를 의미할 수 있다.The term aromatic structure in this application may mean the aryl group or the arylene group.

본 명세서에서 용어 지환족 고리 구조는, 특별히 달리 규정하지 않는 한, 방향족 고리 구조가 아닌 고리형 탄화수소 구조를 의미한다. 상기 지환족 고리 구조는, 특별히 달리 규정하지 않는 한, 예를 들면, 탄소수 3 내지 30, 탄소수 3 내지 25, 탄소수 3 내지 21, 탄소수 3 내지 18 또는 탄소수 3 내지 13의 지환족 고리 구조일 수 있다.As used herein, the term alicyclic ring structure means a cyclic hydrocarbon structure other than an aromatic ring structure unless otherwise specified. The alicyclic ring structure may be, for example, an alicyclic ring structure having 3 to 30 carbon atoms, 3 to 25 carbon atoms, 3 to 21 carbon atoms, 3 to 18 carbon atoms, or 3 to 13 carbon atoms unless otherwise specified .

본 출원에서 용어 단일 결합은 해당 부위에 별도의 원자가 존재하지 않는 경우를 의미할 수 있다. 예를 들어, A-B-C로 표시된 구조에서 B가 단일 결합인 경우에 B로 표시되는 부위에 별도의 원자가 존재하지 않고, A와 C가 직접 연결되어 A-C로 표시되는 구조를 형성하는 것을 의미할 수 있다.The term single bond in the present application may mean that no separate atom is present at the site. For example, in the structure represented by A-B-C, when B is a single bond, it may mean that no atom exists at a site represented by B and A and C are directly connected to form a structure represented by A-C.

본 출원에서 알킬기, 알케닐기, 알키닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, 알콕시기, 아릴기, 아릴렌기, 사슬 또는 방향족 구조 등에 임의로 치환되어 있을 수 있는 치환기로는, 히드록시기, 할로겐 원자, 카복실기, 글리시딜기, 아크릴로일기, 메타크릴로일기, 아크릴로일기옥시, 메타크릴로일기옥시기, 티올기, 알킬기, 알케닐기, 알키닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, 알콕시기 또는 아릴기 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.Examples of the substituent which may optionally be substituted in the present application include an alkyl group, an alkenyl group, an alkynyl group, an alkylene group, an alkenylene group, an alkynylene group, an alkoxy group, an aryl group, an arylene group, A carboxyl group, a glycidyl group, an acryloyl group, a methacryloyl group, an acryloyloxy group, a methacryloyloxy group, a thiol group, an alkyl group, an alkenyl group, an alkynyl group, an alkylene group, an alkenylene group, , An alkoxy group or an aryl group, but are not limited thereto.

본 출원은 패턴화 기판의 제조 방법에 대한 것이다. 하나의 예시에서 상기 제조 방법은, 유도 자기 조립(Directed Self Assembly) 재료를 템플릿으로 적용한 리소그래피(lithography) 방식에 의해 수행될 수 있다. 상기에서 유도 자기 조립 재료는, 예를 들면, 블록 공중합체일 수 있다. The present application relates to a method for producing a patterned substrate. In one example, the manufacturing method may be performed by a lithography method in which a directed self assembly material is applied as a template. The inductive self-assembling material may be, for example, a block copolymer.

상기 방법은, 예를 들면, 전자 디바이스 및 집적 회로와 같은 장치의 제조 공정 또는 다른 용도, 예컨대 집적 광학 시스템, 자기 도메인 메모리의 가이던스 및 검출 패턴, 평판 디스플레이, 액정 디스플레이(LCD), 박막 자기 헤드 또는 유기 광 방출 다이오드 등의 제조에 적용될 수 있다. 상기 방법은, 또한 집적 회로, 비트-패턴화된 매체 및/또는 하드 드라이브와 같은 자기 저장 디바이스 등의 개별 트랙 매체(discrete track medium)의 제조에 사용되는 표면 위에 패턴을 구축하는데 사용될 수 있다.The method may be used in the manufacture of devices such as, for example, electronic devices and integrated circuits or in other applications such as integrated optical systems, guidance and detection patterns of magnetic domain memories, flat panel displays, liquid crystal displays (LCDs) Organic light emitting diodes and the like. The method may also be used to build a pattern on a surface used in the manufacture of discrete track media such as integrated circuits, bit-patterned media, and / or magnetic storage devices such as hard drives.

상기 방법은, 기판상에 유도 자기 조립 재료의 층을 형성하고, 자기 조립을 유도하는 단계를 포함할 수 있다. The method may include forming a layer of induced self-assembled material on the substrate and inducing self-assembly.

상기 유도 자기 조립 재료의 층이 형성되는 기판의 표면은, 산소 플라즈마 처리된 표면일 수 있다. 본 발명자들은, 기판의 표면에 산소 플라즈마 처리를 수행하고, 필요한 경우에 그 표면에 형성되는 블록 공중합체의 제어를 통해 수직 배향을 유도하기 위하여 수행되고 있던 소위 중성 브러쉬층(neutral brush layer)을 형성하지 않고도 기판의 표면상에 블록 공중합체의 수직 배향을 유도할 수 있다는 점을 확인하였다. 이에 따라서 상기에서 유도 자기 조립 재료의 층은 상기 플라즈마 처리된 기판의 표면에 접촉하여 형성될 수 있고, 상기에서 기판의 표면은 상기 산소 플라즈마 처리 외에 소위 중성 표면 처리 또는 화학적 예비 패터닝 등을 포함한 수직 배향을 달성하기 위한 것으로 알려진 공지의 처리가 수행되지 않은 기판의 표면일 수 있다. 본 출원에서 어떤 층 또는 막이 어떤 표면에 접촉하여 형성된다는 것은, 상기 층 또는 막과 표면의 사이에 다른 층이 존재하지 않는 경우를 의미할 수 있다.The surface of the substrate on which the layer of the inductive self-assembled material is formed may be an oxygen plasma treated surface. The inventors of the present invention formed a so-called neutral brush layer, which was carried out to perform oxygen plasma treatment on the surface of the substrate and, if necessary, to induce vertical orientation through control of the block copolymer formed on the surface thereof It is possible to induce the vertical orientation of the block copolymer on the surface of the substrate. Accordingly, a layer of the self-assembled self-assembled material may be formed in contact with the surface of the plasma-treated substrate, wherein the surface of the substrate is subjected to a vertical orientation including a so-called neutral surface treatment or chemical pre- Lt; RTI ID = 0.0 > known < / RTI > In this application, the fact that a layer or a film is formed in contact with a certain surface may mean that there is no other layer between the layer or the film and the surface.

상기 유도 자기 조립 재료가 블록 공중합체라면, 상기와 같은 표면에 접하여 형성되어 있는 막에서 상기 블록 공중합체는 수직 배향 상태로 존재할 수 있다. 또한, 수직 배향된 상기 자기 조립 구조는 라멜라 구조일 수 있으나, 이에 제한되는 것은 아니다. 본 출원에서 용어 수직 배향은, 블록 공중합체의 배향성을 나타내는 것이고, 블록 공중합체에 의해 형성되는 자기 조립 구조체의 배향 방향이 기판 방향과 수직한 경우를 의미할 수 있다. 예를 들면, 상기 수직 배향은 자기 조립된 블록 공중합체의 각 블록 도메인이 기판 표면에 나란히 놓이고, 블록 도메인의 계면 영역이 기판 표면에 실질적으로 수직하게 형성되는 경우를 의미할 수 있다. 본 출원에서 용어 수직은, 오차를 감안한 표현이고, 예를 들면, ±10도, ±8도, ±6도, ±4도 또는 ±2도 이내의 오차를 포함하는 의미일 수 있다.If the inductive self-assembling material is a block copolymer, the block copolymer may exist in a vertically aligned state in a film formed in contact with the surface. In addition, the vertically oriented self-assembled structure may be a lamellar structure, but is not limited thereto. The term vertical orientation in the present application indicates the orientation of the block copolymer and may mean the orientation direction of the self-assembled structure formed by the block copolymer is perpendicular to the direction of the substrate. For example, the vertical orientation may refer to the case where each block domain of the self-assembled block copolymer lies side by side on the substrate surface, and the interface region of the block domain is formed substantially perpendicular to the substrate surface. The term vertical in the present application is an expression in consideration of an error, and may mean an error including, for example, errors within ± 10 degrees, ± 8 degrees, ± 6 degrees, ± 4 degrees, or ± 2 degrees.

본 출원의 방법에 적용되는 기판의 종류는 특별히 제한되지 않는다. 본 출원의 방법이 적용되는 기판의 예로는 금속 기판이 있다. 용어 금속 기판은, 금속을 주성분으로 포함하는 기판을 의미할 수 있다. 상기에서 주성분으로 포함하는 것은, 예를 들면, 금속을 중량을 기준으로 55% 이상, 60% 이상, 65% 이상, 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상 또는 95% 이상 포함하는 것을 의미할 수 있다. 본 출원의 방법에 적용되는 기판으로는, 금(gold), 구리(copper), 티탄(titanium), 니켈(nickel), 은, 알루미늄, 게르마늄, 텅스텐, 주석, 안티모니, 인듐, 카드뮴, 팔라듐, 납, 아연 또는 백금 등의 금속이나, 상기 금속의 산화물, 질화물 또는 황화물 등을 포함하는 기판, 예를 들면, 상기 성분을 주성분으로 포함하는 기판이 예시될 수 있다. 본 출원은 방법은 상기 기판 외에도 상기 기술한 각 용도로의 적용을 위해 표면에 패턴의 형성이 필요한 다양한 종류의 기판이 모두 사용될 수 있고, 기판의 종류가 특별히 제한되는 것은 아니다.The type of the substrate to which the method of the present application is applied is not particularly limited. An example of a substrate to which the method of the present application is applied is a metal substrate. The term metal substrate may refer to a substrate containing a metal as a main component. As a main component, for example, the metal may be contained in an amount of at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85% 95% < / RTI > As the substrate to which the method of the present invention is applied, a metal such as gold, copper, titanium, nickel, silver, aluminum, germanium, tungsten, tin, antimony, indium, cadmium, For example, a substrate containing a metal such as lead, zinc or platinum, an oxide, a nitride or a sulfide of the above-mentioned metal, for example, a substrate containing the above-mentioned components as a main component. In the present application, various types of substrates requiring formation of a pattern on the surface may be used for the application to each of the above-described applications in addition to the substrate, and the type of the substrate is not particularly limited.

기판의 표면에 수행되는 산소 플라즈마 처리의 조건은 특별히 제한되지 않고, 예를 들면, 적용되는 블록 공중합체의 종류와 목적하는 자기 조립 구조를 고려하여 적절하게 조절될 수 있다. 예를 들면, 상기 산소 플라즈마 처리는 30W 내지 2000W의 RF 전력, 5 mTorr 내지 300 mTorr의 공정 압력 및 20 sccm 내지 100 sccm의 산소 유량 하에서 수행될 수 있다. 상기 플라즈마의 처리 조건 중 RF 전력은 다른 예시에서 40W 이상, 50 W 이상, 60 W 이상, 70 W 이상 또는 80 W 이상이거나, 1500 W 이하, 1000 W 이하, 800 W 이하, 600 W 이하, 400 W 이하, 300 W 이하 또는 200 W 이하일 수 있다. 상기 플라즈마의 처리 조건 중 공정 압력은 다른 예시에서 10 mTorr 이상, 20 mTorr 이상, 30 mTorr 이상, 40 mTorr 이상, 50 mTorr 이상, 60 mTorr 이상, 70 mTorr 이상, 80 mTorr 이상 또는 90 mTorr 이상이거나, 290 mTorr 이하, 280 mTorr 이하, 270 mTorr 이하, 260 mTorr 이하, 250 mTorr 이하, 240 mTorr 이하, 230 mTorr 이하, 220 mTorr 이하, 210 mTorr 이하, 200 mTorr 이하, 190 mTorr 이하 또는 180 mTorr 이하일 수 있다. 상기 플라즈마의 처리 조건 중 산소 유량은 다른 예시에서 30sccm 이상, 40 sccm 이상 또는 50 sccm 이상이거나, 90sccm 이하 또는 80sccm 이하일 수 있다.The conditions of the oxygen plasma treatment performed on the surface of the substrate are not particularly limited and can be appropriately adjusted in consideration of, for example, the kind of the applied block copolymer and the desired self-assembling structure. For example, the oxygen plasma treatment may be performed at an RF power of 30 W to 2000 W, a process pressure of 5 mTorr to 300 mTorr, and an oxygen flow rate of 20 sccm to 100 sccm. In other exemplary embodiments, the RF power may be in the range of 40 W or more, 50 W or more, 60 W or more, 70 W or 80 W or more, 1500 W or less, 1000 W or less, 800 W or less, Or less, or 300 W or less, or 200 W or less. In other embodiments, the process pressure may be greater than 10 mTorr, greater than 20 mTorr, greater than 30 mTorr, greater than 40 mTorr, greater than 50 mTorr, greater than 60 mTorr, greater than 70 mTorr, greater than 80 mTorr, or greater than 90 mTorr, or greater than or equal to 290 mTorr or less, 280 mTorr or less, 270 mTorr or less, 260 mTorr or less, 250 mTorr or less, 240 mTorr or less, 230 mTorr or less, 220 mTorr or less, 210 mTorr or less, 200 mTorr or less or 190 mTorr or less or 180 mTorr or less. The oxygen flow rate in the plasma treatment conditions may be more than 30 sccm, not less than 40 sccm, or not less than 50 sccm, not more than 90 sccm, or not more than 80 sccm in another example.

본 출원의 방법에 적용되는 기판의 표면에는 서로 간격을 두고 메사(mesa) 구조가 형성되어 있을 수 있다. 예를 들면, 상기 메사 구조는 각각 라인 형태일 수 있다. 이러한 메사 구조는, 서로 일정 간격으로 이격되어 기판 표면에 배치될 수 있다. 메사 구조는 실질적으로 서로 평행하게 기판의 표면에 배치되어 있을 수 있다. 메사 구조는 기판의 표면에 적어도 2개 이상 형성되어 있을 수 있다. 즉, 기판의 표면에 상기 메사 구조에 의해 형성되는 트렌치의 수는 1개 이상일 수 있다. 상기 메사 구조 및 트렌치의 개수는 특별히 제한되지 않으며, 용도에 따라 조절될 수 있다. 메사 구조는 그 메사 구조에 의해 형성되는 트렌치 내에 블록 공중합체와 같은 유도 자기 조립 재료를 포함하는 막이 형성될 때에 형성되는 블록 공중합체의 자기 조립 구조를 가이딩(guiding)하는 역할을 할 수 있다. A mesa structure may be formed on the surface of the substrate to be applied to the method of the present application at intervals. For example, the mesa structure may each be in the form of a line. Such a mesa structure may be disposed on the surface of the substrate at a certain distance from each other. The mesa structures may be disposed substantially parallel to each other on the surface of the substrate. At least two or more mesa structures may be formed on the surface of the substrate. That is, the number of trenches formed by the mesa structure on the surface of the substrate may be one or more. The number of the mesa structures and the number of the trenches is not particularly limited and may be adjusted depending on the application. The mesa structure may serve to guide the self-assembled structure of the block copolymer formed when a film containing an induced self-assembling material such as a block copolymer is formed in the trench formed by the mesa structure.

도 1은, 트렌치가 형성되어 있는 예시적인 기판(1)을 보여주는 도면이다. 도면과 같이 예시적인 기판(1)은 메사 구조의 측벽(3)과 기판 또는 상기 메사 구조의 표면(4)에 의해 형성된 트렌치(2)를 포함할 수 있다.1 is a view showing an exemplary substrate 1 in which a trench is formed. As shown, the exemplary substrate 1 may include a sidewall 3 of a mesa structure and a trench 2 formed by the substrate or the surface 4 of the mesa structure.

예를 들면, 도 2에 나타난 바와 같이, 블록 공중합체와 같은 유도 자기 조립 재료를 포함하는 막(5)은 상기 트렌치(2)의 내에 형성되어, 서로 화학적으로 상이한 2개의 도메인(A, B)이 라인 형태로 교대로 형성되어 있는 소위 라멜라 형태의 자기 조립 구조를 이루면서 형성될 수 있다.2, a film 5 comprising an inductive self-assembling material, such as a block copolymer, is formed within the trench 2 to form two domains (A, B) chemically different from each other, Called lamellar self-assembled structure formed alternately in the form of a line.

기판의 표면의 상기 트렌치의 형태는 기판상에 형성하고자 하는 패턴 내지는 그에 따라 요구되는 블록 공중합체의 자기 조립 구조에 따라 정해질 수 있다. The shape of the trench on the surface of the substrate can be determined according to the pattern to be formed on the substrate or the self-assembled structure of the block copolymer required accordingly.

일 예시에서 상기 트렌치를 형성하도록 이격 배치되어 있는 메사 구조의 간격(D)과 상기 메사 구조의 높이(H)의 비율(D/H)은 0.1 내지 10, 0.5 내지 10, 1 내지 10, 1 내지 9, 1 내지 8, 1 내지 7, 1 내지 6, 1 내지 5 또는 1 내지 4의 범위 내에 있을 수 있다. 또한, 상기 메사 구조간의 간격(D)과 메사 구조의 폭(W)의 비율(D/W)은 0.5 내지 10, 1 내지 10, 1 내지 9, 1 내지 8, 1 내지 7, 1 내지 6, 1 내지 5 또는 1 내지 4의 범위 내에 있을 수 있다. 상기 비율(D/H 또는 D/W)은, 목적하는 용도에 따라서 변경될 수 있다. 본 명세서에서 용어 메사 구조의 간격(D)은, 이격 배치되어 있는 인접 메사 구조간의 최단 거리를 의미하고, 상기 간격(D)은, 예를 들면, 10nm 내지 500 nm, 10 nm 내지 450 nm, 10 nm 내지 400 nm, 10 nm 내지 350 nm, 10 nm 내지 300 nm, 50 nm 내지 300 nm 또는 100 nm 내지 300 nm 정도일 수 있다. 본 명세서에서 용어 메사 구조의 높이(H)는, 기판의 표면을 기준으로 상기 기판 표면의 법선 방향을 따라 상부 방향으로 측정되는 메사 구조의 치수이고, 예를 들면, 1nm 내지 100 nm, 1 nm 내지 90 nm, 5 nm 내지 90 nm, 10 nm 내지 90 nm, 10 nm 내지 80 nm 또는 20 nm 내지 70 nm 정도일 수 있다. 본 명세서에서 용어 메사 구조의 폭(W)은, 상기 기판 표면의 법선 방향과 수직하는 방향을 따라 측정되는 메사 구조의 치수이고, 예를 들면, 10nm 내지 500 nm, 10 nm 내지 450 nm, 10 nm 내지 400 nm, 10 nm 내지 350 nm, 10 nm 내지 300 nm, 50 nm 내지 300 nm 또는 100 nm 내지 300 nm 정도일 수 있다.In one example, the ratio (D / H) of the distance (D) of the mesa structure spaced to form the trench and the height (H) of the mesa structure is 0.1 to 10, 0.5 to 10, 1 to 10, 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, or 1 to 4. The ratio (D / W) of the distance D between the mesa structures and the width W of the mesa structure may be 0.5 to 10, 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5 or 1 to 4, inclusive. The ratio (D / H or D / W) may be changed according to the intended use. In this specification, the term (D) of the term mesa structure means the shortest distance between neighboring mesa structures spaced apart from each other, and the interval D is, for example, 10 nm to 500 nm, 10 nm to 450 nm, 10 nm to 400 nm, 10 nm to 350 nm, 10 nm to 300 nm, 50 nm to 300 nm, or 100 nm to 300 nm. The height H of the term mesa structure as used herein is the dimension of the mesa structure measured in the upward direction along the normal direction of the substrate surface with respect to the surface of the substrate and is, for example, 1 nm to 100 nm, 90 nm, 5 nm to 90 nm, 10 nm to 90 nm, 10 nm to 80 nm, or 20 nm to 70 nm. In this specification, the term (W) of the term mesa structure is a dimension of a mesa structure measured along a direction perpendicular to the normal direction of the substrate surface, and is, for example, 10 nm to 500 nm, 10 nm to 450 nm, To 400 nm, from 10 nm to 350 nm, from 10 nm to 300 nm, from 50 nm to 300 nm, or from 100 nm to 300 nm.

예를 들어, 상기 유도 자기 조립 재료가 블록 공중합체이고, 상기 블록 공중합체의 라멜라 패턴을 형성하는 경우에 상기 메사 구조의 간격은 약 1L 내지 20L의 범위 내일 수 있다. 이러한 경우에 상기 블록 공중합체를 포함하는 막, 즉 상기 트렌치 내에 형성되는 막의 두께는 약 1L 내지 10L 또는 1L 내지 8L의 범위 내일 수 있다. 상기에서 L은 상기 블록 공중합체에 의해 형성되는 라멜라 패턴의 피치를 의미할 수 있다.For example, if the inductive self-assembling material is a block copolymer and the lamella pattern of the block copolymer is formed, the spacing of the mesa structure may be in the range of about 1L to 20L. In this case, the film comprising the block copolymer, i.e. the film formed in the trench, may have a thickness in the range of about 1L to 10L or 1L to 8L. In the above, L may mean the pitch of the lamellar pattern formed by the block copolymer.

상기 형태로 메사 구조를 조절하면, 그에 의해 형성된 트렌치 내에서 블록 공중합체의 자기 조립이 효과적으로 가이딩될 수 있다. 그러나, 상기 메사 구조의 치수 등은 본 출원의 하나의 예시이며, 이는 구체적인 태양에 따라서 변경될 수 있다.By adjusting the mesa structure in this manner, the self-assembly of the block copolymer in the trenches formed thereby can be effectively guided. However, the dimensions and the like of the above-mentioned mesa structure are one example of the present application, which can be changed according to a specific embodiment.

기판상에 상기와 같은 메사 구조를 형성하는 방식은 특별히 제한되지 않고, 공지의 방식이 적용될 수 있다. 예를 들면, 상기 메사 구조는, 기판을 적절한 방식으로 에칭하거나, 혹은 기판상에 적절한 재료를 증착시켜 형성할 수 있다.A method of forming the above-described mesa structure on a substrate is not particularly limited, and a known method can be applied. For example, the mesa structure can be formed by etching the substrate in an appropriate manner, or by depositing a suitable material on the substrate.

예를 들면, 메사 구조에 의한 상기 트렌치는, 기판상에 메사 구조 형성 재료의 층, 반사 방지층 및 레지스트층을 순차 형성하는 단계; 상기 레지스트층을 패턴화하는 단계; 패턴화된 레지스트층을 마스크로 하여 상기 메사 구조 형성 재료의 층을 에칭하는 단계를 포함할 수 있다.For example, the trench by a mesa structure may be formed by sequentially forming a layer of a mesa structure forming material, an antireflection layer, and a resist layer on a substrate; Patterning the resist layer; And etching the layer of the mesa structure forming material using the patterned resist layer as a mask.

상기에서 메사 구조 형성 재료의 종류는 특별히 제한되지 않는다. 예를 들면, 후술하는 바와 같이 상기 재료의 층은, 패턴화된 레지스트층을 마스크로 적용한 에칭(etching) 공정에 의해 에칭되어 메사 구조를 형성하게 되는데, 이 과정에서 적절하게 에칭이 가능한 재료가 사용될 수 있다. 예를 들면, 상기 재료로는, SiO2, ACL(Amorphous carbon layer), SOG(Pin-on-glass), SOC(Spin-on-carbon) 또는 질화 규소(silicon nitride) 등이 적용될 수 있다. 이러한 재료의 층은, 예를 들면, 스핀 코팅 등의 방식에 의해 코팅되거나, CVD(Chemical Vapor Deposition) 등의 증착 방식으로 형성될 수 있다. 상기 재료의 층이 형성 시에 그 두께 등은 특별히 제한되지 않고, 목적하는 메사 구조의 높이(H)를 고려하여 적정 두께로 형성될 수 있다.The kind of the mesa structure forming material is not particularly limited. For example, as described later, the layer of the material is etched by an etching process using the patterned resist layer as a mask to form a mesa structure. In this process, a material that can be etched suitably is used . For example, SiO 2 , amorphous carbon layer (ACL), pin-on-glass (SOG), spin-on-carbon (SOC) or silicon nitride may be used as the material. The layer of such a material may be coated by a method such as spin coating or may be formed by a deposition method such as CVD (Chemical Vapor Deposition). When the layer of the material is formed, its thickness and the like are not particularly limited, and may be formed to have an appropriate thickness in consideration of the height H of the desired mesa structure.

메사 구조 형성 재료의 층의 상부에 반사 방지층(Antireflection layer)이 형성될 수 있다. 반사 방지층은, 예를 들면, 규소 재료(Si)를 사용하여 SiARC로 형성할 수 있으며, 이 외에도 공지의 다른 재료가 모두 적용될 수 있다. 반사 방지층은, 공지의 코팅 또는 증착 방식에 의해 형성할 수 있다.An antireflection layer may be formed on top of the layer of the mesa structure forming material. The antireflection layer may be formed of SiARC using, for example, a silicon material (Si), and other known materials may be used. The antireflection layer can be formed by a known coating or vapor deposition method.

반사 방지층상에 레지스트층이 형성될 수 있다. 레지스트층은, 공지의 재료, 예를 들면, 공지의 리소그래피(lithographic process) 방식에 의해 패턴화될 수 있는 재료를 사용하여 형성될 수 있다. 이러한 레지스트층은, 공지의 리소그래피 방식에 의해 패턴화될 수 있고, 이와 같이 패턴화된 레지스트층은 이어지는 메사 형성 과정에서 마스크로 적용될 수 있다. 상기 레지스트층의 패턴화는 후속하는 에칭 공정에서 메사 구조의 치수가 목적하는 수준으로 조절될 수 있도록 수행될 수 있다.A resist layer may be formed on the antireflective layer. The resist layer can be formed using a known material, for example, a material that can be patterned by a known lithographic process method. Such a resist layer can be patterned by a known lithography method, and the patterned resist layer can be applied as a mask in the subsequent mesa formation process. The patterning of the resist layer may be performed so that the dimensions of the mesa structure can be adjusted to a desired level in a subsequent etching process.

레지스트층의 패턴화에 이어서 상기 패턴화된 레지스트층을 에칭 마스크(etch mask)로 적용한 에칭 공정이 수행될 수 있고, 이 에칭 과정에서 상기 마스크(etch mask)에 의해 보호된 영역을 제외한 영역의 반사 방지층과 메사 형성 재료의 층이 에칭될 수 있다. 이러한 에칭은, 공지의 에칭 방식으로 수행될 수 있고, 예를 들면, RIE(reactive ion etching) 방식에 의해 수행될 수 있다. 이러한 에칭에 의해 전술한 메사 구조가 형성되고, 그에 의해 트렌치가 형성될 수 있다. 상기 에칭은 상기 마스크(etch mask)에 의해 보호되지 않은 영역의 메사 형성 재료가 모두 제거될 때까지 수행될 수도 있고, 상기 재료가 일부 잔존하도록 형성될 수 있다. 따라서, 상기 트렌치는 상기 메사 구조의 측벽과 그 간격 사이의 기판의 표면에 의해 형성될 수도 있고, 상기 메사 구조의 측벽과 그 간격 사이의 상기 메사 구조 형성 재료의 표면에 형성될 수 있다.An etching process in which the patterned resist layer is applied as an etch mask may be performed following the patterning of the resist layer, and in this etching process, the reflection of a region excluding the region protected by the etch mask A layer of the barrier layer and the mesa forming material may be etched. This etching can be performed by a known etching method, and can be performed, for example, by a reactive ion etching (RIE) method. By such etching, the above-described mesa structure is formed, whereby a trench can be formed. The etching may be performed until all of the mesa forming material in the region not protected by the etch mask is removed, and the etching may be performed so that a part of the material remains. Thus, the trench may be formed by the surface of the substrate between the sidewalls of the mesa structure and its spacing, and may be formed on the surface of the mesa structure forming material between the sidewalls of the mesa structure and the spacing.

기판의 표면의 각각 1층의 메사 형성 재료의 층과 반사 방지층이 형성되고, 리소그래피가 진행되는 것을 기초로 내용을 설명하였으나, 필요한 경우에 상기 메사 형성 재료의 층과 반사 방지층은 각각 2층 이상이 번갈아 형성될 수도 있다.The description has been made on the basis that the antireflection layer and the layer of the mesa forming material in one layer on the surface of the substrate are formed and the lithography proceeds. However, if necessary, the layer of the mesa forming material and the antireflection layer Alternatively.

상기와 같이 형성된 트렌치 내에서 형성되는 자기 조립 구조는, 전술한 바와 같이 수직 배향된 블록 공중합체를 포함할 수 있다.The self-assembled structure formed in the trenches formed as described above may comprise a vertically oriented block copolymer as described above.

트렌치 내에서 형성되는 블록 공중합체의 자기 조립 구조는, 예를 들면, 스피어(sphere), 실린더(cylinder), 자이로이드(gyroid) 또는 라멜라(lamellar) 등일 수 있고, 일 예시에서는 라멜라 구조일 수 있지만, 이에 제한되는 것은 아니다. 예를 들어, 블록 공중합체로 제 1 및 제 2 블록을 포함하는 블록 공중합체가 사용되는 경우, 상기 제 1 또는 제 2 블록 또는 그와 공유 결합된 다른 블록의 세그먼트 내에서 다른 세그먼트가 라멜라 형태 또는 실린더 형태 등과 같은 규칙적인 구조를 형성하고 있을 수 있다.The self-assembled structure of the block copolymer formed in the trench may be, for example, a sphere, a cylinder, a gyroid or a lamellar, and may be a lamellar structure in one example , But is not limited thereto. For example, when a block copolymer comprising first and second blocks is used as a block copolymer, other segments within the segments of the first or second block, or another block covalently bonded therewith, And may form a regular structure such as a cylinder shape or the like.

상기 산소 플라즈마 처리된 기판의 표면에 침착되는 상기 블록 공중합체로, 후술하는 각 파라미터 중에서 적어도 하나를 만족하는 블록 공중합체를 사용할 수 있다. 이러한 블록 공중합체는 상기 산소 플라즈마 처리 외에는 중성 처리가 수행되지 않은 기판 표면상에서도 수직 배향된 자기 조립 구조를 형성할 수 있다. 하기 기술된 각 파라미터는 병렬적인 것이며, 수직 배향된 자기 조립 구조의 형성에 있어서 어느 하나의 파라미터가 다른 파라미터에 비하여 우선 순위를 가지는 것은 아니다. 또한, 블록 공중합체는 하기 기술하는 각 파라미터 중 어느 하나만을 만족하거나, 혹은 2개 이상을 선택적으로 만족할 수 있다.The block copolymer deposited on the surface of the substrate subjected to the oxygen plasma treatment may be a block copolymer satisfying at least one of the parameters described below. Such a block copolymer can form a vertically oriented self-assembled structure on the surface of the substrate on which the neutral treatment is not performed other than the oxygen plasma treatment. Each of the parameters described below is in parallel, and in forming a vertically oriented self-assembled structure, one parameter does not have priority over other parameters. The block copolymer may satisfy either one of the parameters described below or two or more of the parameters.

예를 들면, 상기 블록 공중합체는, XRD 분석(X선 회절 분석, X-ray Diffraction analysis) 시에 소정 범위의 산란 벡터(q) 내에서 적어도 하나의 피크를 나타낼 수 있다.For example, the block copolymer may exhibit at least one peak within a predetermined range of scattering vector (q) during XRD analysis (X-ray diffraction analysis, X-ray diffraction analysis).

예를 들면, 상기 블록 공중합체는, X선 회절 분석에서 0.5 nm-1 내지 10 nm-1의 산란 벡터(q) 범위 내에서 적어도 하나의 피크를 나타낼 수 있다. 상기 피크가 나타나는 산란 벡터(q)은 다른 예시에서 0.7 nm-1 이상, 0.9 nm-1 이상, 1.1 nm-1 이상, 1.3 nm-1 이상 또는 1.5 nm-1 이상일 수 있다. 상기 피크가 나타나는 산란 벡터(q)은 다른 예시에서 9 nm-1 이하, 8 nm-1 이하, 7 nm-1 이하, 6 nm-1 이하, 5 nm-1 이하, 4 nm-1 이하, 3.5 nm-1 이하 또는 3 nm-1 이하일 수 있다. For example, the block copolymer may exhibit at least one peak within the range of the scattering vector (q) of 0.5 nm -1 to 10 nm -1 in the X-ray diffraction analysis. The scattering vector q at which the peak appears may be 0.7 nm -1 or more, 0.9 nm -1 or more, 1.1 nm -1 or more, 1.3 nm -1 or 1.5 nm -1 or more in another example. In another example, the scattering vector q at which the peak appears may be 9 nm -1 or less, 8 nm -1 or less, 7 nm -1 or less, 6 nm -1 or less, 5 nm -1 or less, 4 nm -1 or less, 3.5 nm -1 or 3 nm -1 or less.

상기 산란 벡터(q)의 범위 내에서 확인되는 피크의 반높이 너비(Full width at half maximum, FWHM)는, 0.2 내지 0.9 nm-1의 범위 내일 수 있다. 상기 반높이 너비는 다른 예시에서 0.25 nm-1 이상, 0.3 nm-1 이상 또는 0.4 nm-1 이상일 수 있다. 상기 반높이 너비는 다른 예시에서 0.85 nm-1 이하, 0.8 nm-1 이하 또는 0.75 nm-1 이하일 수 있다. The full width at half maximum (FWHM) of the peak identified within the range of the scattering vector (q) may be in the range of 0.2 to 0.9 nm -1 . The half-height width may be at least 0.25 nm -1, at least 0.3 nm -1, or at least 0.4 nm -1 in other examples. The half-height width may be 0.85 nm -1 or less, 0.8 nm -1 or 0.75 nm -1 or less in other examples.

본 출원에서 용어 반높이 너비는, 최대 피크의 강도의 1/2의 강도를 나타내는 위치에서의 피크의 너비(산란 벡터(q)의 차이)를 의미할 수 있다.The term half-height width in the present application may mean the width of the peak (the difference in the scattering vector q) at a position showing the intensity of 1/2 of the intensity of the maximum peak.

XRD 분석에서의 상기 산란 벡터(q) 및 반높이 너비는, 후술하는 XRD 분석에 의해 얻어진 결과를 최소 좌승법을 적용한 수치 분석학적인 방식으로 구한 수치이다. 상기 방식에서는 XRD 회절 패턴에서 가장 최소의 강도(intensity)를 보이는 부분을 베이스라인(baseline)으로 잡아 상기에서의 강도(intensity)를 0으로 되게 한 상태에서 상기 XRD 패턴 피크의 프로파일을 가우시안 피팅(Gaussian fitting)한 후, 피팅된 결과로부터 상기 산란 벡터와 반높이 너비를 구할 수 있다. 상기 가우시안 피팅 시에 R 제곱(R square)은 적어도 0.9 이상, 0.92 이상, 0.94 이상 또는 0.96 이상이다. XRD 분석으로부터 상기 정보를 얻을 수 있는 방식은 공지이며, 예를 들면, 오리진(origin) 등의 수치 해석 프로그램을 적용할 수 있다.The scattering vector (q) and the half-height width in the XRD analysis are numerical values obtained by a numerical analytical method using a minimum left-hand method, as a result of XRD analysis described later. In this method, a portion showing the smallest intensity in the XRD diffraction pattern is taken as a baseline, and the intensity of the XRD pattern peak is set to a Gaussian and the scattering vector and the half height width can be obtained from the fitted results. The R square at the time of Gaussian fitting is at least 0.9, at least 0.92, at least 0.94, or at least 0.96. A method of obtaining the above information from the XRD analysis is known, and for example, a numerical analysis program such as an origin can be applied.

상기 산란 벡터(q)의 범위 내에서 상기 반높이 너비의 피크를 나타내는 블록 공중합체는, 자기 조립에 적합한 결정성 부위를 포함할 수 있다. 상기 기술한 산란 벡터(q)의 범위 내에서 확인되는 블록 공중합체는 우수한 자기 조립 특성을 나타낼 수 있다.The block copolymer exhibiting the half height width peak within the range of the scattering vector (q) may include a crystalline portion suitable for self-assembly. The block copolymer identified within the scope of the above-described scattering vector (q) can exhibit excellent self-assembling properties.

XRD 분석은 블록 공중합체 시료에 X선을 투과시킨 후에 산란 벡터에 따른 산란 강도를 측정하여 수행할 수 있다. XRD 분석은 블록 공중합체에 대하여 특별한 전 처리 없이 수행할 수 있으며, 예를 들면, 블록 공중합체를 적절한 조건에서 건조한 후에 X선에 투과시켜 수행할 수 있다. X선으로는 수직 크기가 0.023 mm이고, 수평 크기가 0.3 mm인 X선을 적용할 수 있다. 측정 기기(예를 들면, 2D marCCD)를 사용하여 시료에서 산란되어 나오는 2D 회절 패턴을 이미지로 얻고, 얻어진 회절 패턴을 전술한 방식으로 피팅(fitting)하여 산란 벡터 및 반높이 너비 등을 구할 수 있다.XRD analysis can be performed by passing X-rays through a block copolymer sample and measuring the scattering intensity according to the scattering vector. XRD analysis can be performed on the block copolymer without any special pretreatment, for example, after the block copolymer is dried under suitable conditions and then transmitted through X-rays. An X-ray having a vertical size of 0.023 mm and a horizontal size of 0.3 mm can be applied. A 2D diffraction pattern that is scattered in the sample is obtained as an image by using a measuring device (for example, 2D marCCD), and the obtained diffraction pattern is fitted in the above-described manner to obtain a scattering vector, a half-height width, .

후술하는 바와 같이 블록 공중합체의 적어도 하나의 블록이 상기 사슬을 포함하는 경우에, 상기 상기 사슬의 사슬 형성 원자의 수(n)는, 상기 X선 회절 분석에 의해 구해지는 산란 벡터(q)와 하기 수식 1을 만족할 수 있다.As will be described later, when at least one block of the block copolymer contains the chain, the number (n) of chain-forming atoms of the chain is determined by the scattering vector (q) obtained by the X- The following equation (1) can be satisfied.

[수식 1][Equation 1]

3 nm-1 내지 5 nm-1 = nq/(2×π)3 nm -1 to 5 nm -1 = nq / (2 x π)

수식 1에서 n은 상기 사슬 형성 원자의 수이고, q는, 상기 블록 공중합체에 대한 X선 회절 분석에서 피크가 관찰되는 가장 작은 산란 벡터(q)이거나, 혹은 가장 큰 피크 면적의 피크가 관찰되는 산란 벡터(q)이다. 또한, 수식 1에서 π는, 원주율을 의미한다. In the formula 1, n is the number of the chain-forming atoms and q is the smallest scattering vector (q) in which the peak is observed in the X-ray diffraction analysis of the block copolymer, or a peak of the largest peak area is observed Is a scattering vector (q). In Equation (1),? Represents the circularity.

수식 1에 도입되는 산란 벡터 등은 전술한 X선 회절 분석 방식에서 언급한 바와 같은 방식에 따라 구한 수치이다.The scattering vector or the like introduced into the formula (1) is a value obtained by the method mentioned in the above-mentioned X-ray diffraction analysis method.

수식 1에서 도입되는 산란 벡터(q)는, 예를 들면, 0.5 nm-1 내지 10 nm-1의 범위 내의 산란 벡터(q)일 수 있다. 상기 수식 1에 도입되는 산란 벡터(q)는 다른 예시에서 0.7 nm-1 이상, 0.9 nm-1 이상, 1.1 nm-1 이상, 1.3 nm-1 이상 또는 1.5 nm-1 이상일 수 있다. 상기 수식 1에 도입되는 산란 벡터(q)는 다른 예시에서 9 nm-1 이하, 8 nm-1 이하, 7 nm-1 이하, 6 nm-1 이하, 5 nm-1 이하, 4 nm-1 이하, 3.5 nm-1 이하 또는 3 nm-1 이하일 수 있다.The scattering vector q introduced in Equation 1 may be, for example, a scattering vector q within a range of 0.5 nm -1 to 10 nm -1 . In another example, the scattering vector q introduced into Equation 1 may be 0.7 nm -1 or more, 0.9 nm -1 or more, 1.1 nm -1 or more, 1.3 nm -1 or 1.5 nm -1 or more. In another example, the scattering vector q introduced into the above formula 1 is 9 nm -1 or less, 8 nm -1 or less, 7 nm -1 or less, 6 nm -1 or less, 5 nm -1 or less, 4 nm -1 or less , 3.5 nm -1 or less, or 3 nm -1 or less.

수식 1은, 블록 공중합체가 자기 조립되어 상분리 구조를 형성하였을 경우에 상기 상기 사슬이 포함되어 있는 블록간의 간격(D)과 상기 상기 사슬의 사슬 형성 원자의 수의 관계를 나타내며, 상기 사슬을 가지는 블록 공중합체에서 상기 상기 사슬의 사슬 형성 원자의 수가 상기 수식 1을 만족하는 경우에 상기 상기 사슬이 나타내는 결정성이 증대되고, 그에 따라 블록 공중합체의 상분리 특성 내지는 수직 배향성이 크게 향상될 수 있다. 상기 수식 1에 따른 nq/(2×π)는, 다른 예시에서 4.5 nm-1 이하일 수도 있다. 상기에서 상기 사슬이 포함되어 있는 블록간의 간격(D, 단위: nm)은, 수식 D=2×π/q로 계산될 수 있고, 상기에서 D는 상기 블록간의 간격(D, 단위: nm)이고, π 및 q는 수식 1에서 정의된 바와 같다.(1) represents the relationship between the distance (D) between the blocks in which the chain is included and the number of chain forming atoms of the chain when the block copolymer is self-assembled to form a phase separation structure, When the number of chain-forming atoms of the chain in the block copolymer satisfies the above-mentioned formula 1, the crystallinity exhibited by the chain is increased, and thus the phase-separating property or the vertical orientation of the block copolymer can be greatly improved. The nq / (2 x pi) according to the above formula 1 may be 4.5 nm -1 or less in another example. (D, unit: nm) between the blocks including the chain can be calculated by the following equation: D = 2 x? / Q where D is the interval (D, unit: nm) between the blocks , < / RTI > and < RTI ID = 0.0 > q < / RTI >

본 출원의 하나의 측면에서는, 블록 공중합체는, 제 1 블록과 상기 블록과는 다른 제 2 블록을 포함할 수 있다. 상기에서 제 1 블록의 표면 에너지와 상기 제 2 블록의 표면 에너지의 차이의 절대값이 10 mN/m 이하, 9 mN/m 이하, 8 mN/m 이하, 7.5 mN/m 이하 또는 7 mN/m 이하일 수 있다. 상기 표면 에너지의 차이의 절대값은 1.5 mN/m, 2 mN/m 또는 2.5 mN/m 이상일 수 있다. 이러한 범위의 표면 에너지의 차이의 절대값을 가지는 제 1 블록과 제 2 블록이 공유 결합에 의해 연결된 구조는, 적절한 비상용성으로 인한 상분리에 의해 효과적인 미세상분리(microphase seperation)를 유도할 수 있다. 상기에서 제 1 블록은, 예를 들면, 전술한 상기 사슬을 가지는 블록일 수 있다.In one aspect of the present application, the block copolymer may comprise a first block and a second block different from the block. The absolute value of the difference between the surface energy of the first block and the surface energy of the second block is 10 mN / m or lower, 9 mN / m or lower, 8 mN / m or lower, 7.5 mN / m or 7 mN / m ≪ / RTI > The absolute value of the difference in surface energy may be 1.5 mN / m, 2 mN / m or 2.5 mN / m or more. The structure in which the first block and the second block having the absolute value of the difference in surface energy in this range are connected by covalent bonding can induce effective microphase seperation by phase separation due to proper non-availability. In the above, the first block may be, for example, a block having the chain described above.

표면 에너지는 물방울형 분석기(Drop Shape Analyzer, KRUSS사의 DSA100제품)를 사용하여 측정할 수 있다. 구체적으로 표면 에너지는 측정하고자 하는 대상 시료(블록 공중합체 또는 단독 중합체)를 플루오르벤젠(flourobenzene)에 약 2 중량%의 고형분 농도로 희석시킨 코팅액을 기판에 약 50nm의 두께와 4 cm2의 코팅 면적(가로: 2cm, 세로: 2cm)으로 상온에서 약 1 시간 정도 건조시킨 후에 160°C에서 약 1시간 동안 열적 숙성(thermal annealing)시킨 막에 대하여 측정할 수 있다. 열적 숙성을 거친 상기 막에 표면 장력(surface tension)이 공지되어 있는 탈이온화수를 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구하고, 동일하게, 표면 장력이 공지되어 있는 디요오드메탄(diiodomethane)을 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구한다. 그 후, 구해진 탈이온화수와 디요오드메탄에 대한 접촉각의 평균치를 이용하여 Owens-Wendt-Rabel-Kaelble 방법에 의해 용매의 표면 장력에 관한 수치(Strom 값)를 대입하여 표면 에너지를 구할 수 있다. 블록 공중합체의 각 블록에 대한 표면 에너지의 수치는, 상기 블록을 형성하는 단량체만으로 제조된 단독 중합체(homopolymer)에 대하여 상기 기술한 방법으로 구할 수 있다. 특별히 달리 규정하지 않는 한, 본 출원에서 접촉각 등과 같이 온도에 의해 변할 수 있는 물성은 상온에서 측정한 수치이다. 용어 상온은, 가온 또는 감온되지 않은 자연 그대로의 온도이고, 약 10℃ 내지 30℃, 약 25℃ 또는 약 23℃의 온도를 의미할 수 있다.Surface energy can be measured using a Drop Shape Analyzer (DSA100, KRUSS). Specifically, the surface energy of a sample solution (block copolymer or homopolymer) to be measured is diluted with fluorobenzene to a solid concentration of about 2% by weight, and the coating solution is applied to the substrate with a thickness of about 50 nm and a coating area of 4 cm 2 (2 cm in length, 2 cm in length) and dried at room temperature for about 1 hour and then thermally annealed at 160 ° C for about 1 hour. The process of dropping the deionized water whose surface tension is known in the film subjected to thermal aging and obtaining the contact angle is repeated 5 times to obtain an average value of the obtained five contact angle values and similarly, The process of dropping the known diiodomethane and determining the contact angle thereof is repeated five times, and an average value of the obtained five contact angle values is obtained. Thereafter, the surface energy can be obtained by substituting the value (Strom value) of the surface tension of the solvent by the Owens-Wendt-Rabel-Kaelble method using the average value of the contact angle with the deionized water and diiodo methane obtained. The numerical value of the surface energy for each block of the block copolymer can be obtained by the method described above for a homopolymer produced only of the monomers forming the block. Unless otherwise specified, physical properties such as contact angle and the like which can be changed by temperature are measured values at room temperature. The term ambient temperature is a natural, non-warming or non-warming temperature and can refer to a temperature of about 10 ° C to 30 ° C, about 25 ° C, or about 23 ° C.

블록 공중합체가 전술한 상기 사슬을 포함하는 경우에 상기 상기 사슬이 포함되어 있는 블록은 다른 블록에 비하여 높은 표면 에너지를 가질 수 있다. 예를 들어, 블록 공중합체의 제 1 블록이 상기 사슬을 포함한다면, 제 1 블록은 제 2 블록에 비하여 높은 표면 에너지를 가질 수 있다. 이러한 경우에 제 1 블록의 표면 에너지는, 약 20 mN/m 내지 40 mN/m의 범위 내에 있을 수 있다. 상기 제 1 블록의 표면 에너지는, 22 mN/m 이상, 24 mN/m 이상, 26 mN/m 이상 또는 28 mN/m 이상일 수 있다. 상기 제 1 블록의 표면 에너지는, 38 mN/m 이하, 36 mN/m 이하, 34 mN/m 이하 또는 32 mN/m 이하일 수 있다. 이러한 제 1 블록이 포함되고, 제 2 블록과 상기와 같은 표면 에너지의 차이를 나타내는 블록 공중합체은, 우수한 자기 조립 특성을 나타낼 수 있다.When the block copolymer includes the above-mentioned chain, the block including the chain may have a higher surface energy than other blocks. For example, if the first block of the block copolymer comprises the chain, the first block may have a higher surface energy than the second block. In this case, the surface energy of the first block may be in the range of about 20 mN / m to 40 mN / m. The surface energy of the first block may be greater than or equal to 22 mN / m, greater than or equal to 24 mN / m, greater than or equal to 26 mN / m, or greater than or equal to 28 mN / m. The surface energy of the first block may be 38 mN / m or less, 36 mN / m or less, 34 mN / m or less, or 32 mN / m or less. The first block is included, and the block copolymer showing the difference in surface energy as the second block and the like can exhibit excellent self-assembling properties.

하나의 측면에서 블록 공중합체는 제 1 블록과 상기 제 1 블록과는 다른 제 2 블록을 포함하고, 상기 제 1 블록과 제 2 블록의 밀도의 차이의 절대값은 0.25 g/cm3 이상, 0.3 g/cm3 이상, 0.35 g/cm3 이상, 0.4 g/cm3 이상 또는 0.45 g/cm3 이상일 수 있다. 상기 밀도의 차이의 절대값은 0.9 g/cm3 이상, 0.8 g/cm3 이하, 0.7 g/cm3 이하, 0.65 g/cm3 이하 또는 0.6 g/cm3 이하일 수 있다. 이러한 범위의 밀도차의 절대값을 가지는 제 1 블록과 제 2 블록이 공유 결합에 의해 연결된 구조는, 적절한 비상용성으로 인한 상분리에 의해 효과적인 미세상분리(microphase seperation)를 유도할 수 있다. 상기 블록 공중합체의 각 블록의 밀도는 공지의 부력법을 이용하여 측정할 수 있으며, 예를 들면, 에탄올과 같이 공기 중에서의 질량과 밀도를 알고 있는 용매 내에서의 블록 공중합체의 질량을 분석하여 밀도를 측정할 수 있다.On one side of the block copolymer is the absolute value of the difference between the density of the first blocks, included in the other second blocks, and one block to the first block and the second block is 0.25 g / cm 3 or more, 0.3 g / cm 3 or more, 0.35 g / cm 3 or more, 0.4 g / cm 3 or more, or 0.45 g / cm 3 or more. The absolute value of the density difference may be 0.9 g / cm 3 or more, 0.8 g / cm 3 or less, 0.7 g / cm 3 or less, 0.65 g / cm 3 or less, or 0.6 g / cm 3 or less. The structure in which the first block having the absolute value of the density difference in this range and the second block are connected by the covalent bond can induce an effective microphase seperation by phase separation due to suitable non-availability. The density of each block of the block copolymer can be measured by a known buoyancy method. For example, the mass of the block copolymer in a solvent such as ethanol, which is known in mass and density in air, is analyzed The density can be measured.

블록 공중합체가 전술한 상기 사슬을 포함하는 경우에 상기 사슬이 포함되어 있는 블록은 다른 블록에 비하여 낮은 밀도를 가질 수 있다. 예를 들어, 블록 공중합체의 제 1 블록이 상기 사슬을 포함한다면, 제 1 블록은 제 2 블록에 비하여 낮은 밀도를 가질 수 있다. 이러한 경우에 제 1 블록의 밀도는, 약 0.9 g/cm3 내지 1.5 g/cm3 정도의 범위 내에 있을 수 있다. 상기 제 1 블록의 밀도는, 0.95 g/cm3 이상일 수 있다. 상기 제 1 블록의 밀도는, 1.4 g/cm3 이하, 1.3 g/cm3 이하, 1.2 g/cm3 이하, 1.1 g/cm3 이하 또는 1.05 g/cm3 이하일 수 있다. 이러한 제 1 블록이 포함되고, 제 2 블록과 상기와 같은 밀도차이를 나타내는 블록 공중합체은, 우수한 자기 조립 특성을 나타낼 수 있다. 상기 언급된 표면 에너지와 밀도는, 상온에서 측정한 수치일 수 있다.When the block copolymer includes the above-mentioned chain, the block including the chain may have a lower density than the other blocks. For example, if the first block of the block copolymer comprises the chain, the first block may have a lower density than the second block. In this case, the density of the first block is about 0.9 g / cm3 To 1.5 g / cm3 Or more. The density of the first block is preferably 0.95 g / cm3 Or more. The density of the first block is 1.4 g / cm3 Or less, 1.3 g / cm3 Or less, 1.2 g / cm3 , 1.1 g / cm3 Or less or 1.05 g / cm3 ≪ / RTI > Such a first block is included, and a block copolymer exhibiting such a density difference with the second block can exhibit excellent self-assembling properties. The above-mentioned surface energy and density may be values measured at room temperature.

블록 공중합체는, 부피 분율이 0.4 내지 0.8의 범위 내에 있는 제 1 블록과, 부피 분율이 0.2 내지 0.6의 범위 내에 있는 제 2 블록을 포함할 수 있다. 블록 공중합체가 상기 사슬을 포함하는 경우, 상기 사슬을 가지는 블록의 부피 분율이 0.4 내지 0.8의 범위 내에 있을 수 있다. 예를 들어, 상기 사슬이 제 1 블록에 포함되는 경우에 제 1 블록의 부피 분율이 0.4 내지 0.8의 범위 내이고, 제 2 블록의 부피 분율이 0.2 내지 0.6의 범위 내에 있을 수 있다. 제 1 블록과 제 2 블록의 부피 분율의 합은 1일 수 있다. 상기와 같은 부피 분율로 각 블록을 포함하는 블록 공중합체는 우수한 자기 조립 특성을 나타낼 수 있다. 블록 공중합체의 각 블록의 부피 분율은 각 블록의 밀도와 GPC(Gel Permeation Chromatogrph)에 의해 측정되는 분자량을 토대로 구할 수 있다.The block copolymer may include a first block having a volume fraction falling within a range of 0.4 to 0.8 and a second block having a volume fraction falling within a range of 0.2 to 0.6. When the block copolymer comprises the chain, the volume fraction of the block having the chain may be in the range of 0.4 to 0.8. For example, when the chain is included in the first block, the volume fraction of the first block may be in the range of 0.4 to 0.8, and the volume fraction of the second block may be in the range of 0.2 to 0.6. The sum of the volume fractions of the first block and the second block may be one. The block copolymer containing each block in the above volume fraction can exhibit excellent self-assembling properties. The volume fraction of each block of the block copolymer can be determined based on the density of each block and the molecular weight measured by GPC (Gel Permeation Chromatography).

전술한 파라미터 중 하나 이상을 만족하는 블록 공중합체는 후술하는 구조를 가지는 블록 공중합체일 수 있다.The block copolymer satisfying at least one of the above-mentioned parameters may be a block copolymer having a structure described below.

예를 들면, 상기 블록 공중합체는, 하기 화학식 1로 표시되는 블록을 적어도 포함할 수 있다.For example, the block copolymer may include at least a block represented by the following general formula (1).

[화학식 1][Chemical Formula 1]

Figure pat00001
Figure pat00001

화학식 1에서 R은 수소 또는 알킬기이고, X는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 X1은 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, Y는 사슬 형성 원자를 가지는 사슬이 연결된 고리 구조를 포함하는 1가 치환기이다.X is a single bond, an oxygen atom, a sulfur atom, -S (= O) 2- , a carbonyl group, an alkylene group, an alkenylene group, an alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) - is, in the X 1 is an oxygen atom, sulfur atom, -S (= O) 2 -, and the alkylene, alkenylene or alkynylene group, Y Is a monovalent substituent group including a ring structure having a chain having a chain forming atom linked thereto.

화학식 1에서 Y는 적어도 고리 구조를 포함하는 치환기이고, 예를 들어 상기 고리 구조가 방향족 고리인 경우 상기 사슬 형성 원자의 수는 3개 이상일 수 있고, 고리 구조가 지환족 고리 구조인 경우에 상기 사슬 형성 원자의 수는 8개 이상일 수 있다. 상기 고리 구조가 방향족 고리 구조인 경우에도 사슬 형성 원자는 5개 이상, 7개 이상 또는 8개 이상일 수 있다.In formula (1), Y is a substituent containing at least a cyclic structure. For example, when the cyclic structure is an aromatic ring, the number of the chain-forming atoms may be 3 or more. When the cyclic structure is an alicyclic ring structure, The number of forming atoms may be eight or more. Even when the ring structure is an aromatic ring structure, the chain forming atoms may be 5 or more, 7 or 8 or more.

화학식 1에서 X는 다른 예시에서 단일 결합, 산소 원자, 카보닐기, -C(=O)-O- 또는 -O-C(=O)-이거나, -C(=O)-O-일 수 있지만, 이에 제한되는 것은 아니다.X in the formula 1 may be a single bond, an oxygen atom, a carbonyl group, -C (= O) -O- or -OC (= O) - or -C (= O) -O- in another example, But is not limited to.

화학식 1에서 Y의 1가 치환기는, 적어도 3개 또는 8개의 사슬 형성 원자로 형성되는 사슬 구조를 포함한다.The monovalent substituent of Y in formula (1) includes a chain structure formed by at least three or eight chain-forming atoms.

본 출원에서 용어 사슬 형성 원자는, 소정 사슬의 직쇄 구조를 형성하는 원자를 의미한다. 상기 사슬은 직쇄형이거나, 분지형일 수 있으나, 사슬 형성 원자의 수는 가장 긴 직쇄를 형성하고 있는 원자의 수만으로 계산되며, 상기 사슬 형성 원자에 결합되어 있는 다른 원자(예를 들면, 사슬 형성 원자가 탄소 원자인 경우에 그 탄소 원자에 결합하고 있는 수소 원자 등)는 계산되지 않는다. 또한, 분지형 사슬인 경우에 상기 사슬 형성 원자의 수는 가장 긴 사슬을 형성하고 있는 사슬 형성 원자의 수로 계산될 수 있다. 예를 들어, 상기 사슬이 n-펜틸기인 경우에 사슬 형성 원자는 모두 탄소로서 그 수는 5이고, 상기 사슬이 2-메틸펜틸기인 경우에도 사슬 형성 원자는 모두 탄소로서 그 수는 5이다. 상기 사슬 형성 원자로는, 탄소, 산소, 황 또는 질소 등이 예시될 수 있고, 적절한 사슬 형성 원자는 탄소, 산소 또는 질소이거나, 탄소 또는 산소일 수 있다. 상기 사슬 형성 원자의 수는 3 이상, 5 이상, 7 이상, 8 이상, 9 이상, 10 이상, 11 이상 또는 12 이상일 수 있다. 상기 사슬 형성 원자의 수는, 또한 30 이하, 25 이하, 20 이하 또는 16 이하일 수 있다. 상기 사슬 형성 원자의 적절한 하한은 전술한 바와 같이 고리 구조의 종류에 따라서 결정될 수 있다.The term chain forming atom in the present application means an atom forming a straight chain structure of a certain chain. The number of chain-forming atoms is calculated by the number of atoms forming the longest straight chain, and the number of the other atoms bonded to the chain-forming atoms (for example, the chain- A hydrogen atom bonded to the carbon atom in the case of a carbon atom, etc.) is not calculated. Also, in the case of a branched chain, the number of chain-forming atoms can be calculated as the number of chain-forming atoms forming the longest chain. For example, when the chain is an n-pentyl group, all of the chain-forming atoms are carbon, the number is 5, and even if the chain is a 2-methylpentyl group, all the chain-forming atoms are carbon, The chain-forming atom may be exemplified by carbon, oxygen, sulfur or nitrogen, and a suitable chain-forming atom may be carbon, oxygen or nitrogen, or carbon or oxygen. The number of chain-forming atoms may be 3 or more, 5 or more, 7 or more, 8 or more, 9 or more, 10 or more, 11 or 12 or more. The number of the chain-forming atoms may be 30 or less, 25 or less, 20 or less, or 16 or less. The appropriate lower limit of the chain-forming atoms may be determined according to the type of ring structure as described above.

화학식 1의 블록은 블록 공중합체가 우수한 자기 조립 특성을 나타내고, 전술한 파라미터를 만족하도록 할 수 있다.The block of formula (1) exhibits excellent self-assembling properties of the block copolymer and can satisfy the above-mentioned parameters.

하나의 예시에서 상기 사슬은, 직쇄 알킬기와 같은 직쇄 탄화수소 사슬일 수 있다. 이러한 경우에 알킬기는, 탄소수 3 이상, 탄소수 5 이상, 탄소수 7 이상 탄소수 8 이상, 탄소수 8 내지 30, 탄소수 8 내지 25, 탄소수 8 내지 20 또는 탄소수 8 내지 16의 알킬기일 수 있다. 상기 알킬기의 탄소 원자 중 하나 이상은 임의로 산소 원자로 치환되어 있을 수 있고, 상기 알킬기의 적어도 하나의 수소 원자는 임의적으로 다른 치환기에 의해 치환되어 있을 수 있다.In one example, the chain may be a straight chain hydrocarbon chain such as a straight chain alkyl group. In this case, the alkyl group may be an alkyl group having 3 or more carbon atoms, 5 or more carbon atoms, 7 or more carbon atoms, 8 or more carbon atoms, 8 to 30 carbon atoms, 8 to 25 carbon atoms, 8 to 20 carbon atoms, or 8 to 16 carbon atoms. At least one of the carbon atoms of the alkyl group may optionally be substituted with an oxygen atom, and at least one hydrogen atom of the alkyl group may be optionally substituted by another substituent.

화학식 1에서 Y는 고리 구조를 포함하고, 상기 사슬은 상기 고리 구조에 연결되어 있을 수 있다. 이러한 고리 구조에 의해 블록 공중합체의 자기 조립 특성 등이 보다 향상될 수 있다. 고리 구조는 방향족 구조이거나, 지환족 구조일 수 있다.In Formula (1), Y may include a cyclic structure, and the chain may be connected to the cyclic structure. Such a ring structure can further improve the self-assembling property and the like of the block copolymer. The ring structure may be an aromatic structure or an alicyclic structure.

상기 사슬은 상기 고리 구조에 직접 연결되어 있거나, 혹은 링커를 매개로 연결되어 있을 수 있다. 상기 링커로는, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-가 예시될 수 있고, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기일 수 있으며, X1은 단일 결합, 산소 원자, 황 원자, -NR2-, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기일 수 있고, 상기에서 R2는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기일 수 있다. 적절한 링커로는 산소 원자 또는 질소 원자가 예시될 수 있다. 상기 사슬은, 예를 들면, 산소 원자 또는 질소 원자를 매개로 방향족 구조에 연결되어 있을 수 있다. 이러한 경우에 상기 링커는 산소 원자이거나, -NR1-(상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기)일 수 있다.The chain may be directly connected to the ring structure, or may be connected via a linker. The linker is an oxygen atom, a sulfur atom, -NR 1 -, -S (= O) 2 -, a carbonyl group, an alkylene group, alkenylene group, alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) - can be exemplified, and in the R 1 can be hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl date, X 1 is a single bond, an oxygen atom, a sulfur atom , -NR 2 -, -S (═O) 2 -, an alkylene group, an alkenylene group or an alkynylene group, and R 2 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, have. An appropriate linker may be an oxygen atom or a nitrogen atom. The chain may be connected to the aromatic structure via, for example, an oxygen atom or a nitrogen atom. In this case, the linker may be an oxygen atom, or -NR 1 - (wherein R 1 may be hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group).

화학식 1의 Y는, 일 예시에서 하기 화학식 2로 표시될 수 있다.Y in the formula (1) may be represented by the following formula (2) in one example.

[화학식 2](2)

Figure pat00002
Figure pat00002

화학식 2에서 P는 아릴렌기 또는 사이클로알킬렌기이고, Q는 단일 결합, 산소 원자 또는 -NR3-이며, 상기에서 R3는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, Z는 P가 아릴렌기인 경우에 3개 이상의 사슬 형성 원자를 가지는 상기 사슬이고, P가 사이클로알킬렌기인 경우에는 8개 이상의 사슬 형성 원자를 가지는 상기 사슬이다. 화학식 1의 Y가 상기 화학식 2의 치환기인 경우에 상기 화학식 2의 P가 화학식 1의 X에 직접 연결되어 있을 수 있다.In Formula (2), P is an arylene group or a cycloalkylene group, Q is a single bond, an oxygen atom or -NR 3 -, and R 3 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, Z is the above chain having 3 or more chain-forming atoms when P is an arylene group, and the chain having 8 or more chain-forming atoms when P is a cycloalkylene group. When Y in the general formula (1) is a substituent of the general formula (2), P in the general formula (2) may be directly connected to X in the general formula (1).

화학식 2에서 P의 적절한 예시로는, 탄소수 6 내지 12의 아릴렌기, 예를 들면, 페닐렌기를 예시할 수 있지만, 이에 제한되는 것은 아니다.Suitable examples of P in formula (2) include, but are not limited to, an arylene group having 6 to 12 carbon atoms, such as a phenylene group.

화학식 2에서 Q는 적절한 예시로는, 산소 원자 또는 -NR1-(상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기) 등을 들 수 있다.In formula (2), Q is an oxygen atom or -NR 1 - (where R 1 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group) as a suitable example.

화학식 1의 블록(이하, 제 1 블록으로 호칭될 수 있다.)의 하나의 예시로는, 하기 화학식 3으로 표시되는 블록이 있다. 이러한 블록은, 본 명세서에서 제 1A 블록으로 지칭될 수 있지만, 이에 제한되는 것은 아니다.As an example of the block of the formula (1) (hereinafter referred to as the first block), there is a block represented by the following formula (3). Such a block may be referred to herein as the < RTI ID = 0.0 > 1A < / RTI >

[화학식 3](3)

Figure pat00003
Figure pat00003

화학식 3에서 R은 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 단일 결합, 산소 원자, -C(=O)-O- 또는 -O-C(=O)-이고, P는 아릴렌기이고, Q는 산소 원자 또는 -NR3-이고, 상기에서 R3는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, Z는 사슬 형성 원자가 8개 이상인 직쇄 사슬이다. 다른 예시에서 화학식 3의 Q는 산소 원자일 수 있다.X is a single bond, an oxygen atom, -C (= O) -O- or -OC (= O) -, P is an arylene group, and Q is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, An oxygen atom or -NR 3 -, wherein R 3 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group, and Z is a straight chain having 8 or more chain forming atoms. In another example, Q in formula (3) may be an oxygen atom.

다른 예시에서 제 1 블록은 하기 화학식 4로 표시될 수 있다. 이러한 제 1 블록은, 본 명세서에서 제 1B 블록으로 호칭될 수 있다.In another example, the first block may be represented by the following formula (4). This first block may be referred to herein as a first B block.

[화학식 4][Chemical Formula 4]

Figure pat00004
Figure pat00004

화학식 4에서 R1 및 R2는 각각 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, T는 단일 결합 또는 아릴렌기이고, Q는 단일 결합 또는 카보닐기이며, Y는 사슬 형성 원자가 8개 이상인 사슬이다.In formula (4), R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms, and X is a single bond, an oxygen atom, a sulfur atom, -S (═O) 2 -, a carbonyl group, group, an alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) - a, -S (= O) in said X 1 is a single bond, an oxygen atom, a sulfur atom, and 2 -, an alkylene group, an alkenylene group or an alkynylene group, T is a single bond or an arylene group, Q is a single bond or a carbonyl group, and Y is a chain having 8 or more chain forming atoms.

제 1B 블록인 상기 화학식 4에서 X는 단일 결합, 산소 원자, 카보닐기, -C(=O)-O- 또는 -O-C(=O)-일 수 있다.In the first block B, X may be a single bond, an oxygen atom, a carbonyl group, -C (= O) -O- or -O-C (= O) -.

제 1B 블록에 포함되는 상기 Y의 사슬의 구체적인 예로는, 화학식 1에서 기술한 내용이 유사하게 적용될 수 있다.As a specific example of the chain of Y included in the first B block, the contents described in the formula (1) may be similarly applied.

다른 예시에서 상기 제 1 블록은 상기 화학식 1, 3 및 4 중 어느 하나의 화학식에서 사슬 형성 원자가 8개 이상인 사슬의 적어도 하나의 사슬 형성 원자가 전기 음성도가 3 이상인 블록일 수 있다. 상기 원자의 전기 음성도는 다른 예시에서는 3.7 이하일 수 있다. 본 명세서에서 이러한 블록은 제 1C 블록으로 호칭될 수 있다. 상기에서 전기 음성도가 3 이상인 원자로는, 질소 원자 또는 산소 원자가 예시될 수 있지만, 이에 제한되는 것은 아니다.In another example, the first block may be a block in which at least one chain-forming atom of the chain having at least 8 chain-forming atoms in the formula (1), the electronegativity thereof is 3 or more. The electronegativity of the atom may be 3.7 or less in another example. This block may be referred to herein as a first C block. In the above, the reactor having the electronegativity of 3 or more may be exemplified by nitrogen atom or oxygen atom, but is not limited thereto.

블록 공중합체에 상기 제 1A, 1B 또는 1C 블록과 같은 제 1 블록과 함께 포함될 수 있는 다른 블록(이하, 제 2 블록으로 지칭할 수 있다.)의 종류는 특별히 제한되지 않는다.The type of another block (hereinafter referred to as a second block) that can be included in the block copolymer together with the first block such as the first 1A, 1B, or 1C block is not particularly limited.

예를 들면, 상기 제 2 블록은, 폴리비닐피롤리돈 블록, 폴리락트산(polylactic acid) 블록, 폴리비닐피리딘 블록, 폴리스티렌 또는 폴리트리메틸실릴스티렌(poly trimethylsilylstyrene) 등과 같은 폴리스티렌(polystyrene) 블록, 폴리에틸렌옥시드(polyethylene oxide)와 같은 폴리알킬렌옥시드 블록, 폴리부타디엔(poly butadiene) 블록, 폴리이소프렌(poly isoprene) 블록 또는 폴리에틸렌(poly ethylene) 등의 폴리올레핀 블록이 예시될 수 있다. 이러한 블록은 본 명세서에서 제 2A 블록으로 지칭될 수 있다.For example, the second block may be a polystyrene block such as a polyvinyl pyrrolidone block, a polylactic acid block, a polyvinyl pyridine block, polystyrene or poly trimethylsilyl styrene, A polyalkylene oxide block such as polyethylene oxide, a polybutadiene block, a polyisoprene block, or a polyolefin block such as polyethylene may be exemplified. Such a block may be referred to herein as a 2A block.

하나의 예시에서 상기 제 1A, 1B 또는 1C 블록과 같은 제 1 블록과 함께 포함될 수 있는 제 2 블록으로는 하나 이상의 할로겐 원자를 포함하는 방향족 구조를 가지는 블록일 수 있다.In one example, the second block, which may be included with the first block such as the first 1A, 1B, or 1C block, may be a block having an aromatic structure comprising one or more halogen atoms.

이러한 제 2 블록은, 예를 들면, 하기 화학식 5로 표시되는 블록일 수 있다. 이러한 블록은, 본 명세서에서 제 2B 블록으로 지칭될 수 있다.Such a second block may be, for example, a block represented by the following formula (5). Such a block may be referred to herein as a 2B block.

[화학식 5][Chemical Formula 5]

Figure pat00005
Figure pat00005

화학식 5에서 B는 하나 이상의 할로겐 원자를 포함하는 방향족 구조를 가지는 1가 치환기이다.In formula (5), B is a monovalent substituent having an aromatic structure containing at least one halogen atom.

이러한 제 2 블록은, 제 1 블록과 우수한 상호 작용을 나타내어 블록 공중합체가 우수한 자기 조립 특성 등을 나타내도록 할 수 있다.Such a second block exhibits excellent interaction with the first block so that the block copolymer exhibits excellent self-assembling properties and the like.

화학식 5에서 방향족 구조는, 예를 들면, 탄소수 6 내지 18 또는 탄소수 6 내지 12의 방향족 구조일 수 있다.In the formula (5), the aromatic structure may be, for example, an aromatic structure having 6 to 18 carbon atoms or 6 to 12 carbon atoms.

또한, 화학식 5에 포함되는 할로겐 원자로는, 불소 원자 또는 염소 원자 등이 예시될 수 있고, 적절하게는 불소 원자가 사용될 수 있지만, 이에 제한되는 것은 아니다.As the halogen atom contained in the general formula (5), a fluorine atom or a chlorine atom can be exemplified, and a fluorine atom can be appropriately used, but the present invention is not limited thereto.

하나의 예시에서 화학식 5의 B는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자로 치환된 탄소수 6 내지 12의 방향족 구조를 가지는 1가 치환기일 수 있다. 상기에서 할로겐 원자의 개수의 상한은 특별히 제한되지 않고, 예를 들면, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하의 할로겐 원자가 존재할 수 있다.In one example, B in formula (5) may be a monovalent substituent having an aromatic structure of 6 to 12 carbon atoms substituted with at least 1, at least 2, at least 3, at least 4, or at least 5 halogen atoms. The upper limit of the number of halogen atoms is not particularly limited and may be, for example, 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.

예를 들어, 제 2B 블록인 화학식 5는 하기 화학식 6으로 표시될 수 있다.For example, Formula 5, which is the second B block, may be represented by Formula 6 below.

[화학식 6][Chemical Formula 6]

Figure pat00006
Figure pat00006

화학식 6에서 X2는, 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, W는 적어도 1개의 할로겐 원자를 포함하는 아릴기이다. 상기에서 W는 적어도 1개의 할로겐 원자로 치환된 아릴기, 예를 들면, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로렌 원자로 치환된 탄소수 6 내지 12의 아릴기일 수 있다.In the formula 6 X 2 is a single bond, an oxygen atom, sulfur atom, -S (= O) 2 - , alkylene group, alkenylene group, alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) - is, in the X 1 is a single bond, oxygen atom, sulfur atom, -S (= O) 2 - , alkylene group, alkenyl group or alkynyl group, and W is at least one halogen Is an aryl group containing an atom. In the above, W may be an aryl group substituted with at least one halogen atom, for example, an aryl group having 6 to 12 carbon atoms substituted with at least 2, at least 3, at least 4, or at least 5 halolene atoms.

제 2B 블록은, 예를 들면, 하기 화학식 7로 표시될 수 있다.The 2B block may be represented, for example, by the following formula (7).

[화학식 7](7)

Figure pat00007
Figure pat00007

화학식 7에서 X2는, 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기 또는 할로겐 원자이고, R1 내지 R5가 포함하는 할로겐 원자의 수는 1개 이상이다.In formula 7 X 2 is a single bond, an oxygen atom, sulfur atom, -S (= O) 2 - , alkylene group, alkenylene group, alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) - is, in the X 1 is a single bond, oxygen atom, sulfur atom, -S (= O) 2 -, and the alkylene, alkenylene or alkynylene group, R 1 to R 5 is Each independently represents a hydrogen atom, an alkyl group, a haloalkyl group or a halogen atom, and each of R 1 to R 5 contains one or more halogen atoms.

화학식 7에서 X2는, 다른 예시에서 단일 결합, 산소 원자, 알킬렌기, -C(=O)-O- 또는 -O-C(=O)-일 수 있다.X 2 in formula (7) may be a single bond, an oxygen atom, an alkylene group, -C (= O) -O- or -OC (= O) - in another example.

화학식 7에서 R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기 또는 할로겐 원자이되, R1 내지 R5는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자, 예를 들면, 불소 원자를 포함할 수 있다. R1 내지 R5에 포함되는 할로겐 원자, 예를 들면, 불소 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.In formula (7), R 1 to R 5 each independently represents a hydrogen atom, an alkyl group, a haloalkyl group or a halogen atom, and R 1 to R 5 each independently represent one or more, two or more, three or more, four or more, , For example, a fluorine atom. The halogen atoms contained in R 1 to R 5 , for example, the fluorine atom, may be 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.

하나의 예시에서 상기 제 2 블록은, 하기 화학식 8로 표시되는 블록일 수 있다. 이러한 블록은, 본 명세서에서 제 2C 블록으로 지칭될 수 있다.In one example, the second block may be a block represented by the following formula (8). Such a block may be referred to herein as a second C block.

[화학식 8][Chemical Formula 8]

Figure pat00008
Figure pat00008

화학식 8에서 T 및 K는 각각 독립적으로 산소 원자 또는 단일 결합이고, U는 알킬렌기이다.In formula (8), T and K are each independently an oxygen atom or a single bond, and U is an alkylene group.

일 예시에서 상기 제 2C 블록은, 상기 화학식 10에서 U는 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기인 블록일 수 있다.In one example, the second C block may be a block of an alkylene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms in the formula (10).

제 2C 블록은, 상기 화학식 8의 T 및 K 중에서 어느 하나가 단일 결합이고, 다른 하나가 산소 원자인 블록일 수 있다. 이러한 블록에서 상기 U는 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기인 블록일 수 있다. The 2C block may be a block in which any one of T and K in the above formula (8) is a single bond and the other is an oxygen atom. In such a block, U may be a block having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.

제 2C 블록은, 상기 화학식 8의 T 및 K가 모두 산소 원자인 블록일 수 있다. 이러한 블록에서 상기 U는 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기인 블록일 수 있다.The 2C block may be a block in which T and K in formula (8) are all oxygen atoms. In such a block, U may be a block having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.

제 2 블록은 또 다른 예시에서 금속 원자 또는 준금속 원자를 하나 이상 포함하는 블록일 수 있다. 이러한 블록은 본 명세서에서 제 2D 블록으로 지칭될 수 있다. 이러한 블록은, 예를 들어, 블록 공중합체를 사용하여 형성한 자기 조립된 막에 대하여 에칭 공정이 진행되는 경우에, 에칭 선택성을 개선할 수 있다.The second block may be a block comprising at least one metal atom or a metalloid atom in another example. Such a block may be referred to herein as a second 2D block. Such a block can improve the etch selectivity, for example, when an etching process is performed on a self-assembled film formed using a block copolymer.

제 2D 블록에 포함되는 금속 또는 준금속 원자로는, 규소 원자, 철 원자 또는 붕소 원자 등이 예시될 수 있지만, 블록 공중합체에 포함되는 다른 원자와의 차이에 의해 적절한 에칭 선택성을 보일 수 있는 것이라면 특별히 제한되지 않는다. As the metal or metalloid atom contained in the second block, a silicon atom, an iron atom or a boron atom can be exemplified. However, if it is possible to show appropriate etching selectivity by a difference from other atoms contained in the block copolymer, It is not limited.

제 2D 블록은, 상기 금속 또는 준금속 원자와 함께 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자, 예를 들면, 불소 원자를 포함할 수 있다. 제 2D 블록에 포함되는 불소 원자와 같은 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.The second block may contain at least one, more than two, at least three, at least four, or at least five halogen atoms, such as fluorine atoms, together with the metal or metalloid atoms. The halogen atoms such as fluorine atoms contained in the second D block may be 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.

제 2D 블록은, 하기 화학식 9로 표시될 수 있다.The second block may be represented by the following formula (9).

[화학식 9][Chemical Formula 9]

Figure pat00009
Figure pat00009

화학식 9에서 B는 금속 원자 또는 준금속 원자를 포함하는 치환기 및 할로겐 원자를 포함하는 방향족 구조를 가지는 1가 치환기일 수 있다.In formula (9), B may be a monovalent substituent having an aromatic structure including a substituent including a metal atom or a metalloid atom and a halogen atom.

화학식 9의 상기 방향족 구조는, 탄소수 6 내지 12의 방향족 구조, 예를 들면, 아릴기이거나, 아릴렌기일 수 있다.The aromatic structure of formula (9) may be an aromatic structure having 6 to 12 carbon atoms, for example, an aryl group or an arylene group.

화학식 9의 제2 2D 블록은, 예를 들면, 하기 화학식 10으로 표시될 수 있다.The second 2D block of formula (9) can be represented, for example, by the following formula (10).

[화학식 10][Chemical formula 10]

Figure pat00010
Figure pat00010

화학식 10에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, W는 금속 원자 또는 준금속 원자를 포함하는 치환기 및 적어도 1개의 할로겐 원자를 포함하는 아릴기이다.In the formula 10 X 2 is a single bond, an oxygen atom, a sulfur atom, -NR 1 -, -S (= O) 2 -, alkylene group, alkenylene group, alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) -, and in the R 1 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group, in the X 1 is a single bond, an oxygen atom, a sulfur atom, -NR 2 -, S (= O ) 2 -, an alkylene group, an alkenylene group or an alkynylene group, W is an aryl group containing a substituent, and at least one halogen atom, which comprises a metal atom or metalloid atom.

상기에서 W는, 금속 원자 또는 준금속 원자를 포함하는 치환기 및 적어도 1개의 할로겐 원자를 포함하는 탄소수 6 내지 12의 아릴기일 수 있다.In the above, W may be a substituent group containing a metal atom or a metalloid atom, and an aryl group having 6 to 12 carbon atoms and containing at least one halogen atom.

이러한 아릴기에서 상기 금속 원자 또는 준금속 원자를 포함하는 치환기는 적어도 1개 또는 1개 내지 3개 포함되어, 상기 할로겐 원자는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상 포함될 수 있다.In the aryl group, at least one or one to three substituents including the metal atom or the quasi metal atom are included, and the halogen atom may be substituted with one or more, two or more, three or more, four or five Or more.

상기에서 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하로 포함될 수 있다.In the above, the halogen atom may be contained in 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.

화학식 10의 제 2D 블록은, 예를 들면, 하기 화학식 11로 표시될 수 있다.The second block of formula (10) can be represented, for example, by the following formula (11).

[화학식 11](11)

Figure pat00011
Figure pat00011

화학식 11에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기, 할로겐 원자 및 금속 또는 준금속 원자를 포함하는 치환기이고, R1 내지 R5 중 적어도 하나는 할로겐 원자이며, R1 내지 R5 중 적어도 하나는 금속 또는 준금속 원자를 포함하는 치환기이다.In the formula 11 X 2 is a single bond, an oxygen atom, a sulfur atom, -NR 1 -, -S (= O) 2 -, alkylene group, alkenylene group, alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) -, and in the R 1 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group, in the X 1 is a single bond, an oxygen atom, a sulfur atom, -NR 2 -, S (= O ) 2 -, an alkylene group, an alkenylene group or an alkynylene group, R 1 to R 5 each independently represent a hydrogen, an alkyl group, a haloalkyl group, a halogen atom and a metal or metalloid atom , At least one of R 1 to R 5 is a halogen atom, and at least one of R 1 to R 5 is a substituent including a metal or a metalloid atom.

화학식 11에서 R1 내지 R5 중 적어도 1개, 1개 내지 3개 또는 1개 내지 2개는 전술한 금속 원자 또는 준금속 원자를 포함하는 치환기일 수 있다.In formula (11), at least one, one to three, or one to two of R 1 to R 5 may be a substituent including the above-mentioned metal atom or a metalloid atom.

화학식 11에서 R1 내지 R5에는 할로겐 원자가 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상 포함될 수 있다. R1 내지 R5에 포함되는 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.In Formula (11), R 1 to R 5 may contain one or more halogen atoms, two or more, three or more, four or more, or five or more halogen atoms. The halogen atoms contained in R 1 to R 5 may be 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.

상기 기술한 내용에서 금속 또는 준금속 원자를 포함하는 치환기로는, 트리알킬실록시기, 페로세닐(ferrocenyl)기, 폴리헤드럴 올리고메릭 실세스퀴오켄(polyhedral oligomeric silsesquioxane)기 등과 같은 실세스퀴옥사닐기 또는 카보레이닐(carboranyl)기 등이 예시될 수 있지만, 이러한 치환기는, 적어도 하나의 금속 또는 준금속 원자를 포함하여, 에칭 선택성이 확보될 수 있도록 선택된다면 특별히 제한되지 않는다.In the above description, examples of the substituent containing a metal or a metalloid atom include silsesquioxane such as a trialkylsiloxy group, a ferrocenyl group, a polyhedral oligomeric silsesquioxane group, Or a carboranyl group can be exemplified. However, these substituents are not particularly limited as long as they include at least one metal or a metalloid atom and are selected so that etching selectivity can be ensured.

제 2 블록은 또 다른 예시에서 전기 음성도가 3 이상인 원자로서 할로겐 원자가 아닌 원자(이하, 비할로겐 원자로 호칭될 수 있다.)를 포함하는 블록일 수 있다. 상기와 같은 블록은 본 명세서에서 제 2E 블록으로 호칭될 수 있다. 제 2E 블록에 포함되는 상기 비할로겐 원자의 전기 음성도는 다른 예시에서는 3.7 이하일 수 있다.The second block may be a block including an atom other than a halogen atom (hereinafter, may be referred to as a non-halogen atom) as an atom having an electronegativity of 3 or more in another example. Such a block may be referred to herein as a second E block. The electronegativity of the non-halogen atom included in the second E block may be 3.7 or less in another example.

제 2E 블록에 포함되는 상기 비할로겐 원자로는, 질소 원자 또는 산소 원자 등이 예시될 수 있지만, 이에 제한되지 않는다. Examples of the non-halogen atom contained in the second E block include, but are not limited to, a nitrogen atom or an oxygen atom.

제 2E 블록은, 상기 전기 음성도가 3 이상인 비할로겐 원자와 함께 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자, 예를 들면, 불소 원자를 포함할 수 있다. 제 2E 블록에 포함되는 불소 원자와 같은 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.The second E block may contain one or more, two or more, three or more, four or more, or five or more halogen atoms, for example, a fluorine atom, together with a non-halogen atom having an electronegativity of 3 or more . Halogen atoms such as fluorine atoms included in the second E block may be 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.

제 2E 블록은, 하기 화학식 12로 표시될 수 있다.The second E block may be represented by the following general formula (12).

[화학식 12][Chemical Formula 12]

Figure pat00012
Figure pat00012

화학식 12에서 B는 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기 및 할로겐 원자를 포함하는 방향족 구조를 가지는 1가 치환기일 수 있다.In formula (12), B may be a substituent containing a non-halogen atom having an electronegativity of 3 or more and a monovalent substituent having an aromatic structure containing a halogen atom.

화학식 12의 상기 방향족 구조는, 탄소수 6 내지 12의 방향족 구조, 예를 들면, 아릴기이거나, 아릴렌기일 수 있다.The aromatic structure of formula (12) may be an aromatic structure having 6 to 12 carbon atoms, for example, an aryl group or an arylene group.

화학식 12의 블록은, 다른 예시에서 하기 화학식 13으로 표시될 수 있다.The block of formula (12) may be represented by the following formula (13) in another example.

[화학식 13][Chemical Formula 13]

Figure pat00013
Figure pat00013

화학식 13에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, W는 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기 및 적어도 1개의 할로겐 원자를 포함하는 아릴기이다.In the formula 13 X 2 is a single bond, an oxygen atom, a sulfur atom, -NR 1 -, -S (= O) 2 -, alkylene group, alkenylene group, alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) -, and in the R 1 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group, in the X 1 is a single bond, an oxygen atom, a sulfur atom, -NR 2 -, S (= O ) 2 -, alkylene, alkenylene or alkynylene group, and W is aryl, which comprises a substituent at least one halogen atom and containing a non-halogen atoms is 3 or greater electronegativity .

상기에서 W는, 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기 및 적어도 1개의 할로겐 원자를 포함하는 탄소수 6 내지 12의 아릴기일 수 있다.In the above, W may be a substituent group containing a non-halogen atom having an electronegativity of 3 or more and an aryl group having 6 to 12 carbon atoms and containing at least one halogen atom.

이러한 아릴기에서 상기 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기는 적어도 1개 또는 1개 내지 3개 포함될 수 있다. 도한, 상기 할로겐 원자는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상 포함될 수 있다. 상기에서 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하로 포함될 수 있다.In the aryl group, at least one or one to three substituents including a non-halogen atom having an electronegativity of 3 or more may be included. Also, the halogen atom may be contained in one or more, two or more, three or more, four or more, or five or more. In the above, the halogen atom may be contained in 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.

화학식 13의 블록은, 다른 예시에서 하기 화학식 14로 표시될 수 있다.The block of formula (13) may be represented by the following formula (14) in another example.

[화학식 14][Chemical Formula 14]

Figure pat00014
Figure pat00014

화학식 14에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기, 할로겐 원자 및 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기이고, R1 내지 R5 중 적어도 하나는 할로겐 원자이며, R1 내지 R5 중 적어도 하나는 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기이다.In the formula 14 X 2 is a single bond, an oxygen atom, a sulfur atom, -NR 1 -, -S (= O) 2 -, alkylene group, alkenylene group, alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) -, and in the R 1 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group, in the X 1 is a single bond, an oxygen atom, a sulfur atom, -NR 2 -, S (= O ) 2 -, an alkylene group, an alkenylene group, or alkynylene group, R 1 to R 5 is not less than each independently represent a hydrogen, an alkyl group, a haloalkyl group, a halogen atom and an electronegativity of the third At least one of R 1 to R 5 is a halogen atom, and at least one of R 1 to R 5 is a substituent containing a non-halogen atom having an electronegativity of 3 or more.

화학식 14에서 R1 내지 R5 중 적어도 1개, 1개 내지 3개 또는 1개 내지 2개는 전술한 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기일 수 있다.In Formula 14, at least one, one to three, or one to two of R 1 to R 5 may be a substituent containing a non-halogen atom having three or more electronegativity as described above.

화학식 14에서 R1 내지 R5에는 할로겐 원자가 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상 포함될 수 있다. R1 내지 R5에 포함되는 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.In Formula 14, R 1 to R 5 may contain one or more halogen atoms, two or more, three or more, four or more, or five or more halogen atoms. The halogen atoms contained in R 1 to R 5 may be 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.

상기 기술한 내용에서 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기로는, 히드록시기, 알콕시기, 카복실기, 아미도기, 에틸렌 옥시드기, 니트릴기, 피리딘기 또는 아미노기 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.In the above description, examples of the substituent containing a halogen atom having an electronegativity of 3 or more include a hydroxyl group, an alkoxy group, a carboxyl group, an amido group, an ethylene oxide group, a nitrile group, a pyridine group or an amino group , But is not limited thereto.

다른 예시에서 제 2 블록은, 헤테로고리 치환기를 가지는 방향족 구조를 포함할 수 있다. 이러한 제 2 블록은 본 명세서에서 제 2F 블록으로 지칭될 수 있다. In another example, the second block may comprise an aromatic structure having a heterocyclic substituent. This second block may be referred to herein as a second F block.

제 2F 블록은 하기 화학식 15로 표시될 수 있다.The second F block may be represented by the following formula (15).

[화학식 15][Chemical Formula 15]

Figure pat00015
Figure pat00015

화학식 15에서 B는 헤테로고리 치환기로 치환된 탄소수 6 내지 12의 방향족 구조를 가지는 1가 치환기이다.In Formula 15, B is a monovalent substituent having an aromatic structure having 6 to 12 carbon atoms substituted with a heterocyclic substituent.

화학식 15의 방향족 구조는, 필요한 경우에 하나 이상이 할로겐 원자를 포함할 수 있다.The aromatic structure of formula (15) may contain, if necessary, one or more halogen atoms.

화학식 15의 단위는 하기 화학식 16로 표시될 수 있다.The unit of the formula (15) may be represented by the following formula (16).

[화학식 16][Chemical Formula 16]

Figure pat00016
Figure pat00016

화학식 16에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, W는 헤테로고리 치환기를 가지는 탄소수 6 내지 12의 아릴기이다.In the formula 16 X 2 is a single bond, an oxygen atom, a sulfur atom, -NR 1 -, -S (= O) 2 -, alkylene group, alkenylene group, alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) -, and in the R 1 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group, in the X 1 is a single bond, an oxygen atom, a sulfur atom, -NR 2 -, S (= O ) 2 -, an alkylene group, an alkenylene group or an alkynylene group, W is an aryl group having 6 to 12 carbon atoms having a heterocyclic substituent.

화학식 16의 단위는 하기 화학식 17로 표시될 수 있다.The unit of the formula (16) can be represented by the following formula (17).

[화학식 17][Chemical Formula 17]

Figure pat00017
Figure pat00017

화학식 17에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기, 할로겐 원자 및 헤테로고리 치환기이고, R1 내지 R5 중 적어도 하나는 헤테로고리 치환기이다.In the formula 17 X 2 is a single bond, an oxygen atom, a sulfur atom, -NR 1 -, -S (= O) 2 -, alkylene group, alkenylene group, alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) -, and in the R 1 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group, in the X 1 is a single bond, an oxygen atom, a sulfur atom, -NR 2 -, S (= O ) 2 -, an alkylene group, an alkenylene group or an alkynylene group, R 1 to R 5 each independently is hydrogen, an alkyl group, a haloalkyl group, a halogen atom, and the heterocyclic substituent, R 1 to R < 5 & gt ; is a heterocyclic substituent.

화학식 17에서 R1 내지 R5 중 적어도 하나, 예를 들면, 1개 내지 3개 또는 1개 내지 2개는, 상기 헤테로고리 치환기이고, 나머지는 수소 원자, 알킬기 또는 할로겐 원자이거나, 수소 원자 또는 할로겐 원자이거나 또는 수소 원자일 수 있다.In formula (17), at least one of R 1 to R 5 , for example, 1 to 3 or 1 to 2, is the above-mentioned heterocyclic substituent and the other is a hydrogen atom, an alkyl group or a halogen atom, Atom or a hydrogen atom.

전술한 헤테로고리 치환기로는, 프탈이미드 유래 치환기, 싸이오펜 유래 치환기, 싸이아졸 유래 치환기, 카바졸 유래 치환기 또는 이미다졸 유래 치환기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.Examples of the above-mentioned heterocyclic substituent include phthalimide-derived substituents, thiophene-derived substituents, thiazole-derived substituents, carbazole-based substituents, and imidazole-derived substituents.

본 출원의 블록 공중합체는 전술한 제 1 블록 중에서 하나 이상을 포함하고, 또한 전술한 제 2 블록 중에서 하나 이상을 포함할 수 있다. 이러한 블록 공중합체는 2개의 블록 또는 3개의 블록을 포함하거나, 그 이상의 블록을 포함할 수 있다. 예를 들어, 상기 블록 공중합체는, 상기 제 1 블록 중에서 어느 하나와 상기 제 2 블록 중에서 어느 하나를 포함하는 디블록 공중합체일 수 있다.The block copolymer of the present application includes at least one of the above-described first blocks, and may also include at least one of the above-mentioned second blocks. Such a block copolymer may include two blocks or three blocks, or may include more blocks. For example, the block copolymer may be a diblock copolymer including any one of the first blocks and the second blocks.

블록 공중합체의 수평균분자량(Mn (Number Average Molecular Weight))은, 예를 들면, 3,000 내지 300,000의 범위 내에 있을 수 있다. 본 명세서에서 용어 수평균분자량은, GPC(Gel Permeation Chromatograph)를 사용하여 측정한 표준 폴리스티렌에 대한 환산 수치이고, 본 명세서에서 용어 분자량은 특별히 달리 규정하지 않는 한 수평균분자량을 의미한다. 분자량(Mn)은 다른 예시에서는, 예를 들면, 3000 이상, 5000 이상, 7000 이상, 9000 이상, 11000 이상, 13000 이상 또는 15000 이상일 수 있다. 분자량(Mn)은 또 다른 예시에서 250000 이하, 200000 이하, 180000 이하, 160000이하, 140000이하, 120000이하, 100000이하, 90000이하, 80000이하, 70000이하, 60000이하, 50000이하, 40000이하, 30000 이하 또는 25000 이하 정도일 수 있다. 블록 공중합체는, 1.01 내지 1.60의 범위 내의 분산도(polydispersity, Mw/Mn)를 가질 수 있다. 분산도는 다른 예시에서 약 1.1 이상, 약 1.2 이상, 약 1.3 이상 또는 약 1.4 이상일 수 있다.The number average molecular weight (Mn) of the block copolymer may be in the range of, for example, 3,000 to 300,000. In the present specification, the term number average molecular weight refers to a value converted to standard polystyrene measured using GPC (Gel Permeation Chromatograph). In the present specification, the term molecular weight refers to a number average molecular weight unless otherwise specified. The molecular weight (Mn) may be, for example, 3000 or more, 5000 or more, 7000 or more, 9000 or more, 11000 or more, 13000 or more, or 15000 or more in other examples. In another example, the molecular weight (Mn) is not more than 250,000, less than 200,000, less than or equal to 180,000, less than or equal to 160,000, less than or equal to 140000, less than or equal to 120000, less than or equal to 100000, less than or equal to 90000, less than or equal to 80000, less than or equal to 70000, Or 25,000 or less. The block copolymer may have a polydispersity (Mw / Mn) in the range of 1.01 to 1.60. In another example, the degree of dispersion may be at least about 1.1, at least about 1.2, at least about 1.3, or at least about 1.4.

이러한 범위에서 블록 공중합체는 적절한 자기 조립 특성을 나타낼 수 있다. 블록 공중합체의 수평균 분자량 등은 목적하는 자기 조립 구조 등을 감안하여 조절될 수 있다. In this range, the block copolymer can exhibit proper self-assembling properties. The number average molecular weight of the block copolymer and the like can be adjusted in consideration of the desired self-assembling structure and the like.

블록 공중합체가 상기 제 1 및 제 2 블록을 적어도 포함할 경우에 상기 블록 공중합체 내에서 제 1 블록, 예를 들면, 전술한 상기 사슬을 포함하는 블록의 비율은 10몰% 내지 90몰%의 범위 내에 있을 수 있다.When the block copolymer contains at least the first and second blocks, the ratio of the first block in the block copolymer, for example, the block including the chain described above, is from 10 mol% to 90 mol% Lt; / RTI >

상기와 같은 블록 공중합체를 제조하는 구체적인 방법은, 특별히 제한되지 않고, 예를 들면, 각 블록을 형성할 수 있는 단량체를 사용하여 공지의 블록 공중합체의 제조 방법을 적용하여 상기 블록 공중합체를 제조할 수 있다.A specific method for producing such a block copolymer is not particularly limited. For example, a known block copolymer is produced by using a monomer capable of forming each block to prepare the block copolymer can do.

예를 들면, 블록 공중합체는 상기 단량체를 사용한 LRP(Living Radical Polymerization) 방식으로 제조할 있다. 예를 들면, 유기 희토류 금속 복합체를 중합 개시제로 사용하거나, 유기 알칼리 금속 화합물을 중합 개시제로 사용하여 알칼리 금속 또는 알칼리토금속의 염 등의 무기산염의 존재 하에 합성하는 음이온 중합, 유기 알칼리 금속 화합물을 중합 개시제로 사용하여 유기 알루미늄 화합물의 존재 하에 합성하는 음이온 중합 방법, 중합 제어제로서 원자 이동 라디칼 중합제를 이용하는 원자이동 라디칼 중합법(ATRP), 중합 제어제로서 원자이동 라디칼 중합제를 이용하되 전자를 발생시키는 유기 또는 무기 환원제 하에서 중합을 수행하는 ARGET(Activators Regenerated by Electron Transfer) 원자이동 라디칼 중합법(ATRP), ICAR(Initiators for continuous activator regeneration) 원자이동 라디칼 중합법(ATRP), 무기 환원제 가역 부가-개열 연쇄 이동제를 이용하는 가역 부가-개열 연쇄 이동에 의한 중합법(RAFT) 또는 유기 텔루륨 화합물을 개시제로서 이용하는 방법 등이 있으며, 이러한 방법 중에서 적절한 방법이 선택되어 적용될 수 있다. For example, the block copolymer can be prepared by the LRP (Living Radical Polymerization) method using the above monomers. For example, anionic polymerization in which an organic rare earth metal complex is used as a polymerization initiator, or an organic alkali metal compound is used as a polymerization initiator in the presence of an inorganic acid salt such as a salt of an alkali metal or an alkaline earth metal, An atomic transfer radical polymerization method (ATRP) using an atom transfer radical polymerization agent as a polymerization initiator, and an atom transfer radical polymerization agent as a polymerization initiator, (ATRP), Initiators for Continuous Activator Regeneration (ATR), Atomic Transfer Radical Polymerization (ATRP), Inorganic Reducing Agent Reversible Additive - Reversible addition-cleavage chain transfer using cleavage chain transfer agent And a method using the polymerization method of (RAFT) or an organic tellurium compound, etc. as an initiator, may be subject to a suitable method among these methods is selected.

예를 들면, 상기 블록 공중합체는, 라디칼 개시제 및 리빙 라디칼 중합 시약의 존재 하에, 상기 블록을 형성할 수 있는 단량체들을 포함하는 반응물을 리빙 라디칼 중합법으로 중합하는 것을 포함하는 방식으로 제조할 수 있다.For example, the block copolymer can be prepared in a manner that includes polymerizing a reactant containing monomers capable of forming the block in the presence of a radical initiator and a living radical polymerization reagent by living radical polymerization .

블록 공중합체의 제조 시에 상기 단량체를 사용하여 형성하는 블록과 함께 상기 공중합체에 포함되는 다른 블록을 형성하는 방식은 특별히 제한되지 않고, 목적하는 블록의 종류를 고려하여 적절한 단량체를 선택하여 상기 다른 블록을 형성할 수 있다.The method of forming the other block included in the copolymer together with the block formed by using the monomer in the production of the block copolymer is not particularly limited and may be appropriately selected in consideration of the kind of the desired block, Block can be formed.

블록공중합체의 제조 과정은, 예를 들면 상기 과정을 거쳐서 생성된 중합 생성물을 비용매 내에서 침전시키는 과정을 추가로 포함할 수 있다. The preparation of the block copolymer may further include, for example, a step of precipitating the polymerization product produced through the above process in the non-solvent.

라디칼 개시제의 종류는 특별히 제한되지 않고, 중합 효율을 고려하여 적절히 선택할 수 있으며, 예를 들면, AIBN(azobisisobutyronitrile) 또는 2,2'-아조비스-2,4-디메틸발레로니트릴(2,2'-azobis-(2,4-dimethylvaleronitrile)) 등의 아조 화합물이나, BPO(benzoyl peroxide) 또는 DTBP(di-t-butyl peroxide) 등과 같은 과산화물 계열을 사용할 수 있다.The kind of the radical initiator is not particularly limited and may be appropriately selected in consideration of the polymerization efficiency. For example, AIBN (azobisisobutyronitrile) or 2,2'-azobis-2,4-dimethylvaleronitrile (2,2 ' -azobis- (2,4-dimethylvaleronitrile), and peroxides such as benzoyl peroxide (BPO) or di-t-butyl peroxide (DTBP).

리빙 라디칼 중합 과정은, 예를 들면, 메틸렌클로라이드, 1,2-디클로로에탄, 클로로벤젠, 디클로로벤젠, 벤젠,톨루엔, 아세톤, 클로로포름, 테트라하이드로퓨란, 디옥산, 모노글라임, 디글라임, 디메틸포름아미드, 디메틸술폭사이드 또는 디메틸아세트아미드 등과 같은 용매 내에서 수행될 수 있다.The living radical polymerization process can be carried out in the presence of a base such as, for example, methylene chloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, benzene, toluene, acetone, chloroform, tetrahydrofuran, dioxane, monoglyme, diglyme, Amide, dimethylsulfoxide or dimethylacetamide, and the like.

비용매로는, 예를 들면, 메탄올, 에탄올, 노르말 프로판올 또는 이소프로판올 등과 같은 알코올, 에틸렌글리콜 등의 글리콜, n-헥산, 시클로헥산, n-헵탄 또는 페트롤리움 에테르 등과 같은 에테르 계열이 사용될 수 있으나, 이에 제한되는 것은 아니다.Examples of the non-solvent include ethers such as alcohols such as methanol, ethanol, n-propanol or isopropanol, glycols such as ethylene glycol, n-hexane, cyclohexane, n-heptane or petroleum ether, But is not limited thereto.

상기와 같은 블록 공중합체를 사용하여 막을 형성하는 방식은 특별히 제한되지 않고, 자기 조립 구조를 형성하기 위하여, 예를 들면, 중성 처리 표면 상에 고분자막을 형성하는 것에 적용되고 있던 공지의 방식이 적용될 수 있다. 예를 들면, 상기 블록 공중합체를 적정한 용매에 소정 농도로 분산시켜 코팅액을 제조하고, 스핀 코팅 등의 공지의 코팅 방식으로 상기 코팅액을 코팅함으로써 고분자막을 형성할 수 있다.The method of forming a film using the above-mentioned block copolymer is not particularly limited, and a known method applied for forming a self-assembled structure, for example, for forming a polymer film on a neutralized surface can be applied have. For example, the block copolymer may be dispersed in an appropriate solvent at a predetermined concentration to prepare a coating solution, and the coating solution may be coated by a known coating method such as spin coating to form a polymer film.

필요한 경우에 상기와 같이 형성된 고분자막에서 자기 조립 구조를 형성하기 위한 어닐링(annealing) 공정이 추가로 수행될 수 있다. 이러한 어닐링은 예를 들면, 상기 층을 숙성하거나 열처리하여 수행할 수 있다.If necessary, an annealing process for forming a self-assembled structure in the polymer membrane formed as described above may be further performed. Such annealing may be performed, for example, by aging or heat treating the layer.

상기 숙성 또는 열처리는, 예를 들면, 블록 공중합체의 상전이온도 또는 유리전이온도를 기준으로 수행될 수 있고, 예를 들면, 상기 유리 전이 온도 또는 상전이 온도 이상의 온도에서 수행될 수 있다. 이러한 열처리가 수행되는 시간은 특별히 제한되지 않으며, 예를 들면, 약 1분 내지 72시간의 범위 내에서 수행될 수 있지만, 이는 필요에 따라서 변경될 수 있다. 또한, 고분자 박막의 열처리 온도는, 예를 들면, 100℃ 내지 250℃ 정도일 수 있으나, 이는 사용되는 블록 공중합체를 고려하여 변경될 수 있다.The aging or heat treatment may be performed based on, for example, the phase transition temperature or the glass transition temperature of the block copolymer, and may be performed at, for example, the glass transition temperature or a temperature higher than the phase transition temperature. The time at which this heat treatment is performed is not particularly limited, and can be performed within a range of, for example, about 1 minute to 72 hours, but this can be changed if necessary. The heat treatment temperature of the polymer thin film may be, for example, about 100 ° C to 250 ° C, but may be changed in consideration of the block copolymer to be used.

상기 형성된 층은, 다른 예시에서는 상온의 비극성 용매 및/또는 극성 용매 내에서, 약 1분 내지 72 시간 동안 용매 숙성될 수도 있다.The formed layer may be solvent aged for about 1 minute to 72 hours in a non-polar solvent and / or a polar solvent at room temperature in another example.

본 출원의 패턴화 기판의 제조 방법은 또한, 상기와 같이 산소 플라즈마 처리된 표면상에 형성된 막의 자기 조립된 블록 공중합체에서 어느 한 블록을 선택적으로 제거하는 단계를 추가로 포함할 수 있다. 예를 들어, 블록 공중합체가 전술한 제 1 블록과 제 2 블록을 포함하는 것이라면, 상기 방법은, 블록 공중합체에서 상기 제 1 또는 제 2 블록을 선택적으로 제거하는 과정을 포함할 수 있다. 이러한 과정을 거치면, 예를 들면, 도 3에 나타난 바와 같이 선택적으로 제거되지 않은 블록(B)만이 트렌치의 내부에 존재할 수 있다. 상기 패턴화 기판의 제조 방법은 또한, 상기와 같이 블록 공중합체의 어느 하나 또는 그 이상의 블록을 선택적으로 제거한 후에 기판을 식각하는 것을 포함할 수 있다. The method of making a patterned substrate of the present application may further comprise the step of selectively removing any one block from the self-assembled block copolymer of the film formed on the oxygen plasma treated surface as described above. For example, if the block copolymer comprises a first block and a second block as described above, the method may include selectively removing the first or second block from the block copolymer. Through this process, for example, only block B, which is not selectively removed as shown in Fig. 3, may be present inside the trench. The method of producing a patterned substrate may further include etching the substrate after selectively removing one or more blocks of the block copolymer as described above.

상기 방법에서 블록 공중합체의 어느 한 블록을 선택적으로 제거하는 방식은 특별히 제한되지 않고, 예를 들면, 고분자막에 적정한 전자기파, 예를 들면, 자외선 등을 조사하여 상대적으로 소프트한 블록을 제거하는 방식을 사용할 수 있다. 이 경우 자외선 조사 조건은 블록 공중합체의 블록의 종류에 따라서 결정되며, 예를 들면, 약 254 nm 파장의 자외선을 1분 내지 60 분 동안 조사하여 수행할 수 있다.The method of selectively removing one block of the block copolymer in the above method is not particularly limited. For example, a method of removing a relatively soft block by irradiating an appropriate electromagnetic wave, for example, ultraviolet light, Can be used. In this case, the ultraviolet ray irradiation conditions are determined depending on the type of the block of the block copolymer, and can be performed, for example, by irradiating ultraviolet light having a wavelength of about 254 nm for 1 minute to 60 minutes.

자외선 조사에 이어서 고분자 막을 산 등으로 처리하여 자외선에 의해 분해된 세그먼트를 추가로 제거하는 단계를 수행할 수도 있다.Following the ultraviolet irradiation, the polymer membrane may be treated with an acid or the like to further remove the segment decomposed by ultraviolet rays.

또한, 선택적으로 블록이 제거된 고분자막을 마스크로 하여 기판을 에칭하는 단계는 특별히 제한되지 않고, 예를 들면, CF4/Ar 이온 등을 사용한 반응성 이온 식각 단계를 통해 수행할 수 있고, 이 과정에 이어서 산소 플라즈마 처리 등에 의해 고분자막을 기판으로부터 제거하는 단계를 또한 수행할 수 있다.The step of selectively etching the substrate using the polymer film having the removed block as a mask is not particularly limited. For example, the step of etching the substrate may be performed by a reactive ion etching step using CF 4 / Ar ions or the like. A step of removing the polymer membrane from the substrate by an oxygen plasma treatment or the like can also be performed.

본 출원은, 패턴화 기판의 제조 방법에 대한 것이다. 상기 방법은, 예를 들면, 전자 디바이스 및 집적 회로와 같은 장치의 제조 공정 또는 다른 용도, 예컨대 집적 광학 시스템, 자기 도메인 메모리의 가이던스 및 검출 패턴, 평판 디스플레이, 액정 디스플레이(LCD), 박막 자기 헤드 또는 유기 광 방출 다이오드 등의 제조에 적용될 수 있고, 집적 회로, 비트-패턴화된 매체 및/또는 하드 드라이브와 같은 자기 저장 디바이스 등의 개별 트랙 매체(discrete track medium)의 제조에 사용하기 위해 표면 위에 패턴을 구축하는데 사용될 수 있다.The present application relates to a method of manufacturing a patterned substrate. The method may be used in the manufacture of devices such as, for example, electronic devices and integrated circuits or in other applications such as integrated optical systems, guidance and detection patterns of magnetic domain memories, flat panel displays, liquid crystal displays (LCDs) Organic light emitting diodes, and the like, and may be patterned on the surface for use in the manufacture of discrete track media such as integrated circuits, bit-patterned media, and / or magnetic storage devices such as hard drives, Can be used to build.

도 1은 트렌치가 형성되어 있는 기판의 예시적인 형태를 보여준다.
도 2는, 기판의 트렌치에 자기 조립된 고분자가 형성되어 있는 형태를 모식적으로 보여준다.
도 3은, 자기 조립된 블로 공중합체의 어느 한 블록을 선택적으로 제거한 후의 형태를 모시적으로 보여준다.
도 4는 실시예 1에서 형성된 자기 조립된 고분자막의 이미지이다.
Figure 1 shows an exemplary form of a substrate on which a trench is formed.
2 schematically shows a form in which a self-assembled polymer is formed on a trench of a substrate.
Fig. 3 schematically shows a form after selectively removing one block of the self-assembled blow-copolymer. Fig.
Fig. 4 is an image of a self-assembled polymer membrane formed in Example 1. Fig.

이하 본 출원에 따르는 실시예를 통하여 본 출원을 보다 상세히 설명하나, 본 출원의 범위가 하기 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present application will be described in detail by way of examples according to the present application, but the scope of the present application is not limited by the following examples.

1. One. NMRNMR 측정 Measure

NMR 분석은 삼중 공명 5 mm 탐침(probe)을 가지는 Varian Unity Inova(500 MHz) 분광계를 포함하는 NMR 분광계를 사용하여 상온에서 수행하였다. NMR 측정용 용매(CDCl3)에 분석 대상 물질을 약 10 mg/ml 정도의 농도로 희석시켜 사용하였고, 화학적 이동은 ppm으로 표현하였다. NMR analysis was performed at room temperature using an NMR spectrometer including a Varian Unity Inova (500 MHz) spectrometer with a triple resonance 5 mm probe. The analytes were diluted to a concentration of about 10 mg / ml in a solvent for NMR measurement (CDCl 3 ), and chemical shifts were expressed in ppm.

<적용 약어><Application Abbreviation>

br = 넓은 신호, s = 단일선, d = 이중선, dd = 이중 이중선, t = 삼중선, dt = 이중 삼중선, q = 사중선, p = 오중선, m = 다중선.br = broad signal, s = singlet, d = doublet, dd = doublet, t = triplet, dt = double triplet, q = quartet, p = octet, m = polyline.

2. GPC(2. GPC ( GelCome PermeationPermeation ChromatographChromatograph ))

수평균분자량(Mn) 및 분자량 분포는 GPC(Gel permeation chromatography)를 사용하여 측정하였다. 5 mL 바이얼(vial)에 실시예 또는 비교예의 블록 공중합체 또는 거대 개시제 등의 분석 대상 물일을 넣고, 약 1 mg/mL 정도의 농도가 되도록 THF(tetrahydro furan)에 희석한다. 그 후, Calibration용 표준 시료와 분석하고자 하는 시료를 syringe filter(pore size: 0.45 ㎛)를 통해 여과시킨 후 측정하였다. 분석 프로그램은 Agilent technologies 사의 ChemStation을 사용하였으며, 시료의 elution time을 calibration curve와 비교하여 중량평균분자량(Mw) 및 수평균분자량(Mn)을 각각 구하고, 그 비율(Mw/Mn)로 분자량분포(PDI)를 계산하였다. GPC의 측정 조건은 하기와 같다.The number average molecular weight (Mn) and molecular weight distribution were measured using GPC (Gel Permeation Chromatography). Add a sample to be analyzed such as a block copolymer or a macroinitiator of the example or comparative example into a 5 mL vial and dilute with tetrahydrofuran (THF) to a concentration of about 1 mg / mL. After that, the calibration standard sample and the sample to be analyzed were filtered through a syringe filter (pore size: 0.45 μm) and then measured. The analytical program used was a ChemStation from Agilent Technologies. The elution time of the sample was compared with a calibration curve to determine the weight average molecular weight (Mw) and the number average molecular weight (Mn), and the molecular weight distribution (PDI ) Were calculated. The measurement conditions of GPC are as follows.

<GPC 측정 조건>&Lt; GPC measurement condition >

기기: Agilent technologies 사의 1200 series Devices: 1200 series from Agilent Technologies

컬럼: Polymer laboratories 사의 PLgel mixed B 2개 사용Column: Using PLgel mixed B from Polymer laboratories

용매: THFSolvent: THF

컬럼온도: 35℃Column temperature: 35 ° C

샘플 농도: 1mg/mL, 200L 주입Sample concentration: 1 mg / mL, 200 L injection

표준 시료: 폴리스티렌(Mp : 3900000, 723000, 316500, 52200, 31400, 7200, 3940, 485)Standard samples: Polystyrene (Mp: 3900000, 723000, 316500, 52200, 31400, 7200, 3940, 485)

3. 3. XRDXRD 분석 방법 Analysis method

XRD 분석은 포항가속기 4C 빔라인에서 시료에 X선을 투과시켜 산란 벡터(q)에 따른 산란 강도를 측정함으로써 측정하였다. 시료로는, 특별한 전처리 없이 합성된 블록 공중합체를 정제한 후에 진공 오븐에서 하루 정도 유지함으로써 건조시킨 분말 상태의 블록 공중합체를 XRD측정용 셀에 넣어서 사용하였다. XRD 패턴 분석 시에는, 수직 크기가 0.023 mm이고, 수평 크기가 0.3 mm인 X선을 이용하였고, 검출기로는 2D marCCD를 이용하였다. 산란되어 나오는 2D 회절패턴을 이미지로 얻었다. 얻어진 회절 패턴을 최소 좌승법을 적용한 수치 분석학적인 방식으로 분석하여 산란 벡터 및 반높이 너비 등의 정보를 얻었다. 상기 분석 시에는 오리진(origin) 프로그램을 적용하였으며, XRD 회절 패턴에서 가장 최소의 강도(intensity)를 보이는 부분을 베이스라인(baseline)으로 잡아 상기에서의 강도(intensity)를 0으로 되게 한 상태에서 상기 XRD 패턴 피크의 프로파일을 가우시안 피팅(Gaussian fitting)하고, 피팅된 결과로부터 상기 산란 벡터와 반높이 너비를 구하였다. 가우시안 피팅 시에 R 제곱(R square)은 적어도 0.96 이상이 되도록 하였다.The XRD analysis was performed by measuring the scattering intensity according to the scattering vector (q) by passing X-rays through the sample at the Pohang accelerator 4C beamline. As a sample, a block copolymer synthesized in the absence of a specific pretreatment was purified and then dried in a vacuum oven for one day to obtain a powdery block copolymer, which was used in an XRD measurement cell. For XRD pattern analysis, an X-ray with a vertical size of 0.023 mm and a horizontal size of 0.3 mm was used and a 2D marCCD was used as a detector. A scattered 2D diffraction pattern was obtained as an image. The obtained diffraction patterns were analyzed by numerical analytical method using the minimum left - hand method to obtain information such as the scattering vector and the half - height width. In the analysis, an origin program was applied. A portion having the smallest intensity in the XRD diffraction pattern was taken as a baseline, and the intensity was set to be 0, The profile of the XRD pattern peak was subjected to Gaussian fitting, and the above scattering vector and half height width were obtained from the fitted results. The R square was at least 0.96 at the time of Gaussian fitting.

4. 표면 에너지의 측정4. Measurement of surface energy

표면 에너지는 물방울형 분석기(Drop Shape Analyzer, KRUSS사의 DSA100제품)를 사용하여 측정하였다. 측정하고자 하는 물질(중합체)을 플루오르벤젠(flourobenzene)에 약 2 중량%의 고형분 농도로 희석시켜 코팅액을 제조하고, 제조된 코팅액을 실리콘 웨이퍼에 약 50 nm의 두께 및 4 cm2의 코팅 면적(가로: 2cm, 세로: 2cm)으로 스핀 코팅하였다. 코팅층을 상온에서 약 1 시간 동안 건조하고, 이어서 약 160°C에서 약 1시간 동안 열적 숙성(thermal annealing)시켰다. 열적 숙성을 거친 막에 표면 장력(surface tension)이 공지되어 있는 탈이온화수를 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구하였다. 동일하게, 표면 장력이 공지되어 있는 디요오드메탄(diiodomethane)을 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구하였다. 구해진 탈이온화수와 디요오드메탄에 대한 접촉각의 평균치를 이용하여 Owens-Wendt-Rabel-Kaelble 방법에 의해 용매의 표면 장력에 관한 수치(Strom 값)를 대입하여 표면 에너지를 구하였다. 블록 공중합체의 각 블록에 대한 표면 에너지의 수치는, 상기 블록을 형성하는 단량체만으로 제조된 단독 중합체(homopolymer)에 대하여 상기 기술한 방법으로 구하였다.Surface energy was measured using a Drop Shape Analyzer (product of DSU100, KRUSS). The material to be measured (polymer) was diluted with flourobenzene to a solid concentration of about 2% by weight to prepare a coating solution. The coating solution was applied to a silicon wafer at a thickness of about 50 nm and a coating area of 4 cm 2 : 2 cm, length: 2 cm). The coating layer was dried at room temperature for about 1 hour and then subjected to thermal annealing at about 160 ° C for about 1 hour. The process of dropping the deionized water whose surface tension is known in the film subjected to thermal aging and obtaining the contact angle thereof was repeated 5 times to obtain an average value of the obtained five contact angle values. In the same manner, the process of dropping the diiodomethane having known surface tension and determining the contact angle thereof was repeated five times, and an average value of the obtained five contact angle values was obtained. The surface energy was determined by substituting the value (Strom value) of the surface tension of the solvent by the Owens-Wendt-Rabel-Kaelble method using the average value of the contact angle with the deionized water and diiodo methane obtained. The numerical values of surface energy for each block of the block copolymer were obtained by the method described above with respect to a homopolymer made only of the monomer forming the block.

5. 부피 5. Volume 분율의Fractional 측정 Measure

블록 공중합체의 각 블록의 부피 분율은, 각 블록의 상온에서의 밀도와 GPC에 의해 측정된 분자량을 토대로 계산하였다. 상기에서 밀도는, 부력법을 이용하여 측정하였으며, 구체적으로는 공기 중에서의 질량과 밀도를 알고 있는 용매(에탄올) 내에 분석하고자 하는 시료를 넣고, 그 질량을 통해 계산하였다. The volume fraction of each block of the block copolymer was calculated based on the density at room temperature of each block and the molecular weight measured by GPC. The density was measured using a buoyancy method. Specifically, a sample to be analyzed was put into a solvent (ethanol) having a known mass and density in the air, and the mass was calculated.

제조예Manufacturing example 1.  One. 모노머(A)의Of the monomer (A) 합성 synthesis

하기 화학식 A의 화합물(DPM-C12)은 다음의 방식으로 합성하였다. 250 mL의 플라스크에 히드로퀴논(hydroquinone)(10.0g, 94.2 mmol) 및 1-브로모도데칸(1-Bromododecane)(23.5 g, 94.2 mmol)을 넣고, 100 mL의 아세토니트릴(acetonitrile)에 녹인 후 과량의 포타슘 카보네이트(potassium carbonate) 첨가하고, 75℃에서 약 48시간 동안 질소 조건하에서 반응시켰다. 반응 후 잔존하는 포타슘 카보네이트를 필터링하여 제거하고 반응에 사용한 아세토니트릴도 제거하였다. 여기에 DCM(dichloromethane)과 물의 혼합 용매를 첨가하여 워크업하고, 분리한 유기층을 모아서 MgSO4에 통과시켜 탈수하였다. 이어서, 컬럼 크로마토그래피에서 DCM(dichloromethane)을 사용하여 흰색 고체상의 목적물(4-도데실옥시페놀)(9.8 g, 35.2 mmol)을 약 37%의 수득률로 얻었다.The compound (DPM-C12) shown below was synthesized in the following manner. Hydroquinone (10.0 g, 94.2 mmol) and 1-bromododecane (23.5 g, 94.2 mmol) were placed in a 250-mL flask and dissolved in 100 mL of acetonitrile. Potassium carbonate was added and reacted at 75 DEG C for about 48 hours under a nitrogen atmosphere. After the reaction, the remaining potassium carbonate was filtered off and acetonitrile used in the reaction was removed. A mixed solvent of DCM (dichloromethane) and water was added thereto to work up, and the separated organic layers were collected and dehydrated by passing through MgSO 4 . Subsequently, the title compound (4-dodecyloxyphenol) (9.8 g, 35.2 mmol) as white solid was obtained in a yield of about 37% using dichloromethane in column chromatography.

<< NMRNMR 분석 결과>  Analysis results>

1H-NMR(CDCl3): d6.77(dd, 4H); d4.45(s, 1H); d3.89(t, 2H); d1.75(p, 2H); d1.43(p, 2H); d1.33-1.26(m, 16H); d0.88(t, 3H). 1 H-NMR (CDCl 3) : d6.77 (dd, 4H); d4.45 (s, 1 H); d3.89 (t, 2H); d 1.75 (p, 2H); d1.43 (p, 2H); d 1.33-1.26 (m, 16H); d 0.88 (t, 3 H).

플라스크에 합성된 4-도데실옥시페놀(9.8 g, 35.2 mmol), 메타크릴산(6.0 g, 69.7 mmol), DCC(dicyclohexylcarbodiimide)(10.8 g, 52.3 mmol) 및 DMAP(p-dimethylaminopyridine)(1.7 g, 13.9 mmol)을 넣고, 120 mL의 메틸렌클로라이드를 첨가한 후, 질소 하 실온에서 24시간 동안 반응시켰다. 반응 종료 후에 반응 중에 생성된 염(urea salt)을 필터로 제거하고 잔존하는 메틸렌클로라이드도 제거하였다. 컬럼 크로마토그래피에서 헥산과 DCM(dichloromethane)을 이동상으로 사용하여 불순물을 제거하고, 다시 얻어진 생성물을 메탄올과 물의 혼합 용매(1:1 혼합)에서 재결정하여 흰색 고체상의 목적물(7.7 g, 22.2 mmol)을 63%의 수득률로 얻었다.(9.8 g, 35.2 mmol), methacrylic acid (6.0 g, 69.7 mmol), DCC (dicyclohexylcarbodiimide) (10.8 g, 52.3 mmol) and DMAP (p-dimethylaminopyridine) , 13.9 mmol), 120 mL of methylene chloride was added, and the reaction was allowed to proceed at room temperature under nitrogen for 24 hours. After completion of the reaction, the salt (urea salt) produced during the reaction was filtered off and the remaining methylene chloride was removed. The resulting product was recrystallized in a mixed solvent of methanol and water (1: 1 mixture) to obtain the title compound (7.7 g, 22.2 mmol) as a white solid. 1H-NMR (DMSO-d6) 63%. &Lt; / RTI &gt;

<< NMRNMR 분석 결과>  Analysis results>

1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.32(dt, 1H); d5.73(dt, 1H); d3.94(t, 2H); d2.05(dd, 3H); d1.76(p, 2H); d1.43(p, 2H); 1.34-1.27(m, 16H); d0.88(t, 3H). 1 H-NMR (CDCl 3) : d7.02 (dd, 2H); d 6.89 (dd, 2 H); d6.32 (dt, 1 H); d5.73 (dt, 1 H); d 3.94 (t, 2 H); d 2.05 (dd, 3H); d, 1.76 (p, 2H); d1.43 (p, 2H); 1.34-1.27 (m, 16H); d 0.88 (t, 3 H).

[화학식 A](A)

Figure pat00018
Figure pat00018

화학식 A에서 R은 탄소수 12의 직쇄 알킬기이다.In formula (A), R is a straight chain alkyl group having 12 carbon atoms.

제조예Manufacturing example 2.  2. 모노머(B)의Of the monomer (B) 합성 synthesis

1-브로모도데칸 대신 1-브로모옥탄을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 하기 화학식 B의 화합물을 합성하였다. 상기 화합물에 대한 NMR 분석 결과를 하기에 나타내었다.< NMR 분석 결과> A compound of the following formula (B) was synthesized in the same manner as in Preparation Example 1 except that 1-bromo octane was used instead of 1-bromododecane. NMR analysis results for the above compounds are shown below. & Lt; NMR analysis result & gt ;

1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.32(dt, 1H); d5.73(dt, 1H); d3.94(t, 2H); d2.05(dd, 3H); d1.76(p, 2H); d1.45(p, 2H); 1.33-1.29(m, 8H); d0.89(t, 3H). 1 H-NMR (CDCl 3) : d7.02 (dd, 2H); d 6.89 (dd, 2 H); d6.32 (dt, 1 H); d5.73 (dt, 1 H); d 3.94 (t, 2 H); d 2.05 (dd, 3H); d, 1.76 (p, 2H); d1.45 (p, 2H); 1.33-1.29 (m, 8H); d0.89 (t, 3H).

[화학식 B][Chemical Formula B]

Figure pat00019
Figure pat00019

화학식 B에서 R은 탄소수 8의 직쇄 알킬기이다.In formula (B), R is a straight chain alkyl group having 8 carbon atoms.

제조예Manufacturing example 3.  3. 모노머(C)의Of the monomer (C) 합성 synthesis

1-브로모도데칸 대신 1-브로모데칸을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 하기 화학식 C의 화합물을 합성하였다. 상기 화합물에 대한 NMR 분석 결과를 하기에 나타내었다.A compound of the following formula (C) was synthesized in the same manner as in Preparation Example 1 except that 1-bromododecane was used instead of 1-bromododecane. NMR analysis results for the above compounds are shown below.

<< NMRNMR 분석 결과>  Analysis results>

1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.33(dt, 1H); d5.72(dt, 1H); d3.94(t, 2H); d2.06(dd, 3H); d1.77(p, 2H); d1.45(p, 2H); 1.34-1.28(m, 12H); d0.89(t, 3H). 1 H-NMR (CDCl 3) : d7.02 (dd, 2H); d 6.89 (dd, 2 H); d6.33 (dt, 1 H); d5.72 (dt, 1 H); d 3.94 (t, 2 H); d 2.06 (dd, 3 H); d 1.77 (p, 2H); d1.45 (p, 2H); 1.34-1.28 (m, 12H); d0.89 (t, 3H).

[화학식 C]&Lt; RTI ID = 0.0 &

Figure pat00020
Figure pat00020

화학식 C에서 R은 탄소수 10의 직쇄 알킬기이다.In formula (C), R is a straight chain alkyl group having 10 carbon atoms.

제조예Manufacturing example 4.  4. 모노머(D)의Of the monomer (D) 합성 synthesis

1-브로모도데칸 대신 1-브로모테트라데칸을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 하기 화학식 D의 화합물을 합성하였다. 상기 화합물에 대한 NMR 분석 결과를 하기에 나타내었다.A compound of the following formula (D) was synthesized in the same manner as in Preparation Example 1 except that 1-bromotetradecane was used instead of 1-bromododecane. NMR analysis results for the above compounds are shown below.

<< NMRNMR 분석 결과>  Analysis results>

1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.33(dt, 1H); d5.73(dt, 1H); d3.94(t, 2H); d2.05(dd, 3H); d1.77(p, 2H); d1.45(p, 2H); 1.36-1.27(m, 20H); d0.88(t, 3H.) 1 H-NMR (CDCl 3) : d7.02 (dd, 2H); d 6.89 (dd, 2 H); d6.33 (dt, 1 H); d5.73 (dt, 1 H); d 3.94 (t, 2 H); d 2.05 (dd, 3H); d 1.77 (p, 2H); d1.45 (p, 2H); 1.36-1.27 (m, 20H); d 0.88 (t, 3H.)

[화학식 D][Chemical Formula D]

Figure pat00021
Figure pat00021

화학식 D에서 R은 탄소수 14의 직쇄 알킬기이다.In formula (D), R is a straight chain alkyl group having 14 carbon atoms.

제조예Manufacturing example 5.  5. 모노머(E)의Of the monomer (E) 합성 synthesis

1-브로모도데칸 대신 1-브로모헥사데칸을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 하기 화학식 E의 화합물을 합성하였다. 상기 화합물에 대한 NMR 분석 결과를 하기에 나타내었다.A compound of the following formula (E) was synthesized in the same manner as in Preparation Example 1 except that 1-bromohexadecane was used instead of 1-bromododecane. NMR analysis results for the above compounds are shown below.

<< NMRNMR 분석 결과>  Analysis results>

1H-NMR(CDCl3): d7.01(dd, 2H); d6.88(dd, 2H); d6.32(dt, 1H); d5.73(dt, 1H); d3.94(t, 2H); d2.05(dd, 3H); d1.77(p, 2H); d1.45(p, 2H); 1.36-1.26(m, 24H); d0.89(t, 3H) 1 H-NMR (CDCl 3) : d7.01 (dd, 2H); d 6.88 (dd, 2 H); d6.32 (dt, 1 H); d5.73 (dt, 1 H); d 3.94 (t, 2 H); d 2.05 (dd, 3H); d 1.77 (p, 2H); d1.45 (p, 2H); 1.36-1.26 (m, 24H); d0.89 (t, 3H)

[화학식 E](E)

Figure pat00022
Figure pat00022

화학식 E에서 R은 탄소수 16의 직쇄 알킬기이다.In formula (E), R is a straight chain alkyl group having 16 carbon atoms.

제조예Manufacturing example 6. 블록 공중합체의 합성 6. Synthesis of block copolymer

제조예 1의 모노머(A) 2.0 g과 RAFT(Reversible Addition?ragmentation chain Transfer) 시약인 시아노이소프로틸디티오벤조에이트 64 mg, 라디칼 개시제인 AIBN(Azobisisobutyronitrile) 23 mg 및 벤젠 5.34 mL를 10 mL Schlenk flask에 넣고 질소 분위기 하에서 상온에서 30분 동안 교반한 후 70℃에서 4시간 동안 RAFT(Reversible Addition?ragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL 에 침전시킨 후, 감압 여과하여 건조시켜, 분홍색의 거대개시제를 제조하였다. 상기 거대 개시제의 수득률은 약 82.6 중량%였고, 수평균 분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 9,000 및 1.16이었다. 거대개시제 0.3 g, 펜타플루오로스티렌 모노머 2.7174 g 및 벤젠 1.306 mL를 10 mL Schlenk flask에 넣고 질소 분위기 하에서 상온에서 30분 동안 교반한 후 115℃에서 4시간 동안 RAFT(Reversible Addition?ragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL 에 침전시킨 다음, 감압 여과하여 건조시켜 연한 분홍색의 블록공중합체를 제조하였다. 상기 블록 공중합체의 수득률은 약 18 중량%였고, 수평균분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 16,300 및 1.13이었다. 상기 블록 공중합체는 제조예 1의 모노머(A)에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.2.0 g of the monomer (A) of Preparation Example 1, 64 mg of cyanoisopropyltridyl dibenzoate (RAFT), 20 mg of azobisisobutyronitrile (AIBN) as a radical initiator, and 5.34 mL of benzene The mixture was stirred in a Schlenk flask under a nitrogen atmosphere at room temperature for 30 minutes, and then subjected to a reversible addition rament chain transfer (RAFT) polymerization at 70 ° C for 4 hours. After the polymerization, the reaction solution was precipitated in 250 mL of methanol, which was an extraction solvent, and dried under reduced pressure to give a giant initiator of pink color. The yield of the macromonomer was about 82.6% by weight and the number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) were 9,000 and 1.16, respectively. 0.3 g of macroinitiator, 2.7174 g of pentafluorostyrene monomer, and 1.306 mL of benzene were placed in a 10 mL Schlenk flask and stirred at room temperature for 30 minutes under a nitrogen atmosphere. Reversible addition ramentation chain transfer (RAFT) polymerization The reaction was carried out. After the polymerization, the reaction solution was precipitated in 250 mL of methanol, which was an extraction solvent, and then dried under reduced pressure to obtain a pale pink block copolymer. The yield of the block copolymer was about 18% by weight, and the number average molecular weight (Mn) and the molecular weight distribution (Mw / Mn) were 16,300 and 1.13, respectively. The block copolymer includes a first block derived from the monomer (A) of Production Example 1 and a second block derived from the pentafluorostyrene monomer.

제조예Manufacturing example 7. 블록 공중합체의 합성 7. Synthesis of block copolymer

제조예 1의 모노머(A) 대신에 제조예 2의 모노머(B)를 사용하는 것을 제외하고는 제조예 6에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 모노머로 하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 2의 모노머(B)에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.A block copolymer was prepared in the same manner as in Production Example 6, except that the monomer (B) of Production Example 2 was used in place of the monomer (A) of Production Example 1, using a macro initiator and pentafluorostyrene as monomers. The block copolymer includes a first block derived from the monomer (B) of Production Example 2 and a second block derived from the pentafluorostyrene monomer.

제조예Manufacturing example 8. 블록 공중합체의 합성 8. Synthesis of block copolymer

제조예 1의 모노머(A) 대신에 제조예 3의 모노머(C)를 사용하는 것을 제외하고는 제조예 6에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 모노머로 하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 3의 모노머(C)에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.A block copolymer was prepared using a macromonomer (initiator) and pentafluorostyrene as monomers in the same manner as in Production Example 6, except that the monomer (C) of Preparation Example 3 was used in place of the monomer (A) The block copolymer includes a first block derived from the monomer (C) of Production Example 3 and a second block derived from the pentafluorostyrene monomer.

제조예Manufacturing example 9. 블록 공중합체의 합성 9. Synthesis of block copolymer

제조예 1의 모노머(A) 대신에 제조예 4의 모노머(D)를 사용하는 것을 제외하고는 제조예 6에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 모노머로 하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 4의 모노머(D)에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다. A block copolymer was prepared in the same manner as in Production Example 6, except that the monomer (D) of Production Example 4 was used in place of the monomer (A) of Production Example 1, using a macro initiator and pentafluorostyrene as monomers. The block copolymer comprises a first block derived from the monomer (D) of Production Example 4 and a second block derived from the pentafluorostyrene monomer.

제조예Manufacturing example 10. 블록 공중합체의 합성 10. Synthesis of block copolymer

제조예 1의 모노머(A) 대신에 제조예 5의 모노머(E)를 사용하는 것을 제외하고는 제조예 6에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 모노머로 하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 5의 모노머(E)에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.A block copolymer was prepared using a macromonomer (initiator) and pentafluorostyrene as monomers in the same manner as in Production Example 6, except that the monomer (E) of Production Example 5 was used in place of the monomer (A) The block copolymer includes a first block derived from the monomer (E) of Production Example 5 and a second block derived from the pentafluorostyrene monomer.

상기 제조예의 각 거대 개시제 및 제조된 블록 공중합체에 대한 GPC 측정 결과를 하기 표 1에 정리하여 기재하였다.The GPC measurement results of each of the macro initiators and the prepared block copolymers in the above Production Examples are summarized in Table 1 below.


제조예Manufacturing example
66 77 88 99 1010 MI
MI
MnMn 90009000 93009300 85008500 87008700 94009400
PDIPDI 1.161.16 1.151.15 1.171.17 1.161.16 1.131.13 BCP
BCP
MnMn 1630016300 1990019900 1710017100 1740017400 1890018900
PDIPDI 1.131.13 1.201.20 1.191.19 1.171.17 1.171.17 MI: 거대 개시제
BCP: 블록 공중합체
Mn: 수평균분자량
PDI: 분자량 분포
MI:
BCP: block copolymer
Mn: number average molecular weight
PDI: molecular weight distribution

시험예Test Example 1. X선  1. X-ray 회절diffraction 분석  analysis

상기 각 블록 공중합체에 대하여 상기 언급한 방식으로 XRD 패턴을 분석한 결과는 하기 표 2에 정리하여 기재하였다.The results of analyzing the XRD patterns of each of the above-mentioned block copolymers in the above-mentioned manner are summarized in Table 2 below.


제조예Manufacturing example
66 77 88 99 1010 q 피크값(단위:nm-1)q peak value (unit: nm -1 ) 1.961.96 2.412.41 2.152.15 1.831.83 1.721.72 반높이너비(단위:nm-1)Half height width (unit: nm -1 ) 0.570.57 0.720.72 0.630.63 0.450.45 0.530.53

시험예Test Example 2. 블록 공중합체의 물성 평가 2. Evaluation of physical properties of block copolymer

제조예 6 내지 10에서 제조된 각 블록 공중합체의 특성을 상기 언급한 방식으로 평가한 결과를 하기 표 3에 정리하여 기재하였다.The properties of each of the block copolymers prepared in Production Examples 6 to 10 were evaluated in the above-mentioned manner, and the results are summarized in Table 3 below.


제조예Manufacturing example
66 77 88 99 1010 제1블록

The first block

SESE 30.8330.83 31.4631.46 27.3827.38 26.92426.924 27.7927.79
DeDe 1One 1.041.04 1.021.02 0.990.99 1.001.00 VFVF 0.660.66 0.570.57 0.600.60 0.610.61 0.610.61 제2블록

The second block

SESE 24.424.4 24.424.4 24.424.4 24.424.4 24.424.4
DeDe 1.571.57 1.571.57 1.571.57 1.571.57 1.571.57 VFVF 0.340.34 0.430.43 0.400.40 0.390.39 0.390.39 SE 차이SE difference 6.436.43 7.067.06 2.982.98 2.5242.524 3.393.39 De 차이De Difference 0.570.57 0.530.53 0.550.55 0.580.58 0.570.57 사슬형성원자Chain forming atom 1212 88 1010 1414 1616 n/Dn / D 3.753.75 3.083.08 3.453.45 4.244.24 4.444.44 SESE : 표면 에너지(단위: : Surface energy (unit: mNmN /m)/ m)
DeDe : 밀도(단위: g/: Density (unit: g / cmcm 33 ))
VFVF : 부피 분율: Volume fraction
SESE 차이: 제 1 블록의 표면 에너지와 제 2 블록의 표면 에너지의 차이의  Difference: The difference between the surface energy of the first block and the surface energy of the second block 절대값Absolute value
DeDe 차이: 제 1 블록의 밀도와 제 2 블록의 밀도의 차이의  Difference: The difference between the density of the first block and the density of the second block 절대값Absolute value
사슬 형성 원자: 제 1 블록의 사슬 형성 원자의 수Chain forming atom: the number of chain forming atoms of the first block
n/D: 수식 1(n / D: Equation 1 ( nqnq /(/ ( 2吝2 吝 ))에 의해 계산된 수치(n: 사슬 형성 원자의 수, q는 산란 벡터 0.5 ) (N: number of chain forming atoms, q is a scattering vector of 0.5 nmnm -1-One 내지 10  To 10 nmnm -1-One 의 범위에서 가장 큰 피크 면적을 가지는 피크가 확인되는 산란 벡터 수치)Lt; RTI ID = 0.0 &gt; a &lt; / RTI &gt; peak having the largest peak area in the range of &
RefRef : 폴리스티렌-: Polystyrene- 폴리메틸메타크리레이트Polymethyl methacrylate 블록 공중합체(제 1 블록: 폴리스티렌 블록, 제 2 블록:  Block copolymer (first block: polystyrene block, second block: 폴리메틸메타크릴레이트Polymethyl methacrylate 블록) block)

실시예Example 1. One.

구리 기판 상에 산소 플라즈마 처리를 수행하고, 그 표면에 제조예 6의 블록 공중합체를 적용하여 고분자막을 형성하였다. 산소 플라즈마는 상기 구리 기판의 표면에 약 90W의 RF 전력, 약 70 sccm의 산소 유량 및 약 120 mTorr의 공정 압력으로 수행하였다. 상기와 같이 형성된 산소 플라즈마 처리층상에 중성층의 형성과 같은 별도의 처리를 수행하지 않고, 제조예 6의 블록 공중합체를 적용하여 고분자막을 형성하였다. 구체적으로 블록 공중합체를 톨루엔 (toluene)에 1.5 중량%의 고형분 농도로 희석시켜 제조한 코팅액을 스핀 코팅하고, 상온에서 약 1시간 동안 건조시킨 후에 다시 약 160℃ 내지 250℃의 온도에서 약 1시간 동안 열적 숙성(thermal annealing)하여 자기 조립된 막을 형성하였다. 상기 자기 조립된 막에 대한 SEM 이미지는 도 4에 나타나 있고, 이를 통해 적절한 자기 조립 구조가 형성되었음을 확인하였다. An oxygen plasma treatment was performed on the copper substrate, and a block copolymer of Production Example 6 was applied to the surface of the copper substrate to form a polymer film. An oxygen plasma was performed on the surface of the copper substrate at an RF power of about 90 W, an oxygen flow rate of about 70 sccm, and a process pressure of about 120 mTorr. A polymer membrane was formed by applying the block copolymer of Production Example 6 without performing any other treatment such as formation of a neutral layer on the oxygen plasma treatment layer thus formed. Specifically, a coating solution prepared by diluting a block copolymer with toluene in a solid concentration of 1.5% by weight was spin-coated, dried at room temperature for about 1 hour, and then dried at a temperature of about 160 to 250 ° C for about 1 hour Lt; RTI ID = 0.0 &gt; anneal &lt; / RTI &gt; to form a self-assembled film. An SEM image of the self-assembled membrane is shown in FIG. 4, confirming that a suitable self-assembled structure has been formed.

실시예Example 2. 2.

제조예 6의 블록 공중합체 대신 제조예 7의 블록 공중합체를 적용한 것을 제외하고는, 실시예 1과 동일한 자기 조립된 고분자막을 형성하였다. SEM 사진의 확인 결과 실시예 1과 같이 적절한 자기 조립 구조가 형성된 것을 확인할 수 있었다. A self-assembled polymer membrane similar to that of Example 1 was formed, except that the block copolymer of Preparation Example 7 was used instead of the block copolymer of Production Example 6. As a result of the SEM photograph, it was confirmed that a proper self-assembled structure was formed as in Example 1.

실시예Example 3. 3.

제조예 6의 블록 공중합체 대신 제조예 8의 블록 공중합체를 적용한 것을 제외하고는, 실시예 1과 동일한 자기 조립된 고분자막을 형성하였다. SEM 사진의 확인 결과 실시예 1과 같이 적절한 자기 조립 구조가 형성된 것을 확인할 수 있었다. A self-assembled polymer membrane similar to that of Example 1 was formed, except that the block copolymer of Production Example 8 was used instead of the block copolymer of Production Example 6. As a result of the SEM photograph, it was confirmed that a proper self-assembled structure was formed as in Example 1.

실시예Example 4. 4.

제조예 6의 블록 공중합체 대신 제조예 9의 블록 공중합체를 적용한 것을 제외하고는, 실시예 1과 동일한 자기 조립된 고분자막을 형성하였다. SEM 사진의 확인 결과 실시예 1과 같이 적절한 자기 조립 구조가 형성된 것을 확인할 수 있었다. The same self-assembled polymer membrane as in Example 1 was formed, except that the block copolymer of Production Example 9 was used instead of the block copolymer of Production Example 6. As a result of the SEM photograph, it was confirmed that a proper self-assembled structure was formed as in Example 1.

실시예Example 5. 5.

제조예 6의 블록 공중합체 대신 제조예 10의 블록 공중합체를 적용한 것을 제외하고는, 실시예 1과 동일한 자기 조립된 고분자막을 형성하였다. SEM 사진의 확인 결과 실시예 1과 같이 적절한 자기 조립 구조가 형성된 것을 확인할 수 있었다.A self-assembled polymer membrane similar to that of Example 1 was formed, except that the block copolymer of Production Example 10 was used instead of the block copolymer of Production Example 6. As a result of the SEM photograph, it was confirmed that a proper self-assembled structure was formed as in Example 1.

Claims (19)

산소 플라즈마 처리된 기판의 표면에 자기 조립 구조가 유도된 블록 공중합체를 포함하는 고분자막을 형성하는 단계를 포함하는 패턴화 기판의 제조 방법.And forming a polymer membrane including a block copolymer in which a self-assembled structure is induced on the surface of the oxygen plasma-treated substrate. 제 1 항에 있어서, 기판은, 금속 기판인 패턴화 기판의 제조 방법.The method of manufacturing a patterned substrate according to claim 1, wherein the substrate is a metal substrate. 제 1 항에 있어서, 기판은 금, 구리, 티탄, 니켈, 은, 알루미늄, 게르마늄, 텅스텐, 주석, 안티모니, 인듐, 카드뮴, 팔라듐, 납, 아연 및 백금으로 이루어진 군으로부터 선택된 하나 이상의 금속 또는 상기 하나 이상의 금속의 산화물, 질화물 또는 황화물을 포함하는 패턴화 기판의 제조 방법.The method of claim 1, wherein the substrate is at least one metal selected from the group consisting of gold, copper, titanium, nickel, silver, aluminum, germanium, tungsten, tin, antimony, indium, cadmium, palladium, lead, A method of making a patterned substrate comprising an oxide, nitride or sulphide of one or more metals. 제 1 항에 있어서, 산소 플라즈마는, 30W 내지 2000W의 RF 전력, 5 mTorr 내지 300 mTorr의 공정 압력 및 20 sccm 내지 100 sccm의 산소 유량 하에서 수행되는 패턴화 기판의 제조 방법.3. The method of claim 1, wherein the oxygen plasma is performed at an RF power of 30 W to 2000 W, a process pressure of 5 mTorr to 300 mTorr, and an oxygen flow rate of 20 sccm to 100 sccm. 제 1 항에 있어서, 고분자막은 산소 플라즈마 처리된 기판의 표면에 접하여 형성되는 패턴화 기판의 제조 방법.The method of manufacturing a patterned substrate according to claim 1, wherein the polymer membrane is formed in contact with the surface of the oxygen plasma-treated substrate. 제 1 항에 있어서, 자기 조립 구조는 수직 배향된 블록 공중합체를 포함하는 패턴화 기판의 제조 방법.2. The method of claim 1, wherein the self-assembled structure comprises a vertically oriented block copolymer. 제 1 항에 있어서, 자기 조립 구조는 라멜라 구조인 패턴화 기판의 제조 방법.The method of claim 1, wherein the self-assembled structure is a lamellar structure. 제 1 항에 있어서, 블록 공중합체는 X선 회절 분석에서 0.5 nm-1 내지 10 nm-1의 산란 벡터(q)의 범위 내에서 반높이 너비가 0.2 nm-1 내지 1.5 nm-1의 범위 내에 있는 피크를 나타내는 패턴화 기판의 제조 방법.The block copolymer according to claim 1, wherein the block copolymer has a half-height width in the range of 0.5 nm -1 to 10 nm -1 scattering vector (q) in the X-ray diffraction analysis within a range of 0.2 nm -1 to 1.5 nm -1 Wherein the peak is a peak. 제 1 항에 있어서, 블록 공중합체는 제 1 블록과 상기 제 1 블록과는 다른 제 2 블록을 포함하고, 상기 제 1 블록의 부피 분율은 0.2 내지 0.6의 범위 내에 있으며, 상기 제 2 블록의 부피 분율은 0.4 내지 0.8의 범위 내에 있는 패턴화 기판의 제조 방법. 2. The method of claim 1, wherein the block copolymer comprises a first block and a second block different from the first block, the volume fraction of the first block being in the range of 0.2 to 0.6, Wherein the fraction is in the range of 0.4 to 0.8. 제 1 항에 있어서, 블록 공중합체는 제 1 블록과 상기 제 1 블록과는 다른 제 2 블록을 포함하고, 상기 제 1 블록과 상기 제 2 블록의 표면 에너지의 차이의 절대값이 2.5 mN/m 내지 7 mN/m의 범위 내에 있는 패턴화 기판의 제조 방법.2. The method of claim 1, wherein the block copolymer comprises a first block and a second block different from the first block, wherein an absolute value of the difference in surface energy between the first block and the second block is less than 2.5 mN / m Lt; RTI ID = 0.0 &gt; mN / m. &Lt; / RTI &gt; 제 10 항에 있어서, 제 1 블록의 표면 에너지가 20 내지 35 mN/m의 범위 내에 있는 패턴화 기판의 제조 방법.11. The method of claim 10, wherein the surface energy of the first block is in the range of 20 to 35 mN / m. 제 1 항에 있어서, 블록 공중합체는 제 1 블록과 상기 제 1 블록과는 다른 제 2 블록을 포함하고, 상기 제 1 블록과 상기 제 2 블록의 밀도의 차이의 절대값이 0.3 g/cm3 이상인 패턴화 기판의 제조 방법.According to claim 1, wherein the block copolymer comprises a first block and the first block and the absolute value of the difference between the first density of the second block and the first block 0.3 g / cm 3, and comprises a second, different block Or more of the patterned substrate. 제 1 항에 있어서, 블록 공중합체는, 하기 화학식 1로 표시되는 블록을 포함하는 패턴화 기판의 제조 방법:
[화학식 1]
Figure pat00023

화학식 1에서 R은 수소 또는 알킬기이고, X는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 X1은 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, Y는 사슬 형성 원자를 가지는 사슬이 연결된 고리 구조를 포함하는 1가 치환기이다.
The method for producing a patterned substrate according to claim 1, wherein the block copolymer comprises a block represented by the following formula (1)
[Chemical Formula 1]
Figure pat00023

X is a single bond, an oxygen atom, a sulfur atom, -S (= O) 2- , a carbonyl group, an alkylene group, an alkenylene group, an alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) - is, in the X 1 is an oxygen atom, sulfur atom, -S (= O) 2 -, and the alkylene, alkenylene or alkynylene group, Y Is a monovalent substituent group including a ring structure having a chain having a chain forming atom linked thereto.
제 13 항에 있어서, 화학식 1의 Y는, 하기 화학식 2로 표시되는 패턴화 기판의 제조 방법:
[화학식 2]
Figure pat00024

화학식 2에서 P는 아릴렌기 또는 사이클로알킬렌기이고, Q는 단일 결합, 산소 원자 또는 -NR3-이고, 상기에서 R3는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, Z는 P가 아릴렌기인 경우에 3개 이상의 사슬 형성 원자를 가지는 상기 사슬이고, P가 사이클로알킬렌기인 경우에는 8개 이상의 사슬 형성 원자를 가지는 상기 사슬이다.
A method of producing a patterned substrate according to claim 13, wherein Y in Chemical Formula 1 is represented by Chemical Formula 2:
(2)
Figure pat00024

Wherein P is an arylene group or a cycloalkylene group, Q is a single bond, an oxygen atom or -NR 3 -, R 3 is a hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group, Z is the above chain having 3 or more chain-forming atoms when P is an arylene group, and the chain having 8 or more chain-forming atoms when P is a cycloalkylene group.
제 14 항에 있어서, 화학식 2에서 P는 탄소수 6 내지 12의 아릴렌기인 패턴화 기판의 제조 방법.15. The method of producing a patterned substrate according to claim 14, wherein P in Formula (2) is an arylene group having 6 to 12 carbon atoms. 제 1 항에 있어서, 블록 공중합체는 하기 화학식 3으로 표시되는 블록을 포함하는 패턴화 기판의 제조 방법:
[화학식 3]
Figure pat00025

화학식 3에서 R은 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 단일 결합, 산소 원자, -C(=O)-O- 또는 -O-C(=O)-이고, P는 아릴렌기이고, Q는 산소 원자 또는 -NR3-이고, 상기에서 R3는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, Z는 사슬 형성 원자가 8개 이상인 직쇄 사슬이다.
The method of producing a patterned substrate according to claim 1, wherein the block copolymer comprises a block represented by the following Formula 3:
(3)
Figure pat00025

X is a single bond, an oxygen atom, -C (= O) -O- or -OC (= O) -, P is an arylene group, and Q is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, An oxygen atom or -NR 3 -, wherein R 3 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group, and Z is a straight chain having 8 or more chain forming atoms.
제 1 항에 있어서, 블록 공중합체는 하기 화학식 5로 표시되는 블록을 포함하는 패턴화 기판의 제조 방법:
[화학식 5]
Figure pat00026

화학식 5에서 B는 하나 이상의 할로겐 원자를 포함하는 방향족 구조를 가지는 1가 치환기이다.
The method for producing a patterned substrate according to claim 1, wherein the block copolymer comprises a block represented by the following formula (5)
[Chemical Formula 5]
Figure pat00026

In formula (5), B is a monovalent substituent having an aromatic structure containing at least one halogen atom.
제 1 항에 있어서, 자기 조립 구조를 형성하고 있는 블록 공중합체의 어느 한 블록을 선택적으로 제거하는 단계를 추가로 포함하는 패턴화 기판의 제조 방법.The method of claim 1, further comprising selectively removing any one block of the block copolymer forming the self-assembled structure. 제 18 항에 있어서, 블록 공중합체의 어느 하나의 블록을 선택적으로 제거한 후에 기판을 식각하는 단계를 추가로 포함하는 패턴화 기판의 제조 방법.19. The method of claim 18, further comprising the step of selectively etching any block of the block copolymer, followed by etching the substrate.
KR1020150079469A 2014-09-30 2015-06-04 Preparation method of patterened substrate KR20160038702A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/KR2015/010330 WO2016053007A1 (en) 2014-09-30 2015-09-30 Method for producing patterned substrate
TW104132197A TWI577703B (en) 2014-09-30 2015-09-30 Method of manufacturing patterned substrate
EP15846126.9A EP3203497B1 (en) 2014-09-30 2015-09-30 Method for producing patterned substrate
KR1020150138200A KR101756538B1 (en) 2014-09-30 2015-09-30 Preparation method of patterened substrate
JP2017517268A JP6633062B2 (en) 2014-09-30 2015-09-30 Manufacturing method of patterned substrate
CN201580059713.8A CN107077066B9 (en) 2014-09-30 2015-09-30 Method of manufacturing patterned substrate
US15/514,929 US10370529B2 (en) 2014-09-30 2015-09-30 Method of manufacturing patterned substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140131964 2014-09-30
KR20140131964 2014-09-30

Publications (1)

Publication Number Publication Date
KR20160038702A true KR20160038702A (en) 2016-04-07

Family

ID=55789827

Family Applications (17)

Application Number Title Priority Date Filing Date
KR1020150079487A KR101882369B1 (en) 2014-09-30 2015-06-04 Polymer layer
KR1020150079480A KR101835092B1 (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079483A KR101880212B1 (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079468A KR20160038701A (en) 2014-09-30 2015-06-04 Preparation method of patterened substrate
KR1020150079489A KR101832031B1 (en) 2014-09-30 2015-06-04 Bl℃k copolymer
KR1020150079491A KR20160038711A (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079473A KR101851973B1 (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079486A KR101781685B1 (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079454A KR20160038700A (en) 2013-12-06 2015-06-04 Compositon for neural layer
KR1020150079469A KR20160038702A (en) 2014-09-30 2015-06-04 Preparation method of patterened substrate
KR1020150079490A KR20160038710A (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079488A KR20160038708A (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150138196A KR101749415B1 (en) 2014-09-30 2015-09-30 Block copolymer
KR1020150138199A KR101749417B1 (en) 2014-09-30 2015-09-30 Block copolymer
KR1020150138198A KR101749416B1 (en) 2014-09-30 2015-09-30 Block copolymer
KR1020150138201A KR101756539B1 (en) 2014-09-30 2015-09-30 Preparation method of patterened substrate
KR1020150138200A KR101756538B1 (en) 2014-09-30 2015-09-30 Preparation method of patterened substrate

Family Applications Before (9)

Application Number Title Priority Date Filing Date
KR1020150079487A KR101882369B1 (en) 2014-09-30 2015-06-04 Polymer layer
KR1020150079480A KR101835092B1 (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079483A KR101880212B1 (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079468A KR20160038701A (en) 2014-09-30 2015-06-04 Preparation method of patterened substrate
KR1020150079489A KR101832031B1 (en) 2014-09-30 2015-06-04 Bl℃k copolymer
KR1020150079491A KR20160038711A (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079473A KR101851973B1 (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079486A KR101781685B1 (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079454A KR20160038700A (en) 2013-12-06 2015-06-04 Compositon for neural layer

Family Applications After (7)

Application Number Title Priority Date Filing Date
KR1020150079490A KR20160038710A (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079488A KR20160038708A (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150138196A KR101749415B1 (en) 2014-09-30 2015-09-30 Block copolymer
KR1020150138199A KR101749417B1 (en) 2014-09-30 2015-09-30 Block copolymer
KR1020150138198A KR101749416B1 (en) 2014-09-30 2015-09-30 Block copolymer
KR1020150138201A KR101756539B1 (en) 2014-09-30 2015-09-30 Preparation method of patterened substrate
KR1020150138200A KR101756538B1 (en) 2014-09-30 2015-09-30 Preparation method of patterened substrate

Country Status (2)

Country Link
KR (17) KR101882369B1 (en)
TW (10) TWI576362B (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410327B2 (en) 2013-12-06 2018-10-24 エルジー・ケム・リミテッド Block copolymer
JP6496318B2 (en) 2013-12-06 2019-04-03 エルジー・ケム・リミテッド Block copolymer
EP3078686B1 (en) 2013-12-06 2018-10-31 LG Chem, Ltd. Block copolymer
CN105934456B (en) 2013-12-06 2018-09-28 株式会社Lg化学 Block copolymer
JP6483694B2 (en) 2013-12-06 2019-03-13 エルジー・ケム・リミテッド Monomers and block copolymers
EP3078693B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
CN105899557B (en) 2013-12-06 2018-10-26 株式会社Lg化学 Block copolymer
JP6419820B2 (en) 2013-12-06 2018-11-07 エルジー・ケム・リミテッド Block copolymer
WO2015084122A1 (en) 2013-12-06 2015-06-11 주식회사 엘지화학 Block copolymer
JP6402867B2 (en) 2013-12-06 2018-10-10 エルジー・ケム・リミテッド Block copolymer
CN105899558B (en) 2013-12-06 2018-09-18 株式会社Lg化学 Block copolymer
US10202480B2 (en) 2013-12-06 2019-02-12 Lg Chem, Ltd. Block copolymer
EP3078691B1 (en) 2013-12-06 2018-04-18 LG Chem, Ltd. Block copolymer
JP6394798B2 (en) 2014-09-30 2018-09-26 エルジー・ケム・リミテッド Block copolymer
CN107078026B (en) 2014-09-30 2020-03-27 株式会社Lg化学 Method for preparing patterned substrate
US10287429B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Block copolymer
US10633533B2 (en) 2014-09-30 2020-04-28 Lg Chem, Ltd. Block copolymer
JP6451966B2 (en) 2014-09-30 2019-01-16 エルジー・ケム・リミテッド Block copolymer
JP6532941B2 (en) 2014-09-30 2019-06-19 エルジー・ケム・リミテッド Block copolymer
JP6633062B2 (en) 2014-09-30 2020-01-22 エルジー・ケム・リミテッド Manufacturing method of patterned substrate
CN107075052B (en) 2014-09-30 2020-05-29 株式会社Lg化学 Block copolymer
CN107075054B (en) 2014-09-30 2020-05-05 株式会社Lg化学 Block copolymer
EP3214102B1 (en) 2014-09-30 2022-01-05 LG Chem, Ltd. Block copolymer
KR102071914B1 (en) * 2016-11-30 2020-01-31 주식회사 엘지화학 Block copolymer
KR101946775B1 (en) 2016-11-30 2019-02-12 주식회사 엘지화학 Block copolymer
WO2018101730A1 (en) 2016-11-30 2018-06-07 주식회사 엘지화학 Block copolymer
JP6974459B2 (en) 2016-11-30 2021-12-01 エルジー・ケム・リミテッド Polymer composition
WO2018101741A1 (en) * 2016-11-30 2018-06-07 주식회사 엘지화학 Laminate
KR102088444B1 (en) * 2016-11-30 2020-03-12 주식회사 엘지화학 Polymer copolymer
WO2018101743A2 (en) * 2016-11-30 2018-06-07 주식회사 엘지화학 Laminate
KR102097819B1 (en) * 2016-11-30 2020-04-07 주식회사 엘지화학 Block copolymer
KR102183698B1 (en) 2016-11-30 2020-11-26 주식회사 엘지화학 Preparation method for polymer layer
KR102096271B1 (en) * 2016-11-30 2020-05-27 주식회사 엘지화학 Block copolymer
KR102308953B1 (en) * 2017-03-10 2021-10-05 주식회사 엘지화학 Preparation method of patterened substrate
KR102277770B1 (en) * 2017-07-14 2021-07-15 주식회사 엘지화학 Method for planarization of block copolymer layer and method for forming pattern
US11732072B2 (en) 2017-07-14 2023-08-22 Lg Chem, Ltd. Neutral layer composition
KR102096270B1 (en) * 2017-07-14 2020-04-02 주식회사 엘지화학 Compositon for neural layer
KR102159495B1 (en) * 2017-07-14 2020-09-25 주식회사 엘지화학 Block copolymer
KR102396957B1 (en) * 2017-08-22 2022-05-13 에스케이이노베이션 주식회사 Random copolymer for forming neutral layer and laminate for forming pattern comprising the same, method for patterning using the same
KR102325779B1 (en) 2017-08-22 2021-11-12 에스케이이노베이션 주식회사 Random copolymer for forming neutral layer and laminate for forming pattern comprising the same, method for patterning using the same
JP6328306B1 (en) 2017-09-04 2018-05-23 株式会社マコエンタープライズ Menu display method, menu display device, and menu display program
KR102191611B1 (en) * 2017-09-13 2020-12-15 주식회사 엘지화학 Preparation method of patterened substrate
TWI805617B (en) * 2017-09-15 2023-06-21 南韓商Lg化學股份有限公司 Laminate
JP6989181B2 (en) 2017-11-07 2022-01-05 エルジー・ケム・リミテッド Polymer composition
KR102399191B1 (en) * 2017-11-09 2022-05-18 주식회사 엘지화학 Laminate
KR102550419B1 (en) * 2018-08-16 2023-07-04 주식회사 엘지화학 Block copolymer
KR102484627B1 (en) * 2018-08-16 2023-01-04 주식회사 엘지화학 Pinning layer composition
KR102522250B1 (en) * 2018-08-16 2023-04-17 주식회사 엘지화학 Preparation method of substrate
KR20220045446A (en) 2020-10-05 2022-04-12 주식회사 엘지화학 Purification Method
KR102549753B1 (en) * 2021-11-01 2023-06-30 한국화학연구원 BOTTOM-UP PATTERN MANUFACTURING METHOD, Complex Structure Fabricated therefrom and Semiconductor Device comprising the Complex Structure

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3121116B2 (en) * 1992-05-21 2000-12-25 出光興産株式会社 Styrene block copolymer and method for producing the same
JP4625901B2 (en) * 2000-11-08 2011-02-02 独立行政法人産業技術総合研究所 Syndiotactic aromatic vinyl block copolymer and process for producing the same
US7098525B2 (en) * 2003-05-08 2006-08-29 3M Innovative Properties Company Organic polymers, electronic devices, and methods
US8097175B2 (en) * 2008-10-28 2012-01-17 Micron Technology, Inc. Method for selectively permeating a self-assembled block copolymer, method for forming metal oxide structures, method for forming a metal oxide pattern, and method for patterning a semiconductor structure
US8147914B2 (en) * 2007-06-12 2012-04-03 Massachusetts Institute Of Technology Orientation-controlled self-assembled nanolithography using a block copolymer
JP5150327B2 (en) * 2007-08-03 2013-02-20 東京応化工業株式会社 Resist composition for immersion exposure and method for forming resist pattern
KR101291223B1 (en) * 2007-08-09 2013-07-31 한국과학기술원 Method of forming fine pattern using block copolymer
JP5081560B2 (en) * 2007-09-28 2012-11-28 富士フイルム株式会社 Positive resist composition and pattern forming method using the same
US8425982B2 (en) * 2008-03-21 2013-04-23 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids
US8658258B2 (en) * 2008-10-21 2014-02-25 Aculon, Inc. Plasma treatment of substrates prior to the formation a self-assembled monolayer
JP2010115832A (en) * 2008-11-12 2010-05-27 Panasonic Corp Method for promoting self-formation of block copolymer and method for forming self-formation pattern of block copolymer using the method for promoting self-formation
JP5429759B2 (en) * 2009-02-18 2014-02-26 エルジー・ケム・リミテッド Resin composition, optical film, and liquid crystal display device
KR101865314B1 (en) * 2010-03-18 2018-06-08 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 Surface treatments for alignment of block copolymers
JP5555111B2 (en) * 2010-09-27 2014-07-23 株式会社日立製作所 Polymer thin film having silsesquioxane, microstructure and production method thereof
US9000115B2 (en) * 2011-01-27 2015-04-07 Lg Chem, Ltd. Olefin block copolymers and production methods thereof
US8691925B2 (en) * 2011-09-23 2014-04-08 Az Electronic Materials (Luxembourg) S.A.R.L. Compositions of neutral layer for directed self assembly block copolymers and processes thereof
JP5887244B2 (en) 2012-09-28 2016-03-16 富士フイルム株式会社 Self-assembled composition for pattern formation, pattern formation method by self-assembly of block copolymer using the same, self-assembled pattern, and method for producing electronic device

Also Published As

Publication number Publication date
TW201629112A (en) 2016-08-16
KR101781685B1 (en) 2017-10-23
KR20160038869A (en) 2016-04-07
TW201638123A (en) 2016-11-01
TW201630954A (en) 2016-09-01
KR20160038703A (en) 2016-04-07
KR20160038705A (en) 2016-04-07
TWI609029B (en) 2017-12-21
KR101882369B1 (en) 2018-07-26
TWI612066B (en) 2018-01-21
TWI563007B (en) 2016-12-21
KR20160038709A (en) 2016-04-07
KR20160038868A (en) 2016-04-07
TWI589603B (en) 2017-07-01
KR20160038704A (en) 2016-04-07
TW201629113A (en) 2016-08-16
KR101749415B1 (en) 2017-07-03
TWI583710B (en) 2017-05-21
KR20160038870A (en) 2016-04-07
KR20160038871A (en) 2016-04-07
TW201634504A (en) 2016-10-01
KR101756539B1 (en) 2017-07-11
TWI577703B (en) 2017-04-11
TW201627334A (en) 2016-08-01
KR101880212B1 (en) 2018-07-20
TWI576362B (en) 2017-04-01
TW201627338A (en) 2016-08-01
KR20160038706A (en) 2016-04-07
KR101835092B1 (en) 2018-04-19
KR20160038700A (en) 2016-04-07
KR101832031B1 (en) 2018-02-23
TW201630955A (en) 2016-09-01
KR101851973B1 (en) 2018-04-25
KR101756538B1 (en) 2017-07-11
KR20160038707A (en) 2016-04-07
KR101749416B1 (en) 2017-07-03
KR101749417B1 (en) 2017-07-03
KR20160038708A (en) 2016-04-07
KR20160038710A (en) 2016-04-07
TW201629110A (en) 2016-08-16
KR20160038866A (en) 2016-04-07
TW201628061A (en) 2016-08-01
TWI609408B (en) 2017-12-21
TWI571475B (en) 2017-02-21
KR20160038711A (en) 2016-04-07
TWI591086B (en) 2017-07-11
KR20160038701A (en) 2016-04-07

Similar Documents

Publication Publication Date Title
KR101756538B1 (en) Preparation method of patterened substrate
EP3203496B1 (en) Method for producing patterned substrate
JP6633062B2 (en) Manufacturing method of patterned substrate
JP6394798B2 (en) Block copolymer
KR101780099B1 (en) Block copolymer
JP6451966B2 (en) Block copolymer
JP6347356B2 (en) Block copolymer
JP2017533303A (en) Block copolymer
JP2017533301A (en) Block copolymer
US11174360B2 (en) Laminate for patterned substrates
KR20180062415A (en) Laminate
KR20180103568A (en) Preparation method of patterened substrate
KR101804007B1 (en) Block copolymer