KR20160012427A - Electrically conductive carbon fiber with excellent spun and weaving property and method of manufacturing the same - Google Patents

Electrically conductive carbon fiber with excellent spun and weaving property and method of manufacturing the same Download PDF

Info

Publication number
KR20160012427A
KR20160012427A KR1020140093835A KR20140093835A KR20160012427A KR 20160012427 A KR20160012427 A KR 20160012427A KR 1020140093835 A KR1020140093835 A KR 1020140093835A KR 20140093835 A KR20140093835 A KR 20140093835A KR 20160012427 A KR20160012427 A KR 20160012427A
Authority
KR
South Korea
Prior art keywords
carbon fiber
fiber
electrically conductive
staple
conductive carbon
Prior art date
Application number
KR1020140093835A
Other languages
Korean (ko)
Other versions
KR102113534B1 (en
Inventor
이태상
한인식
윤준영
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to KR1020140093835A priority Critical patent/KR102113534B1/en
Publication of KR20160012427A publication Critical patent/KR20160012427A/en
Application granted granted Critical
Publication of KR102113534B1 publication Critical patent/KR102113534B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/26Formation of staple fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

Electrically conductive carbon fiber of the present invention has the surface conductivity specific resistance of 10^-^5-10^1^0 Ωm and the modulus of 5-50 Gpa. According to a method for manufacturing electrically conducive carbon fiber of the present invention, when the carbon fiber is manufactured by performing flame retardant treatment and carbonization treatment for precursor fiber for carbon fiber manufactured by spinning a spinning solution including a polyacrylonitrile-based polymer, the carbonization treatment is performed at 450-800°C. The electrically conductive carbon fiber of the present invention has a low surface conductivity specific resistance and thus has excellent antistatic performance. At the same time, the electrically conductive carbon fiber has excellent flexibility. Therefore, when yarn is manufactured, mixed spinning properties with respect to a different kind of fiber staple and spinning properties are significantly enhanced, and weaving properties and knitting properties can be enhanced.

Description

원단화가 가능한 전기전도성 탄소섬유 및 그의 제조방법{Electrically conductive carbon fiber with excellent spun and weaving property and method of manufacturing the same}TECHNICAL FIELD [0001] The present invention relates to an electroconductive carbon fiber and a method of manufacturing the same.

본 발명은 원단화가 가능한 전기전도성 탄소섬유 및 그의 제조방법에 관한 것으로서, 보다 구체적으로는 정전기 방지성능과 방직성, 제직성 및 제편성이 우수하여 원단제조가 가능한 전기전도성 탄소섬유 및 그의 제조방법에 관한 것이다.
More particularly, the present invention relates to an electroconductive carbon fiber capable of fabricating a fabric with excellent antistatic performance, woven fabric, woven fabric and knitted fabric, and a method for producing the same. .

낮은 표면 전기 비저항을 구비하여 우수한 정전기 방지성능을 갖는 방적사를 제조하는 종래기술로서는 섬유제조용 폴리머에 흡수성 고분자를 그라프팅, 블랜딩 또는 공중합하는 방법, 섬유제조용 폴리머에 금속성분을 블렌딩하는 방법, 섬유에 금속성분을 코팅하는 방법, 섬유제조용 폴리머와 카본블랙 마스터칩을 복합방사하는 방법, 또는 탄소섬유 스테이플로 방적사를 제조하는 방법 등이 사용되어 왔다.Conventional techniques for producing a spun yarn having low surface electrical resistivity and excellent antistatic performance include a method of grafting, blending or copolymerizing an absorbent polymer to a polymer for fiber production, a method of blending a metal component in a polymer for fiber production, A method of coating a component, a method of spinning a composite fiber of a fiber for producing a fiber and a carbon black master chip, or a method of producing a spun yarn by a carbon fiber staple has been used.

탄소섬유 스테이플은 필라멘트 상태의 탄소섬유를 일정길이로 절단한 단섬유 형태로서, 단독사용 또는 이종섬유 스테이플과 혼합 사용하여 정전기 방지성능을 구비하는 방적사 제조등에 사용되고 있다.The carbon fiber staple is a short fiber formed by cutting a filamentary carbon fiber into a predetermined length, and is used for producing a spun yarn having antistatic performance by being used alone or in combination with a different fiber staple.

탄소섬유 스테이플을 제조하는 종래기술로는, 폴리아크릴로니트릴계 중합체를 포함하는 방사용액을 방사하여 제조된 탄소섬유용 전구체 섬유를 200~300℃에서 30~200분동안 내염화처리한 후, 계속해서 450~1,000℃에서 1~3분동안 예비탄화처리한 후, 계속해서 1,150~1,400℃에서 1~3분 동안 탄화처리하여 필라멘트 상의 탄소섬유를 제조한 다음, 이를 일정길이로 절단하여 탄소섬유 스테이플을 제조하는 방법이 사용되어 왔다.As a conventional technique for producing carbon fiber staples, the precursor fibers for carbon fibers produced by spinning a spinning solution containing a polyacrylonitrile-based polymer are subjected to chlorination treatment at 200 to 300 DEG C for 30 to 200 minutes, And carbonized for 1 to 3 minutes at 1,150 to 1,400 ° C to produce filamentary carbon fibers. The filamentary carbon fibers are then cut to a predetermined length to obtain a carbon fiber staple Have been used.

상기와 같이 제조된 종래의 탄소섬유 스테이플은 표면전기 비저항이 10-5Ω㎝이하로 낮아 정전기 방지성능은 우수하나, 1,000℃ 이상의 고온에서 탄화처리되기 때문에 내염화 처리된 탄소섬유용 전구체 섬유가 열분해되어 탄소섬유내 탄소성분의 구성율이 98%를 초과하는 수준으로 상승되며, 특히 탄소성분간의 공유결합이 촉진되어 탄소섬유의 강도 및 모듈러스가 100~1,000Gpa 수준으로 급격하게 증가된다.Since the conventional carbon fiber staple fabricated as described above has a low surface resistivity of 10 < -5 > OMEGA cm or less and is excellent in antistatic performance, it is carbonized at a high temperature of 1,000 DEG C or more, so that the chlorinated fiber- So that the constituent ratio of the carbon component in the carbon fiber is raised to a level exceeding 98%. In particular, the cobalt bond between the carbon components is promoted, and the strength and modulus of the carbon fiber are rapidly increased to 100-1,000 Gpa level.

그로 인해 상기와 같이 제조된 종래의 탄소섬유 스테이플은 높은 모듈러스로 인해 유연성 부족으로 전단응력에 취약하여 쉽게 부스러지는 문제가 발생되었고, 결국 상기 탄소섬유 스테이플로 방적사를 제조시 이종섬유 스테이플과의 혼섬 작업성이 떨어져 방적이 불가능하였다.Accordingly, the conventional carbon fiber staple fabricated as described above is vulnerable to shear stress due to a lack of flexibility due to its high modulus. Thus, there is a problem that the carbon fiber staple is easily broken. As a result, when the spun yarn is produced with the carbon fiber staple, It was impossible to spin off.

또한 상기 탄소섬유는 전단응력이 취약하여 쉽게 부스러지는 문제가 발생되기 때문에 제직성 및 제편성이 크게 저하되어 원단화가 어려웠다.In addition, since the carbon fibers have a weak shear stress, they are easily broken, resulting in a significant decrease in the woven fabric and the knitted fabric.

본 발명의 과제는 정전기 방지성능이 우수함과 동시에 방적성, 제직성 등이 우수하여 원단제조가 가능한 전기전도성 탄소섬유 및 그의 제조방법을 제공하는 것이다.
An object of the present invention is to provide an electroconductive carbon fiber which is excellent in antistatic performance and excellent in flammability and warpability and can be fabricated, and a method for producing the same.

이와 같은 과제를 달성하기 위해서, 본 발명에서는 폴리아크릴로니트릴계 중합체를 포함하는 방사용액을 방사하여 제조된 탄소섬유용 전구체 섬유를 내염화처리 및 탄화처리하여 탄소섬유를 제조할 때 상기 탄화처리를 450~800℃의 온도로 실시하여 표면 전기 비저항이 10-5~1010Ωm이고 모듈러스가 5~50Gpa인 전기전도성 탄소섬유를 제조한다.
In order to achieve the above object, in the present invention, when the carbon fiber is produced by treating the precursor fiber for carbon fiber prepared by spinning the spinning solution containing the polyacrylonitrile-based polymer by chlorination treatment and carbonization treatment, At 450 to 800 ° C to produce an electrically conductive carbon fiber having a surface electrical resistivity of 10 -5 to 10 10 Ωm and a modulus of 5 to 50 Gpa.

본 발명의 전기전도성 탄소섬유는 표면 전기 비저항이 낮아서 정전기 방지성능이 우수함과 동시에 우수한 유연성을 구비하여 필라멘트 형태로 이용시 제직성과 제편성이 향상되고 스테이플 형태로 방적사 제조에 이용시 다른 이종섬유 스테이플과의 혼방성이 크게 향상된다.
The electroconductive carbon fiber of the present invention has a low surface electrical resistivity and thus has excellent antistatic performance and has excellent flexibility, which improves the weaving and knitting when used in the form of a filament, and improves the knitability with other staple fiber staples The property is greatly improved.

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

먼저, 본 발명에서는 폴리아크릴로니트릴계 중합체를 포함하는 방사용액을 방사하여 제조된 탄소섬유용 전구체 섬유를 내염화처리 및 탄화처리하여 탄소섬유를 제조할 때 상기 탄화처리를 450~800℃의 온도로 실시하여 전기전도성 탄소섬유를 제조한다.First, in the present invention, when the carbon fiber is produced by treating the carbon fiber precursor fibers prepared by spinning the spinning solution containing the polyacrylonitrile-based polymer by chlorination treatment and carbonization treatment, the carbonization treatment is performed at a temperature of 450 to 800 ° C To produce an electrically conductive carbon fiber.

상기 탄화처리 온도가 450℃ 미만인 경우에는 제조된 전기전도성 탄소섬유의 표면 전기 비저항이 1010Ωm 이상으로 정전기 방지성능이 부족하게 되고, 800℃를 초과하는 경우에는 제조된 전기전도성 탄소섬유의 표면 전기 비저항이 102Ωm 이하로 정전기 방지성능은 우수하지만 전기전도성 탄소섬유내 탄소성분의 공유결합이 촉진되어 모듈러스가 100Gpa 이상으로 유연성이 부족하여(취성이 너무 높아) 방적사 제조시 방적성이 저하되고, 제직성 및 제편성도 저하된다.When the carbonization temperature is less than 450 ° C., the electroconductive carbon fiber has a surface electrical resistivity of 10 10 Ωm or more, which leads to insufficient antistatic performance. When the carbon electroplating process temperature exceeds 800 ° C., The resistivity is less than 10 2 Ωm and the antistatic property is excellent. However, since the covalent bond of the carbon component in the electrically conductive carbon fiber is promoted, the modulus is more than 100 Gpa and the flexibility is insufficient (the brittleness is too high) The warpability and the knitted fabric deteriorate.

또한, 상기 탄화처리 온도가 800℃를 초과하는 경우에는 탄소섬유용 전구체섬유가 열분해되어 전기전도성 탄소섬유내 탄소성분의 함량이 98%를 초과되게 상승하게 된다.If the carbonization temperature exceeds 800 ° C, the carbon fiber precursor fibers are thermally decomposed to increase the carbon content in the electrically conductive carbon fiber to more than 98%.

이때, 상기 내염화 처리는 종래 탄소섬유 제조시의 내염화 처리조건과 같이 200~300℃의 온도에서 30~200분 동안 처리하는 것이 바람직하다.At this time, the dechlorination treatment is preferably carried out at a temperature of 200 to 300 DEG C for 30 to 200 minutes as in the case of the conventional chlorination treatment at the time of manufacturing carbon fiber.

본 발명은 탄소섬유 제조시 제조된 탄소섬유가 유연성과 정전기 방지성능을 동시에 구비하도록 탄화처리 온도범위를 적절하게 한정, 조절한다.The present invention appropriately limits and adjusts the carbonization treatment temperature range so that the carbon fibers produced in the production of carbon fiber have both flexibility and antistatic performance at the same time.

상기 방법으로 제조되는 본 발명의 전기전도성 탄소섬유는 표면 전기 비저항이 10-5~1010Ωm이고 모듈러스가 5~50Gpa이고, 보다 바람직하기로는 전기전도성 탄소섬유내 탄소성분의 구성율이 75~98%이다.The electrically conductive carbon fiber of the present invention produced by the above method has a surface electrical resistivity of 10 -5 to 10 10 Ωm and a modulus of 5 to 50 GPa, more preferably a constituent ratio of carbon components in the electrically conductive carbon fiber of 75 to 98 %to be.

상기 전기전도성 탄소섬유는 필라멘트 형태일 수도 있고, 필라멘트를 일정길이로 절단한 스테이플(Staple) 형태일 수도 있다.The electrically conductive carbon fiber may be a filament type or a staple type in which the filament is cut to a predetermined length.

본 발명의 전기전도성 탄소섬유는 표면전기 비저항이 10-5~1010Ωm이기 때문에 정전기 방지성능이 우수함과 동시에 모듈러스가 5~50Gpa이기 때문에 유연성이 높고 취성이 낮아, 스테이플 형태로 방적사 제조에 사용될 경우 이종섬유 스테이플과의 혼섬 작업성이 좋아지고 방적성도 크게 향상되고, 필라멘트 형태로 직물 또는 편물 제조에 사용될 경우 제직성과 제편성이 크게 향상된다.Since the electroconductive carbon fiber of the present invention has a surface electrical resistivity of 10 -5 to 10 10 Ωm, it is excellent in antistatic performance and has a modulus of 5 to 50 Gpa. Therefore, it has high flexibility and low brittleness and is used in the production of staple yarns The yarn workability with the staple fiber staple is improved, the spinnability is greatly improved, and the woven fabric and knitted fabric are greatly improved when used in the production of a filament or a knitted fabric.

이하, 실시예 및 비교실시예를 통하여 본 발명을 구체적으로 살펴본다.Hereinafter, the present invention will be described in detail with reference to examples and comparative examples.

그러나 하기 실시예는 본 발명의 구현일례일 뿐 본 발명의 보호범위를 한정하는 것은 아니다.
However, the following examples are only illustrative of the present invention and do not limit the scope of protection of the present invention.

실시예Example 1 One

아크릴로니트릴 95몰%, 메타크릴산 3몰% 및 이타콘산 2몰%로 되는 공중합체를 디메틸 설폭사이드를 용매로 하는 용액 중합법에 의하여 중합하고, 여기에 암모니아를 이타콘산과 동량으로 첨가하여 중화하여, 암모늄 염 형태의 폴리아크릴로니트릴계 공중합체를 제조하여 공중합체 성분의 함유율이 22중량%인 방사 원액을 얻었다.A copolymer consisting of 95 mol% of acrylonitrile, 3 mol% of methacrylic acid and 2 mol% of itaconic acid was polymerized by a solution polymerization method using dimethylsulfoxide as a solvent, ammonia was added thereto in the same amount as itaconic acid And neutralized to prepare a polyacrylonitrile copolymer in the form of an ammonium salt to obtain a spinning solution having a copolymer component content of 22% by weight.

이 방사 원액을 방사구금(온도 45℃, 직경 0.08mm, 구멍수 6,000의 구금을 2개 사용)을 통해 토출하고, 45℃로 제어되는 40% 디메틸설폭사이드의 수용액으로 되는 응고욕에 도입하여 응고사를 제조하였다.This spinning solution was discharged through a spinneret (temperature: 45 ° C, diameter: 0.08 mm, two holes of 6,000 holes) and introduced into a coagulation bath to be an aqueous solution of 40% dimethyl sulfoxide controlled at 45 ° C The test was made.

응고사를 수세한 뒤, 열수 중에서 5배 연장하고, 망상의 변성 실리콘계 실리콘 유제를 부여하여 중간 연신사를 얻었다.After washing the test piece, the test piece was stretched 5 times in hot water, and a silicone-modified silicone emulsion was added to give an intermediate stretched yarn.

이 중간 연신사를 가열 롤러를 이용하여 건조 처리 후, 가압 스팀 중에서 연신하여 권취 전체 연신 배율이 10배, 단섬유 섬도 1.5dtex, 필라멘트수 12,000의 폴리아크릴로니트릴계 섬유 다발을 얻었다. 이를 탄소섬유용 전구체 섬유라 한다.This intermediate stretched yarn was subjected to drying treatment using a heating roller and stretched in a pressurized steam to obtain a polyacrylonitrile type fiber bundle having a total draw ratio of winding 10 times, a single fiber fineness of 1.5 dtex and a filament count of 12,000. This is called precursor fiber for carbon fiber.

얻어진 폴리아크릴로니트릴계 섬유 다발을 4m/min의 속도로 실질적으로 꼬임을 부여하지 않고 공기 분위기 속에서 200℃에서 6분 동안 예비 내염화 처리(연신 수반)하고, 220 ~ 270℃의 온도 분포를 가지는 4단 열풍오븐에서 80분 동안 내염화 처리(연신 수반)하였다.The resulting polyacrylonitrile-based fiber bundle was pre-chlorinated (stretched) at 200 캜 for 6 minutes in an air atmosphere without imparting a substantial twist at a rate of 4 m / min to obtain a temperature distribution of 220 to 270 캜 The branch was chlorinated (stretched) in a four-stage hot air oven for 80 minutes.

다음으로, 내염화 처리된 폴리아크릴로니트릴계 섬유 다발을 450℃에서 탄화처리하여 탄소섬유를 제조한 다음, 이를 38㎜ 길이로 절단하여 탄소섬유 스테이플을 제조하였다.Next, the chlorinated polyacrylonitrile fiber bundles were carbonized at 450 DEG C to produce carbon fibers, which were then cut into 38 mm lengths to produce carbon fiber staples.

다음으로, 상기와 같이 제조된 탄소섬유 스테이플과 면섬유를 50:50 중량비율로 혼방하여 방적사를 제조하였다.Next, the carbon fiber staple and the cotton fiber produced as described above were blended in a weight ratio of 50:50 to prepare a spun yarn.

제조된 상기 탄소섬유의 표면전기 비저항, 모듈러스 및 크림프성을 측정한 결과와 방적사 제조시 탄소섬유 스테이플과 면섬유의 혼섬 작업성을 평가한 결과는 표 2와 같았다.
Table 2 shows the result of measuring the surface electrical resistivity, modulus and crimp property of the carbon fiber, and the evaluation of the cross-linking workability between the carbon fiber staple and the cotton fiber in the production of the spinning yarn.

실시예Example 2 ~  2 ~ 실시예Example 4 및  4 and 비교실시예Comparative Example 1 ~  1 ~ 비교실시예Comparative Example 5 5

탄소섬유를 제조하는 공정 중에 탄화처리 온도를 표 1과 같이 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소섬유 및 탄소섬유 스테이플을 제조하였다.Carbon fibers and carbon fiber staples were prepared in the same manner as in Example 1, except that the carbonization temperature was changed as shown in Table 1 during the process of producing carbon fibers.

다음으로, 상기와 같이 제조된 탄소섬유 스테이플과 면섬유를 50:50 중량비율로 혼방하여 방적사를 제조하였다.Next, the carbon fiber staple and the cotton fiber produced as described above were blended in a weight ratio of 50:50 to prepare a spun yarn.

제조된 상기 탄소섬유의 표면전기 비저항, 모듈러스 및 크림프성을 측정한 결과와 방적사 제조시 탄소섬유 스테이플과 면섬유의 혼섬 작업성을 평가한 결과는 표 2와 같았다.Table 2 shows the result of measuring the surface electrical resistivity, modulus and crimp property of the carbon fiber, and the evaluation of the cross-linking workability between the carbon fiber staple and the cotton fiber in the production of the spinning yarn.

제조조건Manufacturing conditions 구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 비교
실시예 1
compare
Example 1
비교
실시예 2
compare
Example 2
비교
실시예 3
compare
Example 3
비교
실시예 4
compare
Example 4
비교
실시예 5
compare
Example 5
탄화
온도
(℃)
carbonization
Temperature
(° C)
450450 550550 650650 750750 300300 400400 1,2001,200 1,3001,300 850850

탄소섬유 스테이플 물성 및 혼합작업성Carbon fiber staple properties and mixing workability 구분
division
탄소섬유 스테이플 물성Carbon fiber staple properties
표면전기저항
(Ωm)
Surface electrical resistance
(Ωm)
모듈러스
(Gpa)
Modulus
(Gpa)
크림프성Crimp Castle 혼섬 작업성Fusion workability
실시예 1Example 1 4.0×109 4.0 × 10 9 99 우수Great 우수Great 실시예 2Example 2 1.5×109 1.5 x 10 9 1111 우수Great 우수Great 실시예 3 Example 3 2.5×107 2.5 x 10 7 1313 우수Great 우수Great 실시예4Example 4 1.1×105 1.1 × 10 5 2525 우수Great 우수Great 비교실시예 1Comparative Example 1 4.0×1014 4.0 x 10 14 55 불량Bad 불량Bad 비교실시예 2Comparative Example 2 3.1×1012 3.1 × 10 12 88 불량Bad 불량Bad 비교실시예 3Comparative Example 3 1.2×10-1 1.2 x 10 -1 190190 불량Bad 불량Bad 비교실시예 4Comparative Example 4 1.9×10-2 1.9 x 10 -2 220220 불량Bad 불량Bad 비교실시예 5Comparative Example 5 1.3×102 1.3 x 10 2 5151 불량Bad 불량Bad

표면전기 비저항은 미쯔비시 케미칼 어넬리테크사 히레스타(Hiresta)-UX(모델 MCP-HT800)에서 10V ~ 100V조건으로 측정하였다.The surface electrical resistivity was measured at 10 V to 100 V in Mitsubishi Chemical Annelli Tech Hiresta-UX (Model MCP-HT800).

모듈러스는 인스트롱(만능시험기)를 이용하여 ASTM D 638 방법으로 측정하였다.The modulus was measured by the ASTM D 638 method using an introns (universal testing machine).

크림프성과 혼섬 작업성은 직관적 검사에 의해 혼섬 작업시 스테이플이 부러지거나 분말형태로 묻어나는 것이 거의 없는 경우를 "우수"로 판정하였고, 혼섬 작업시 스테이플이 일부 부러지거나 분말형태로 묻어나도 혼섬은 가능한 경우를 "양호"로 판정하였고, 혼섬 작업시 스테이플이 부러지거나 분말형태로 묻어나거나 뭉쳐버려 방적이 불가능한 경우를 "불량"으로 판정하였다.
Crimp and fusing workability was judged to be "excellent" when the staple was broken by the intuition test, and the staple was hardly broken or powdered. When the staple was broken in the fusing process or the fusing occurred, Was judged to be "good ", and when the staple was broken in the fusing operation, the staple appeared to be in the form of powder, or the staple was clumped and it was impossible to spin.

Claims (6)

표면 전기 비저항이 10-5~1010Ωm이고 모듈러스가 5~50Gpa인 것을 특징으로 하는 원단화가 가능한 전기전도성 탄소섬유.Wherein the electroconductive carbon fiber has a surface electrical resistivity of 10 -5 to 10 10 Ωm and a modulus of 5 to 50 GPa. 제1항에 있어서, 상기 탄소섬유는 필라멘트 형태 및 스테이플(Staple) 형태 중에서 선택된 1종의 형태인 것을 특징으로 하는 원단화가 가능한 전기전도성 탄소섬유.The electroconductive carbon fiber according to claim 1, wherein the carbon fiber is one type selected from a filament type and a staple type. 제1항에 있어서, 탄소섬유내 탄소성분의 함량이 75~98%인 것을 특징으로 하는 원단화가 가능한 전기전도성 탄소섬유.The fabricable electroconductive carbon fiber according to claim 1, wherein the carbon content in the carbon fiber is 75 to 98%. 폴리아크릴로니트릴계 중합체를 포함하는 방사용액을 방사하여 제조된 탄소섬유용 전구체 섬유를 내염화처리 및 탄화처리하여 탄소섬유를 제조함에 있어서, 상기 탄화처리를 450~800℃의 온도로 실시하는 것을 특징으로 하는 원단화가 가능한 전기전도성 탄소섬유의 제조방법.The carbonization treatment is carried out at a temperature of 450 to 800 ° C. in the production of the carbon fiber by treating the carbon fiber precursor fiber prepared by spinning the spinning solution containing the polyacrylonitrile polymer by chlorination treatment and carbonization treatment Wherein the electrically conductive carbon fiber is produced by a method comprising the steps of: 제4항에 있어서, 내염화처리 및 탄화처리를 거쳐 제조된 탄소섬유를 스테이플 형태로 절단하는 공정을 추가로 더 실시하는 것을 특징으로 하는 원단화 가능한 전기전도성 탄소섬유의 제조방법.5. The method of producing a conductive carbon fiber according to claim 4, further comprising a step of cutting the carbon fiber produced through the chlorination treatment and the carbonization treatment into a staple shape. 제4항 및 제5항에 있어서, 상기 내염화 처리를 200~300℃의 온도로 실시하는 것을 특징으로 하는 원단화가 가능한 전기전도성 탄소섬유의 제조방법.

The method for producing electroconductive carbon fibers according to claim 4 or 5, wherein the chlorination treatment is carried out at a temperature of 200 to 300 占 폚.

KR1020140093835A 2014-07-24 2014-07-24 Electrically conductive carbon fiber with excellent spun and weaving property and method of manufacturing the same KR102113534B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140093835A KR102113534B1 (en) 2014-07-24 2014-07-24 Electrically conductive carbon fiber with excellent spun and weaving property and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140093835A KR102113534B1 (en) 2014-07-24 2014-07-24 Electrically conductive carbon fiber with excellent spun and weaving property and method of manufacturing the same

Publications (2)

Publication Number Publication Date
KR20160012427A true KR20160012427A (en) 2016-02-03
KR102113534B1 KR102113534B1 (en) 2020-06-02

Family

ID=55355467

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140093835A KR102113534B1 (en) 2014-07-24 2014-07-24 Electrically conductive carbon fiber with excellent spun and weaving property and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR102113534B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220083239A (en) 2020-12-11 2022-06-20 주식회사 티에프제이 Oxipan stabilized fiber improved with crimp and flame-resistance, flame-resistance spun yarn containing the same and preparation thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303123A (en) * 1987-01-28 1988-12-09 Petoka:Kk Pitch-based carbon fiber and production thereof
JPH07166432A (en) * 1993-12-15 1995-06-27 Mitsubishi Chem Corp Carbon fiber
JP2004232155A (en) * 2003-01-31 2004-08-19 Toho Tenax Co Ltd Light-weight polyacrylonitrile-based carbon fiber and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303123A (en) * 1987-01-28 1988-12-09 Petoka:Kk Pitch-based carbon fiber and production thereof
JPH07166432A (en) * 1993-12-15 1995-06-27 Mitsubishi Chem Corp Carbon fiber
JP2004232155A (en) * 2003-01-31 2004-08-19 Toho Tenax Co Ltd Light-weight polyacrylonitrile-based carbon fiber and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220083239A (en) 2020-12-11 2022-06-20 주식회사 티에프제이 Oxipan stabilized fiber improved with crimp and flame-resistance, flame-resistance spun yarn containing the same and preparation thereof

Also Published As

Publication number Publication date
KR102113534B1 (en) 2020-06-02

Similar Documents

Publication Publication Date Title
KR101625739B1 (en) Polyacrylonitrile Precursor for Carbon Fiber and Method for Preparing the Same
US9175424B2 (en) Method of preparing carbon fiber from wood waste including adhesive
JPWO2018066439A1 (en) Flameproof knitted fabric
TW201819701A (en) Flame-resistant woven fabric
EP3204330A2 (en) Use, stabilization and carbonization of polyacrylonitrile/carbon composite fibers
KR102113535B1 (en) Spun yarn comprising carbon fiber staple and method of manufacturing the same
KR101280553B1 (en) Quasi-noncombustible spun yarn containing rayon staple fiber and corbon fiber, fabric using the same
Meredith The structures and properties of fibres
KR102113534B1 (en) Electrically conductive carbon fiber with excellent spun and weaving property and method of manufacturing the same
CN103361767A (en) Low-cost polyolefin elastic fiber and manufacturing method thereof
CN110184705B (en) High-antibacterial-property Ag @ Cu nanoparticle modified PI nanofiber long-thread yarn
CN103361870B (en) The BLENDED FABRIC of Ju Fang oxadiazole and anti-flaming viscose
KR101168218B1 (en) The latent crimping polyester staple fiber and maunfacturing method thereof
JP2007291570A (en) Flame-retardant synthetic fiber, flame-retardant fiber complex body and nonwoven fabric as flame-blocking barrier
KR101424883B1 (en) Method for preparing electrically conductive hollow fiber and electrically conductive hollow fiber prepared thereby
KR20190001045A (en) Method of manufacturing carbon paper using cabon nano tube containing polyacrylonitrile short fiber
KR101218609B1 (en) The latent crimping polyester staple fiber
JP2014001467A (en) Method for producing flame retardant polyester fiber
Weerasinghe et al. All organic, conductive nanofibrous twisted yarns
KR20200126751A (en) Nylon/polyester partition yarn having electrically conductive
CN110230137A (en) A kind of organic carbon black conductive yarn and its preparation process
KR102206860B1 (en) Hybrid activated carbon fiber and method of manufacturing the same
KR101282569B1 (en) Industrial glove having antistatic property and frame retardance
KR102551480B1 (en) Method for dispersing composition of high content carbon material and polymer composition prepared from the method
KR20140090422A (en) A method for manufacturing shape memory nano-filament and a shape memory nano-filament manufactured thereby

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
G170 Publication of correction