KR20150140061A - Rankine Cycle electricity generation system - Google Patents

Rankine Cycle electricity generation system Download PDF

Info

Publication number
KR20150140061A
KR20150140061A KR1020140068293A KR20140068293A KR20150140061A KR 20150140061 A KR20150140061 A KR 20150140061A KR 1020140068293 A KR1020140068293 A KR 1020140068293A KR 20140068293 A KR20140068293 A KR 20140068293A KR 20150140061 A KR20150140061 A KR 20150140061A
Authority
KR
South Korea
Prior art keywords
rankine cycle
cycle
condensation
condenser
expansion
Prior art date
Application number
KR1020140068293A
Other languages
Korean (ko)
Inventor
김영선
Original Assignee
김영선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영선 filed Critical 김영선
Priority to KR1020140068293A priority Critical patent/KR20150140061A/en
Publication of KR20150140061A publication Critical patent/KR20150140061A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/16Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled all the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines

Abstract

The present invention relates to a steam power generation system for generating electric power using steam supplied by combining a rankine cycle using water as a heat medium, an organic rankine cycle, which uses a refrigerant having a boiling point much lower than the boiling point of water such as R245fa, R134a, etc., and a reverse rankine cycle of a heat pump system. The system can be configured so that electric power can be generated by rotating a steam turbine of the reverse cycle and supplying generated heat again to the reverse rankine cycle and the organic rankine cycle, and electric power can be generated using the power of the steam turbine or the power can be transmitted by connecting the compressor of the reverse rankine cycle to the compression pump of the organic rankine cycle using an axis.

Description

스팀 발전시스템 {Rankine Cycle electricity generation system}The Rankine Cycle electricity generation system

쓰레기 소각장의 소각열과 공장에서 배출되는 폐수열, 발전소에서 배출되는 발전배열을 활용하거나, 지열, 해수열, 공기열등의 미활용 에너지원으로 부터 열원을 활용하여 전력을 생산하기 위한 발전시스템을 구성하는데 있어 랭킨사이클과 역랭킨사이클과 유기랭킨사이클을 결합하여 고효율 발전시스템 설계 방법에 관한 것이다.
In order to construct a power generation system for generating electric power by using incineration heat of waste incinerator, waste heat discharged from a plant, generation arrangement discharged from a power plant, or an unused energy source such as geothermal heat, seawater heat, air heat, And a method for designing a high-efficiency power generation system by combining a reverse Rankine cycle and an organic Rankine cycle.

일반적으로 유기랭킨사이클을 이용하여 열병합 발전소나 공장폐수열을 활용 전기를 생산하는 방법이나, 히트펌프냉난방 시스템에서 팽창밸브 대신에 냉매터빈을 설치하여 전기를 생산하는 사례들이 많이 있다.
Generally, there are a number of cases where electricity is produced by utilizing a cogeneration plant or plant waste heat using an organic Rankine cycle, or a refrigerant turbine is installed instead of an expansion valve in a heat pump cooling and heating system.

유기랭킨사이클에서는 작동열매체의 증기압에 의해 터빈을 돌려 전기를 생산하고 작동열매체의 기체에서 액체로의 상변화를 위해 냉각팬을 돌려 공기로 식혀 응축 시키거나, 냉각탑을 설치하여 냉각수에 의해서 응축하는 방법을 사용한다.In the organic Rankine cycle, the turbine is rotated by the vapor pressure of the working heat medium to produce electricity, and the cooling fan is turned to cool the air to change the phase of the heat medium from gas to liquid or to condense it with cooling water Lt; / RTI >

(대한민국 특허등록번호 10-0960609 냉매터빈 발전장치) (Korea Patent Registration No. 10-0960609 Refrigerant Turbine Generator)

상기 유기랭킨사이클은 냉매의 운동에너지만을 활용하여 전기를 생산하고, 냉매의 응축잠열은 활용하지 못하고 있고, 히트펌프 냉난방시스템(역랭킨사이클)에서는 냉매의 응축잠열만을 활용하고, 유체의 운동에너지는 활용하지 못하고 있다.
The organic Rankine cycle utilizes only the kinetic energy of the refrigerant to produce electricity and does not utilize the latent heat of condensation of the refrigerant. In the heat pump cooling and heating system (reverse Rankine cycle), only the latent heat of condensation of the refrigerant is utilized, I can not use it.

히트펌프냉난방 시스템(역랭킨사이클)에서 팽창밸브 대신에 냉매터빈을 설치하여 유체냉매의 운동에너지를 활용 전기를 생산하지만, 냉매 압축기 소비전력의 약30% 전력을 회수하여 전체적인 효율을 높이기는 하지만 발전기라고 할 수는 없다.In the heat pump cooling / heating system (reverse Rankine cycle), instead of the expansion valve, a refrigerant turbine is installed to utilize the kinetic energy of the fluid refrigerant to generate electric power. However, although the overall efficiency is improved by recovering about 30% It can not be said.

(대한민국 특허등록번호 10-1166154, 냉매터빈발전기를 이용한 이원냉동사이클 히트펌프)
(Korean Patent Registration No. 10-1166154, Binary Refrigeration Cycle Heat Pump Using Refrigerant Turbine Generator)

유기랭킨사이클을 활용하여 폐열에서 전기를 생산하는 경우에는 어차피 버려지는 열에서 에너지를 회수 하기 때문에 경제성 을 확보할 수 있는 여지가 있지만, 공기열원이나 지열원, 해수열원 등의 미활용에너지를 회수하여 전력을 생산하고자 하는 경우에는 해결해야 할 여러문제가 존재한다.
In the case of generating electricity from the waste heat by utilizing the organic Rankine cycle, there is a possibility to secure economical efficiency because the energy is recovered from the discarded heat anyway. However, unused energy such as air heat source, geothermal source, There are various problems to be solved.

히트펌프시스템에 의해 상용전기를 사용하여 열을 생산, 이 열을 유기랭킨사이클에 공급하여 전기를 생산하려고 하는 경우, 먼저 히트펌프시스템이 공급하는 응축열이 80도 이상 고온이여야 하는데, 하나의 사이클로 이루어진 히트펌프시스템은 약 60도의 열원밖에 공급하지 못하고, 그 이상의 고온을 생산하려면 히트펌프시스템을 고압으로 운영해야 가능하다. 또한 공기열 히트펌프시스템의 경우 외기온도 조건에 의해 그 효율이 결정되기 때문에, 경제성을 갖기 위해서는 ?은 효율을 달성해야 하고, 매우 높은 온도 조건에서만 히트펌프발전기를 운영하거나, 유기랭킨사이클의 효율이 어느정도 확보 되어야 경제성을 달성할 수 있으나, 현재 기술로서는 어려움이 있다.
In the case where heat is produced by using a commercial electric power by a heat pump system and this heat is supplied to an organic Rankine cycle to produce electricity, the heat of condensation supplied by the heat pump system must first be a high temperature of 80 degrees or more, The heat pump system made can only supply about 60 degrees of heat source, and it is possible to operate the heat pump system at a high pressure in order to produce higher temperatures. In addition, since the efficiency of the air-heat heat pump system is determined by the ambient temperature condition, it is necessary to achieve the economical efficiency by operating the heat pump generator only at very high temperature conditions, Although economical efficiency can be achieved by securing it, there is a difficulty in the present technology.

유기랭킨사이클은 저온의 폐열원으로 부터 열을 회수하여 전력으로 변환하는 시스템으로 시스템효율은 낮은 상태여서, 폐열원 활용 효율을 높이기 위해서는 시스템효율을 최대한 높혀야 하며, 또한 전력으로 변환된 에너지를 제외하고는 유기랭킨 The organic Rankine cycle is a system that recovers heat from a low-temperature waste heat source and converts it into electric power. System efficiency is low. To increase efficiency of waste heat source utilization, system efficiency should be maximized. And organic Rankine

사이클의 작동열매체 상변화를 위한 응축기에서의 대량의 냉각수가 소요되어 시스템의 소형화에 어려움이 많다.
The operation of the cycle requires a large amount of cooling water in the condenser for the heating medium phase change, which makes it difficult to miniaturize the system.

또한, 유기랭킨사이클과 역랭킨사이클 결합시, 역랭킨사이클의 압축기에 소비동력으로 인해서 전체 유효전력량이 줄게 된다.
Also, when combined with an organic Rankine cycle and a reverse Rankine cycle, the total effective power is reduced due to the consumption power of the compressor of the Rankankeen cycle.

본 발명의 경우, 소작장 등에서 나오는 비교적 저압의 스팀으로 부터 스팀터빈을 회전시키고, 스팀터빈을 회전시키고 나온 저온 저압의 스팀 혹은 액체상태의 열매체의 열원을 역랭킨사이클과 유기랭킨사이클이 결합한 시스템에 공급하여 전력을 In the case of the present invention, a system in which a steam turbine is rotated from a relatively low-pressure steam generated in a cogeneration plant, and a heat source of a low-temperature low-pressure steam or a heating medium from a steam turbine is combined with a Rankanken cycle and an organic Rankine cycle Supply power

생산하는 방법으로서 열활용 효율을 극대화하는 기술을 제안한다.
As a production method, we propose a technique to maximize heat utilization efficiency.

역랭킨사이클(히트펌프시스템)을 사용하면 낮은 폐열원을 더 높은 열원으로 생산하여 유기랭킨사이클에 공급함으로서 발전을 할 수 있다.
Using a reverse Rankine cycle (heat pump system), a low waste heat source can be produced as a higher heat source and supplied to the organic Rankine cycle for power generation.

또한, 유기랭킨사이클 터빈을 회전시키고 빠져 나온 저온 저압 기체상태의 작동열매체를 액체상태로 상변화 시키기 위해서는 응축기가 필요한데, 기본적으로 전력으로 변환된 에너지를 제외한 나머지 에너지가 매우 크기 때문에, 응축기 가 켜져야 할 뿐 아니라 수냉식의 경우 다량의 냉각수를 필요로 하는데, 본 발명에서는 역랭킨사이클(히트펌프기술)을 유기랭킨사이클 기술과 결합하여, 유기랭킨사이클 응축기의 응축열을 역랭킨사이클의 증발기에서 흡수하여, 역랭킨사이클 응축기를 통해 유기랭킨사이클 증발기로 다시 열을 공급 함으로서 열효율 향상 뿐 아니라 별도의 냉각수가 필요 없는 유기랭킨사이클 발전시스템을 구성한다.
In addition, a condenser is required to phase-change the operating thermal medium in a low-temperature and low-pressure gaseous state, which rotates the organic Rankine cycle turbine and exits into a liquid state. Since the remaining energy is basically very large except for the energy converted into electric power, In the present invention, the reverse Rankine cycle (heat pump technology) is combined with the organic Rankine cycle technology to absorb the condensation heat of the organic Rankine cycle condenser in the evaporator of the Rankankeen cycle, By supplying the heat back to the organic Rankine cycle evaporator through the reverse Rankine cycle condenser, the organic Rankine cycle power generation system which not only improves thermal efficiency but also requires no additional cooling water is constituted.

또한, 랭킨사이클의 복수의 응축기를 역랭킨사이클과 유기랭킨사이클과 결합하여 랭킨사이클의 스팀터빈으로 부터 동력을 생산하면서, 잔여 열원을 다시 역랭킨사이클과 유기랭킨사이클에 전달하여 전력을 생산함으로서 전체 시스템의 유효전력 In addition, a plurality of condensers of the Rankine cycle are combined with a Rankankyne cycle and an organic Rankine cycle to generate power from the Rankine cycle steam turbine, while the remaining heat source is transferred to the Rankankyne cycle and the organic Rankine cycle to produce electric power, Active power of the system

생산량을 증대하고, 랭킨사이클에 별도의 복수기가 필요없게 함으로서 전체적인 열 활용 효율을 높혀, 높은 경제성을 달성 할 수 있다.
By increasing the amount of production and eliminating the need for a separate condenser in the Rankine cycle, the overall efficiency of heat utilization can be increased and high economic efficiency can be achieved.

스팀터빈에서 생산된 동력은 스팀터빈과 축으로 연결된 발전기를 통해 전력으로 생산하거나, 역랭킨사이클의 압축기나 유기랭킨사이클 압축기를 축으로 연결하여 동력을 전달 할 수 있다.
The power generated by the steam turbine can be produced by power through a steam turbine and a shaft-connected generator, or by connecting a reverse-Rankin cycle compressor or an organic Rankine cycle compressor shaft.

본 발명의 스팀 발전시스템은 랭킨사이클과 역랭킨사이클, 유기랭킨사이클이 결합된 고효율 발전시스템으로 상당 부분 버려지고 있는 소각장에서의 열원이나, 발전소 발전 배열, 공장 등 산업시설의 폐열을 열원으로 하여 발전을 할 수 있으며, 생산되는 열원의 대부분을 전기로 변환 할 수 있으며, 열활용 효율이 높고 별도의 대량의 냉각수를 필요로 하지 않아, 발전시스템이 작고 제작 비용이 작게들어 경제성이 매우 높은 발전시스템을 구성할 수 있다.
The steam generation system of the present invention is a high efficiency power generation system combining a Rankine cycle, a reverse Rankine cycle and an organic Rankine cycle, and generates heat from a waste heat of an industrial facility such as a heat source at an incinerator, And it is possible to convert most of the generated heat source into electricity. Since the efficiency of heat utilization is high and a large amount of cooling water is not required, the power generation system is small and the production cost is small. Can be configured.

도1 은 본 발명의 스팀 발전시스템 개념도 1
도2 은 본 발명의 스팀 발전시스템 개념도 2
도3 은 본 발명의 스팀 발전시스템 개념도 3
도4 는 본 발명의 스팀 발전시스템 개념도 4
도5 은 본 발명의 스팀 발전시스템 개념도 5
도6 는 본 발명의 스팀 발전시스템 개념도 5의 실시도
1 is a conceptual view of the steam generating system of the present invention
2 is a schematic view of the steam generating system of the present invention
3 is a conceptual view of the steam generating system of the present invention
FIG. 4 is a conceptual view of the steam generating system of the present invention. FIG.
5 is a conceptual view of the steam generating system of the present invention
FIG. 6 is a schematic view of the steam generator system of FIG.

도1 은 본 발명의 스팀 발전시스템 개념도 이다.
Fig. 1 is a conceptual diagram of the steam generating system of the present invention.

본 발명의 스팀 발전시스템 개념도에는 랭킨사이클의 증발, 팽창, 응축, 압축 사이클 중에 팽창, 응축 사이클만 도시되어 있다.
The steam generating system conceptual diagram of the present invention shows only the expansion and condensation cycles during the evaporation, expansion, condensation and compression cycles of the Rankine cycle.

랭킨사이클의 스팀터빈(101)은 발전기(102)가 축으로 연결되어 스팀터빈(101)으로 들어오는 고압스팀(Tin)의 증기압에 의해 스팀터빈(101)이 회전하여 동력을 얻게 된다. 스팀터빈(101)을 회전시키고 나온 고압의 스팀은 저압의 스팀 혹은 물로 되어 잔여 열원을 역랭킨사이클과 유기랭킨사이클이 결합된 시스템으로 공급되어, 더욱 낮은 온도로 응축되게 된다.
The steam turbine 101 of the Rankine cycle is powered by the steam pressure of the high pressure steam Tin which is connected to the generator 102 by the shaft 102 and enters the steam turbine 101, The high-pressure steam generated by rotating the steam turbine 101 is steam or water of low pressure, and the remaining heat source is supplied to the system in which the Rankankeen cycle and the organic Rankine cycle are combined, and is condensed at a lower temperature.

랭킨사이클의 응축기는 제1응축기(103)과 제2응축기(106)으로 구성되어 있다.The Rankine cycle condenser is composed of a first condenser 103 and a second condenser 106.

역랭킨사이클은 모터(112)가 축으로 연결된 압축기(111), 응축기(113), 팽창밸브(114), 증발기(116)로 폐루프를 구성하여 압축, 응축, 팽창, 증발 사이클을 형성한다.
The inverse Rankine cycle constitutes a closed loop with a compressor 111, a condenser 113, an expansion valve 114 and an evaporator 116 to which the motor 112 is connected in an axial direction to form a compression, condensation, expansion and evaporation cycle.

유기랭킨사이클은 발전기(122)가 축으로 연결된 터빈(121), 응축기(126), 압축펌프(127), 증발기(128)로 폐루프를 구성하여 팽창, 응축, 압축, 증발 사이클을 형성한다.
The organic Rankine cycle constitutes a closed loop with a turbine 121, a condenser 126, a compression pump 127 and an evaporator 128 which are connected in an axial direction by a generator 122 to form an expansion, condensation, compression and evaporation cycle.

랭킨사이클의 열매체는 대부분 물을 사용하는데 반해, 유기랭킨사이클은 물보다 비등점이 훨씬 낮은 냉매(예, R134a, R245fa Etc.)를 사용한다. 따라서, 유기랭킨사이클은 소각장이나 발전소 배열, 공장등의 산업시설에서 배출되는 비교적 낮은 폐열원 에서 열을 회수하여 동력을 생산할 수 있다.
The organic Rankine cycle uses a refrigerant with a much lower boiling point than water (eg, R134a, R245fa Etc.), whereas the heating medium of the Rankine cycle mostly uses water. Thus, organic Rankine cycles can produce power by recovering heat from a relatively low waste heat source that is emitted from industrial facilities such as incinerators, plant layouts, factories, and the like.

랭킨사이클의 제1응축기(103)으로 부터의 응축열과 역랭킨사이클 응축기(113)로 방출되는 응축열을 유기랭킨사이클의 증발기(128)에서 흡수하여, 그 증기 압력으로 터빈(121)에서 동력을 생산하고, 터빈(121)으로 부터 배출된 저압 기체 상태의 The heat of condensation from the first condenser 103 of the Rankine cycle and the heat of condensation discharged to the reverse Rankine cycle condenser 113 are absorbed by the evaporator 128 of the organic Rankine cycle and the turbine 121 generates power And a low-pressure gas state exhausted from the turbine 121

유기랭킨사이클 열매체가 응축기(126)로 부터 응축잠열을 방출하고 액체 상태로 상변화 된다.
The organic Rankine cycle heating medium releases latent heat of condensation from the condenser 126 and is phase-changed into a liquid state.

역랭킨사이클의 증발기(116)에서 상기 유기랭킨사이클 응축기(126)로 부터의 응축열과 랭킨사이클 제1응축기(103)를 통과한 열원을 다시 제2응축기(106)에서 응축하여 방출된 응축열을 역랭킨사이클 증발기(116)에서 흡수하여, 압축기(111)에 의해 In the evaporator 116 of the reverse Rankine cycle, the condensation heat from the organic Rankine cycle condenser 126 and the heat source that has passed through the Rankine cycle first condenser 103 are condensed again in the second condenser 106, Is absorbed by the Rankine cycle evaporator 116, and is supplied by the compressor 111

고온 고압 기체 상태로 되어 응축기(113)에서 방출함으로서 랭킨사이클 제1응축기(103) 응축열과 함께 다시 유기랭킨사이클 에 열원으로 공급 함으로서 고효율의 발전시스템을 구성할 수 있다.
Temperature and high-pressure gaseous state and is discharged from the condenser 113 to supply the heat to the organic Rankine cycle together with the heat of condensation of the Rankine cycle first condenser 103, thereby constituting a highly efficient power generation system.

일반적으로 유기랭킨사이클 응축기(126)에서 방출하는 응축잠열이 매우 크기 때문에, 외부 냉각수로 냉각시켜야 하는 경우 대량의 냉각수를 필요로 하게 되나, 본 발명에서는 역랭킨사이클과 결합하여 유기랭킨사이클 열매체와 역랭킨사이클의 열매체 가 열교환을 통해 응축열을 회수하게 함으로서 열 활용 효율을 극대화 할 수 있다.
In general, since the latent heat of condensation discharged from the organic Rankine cycle condenser 126 is very large, a large amount of cooling water is required when it is cooled with external cooling water. In the present invention, however, The thermal energy of the Rankine cycle can be maximized by recovering condensation heat through heat exchange.

도2 은 본 발명의 스팀 발전시스템 두번째 개념도 이다.
2 is a second conceptual diagram of the steam generator system of the present invention.

본 발명에서는 유기랭킨사이클 터빈(121)에 모터/발전기(122)와 역랭킨사이클의 압축기(111)을 축(129)으로 연결하여, 처음 스팀 발전시스템이 가동될 때, 먼저 모터/발전기(122)가 모터로 작동되어 역랭킨사이클 압축기(111)를 돌려, 역랭킨사이클을 작동시키고, 역랭킨사이클 응축기(113)로 부터의 응축열원과 랭킨사이클 제1응축기(103)으로 부터의 응축열원을 유기랭킨사이클 증발기(128)가 흡수하여 유기랭킨사이클 터빈(121)이 충분히 가동되면, 모터/발전기(122)가 발전기로 작동되어 전력을 생산하게 된다.
In the present invention, the motor / generator 122 and the compressor 111 of the reverse Rankine cycle are connected to the organic Rankine cycle turbine 121 via the shaft 129 so that when the steam generator system is started for the first time, Is operated as a motor to turn the counter-Rankine cycle compressor 111 to operate a counter-Rankine cycle and to circulate the heat of condensation from the Rankine cycle condenser 113 and the Rankine cycle first condenser 103 When the organic Rankine cycle evaporator 128 is absorbed and the organic Rankine cycle turbine 121 is fully energized, the motor / generator 122 is operated as a generator to produce power.

이렇게 유기랭킨사이클 터빈(121)과 역랭킨사이클 압축기(111)를 축으로 연결하면, 유기랭킨사이클 터빈(121)의 동력을 역랭킨사이클 압축기(111)로 전달할 수 있어, 역랭킨사이클 압축기(111)를 돌리기 위한 모터(112)가 필요없게 된다.
When the organic Rankine cycle turbine 121 and the reverse Rankine cycle compressor 111 are axially connected to each other, the power of the organic Rankine cycle turbine 121 can be transmitted to the reverse Rankine cycle compressor 111, The motor 112 is not needed.

도3 은 본 발명의 스팀 발전시스템 세번째 개념도 이다.
3 is a third schematic view of the steam generator system of the present invention.

본 발명에서는 랭킨사이클의 스팀터빈(101)에 발전기(102)와 역랭킨사이클의 압축기(111)이 한 축(119)으로 연결되어 있다.
In the present invention, the steam turbine 101 of the Rankine cycle is connected to the compressor 102 of the Rankine cycle and the compressor 111 of the reverse Rankine cycle by one shaft 119.

이 경우, 스팀터빈(101)에 고압스팀(Tin)이 공급되자 마자 스팀터빈(101)에서 동력이 생산되고, 그 동력이 발전기(102)와 역랭킨사이클의 압축기(111)로 바로 전달되기 때문에, 전력을 생산하면서, 추가의 동력없이 바로 역랭킨사이클을 가동시켜 랭킨사이클 응축열을 역랭킨사이클과 유기랭킨사이클로 전달하여 전력을 생산할 수 있다.
In this case, as soon as the high-pressure steam Tin is supplied to the steam turbine 101, power is generated in the steam turbine 101 and the power is directly transmitted to the compressor 111 of the reverse Rankine cycle and the generator 102 , The power can be produced by directly running the counter-Rankine cycle without further power and transferring the Rankine cycle condensation heat to the Rankankeen cycle and the organic Rankine cycle.

도4 는 본 발명의 스팀 발전시스템 네번째 개념도 이다.
4 is a fourth schematic view of the steam generating system of the present invention.

본 발명에서는 랭킨사이클의 스팀터빈(101)과 역랭킨사이클의 압축기(111)와 유기랭킨사이클의 압축펌프(127)을 한 축(119)로 연결하여 스팀터빈(101)의 동력을 바로 전달 할 수 있다.
In the present invention, the steam turbine 101 of the Rankine cycle, the compressor 111 of the Rankankyne cycle, and the compression pump 127 of the organic Rankine cycle are connected by one shaft 119 to directly transmit the power of the steam turbine 101 .

도5 은 본 발명의 스팀 발전시스템 다섯번째 개념도 이다.
5 is a fifth conceptual diagram of the steam generator system of the present invention.

본 발명에서는 역랭킨사이클의 팽창밸브(114)를 발전기(115)가 축으로 연결된 팽창터빈(114t)로 대체하여, 역랭킨사이클의 압축기(111)에서 소비한 전력이나 동력을 회수할 수 있다.
In the present invention, the expansion valve 114 of the reverse Rankine cycle can be replaced with an expansion turbine 114t connected to the shaft of the generator 115 to recover the power or power consumed by the compressor 111 of the reverse Rankine cycle.

도6 는 본 발명의 스팀 발전시스템 다섯번째 개념도의 실시도 이다.
FIG. 6 is an embodiment of the fifth conceptual diagram of the steam generator system of the present invention.

발전기(102)가 축으로 연결된 스팀터빈(101), 제1응축기로서 제1열교환기(103_128), 제2응축기로서의 제2열교환기(106_116)로 구성된 랭킨사이클의 일부 팽창,응축사이클이 도시되어 있다.
A partial expansion and condensation cycle of the Rankine cycle consisting of a steam turbine 101 with the generator 102 connected in an axis, a first heat exchanger 103_128 as the first condenser, and a second heat exchanger 106_116 as the second condenser is shown have.

역랭킨사이클은 랭킨사이클의 스팀터빈(101), 발전기(102)와 한축(119)으로 연결된 압축기(111), 유기랭킨사이클의 프리히터 로서의 역랭킨사이클 응축기로 작동하는 제3열교환기(113_128), 발전기(115)가 축으로 연결된 팽창터빈(114t), 유기랭킨사이클의 응축열을 흡수하는 역랭킨사이클 증발기로서의 제4열교환기(126_116)와 랭킨사이클 제2응축기로 작동하는 증발기로서의 제2열교환기(106_116)로 폐루프를 구성하여 압축, 응축, 팽창, 증발 사이클을 형성한다.
The reverse Rankine cycle includes a Rankine cycle steam turbine 101, a compressor 111 connected to the generator 102 via one axis 119, a third heat exchanger 113_128 operating as a reverse Rankine cycle condenser as a preheater of the organic Rankine cycle, A fourth heat exchanger 126_116 as a reverse Rankin cycle evaporator that absorbs the heat of condensation of the organic Rankine cycle, and a second heat exchanger as an evaporator that operates as a Rankine cycle second condenser, an expansion turbine 114t coupled to the generator 115, (106_116) to form compression, condensation, expansion, and evaporation cycles.

유기랭킨사이클은 발전기(122)가 축으로 연결된 터빈(121), 랭킨사이클 제1응축기로 작동하는 증발기로서의 제1열교환기(103_128)와 유기랭킨사이클 프리히터인 제3열교환기(113_128), 압축펌프(127), 응축기로 동작하는 제4열교환기(126_116)로 폐루프를 구성하여 팽창, 응축, 압축, 증발 사이클을 형성한다.
The organic Rankine cycle includes a turbine 121 connected in an axial direction to the generator 122, a first heat exchanger 103_128 as an evaporator operating as a Rankine cycle first condenser, a third heat exchanger 113_128 as an organic Rankine cycle preheater, A pump 127, and a fourth heat exchanger 126_116, which operates as a condenser, to form a closed loop to form an expansion, condensation, compression, and evaporation cycle.

고압스팀(Tin)으로 랭킨사이클 스팀터빈(101)은 동력을 생산하고, 축으로 연결된 발전기(102)와 역랭킨사이클 압축기(111)로 동력을 전달하여 전력생산 및 역랭킨사이클을 작동시키고, 스팀터빈(101)에서 배출된 저압스팀은 제1열교환기(103_128)에서 응축열을 방출하여 유기랭킨사이클에 열원을 공급한 후, 다시 제2열교환기(106_116)에서 잔여 응축열을 방출하여 역랭킨사이클에 열원을 공급한다.
The high-pressure steam (Tin) causes the Rankine cycle steam turbine 101 to generate power and transmit power to the shaft-connected generator 102 and the reverse Rankine cycle compressor 111 to operate the power generation and reverse Rankine cycle, The low-pressure steam discharged from the turbine 101 discharges the condensation heat in the first heat exchanger 103_128 to supply the heat source to the organic Rankine cycle, and then discharges residual condensation heat again in the second heat exchanger 106_116, Provide a heat source.

역랭킨사이클의 압축기(111)로 인해 고온 고압 기체상태로 변화된 열매체가 제1열교환기(113_128)를 통해 응축열을 방출하여 유기랭킨사이클 프리히터로 열원을 공급하고, 고압 액체상태로 상변화된 열매체의 에너지로 팽창터빈(114t)을 회전시키고 저압 액체상태로 되어 제4열교환기(126_116)을 통해 유기랭킨사이클의 응축열을 1차 흡수하여 증발되고, 제2열교환기(106_116)를 통해 랭킨사이클의 재응축열을 흡수하는 사이클을 반복하여 랭킨사이클 잔여 응축열과 유기랭킨사이클 응축열을 회수하여 다시 유기랭킨사이클 프리히터(113_128)로 공급한다.
The heating medium changed into the high-temperature high-pressure gas state by the compressor 111 of the reverse Rankine cycle releases the condensation heat through the first heat exchanger 113_128 to supply the heat source to the organic Rankine cycle preheater, And the refrigerant is circulated through the second heat exchanger 106_116 by the energy of the expansion turbine 114t to be in a low pressure liquid state and is firstly absorbed through the fourth heat exchanger 126_116 by absorbing the heat of condensation of the organic Rankine cycle, The cycle for absorbing the condensation heat is repeated to recover the Rankine cycle residual condensation heat and the organic Rankine cycle condensation heat, and then supplied to the organic Rankine cycle preheater 113_128.

유기랭킨사이클은, 제3열교환기(113_128)로 부터 역랭킨사이클의 열원을 흡수하여 프리히팅된 열매체가 다시 제1열교환기(103_128)을 통해 랭킨사이클의 응축열을 흡수하여 과포화증기가 되어 그 증기압력으로 터빈(121)을 회전시켜 동력을 생산하고, 터빈(121)로 부터 배출된 저압 기체상태의 열매체는 제4열교환기(126_116)을 통해 응축되어, 액체상태로 상변화 되면서 역랭킨사이클에 응축열원을 공급하게 된다.
The organic Rankine cycle absorbs the heat source of the reverse Rankine cycle from the third heat exchanger 113_128 and the preheated heat medium absorbs the heat of condensation of the Rankine cycle through the first heat exchanger 103_128 again to become supersaturated steam, The low-pressure gaseous heat medium discharged from the turbine 121 is condensed through the fourth heat exchanger 126_116 and is phase-changed into a liquid state and is supplied to a reverse Rankin cycle Thereby supplying the condensation heat source.

101: 스팀터빈
114t : 팽창터빈
121 : ORC 터빈
102, 115, 122 : 발전기
103, 106, 113, 126 : 응축기
111 : 압축기
112 : 모터 or 모터/발전기
114 : 팽창밸브
119 : 압축기, 스팀터빈 회전축
116, 128 : 증발기
127 : 압축펌프
129 : 압축기, ORC 터빈 회전축
103_128 : 제1열교환기
106_116 : 제2열교환기
113_128 : 제3열교환기
126_116 : 제4열교환기
101: Steam turbine
114t: Expansion turbine
121: ORC Turbine
102, 115, 122: generator
103, 106, 113, 126: condenser
111: Compressor
112: Motor or motor / generator
114: expansion valve
119: compressor, steam turbine rotary shaft
116, 128: evaporator
127: Compressor pump
129: compressor, ORC turbine rotary shaft
103_128: first heat exchanger
106_116: Second heat exchanger
113_128: Third heat exchanger
126_116: Fourth heat exchanger

Claims (5)

스팀 발전시스템에 있어서,
증발기(증발)로 부터의 고압스팀(Tin), 발전기가 축으로 연결된 스팀터빈(팽창), 스팀터빈에서 배출된 저압스팀을 응축하기 위한 제1응축기와 잔여열원을 더 방출하기 위한 제2응축기(응축), 응축수를 증발기로 보내기 위한 순환펌프(압축)로 증발,팽창,응축,압축 사이클을 구성한 랭킨사이클;
모터가 축으로 연결된 압축기(압축), 응축기(응축), 팽창밸브(팽창), 증발기(증발)로 폐루프를 형성하여, 압축,응축,팽창,증발 사이클을 구성하는 역랭킨사이클;
발전기가 축으로 연결된 터빈(팽창), 응축기(응축), 압축펌프(압축), 증발기(증발)로 폐루프를 형성하여, 팽창,응축,압축,증발 사이클을 구성하는 유기랭킨사이클;

상기 랭킨사이클 제1응축기로 부터의 응축열과 역랭킨사이클의 응축기로 부터의 응축열을 유기랭킨사이클의 열매체가 증발기에서 흡수하여 증발함으로서, 그 증기압력으로 유기랭킨사이클 터빈을 돌려 전력을 생산하고, 랭킨사이클 제2응축기로 부터의 응축열과 유기랭킨사이클의 응축기로 부터의 응축열을 역랭킨사이클의 증발기에서 다시 회수하여 유기랭킨사이클에 공급 함을 특징으로 하는 스팀 발전시스템.
In a steam power generation system,
A first condenser for condensing the low-pressure steam discharged from the steam turbine, and a second condenser for further discharging the remaining heat source (steam) Condensation), a Rankine cycle which constitutes evaporation, expansion, condensation and compression cycles with a circulating pump (condensation) to send condensate to the evaporator;
A Rankankeen cycle that forms a closed loop with a compressor (condenser), a condenser (condensation), an expansion valve (expansion) and an evaporator (evaporation) connected to the shaft of the motor to constitute a compression, condensation, expansion and evaporation cycle;
An organic Rankine cycle that forms a closed loop with a turbine (expansion), a condenser (condensation), a compression pump (compression) and an evaporator (evaporation) connected to the shaft of the generator and constitutes an expansion, condensation, compression and evaporation cycle;

The heating medium of the organic Rankine cycle is absorbed by the evaporator to evaporate the heat of condensation from the condenser of the Rankine cycle first condenser and the condenser of the reverse Rankin cycle to generate electric power by rotating the organic Rankine cycle turbine by the steam pressure, Wherein the condensation heat from the second cycle condenser and the condensation heat from the condenser of the organic Rankine cycle are collected again in the evaporator of the Rankankeen cycle and supplied to the organic Rankine cycle.
청구항 1항에 있어서,
압축기(압축), 응축기(응축), 팽창밸브(팽창), 증발기(증발)로 폐루프를 형성하여, 압축,응축,팽창,증발사이클을 구성하는 역랭킨사이클;
터빈(팽창), 응축기(응축), 압축펌프(압축), 증발기(증발)로 폐루프를 형성하여, 팽창,응축,압축,증발 사이클을 구성하는 유기랭킨사이클;

상기 역랭킨사이클 압축기와 유기랭킨사이클 터빈, 그리고 모터/발전기가 축으로 연결되어, 모터/발전기가 모터로 작동, 역랭킨사이클 구동한 후, 유기랭킨사이클이 안정된 후, 모터/발전기가 발전기로 동작함을 특징으로 하는 스팀 발전시스템.
The method according to claim 1,
A Rankankeen cycle that forms a closed loop with a compressor (compression), a condenser (condensation), an expansion valve (expansion), and an evaporator (evaporation) to constitute a compression, condensation, expansion and evaporation cycle;
An organic Rankine cycle that forms a closed loop with a turbine (expansion), a condenser (condensation), a compression pump (compression) and an evaporator (evaporation) to form an expansion, condensation, compression and evaporation cycle;

The motor / generator is driven by a motor, the motor / generator is driven by a generator after the Rankanke cycle is stabilized after the motor / generator is operated by a motor, and after the Rankanke compressor is connected to an axis of the Rankanke compressor and the motor / Wherein the steam generator is a steam generator.
청구항 1항에 있어서,
압축기(압축), 응축기(응축), 팽창밸브(팽창), 증발기(증발)로 폐루프를 형성하여, 압축,응축,팽창,증발사이클을 구성하는 역랭킨사이클;

상기 역랭킨사이클 압축기와 랭킨사이클 터빈과 발전기가 한 축으로 연결됨을 특징으로 하는 스팀 발전시스템.
The method according to claim 1,
A Rankankeen cycle that forms a closed loop with a compressor (compression), a condenser (condensation), an expansion valve (expansion), and an evaporator (evaporation) to constitute a compression, condensation, expansion and evaporation cycle;

Wherein the reverse Rankin cycle compressor, the Rankine cycle turbine, and the generator are connected to each other via a single shaft.
청구항 1항에 있어서,
역랭킨사이클의 팽창밸브를 팽창터빈과 발전기로 교체하여 작동유체의 에너지로 부터 전력을 변환함을 특징으로 하는 스팀 발전시스템.
The method according to claim 1,
Wherein the expansion valve of the reverse Rankine cycle is replaced by an expansion turbine and a generator to convert power from the energy of the working fluid.
청구항 1항에 있어서,
랭킨사이클의 스팀터빈과 역랭킨사이클의 압축기, 유기랭킨사이클 압축펌프를 한 축으로 연결됨을 특징으로 하는 스팀 발전시스템.
The method according to claim 1,
A Rankine cycle steam turbine, a reverse Rankine cycle compressor, and an organic Rankine cycle compression pump.
KR1020140068293A 2014-06-05 2014-06-05 Rankine Cycle electricity generation system KR20150140061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140068293A KR20150140061A (en) 2014-06-05 2014-06-05 Rankine Cycle electricity generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140068293A KR20150140061A (en) 2014-06-05 2014-06-05 Rankine Cycle electricity generation system

Publications (1)

Publication Number Publication Date
KR20150140061A true KR20150140061A (en) 2015-12-15

Family

ID=55021123

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140068293A KR20150140061A (en) 2014-06-05 2014-06-05 Rankine Cycle electricity generation system

Country Status (1)

Country Link
KR (1) KR20150140061A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108827008A (en) * 2018-07-23 2018-11-16 中国科学技术大学 A kind of sintering circular-cooler waste heat comprehensive utilization system based on Organic Rankine Cycle
CN110005510A (en) * 2019-05-14 2019-07-12 北京工业大学 Jointly control strategy for Organic Rankine Cycle-three-element catalytic of the recycling of gasoline engine waste heat and exhaust gas purification
CN110617133A (en) * 2019-09-30 2019-12-27 南京航空航天大学 Organic Rankine cycle engine cooling system for utilizing waste heat of automobile exhaust
CN114352368A (en) * 2022-01-07 2022-04-15 北京石油化工学院 Oil transportation station boiler flue gas waste heat recovery system based on thermoelectric power generation and organic Rankine cycle
CN114856742A (en) * 2021-01-20 2022-08-05 浙江雪波蓝科技有限公司 Rankine cycle system, waste heat recycling system with same and vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108827008A (en) * 2018-07-23 2018-11-16 中国科学技术大学 A kind of sintering circular-cooler waste heat comprehensive utilization system based on Organic Rankine Cycle
CN108827008B (en) * 2018-07-23 2023-08-29 中国科学技术大学 Sintering circular cooler waste heat comprehensive utilization system based on organic Rankine cycle
CN110005510A (en) * 2019-05-14 2019-07-12 北京工业大学 Jointly control strategy for Organic Rankine Cycle-three-element catalytic of the recycling of gasoline engine waste heat and exhaust gas purification
CN110005510B (en) * 2019-05-14 2024-04-12 北京工业大学 Organic Rankine cycle-ternary catalysis combined control strategy for waste heat recovery and exhaust purification of gasoline engine
CN110617133A (en) * 2019-09-30 2019-12-27 南京航空航天大学 Organic Rankine cycle engine cooling system for utilizing waste heat of automobile exhaust
CN114856742A (en) * 2021-01-20 2022-08-05 浙江雪波蓝科技有限公司 Rankine cycle system, waste heat recycling system with same and vehicle
CN114352368A (en) * 2022-01-07 2022-04-15 北京石油化工学院 Oil transportation station boiler flue gas waste heat recovery system based on thermoelectric power generation and organic Rankine cycle
CN114352368B (en) * 2022-01-07 2023-08-29 北京石油化工学院 Oil delivery station boiler flue gas waste heat recovery system based on thermoelectric generation and organic Rankine cycle

Similar Documents

Publication Publication Date Title
JP7173245B2 (en) power generation system
WO2011045282A2 (en) Thermoelectric energy storage system having an internal heat exchanger and method for storing thermoelectric energy
KR101320593B1 (en) Cogeneration system using heat pump
KR20150089110A (en) Scalable ORC distribute electricity generation system
KR20150140061A (en) Rankine Cycle electricity generation system
JP2011106459A (en) Combined cycle power plant with integrated organic rankine cycle device
JP2013076401A (en) System and method for generating electric power
MX2014011444A (en) System and method for recovery of waste heat from dual heat sources.
US9869495B2 (en) Multi-cycle power generator
JP2018123756A (en) Thermal cycle facility
KR20140085001A (en) Energy saving system for using waste heat of ship
KR20150105162A (en) Organic Rankin Cycle electricity generation system
JP2010038160A (en) System and method for use in combined or rankine cycle power plant
KR20150109102A (en) Organic Rankine Cycle electricity generation system
KR101315918B1 (en) Organic rankine cycle for using low temperature waste heat and absorbtion type refrigerator
KR20150111079A (en) Organic Rankine Cycle electricity generation system
KR101481010B1 (en) Ocean thermal energy conversion system and operation method thereof
KR20150094190A (en) Combined cogeneration Organic Rankine cycle electricity generation system
JP5312644B1 (en) Air conditioning power generation system
WO2020217509A1 (en) High-temperature exhaust gas generation device combined cycle power generation system
CN103195518A (en) ORC (organic Rankine cycle) power generation system based on series connection of multistage evaporators
KR20140032298A (en) Binary type electric power generation system
KR20150140904A (en) Steam Turbo-Generator
KR101336788B1 (en) A cooling system of the organic rankine cycle
KR20130119162A (en) Direct organic rankine cycle power generation system using solar power

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination