KR20150089110A - Scalable ORC distribute electricity generation system - Google Patents

Scalable ORC distribute electricity generation system Download PDF

Info

Publication number
KR20150089110A
KR20150089110A KR1020140009298A KR20140009298A KR20150089110A KR 20150089110 A KR20150089110 A KR 20150089110A KR 1020140009298 A KR1020140009298 A KR 1020140009298A KR 20140009298 A KR20140009298 A KR 20140009298A KR 20150089110 A KR20150089110 A KR 20150089110A
Authority
KR
South Korea
Prior art keywords
heat
power generation
cooling water
cycle
heat source
Prior art date
Application number
KR1020140009298A
Other languages
Korean (ko)
Inventor
김영선
김영만
Original Assignee
김영선
김영만
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영선, 김영만 filed Critical 김영선
Priority to KR1020140009298A priority Critical patent/KR20150089110A/en
Publication of KR20150089110A publication Critical patent/KR20150089110A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/18Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids characterised by adaptation for specific use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D10/00District heating systems
    • F24D10/006Direct domestic delivery stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Abstract

The present invention relates to a variable capacity ORC dispersion power generation system which generates electricity power by utilizing a waste heat source in an incinerator dealing with various industrial waste or household waste, or which generates electricity power by collecting a low heat source discarded from a cogeneration plant or the like. According to the present invention, a variable capacity ORC dispersion power generation system comprises: a number of ORC power generation systems, a number of heat pump systems for supplying cooling water, and a waste heat source collecting and supplying system. A whole power generation system is variably operated in accordance with a change in a supply quantity of a heat source for generating power changed by demand fluctuation of district heating water in each season. The number of heat pump systems for supplying a required amount of cooling water to the operated ORC power generation system is changed to be operated in optimal conditions, thereby improving waste heat source use efficiency.

Description

가변용량 ORC 분산발전시스템 {Scalable ORC distribute electricity generation system }[0001] Scalable ORC Distributed Generation System [

열병합 발전소나 소형열병합 발전소, 산업용 폐기물 및 생활폐기물 쓰레기 소각장, 공장 등에서 발생하는 폐열원으로 부터 열을 회수하여 전력을 생산하는 발전시스템에 관한 것이다. 특히, 버려지는 비교적 낮은 온도(70~400도)의 폐열원으로 부터 The present invention relates to a power generation system for recovering heat from a waste heat source generated in a cogeneration plant, a small-scale cogeneration plant, an industrial waste, a municipal waste incinerator, a factory, and the like. In particular, from the waste heat source of a relatively low temperature (70 to 400 degrees)

전력을 생산하기 위하여 비교적 비등점이 낮은 유기냉매를 사용한 유기랭킨사이클을 이용한 분산발전 시스템에 관한 것이다.
The present invention relates to a distributed power generation system using an organic Rankine cycle using organic refrigerants having a relatively low boiling point to produce electric power.

일반적으로 비교적 낮은 폐열원으로 부터 열에너지를 회수하여 전력을 생산하는데 유기랭킨사이클 발전시스템을 활용하고 있으나, 폐열원으로 부터 열원을 회수하여 유기랭킨사이클 증발기로 전달하는데 많은 열손실이 발생하며, 터빈을 돌리고 난 Generally, an organic Rankine cycle power generation system is used to recover heat energy from a relatively low waste heat source to generate electric power. However, since a heat source is recovered from the waste heat source and transferred to the organic Rankine cycle evaporator, a lot of heat loss occurs, Turned

기체 상태의 작동열매체를 액체상태로 상변화 시키기 위하여 많은 량의 낮은 온도의 냉각수가 필요하나, 일반적으로 공급하는 냉각수 온도가 높아 유기랭킨사이클의 시스템 효율이 낮은 상태이다.A large amount of low-temperature cooling water is required to phase-change the working medium in a gaseous state into a liquid state, but the system efficiency of the organic Rankine cycle is low due to high temperature of the cooling water generally supplied.

팬을 돌려 공기로 응축열을 공기로 방출시키는 공냉식의 경우도 유기랭킨사이클의 응축온도를 낮추어 시스템 효율을 높이기 어려우며, 낮은 온도의 냉각수를 공급하기 위하여 냉각탑이 구비된 냉각기를 활용하기도 하나, 이 냉각기를 돌리기 위한 전력이 필요하게 되어, 전력을 생산하는 유기랭킨사이클 시스템 효율을 높이기 어렵다.
In the case of air-cooled type in which the fan is rotated by air to discharge the condensation heat to the air, it is difficult to increase the system efficiency by lowering the condensation temperature of the organic Rankine cycle. In order to supply the cooling water at a low temperature, a cooler equipped with a cooling tower may be used. It is difficult to increase the efficiency of the organic Rankine cycle system that produces electric power.

폐기물 소각시 발생하는 열을 활용하여 발전 및 난방 및 온수를 공급하는 열병합 발전장치가 공지(대한민국 특허 10-2010-0051949)되어 있으나, 폐기물 소각로의 열원으로 증기터빈을 돌려 전기를 생산함으로, 포화증기를 생산하기 위해 물을 높은 A cogeneration power generation apparatus that generates electricity by heating generated by incineration of waste and supplies heating and hot water is known (Korean Patent No. 10-2010-0051949). However, since a steam turbine is turned into a heat source of a waste incinerator to produce electricity, To produce high water

온도로 끓이기 위해 많은 열원을 소모하고, 이 경우 2차로 발전과정에서 발생하는 낮은 열원을 활용하지 못한다.
It consumes many heat sources to brew to the temperature, and in this case, it does not utilize the low heat source that occurs in the second generation process.

또한 하수소각처리시스템으로 부터 생산되는 800~850도의 배열을 활용하는 배열발전시스템 기술이 공지(일본, 국제공개번호 wo 2011/105064)되어 있으나, 배열발전시스템의 작동열매체로 암모니아, 프론 또는 암모니아/물 혼합유체와 같은 저비점 유체를 활용하여, 소각시설의 세연수와 세연배수, 고온공기를 열원으로 사용 전력을 생산하면서 발전시스템이 대형화 되고 많은 냉각수를 공급해 주어야 하는 문제가 있다.
In addition, although the array power generation system technology utilizing the arrangement of 800 to 850 degrees produced from the sewage incineration treatment system is known (Japan, international publication number wo 2011/105064), the ammonia, furon or ammonia / There is a problem that the power generation system needs to be enlarged and a lot of cooling water must be supplied while producing low-boiling fluids such as water-based mixed fluids and using the three years of incineration facilities, sewage drainage, and hot air as heat sources.

저온 폐열 및 흡수식 냉동기를 이용한 ORC 열병합발전시스템 기술이 공지(대한민국 특허 10-2013-0025112)되어 있으나, 70~80도의 저온성폐열원으로 부터 ORC 증발기로 5~15도 정도의 열량만 전달되고, 제어에 의해 65도의 열원을 ORC 응축기에 8~10도의 냉각수를 공급하기 위한 냉각탑이 구비된 저온2단 흡수식냉동기로 공급하고 있다. 냉각수를 공급하기 위한 저온2단 흡수식냉동기 자체가 대형으로 ORC 열병합발전시스템 효율을 떠나서 경제적인 측면에서 사업성을 확보하기 어렵다.
(Korean Patent No. 10-2013-0025112) discloses an ORC cogeneration system using cryogenic waste heat and an absorption type refrigerator. However, only a heat amount of about 5 to 15 degrees is transferred from a low-temperature waste heat source at 70 to 80 degrees to an ORC evaporator, Controlled, two-stage absorption refrigerator with a cooling tower for supplying cooling water of 8 to 10 degrees to the ORC condenser. The low-temperature two-stage absorption type refrigerator for supplying cooling water is large in size, so it is difficult to secure business efficiency in terms of economics since it is separated from ORC cogeneration system efficiency.

일반적으로 산업폐기물이나 생활쓰레기를 소각하는 쓰레기 소각시설에서 발생하는 폐열을 회수하여 지역난방수나 급탕용으로 공급하거나, 열병합발전소에서 가스터빈과 증기터빈으로 전력을 생산하는 과정에서 발생하는 폐열원을 지역난방수나 Generally, the waste heat generated in the process of recovering the waste heat generated from the incinerator for incineration of industrial waste or household garbage and supplying it to district heating water or hot water supply, or generating electricity from gas turbine and steam turbine at the cogeneration plant, Heating system

급탕용으로 공급을 하게 되는데, 계절별 수요가 변동이 심하고 이에 따라 생산되는 페열원의 50%정도만 사용되고 버려지게 된다. The demand for hot water supply is varied. Seasonal demand fluctuates greatly and only about 50% of the heat source is produced and discarded.

상기 버려지는 열원을 유기랭킨사이클 발전시스템으로 전력을 생산 일부를 다시 회수할 수 있으나, 계절병 수요 변동에 따라 발전용 공급열원의 변동으로 폐열회수 효율이 낮을 뿐 아니라, 냉각수를 공급하는데 추가 에너지가 필요하며, 응축과정에서 발생하는 응축열을 활용하지 못한다.
The discarded heat source can be recovered by the organic Rankine cycle power generation system. However, due to fluctuations in the demand for seasonal demand, the waste heat recovery efficiency is low due to fluctuation of the supply heat source for the power generation, and additional energy is required to supply the cooling water And does not utilize the condensation heat generated during the condensation process.

본 발명은 70~400도의 낮은 폐열원으로 부터 열을 공급받아 발전을 하는 유기랭킨사이클 발전시스템을 제공하는데 있어, 계절별로 변화하는 발전용으로 공급되는 열원의 공급량으로 부터 최소, 최대 공급량을 기준으로 기본 유기랭킨사이클 The present invention provides an organic Rankine cycle power generation system that generates electricity by receiving heat from a low-temperature heat source of 70 to 400 degrees Celsius, based on a minimum and a maximum supply amount from a supply amount of a heat source supplied for power generation Basic Organ Rankin Cycle

발전시스템 용량과 대수를 산출하여, 다수의 유기랭킨사이클로 분산발전시스템을 구성하여, 폐열원의 이용효율을 높힐 수 있다.
It is possible to calculate the power generation system capacity and the logarithm, thereby constituting a plurality of distributed Rankine power generation systems with the organic Rankine cycle, and to improve the utilization efficiency of the waste heat source.

또한, 본 발명은 상기 유기랭킨사이클 발전시스템의 효율을 높이기 위해 낮은 온도의 응축수를 공급할 수 있는 히트펌프시스템을 제안하고 있다. 상기 유기랭킨사이클의 최소, 최대 가동 대수로 부터 필요한 냉각수량을 산출하여, 최소, 최대 Also, the present invention proposes a heat pump system capable of supplying condensed water at a low temperature in order to increase the efficiency of the organic Rankine cycle power generation system. The required cooling water quantity is calculated from the minimum and maximum number of actuations of the organic Rankine cycle,

냉각수량을 공급하는 축열, 축냉 방식 히트펌프시스템 용량과 대수를 산출 냉각수 공급시스템으로 구성할 수 있다.
The heat capacity of the heat pump system and the cooling water supply system which can calculate the number of heat pumps and cooling system to supply cooling water can be configured.

위와 같이 전체 가변 유기랭킨사이클 분산발전시스템을 구성하면, 계절별로 변동되는 폐열원 공급량에 따라 탄력적으로 운영하여 발전효율을 높힐 수 있다.
When the entire variable organoon Rankine cycle distributed generation system is constructed as described above, it can be operated flexibly according to the supply amount of the waste heat source that fluctuates according to the season, so that the power generation efficiency can be enhanced.

일반적으로 유기랭킨사이클 발전시스템 효율은 현재 18~20%로 낮다. 그러나 본 발명에서는 유기랭킨사이클 분산발전시스템 에서 발전용 열원으로 공급되어 열교환된 후 배출되는 열원을 히트펌프시스템 축냉조에 저장하여 열원에 포함된 잔열을 회수 In general, the efficiency of organic Rankine cycle power generation systems is currently low at 18-20%. However, in the present invention, the heat source, which is supplied to the power generation heat source in the organic Rankine cycle distributed generation system and is heat-exchanged and discharged, is stored in the heat pump system cold storage tank,

하여 낮은 냉각수를 만들어 유기랭킨사이클 발전시스템 냉각수로 공급하고, 유기랭킨사이클 응축기로 부터 방출된 응축열을 흡수한 냉각수를 히트펌프시스템이 축냉조로 부터 회수하여 생산한 열원과 함께 축열조에 저장하여 다시 상기 유기랭킨사이클 분산발전시스템의 발전용 열원으로 공급함으로서, 고효율 가변용량 유기랭킨사이클 분산발전시스템 기술을 제안한다.
The cooling water is supplied to the organic Rankine cycle power generation system cooling water, and the cooling water, which absorbs the condensation heat discharged from the organic Rankine cycle condenser, is recovered from the axial cooling tank by the heat pump system and stored in the heat storage tank together with the heat source The present invention proposes a high efficiency variable capacity organic Rankine cycle distributed power generation system technology by supplying it as a heat source for power generation of an organic Rankine cycle distributed generation system.

본 발명 기술은 산업용 폐기물, 가정에서 배출되는 생활쓰레기를 소각하는 소각장과 화력발전소, 원자력발전소, 소형열병합 발전소등에서 활용되는 못하고 버려지는 70~400도 정도의 낮은 열원을 거의 손실없이 전력으로 변환하여 회수함으로서 The technology of the present invention converts low-temperature heat sources such as industrial wastes, household waste, incineration incinerators, thermal power plants, nuclear power plants, small-scale cogeneration power plants, etc., By

탄소배출을 억제하고, 매우 큰 경제적 효과를 거둘 수 있다.
Carbon emissions can be suppressed, and very large economic effects can be achieved.

도1 은 본 발명에서 사용된 유기랭킨사이클 구성예
도2 는 본 발명의 냉각수 공급 및 보조열원 단사이클 히트펌프시스템
도3 는 본 발명의 냉각수 공급 및 보조열원 이원사이클 히트펌프시스템
도3 은 본 발명의 가변용량 ORC분산발전시스템의 실시예
도4 는 본 발명의 가변용량 ORC분산발전시스템의 또 다른 실시예
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
2 is a schematic diagram of the cooling water supply and auxiliary heat source single cycle heat pump system
3 is a schematic diagram of the cooling water supply and auxiliary heat source dual cycle heat pump system
3 is a view showing an embodiment of the variable capacity ORC distributed generation system of the present invention
4 is a view showing another embodiment of the variable capacity ORC distributed generation system of the present invention

도1 은 본 발명에서 사용된 유기랭킨사이클 구성예로 1 shows an example of the organic Rankine cycle configuration used in the present invention

일반적으로 유기랭킨사이클 발전시스템은 공장폐수등 폐열로 부터 열원을 회수하기 위해 단독으로 구성 가동되는 경우가 많은데, 이 경우 폐수등으로 부터 열원을 바로 증발기로 공급할 수 없기 때문에 서멀오일을 사용하여 폐수로 부터 열원을 회수하여 오일펌프를 사용 증발기로 서멀오일를 순환시켜 발전용 열원을 공급하게 되는데, 이 과정에서 오일펌프 가동 소비전력 뿐 아니라 많은 열량이 손실된다.
Generally, the organic Rankine cycle power generation system is operated independently to recover heat source from waste heat such as factory wastewater. In this case, since the heat source can not be supplied directly to the evaporator from the waste water, The heat source is recovered and the thermal oil is circulated by the evaporator using the oil pump. In this process, not only the operating power consumption of the oil pump but also a lot of heat loss is lost.

본 발명에서는 열병합발전소나 쓰레기 소각장등 어느정도 폐열원이 많이 발생되는 시설에서 버려지는 낮은 열원을 회수하기 위해 비교적 작은 용량의 유기랭킨사이클 발전시스템을 다수 연결하여 열원 변동에 따라 가변운영되는 분산발전시스템이기 때문에, 공급되는 열원의 열매체는 깨끗한 물을 사용하여 유기랭킨사이클 증발기 및 응축기를 판형열교환기로 사용하였다.
In the present invention, in order to recover a low heat source that is abandoned in a facility where a waste heat source such as a cogeneration power plant or a garbage incinerator is generated to some extent, a distributed generation system in which a relatively small amount of organic Rankine cycle power generation system is connected, Therefore, the heating medium of the supplied heat source is clean water, and the organic Rankine cycle evaporator and the condenser are used as a plate heat exchanger.

도2 는 본 발명의 냉각수 공급 및 보조열원 단사이클 히트펌프시스템 실시예로, Figure 2 is a cooling water supply and auxiliary heat source single cycle heat pump system embodiment of the present invention,

제1압축기(21’), 제1열교환기(22’), 제4열교환기(30’), 제2팽창밸브(23’), 제3열교환기(24’)로 폐루프 형성 사이클을 구성하고,A closed loop forming cycle is constituted by the first compressor 21 ', the first heat exchanger 22', the fourth heat exchanger 30 ', the second expansion valve 23' and the third heat exchanger 24 ' and,

제4열교환기(30’), 순환펌프(33’), 제3열교환기(24’)가 순환도관으로 연결된 피드백 폐루프를 형성하는 단사이클 히트펌프시스템이다.
Cycle heat pump system in which the fourth heat exchanger 30 ', the circulation pump 33' and the third heat exchanger 24 'form a feedback closed loop connected by a circulation conduit.

상기 피드백 폐루프의 작동열매체는 물이나 브라인(부동액)을 사용할 수 있다. 상기 히트펌프시스템 작동열매체는 제2압축기(21’)를 거치면서 고온고압의 기체상태가 되어 제1열교환기(22’)에서 응축열을 방출하여 축열조로 열을 전달하게 되는데, 축열조 부하조건에 따라 제1열교환기(22’)로 순환되는 입출수 온도차가 작아지는 경우, 응축열을 모두 방출하지 못하게 되는데, 제4열교환기(30’)에서 피드백 폐루프 작동열매체로 재응축열을 전달하여, 작동열매체가 제2팽창밸브(23’)에서 등온팽창하여 제3열교환기(24’)에서 축냉조로 부터 흡수한 열과, 피드백 폐루프를 통해서 공급되는 열을 흡수 증발하여,기체상태로 상변화 된다.The working heat medium of the feedback closed loop can use water or brine (antifreeze). The heat pump system operating heat medium passes through the second compressor 21 'to be in a gaseous state at a high temperature and a high pressure to discharge the condensation heat from the first heat exchanger 22' to transfer heat to the heat storage tank. When the temperature difference between the inlet and the outlet circulating in the first heat exchanger 22 'becomes small, it is impossible to discharge all of the condensation heat. In the fourth heat exchanger 30', the re-condensation heat is transferred from the feedback closed loop operation heat medium, Is isothermally expanded in the second expansion valve 23 ', absorbed from the heat absorbed in the cold storage tank in the third heat exchanger 24', and heat supplied through the feedback closed loop, and is phase-changed into the gaseous state.

이렇게 되면, 축냉조의 물은 더 낮은 온도로 낮출 수 있고, 축열조에는 더 높은 온도로 생산된 열량을 저장할 수 있다.
In this way, the water in the condensation cooler can be lowered to a lower temperature, and the heat storage tank can store the calories produced at higher temperatures.

도3 는 본 발명의 냉각수 공급 및 보조열원 이원사이클 히트펌프시스템 실시예 이다.3 is an embodiment of a cooling water supply and auxiliary heat source dual cycle heat pump system of the present invention.

축열, 축냉 방식의 이원사이클 히트펌프시스템으로 더 고온의 열을 생산할 수 있는 히트펌프시스템으로, 제2압축기(21), 제2열교환기(22), 제2팽창밸브(23), 제4열교환기(24)로 폐루프를 구성하는 열취득사이클(20).The second compressor 21, the second heat exchanger 22, the second expansion valve 23, the fourth heat exchanger 23, and the third heat exchanger 23 are heat pump systems capable of producing higher temperature heat by a two- And a heat acquisition cycle (20) constituting a closed loop with the heater (24).

제1압축기(11), 제1열교환기(12), 제4열교환기(13), 제1팽창밸브(14), 제2열교환기(22)로 폐루프를 구성하는 고온전달사이클(10).A high temperature transfer cycle 10 constituting a closed loop by the first compressor 11, the first heat exchanger 12, the fourth heat exchanger 13, the first expansion valve 14 and the second heat exchanger 22, .

제4열교환기(13), 제3열교환기(24), 순환펌프(33)가 순환도관(31, 32)로 연결되어 구성된 피드백 폐루프.
The fourth heat exchanger 13, the third heat exchanger 24, and the circulation pump 33 are connected to the circulation conduits 31 and 32, respectively.

열취득사이클(20)의 작동열매체는 제2압축기(21)에서 고온고압의 기체상태가 되어 제2열교환기(22)에서 응축되어 응축열을 전달하고, 고압의 액체상태의 작동열매체가 제2팽창밸브(23)를 거치면서 등온팽창하여 제3열교환기(24)에서 축냉조로 부터 열을 흡수 증발하게 된다. 제3열교환기(24)는 2개의 열원(고온전달사이클 재응축열원, 축냉조 열원)과 작동열매체가 열교환할 수 있는 열교환기 이다.
The working heat medium in the heat acquisition cycle 20 is brought into a gaseous state of high temperature and high pressure in the second compressor 21 and is condensed in the second heat exchanger 22 to transfer the condensation heat and the high- Is expanded isothermally while passing through the valve (23), and the heat is absorbed and evaporated from the cold storage tank in the third heat exchanger (24). The third heat exchanger 24 is a heat exchanger capable of exchanging heat between the two heat sources (the high-temperature transfer cycle recondensing heat source, the cold storage heat source) and the working heat medium.

고온전달사이클(10)의 작동열매체는 제1압축기(11)에서 고온고압의 기체가 되어, 제1열교환기(12)에서 응축열을 방출하게 된다. 이때 축열조 부하조건에 따라 제1열교환기(12) 입출수 온도차가 작은 경우, 작동열매체의 일부열만 응축열로 방축하게 되는데, 제4열교환기(13)에서 재응축하여 나머지 열을 열취득사이클(20)의 제3열교환기(24)로 보내 흡수열량을 높혀 전체 히트펌프시스템 효율을 제어할 수 있다. 이 피드백 폐루프를 통한 열원 활용을 통해 축냉조의 물을 더 낮은 온도로 만들 수 있고, 축열조의 물의 온도는 더 높게 할 수 있다.
The working heat medium of the high temperature transfer cycle 10 becomes a high-temperature and high-pressure gas in the first compressor 11, and emits heat of condensation in the first heat exchanger 12. At this time, when the temperature difference between the inlet and the outlet of the first heat exchanger 12 is small according to the heat accumulating tank load condition, only a part of the heat of the operation heat medium is deflated by the condensing heat. The remaining heat is recycled by the fourth heat exchanger 13, To the third heat exchanger (24), thereby increasing the amount of heat absorbed and controlling the efficiency of the entire heat pump system. By utilizing the heat source through the feedback closed loop, the water of the condensation cooler can be made lower in temperature, and the temperature of water in the heat storage tank can be made higher.

도4 은 본 발명의 가변용량 ORC분산발전시스템의 실시예 이다.Fig. 4 shows an embodiment of the variable-capacity ORC distributed generation system of the present invention.

본 발명의 가변용량 ORC 분산발전시스템은 다수의 ORC 발전시스템(100)과 다수의 냉각수 공급용 히트펌프시스템(200), 폐열원회수공급시스템(300)으로 구성되어 있다. The variable-capacity ORC distributed generation system of the present invention comprises a plurality of ORC power generation systems 100, a plurality of heat pump systems 200 for supplying cooling water, and a waste heat recovery and supply system 300.

ORC 분산발전시스템(100)은 발전용 열원 공급펌프(101)가 구비된 발전용 열원 공급 메인도관(102)에, 발전용 열원 공급도관들이 분기되어 있고, 각각의 발전용 열원공급도관(L11~L1n) 은 선택 제어용 전자밸브(V11~V1n)이 구비되어 있어 발전용 열원 공급량에 따라 가변적으로 가동할 수 있다. 각각의 발전용 열원 공급도관의 한측은 각 ORC발전시스템(111~11n)의 증발기에 연결되고, 타측은 증발기에서 발전용 열원 회수 메인도관(103)에 연결되어 있다.
The ORC distributed generation system 100 has power generation heat source supply conduits 102 branched from the power generation heat source supply conduit 102 having the power generation heat source supply pump 101, L1n are provided with electromagnet valves V11 to V1n for selection control and can be variably operated in accordance with the supply amount of power generation heat source. One side of each power generation heat source supply conduit is connected to the evaporator of each ORC power generation system 111 to 11n and the other side is connected to the power generation heat recovery main conduit 103 in the evaporator.

상기 ORC 분산발전시스템(100)에 냉각수를 공급하는 시스템은 축냉조(211)와 축열조(221)을 구비한 다수의 히트펌프시스템(201~20n)으로 구성된 냉각수 공급용 히트펌프시스템(200)이다.A system for supplying cooling water to the ORC distributed generation system 100 is a heat pump system 200 for supplying cooling water composed of a plurality of heat pump systems 201 to 20n having a condensation tank 211 and a heat storage tank 221 .

각각의 히트펌프시스템(201~20n)의 제3열교환기(24,24’)는 축냉조(211)와 순환펌프(214)가 구비된 순환도관(215)로 연결되어 있고, 제1열교환기(12,22’)에는 축열조(221)와 순환펌프(222)가 구비된 순환도관(223)으로 연결되어 있다.The third heat exchangers 24 and 24 'of the respective heat pump systems 201 through 20n are connected to a circulation conduit 215 provided with the condensation cooler 211 and the circulation pump 214, (12, 22 ') are connected to a circulation conduit (223) equipped with a heat storage tank (221) and a circulation pump (222).

상기 ORC분산발전시스템(100)으로 부터 발전 열원 공급 후, 축냉조(211)에 연결된 발전용 열원 회수 메인도관(103)을 통해 냉각 된 열원들이 유입된다. 이 열원의 잔여 열원이 히트펌프시스템에 의해 회수되어 냉각되어 순환펌프(212)가 구비된 After the power generation heat source is supplied from the ORC distributed generation system 100, the cooled heat sources are introduced through the power generation heat recovery main conduit 103 connected to the axial cold storage 211. The remaining heat source of this heat source is recovered by the heat pump system and cooled,

냉각수 공급 도관(213)을 통해 각각의 ORC분산발전시스템(201~20n)의 응축기로 공급되어 방출되는 응축열을 흡수한 냉각수가 응축열 회수도관(224)을 통해 축열조(221)에 저장된다. 각각의 히트펌프시스템(201~20n)에 의해 축냉조(211)로 부터 흡수한 열원으로 부터 생산된 고온의 열원과 냉각수에 의해 흡수된 응축열원이 축열조(221)에 저장되어 다시 ORC분산발전시스템(100)의 발전용 열원으로 공급되어 전체 ORC분산발전시스템(100)효율이 크게 증대된다.
The cooling water that has been supplied to the condensers of the respective ORC distributed generation systems 201 to 20n and absorbed by the condensation heat is stored in the heat storage tank 221 through the condensation heat recovery pipe 224 through the cooling water supply conduit 213. The high temperature heat source generated by the heat source absorbed from the axial cold storage 211 by the respective heat pump systems 201 to 20n and the heat of condensation heat absorbed by the cooling water are stored in the heat storage tank 221, The efficiency of the entire ORC distributed generation system 100 is greatly increased.

폐열원회수공급시스템(300)은 발전용 축열조(301)과 지역난방수 공급용 축열조(301’)로 구성되어, 폐열원교환기(303)와 연결된 폐열원(304)으로 부터 공급된 열원을 발전용 축열조(301)와 연결된 순환펌프(302)와 제어용 전자밸브(307a,307b)가 구비된 순환도관을 통해 회수하고, 지역난방수 공급용 축열조(301’)은 연결된 순환펌프(302’)와 제어용 전자밸브(307a’,307b’)가 구비된 순환도관을 통해 회수하게 된다. The waste heat source supply and supply system 300 includes a power generation thermal storage tank 301 and a district heating water supply storage tank 301. The heat source supply source 300 is connected to the waste heat source exchange 303, The circulation pump 302 connected to the thermal storage tank 301 and the control solenoid valves 307a and 307b are provided for circulating the hot water through the circulation conduit and the regional heating water supply thermal storage tank 301 ' And is recovered through a circulating conduit provided with control solenoid valves 307a 'and 307b'.

계절별로 난방수 수요 변동으로 발전용 공급열원이 변동하게 되는데, 상기 제어용 전자밸브(307a,307b,307a’,307b’) 제어를 통해 각각의 축열조의 변동 수량에 대응해 열원의 온도를 목표치로 제어하게 된다.The temperature of the heat source is controlled to a target value in accordance with the fluctuation quantity of each heat storage tank through the control of the control solenoid valves 307a, 307b, 307a ', 307b' .

상기 냉각수 공급용 히트펌프시스템(200)의 축열조(221)에 저장된 열원이 발전용 축열조(301)로 보내져, 다시 ORC분산발전시스템(100)의 발전용 열원으로 공급되어 전체 발전효율을 획기적으로 높힐 수 있다.The heat source stored in the heat storage tank 221 of the cooling water supply heat pump system 200 is sent to the power generation storage tank 301 and supplied again to the power generation heat source of the ORC distributed generation system 100 to dramatically increase the overall power generation efficiency .

도4 는 본 발명의 가변용량 ORC분산발전시스템의 또 다른 실시예 이다.4 is another embodiment of the variable capacity ORC distributed generation system of the present invention.

여기서는 냉각수 공급용 히트펌프시스템(200)의 각각의 히트펌프시스템이 이원사이클 히트펌프시스템(2C_HP)로 구성되어 있다.
Here, each heat pump system of the heat pump system 200 for supplying cooling water is constituted by a two-cycle heat pump system 2C_HP.

이원사이클 히트펌프시스템(2C_HP)의 경우 약 70~80도의 고열을 생산할 수 있어 냉각수 공급시스템으로 뿐 만 아니라, 보조 보일러 처럼 작동한다. The dual cycle heat pump system (2C_HP) can produce high heat of about 70-80 degrees, so it works not only with the cooling water supply system, but also as the auxiliary boiler.

상기와 같이 계절별 변동되는 발전용 열원 변동에 대응하여 운영되는 가변용량 ORC분산발전시스템은 최대한 폐열원으로 부터 공급되는 열원의 활용효율을 높혀 높은 경제성을 실현한다.
The variable-capacity ORC distributed generation system, which is operated in response to the seasonal variation of the power generation heat source fluctuates as described above, maximizes the utilization efficiency of the heat source supplied from the waste heat source and realizes high economic efficiency.

ORC : 유기랭킨사이클
HP : 단사이클 히트펌프시스템
2C_HP : 이원사이클 히트펌프시스템
10 : 고온전달사이클
11 : 제1압축기
12,22’ : 제1열교환기
13 ,30’: 제4열교환기
14 : 제1팽창밸브
20 : 열취득사이클
21, 21’ : 제2압축기
22, 22’ : 제2열교환기
23, 23’ : 제2팽창밸브
24 ,24’ : 제3열교환기
33, 33’ : 순환펌프
100 : ORC 분산발전시스템
101 : 발전용 열원 공급펌프
102 : 발전용 열원 공급 메인 도관
103 : 발전용 열원 회수 메인 도관
111~11n : ORC(유기랭킨사이클)
V11~V1n : 전자밸브
L11~L1n : 발전용 열원 공급 도관
200 : 냉각수 공급용 히트펌프시스템
211 : 축냉조
212 : 냉각수 공급 펌프
213 : 냉각수 공급 메인 도관
214 : 냉각수 순환펌프
215 : 냉각수 순환도관
201~20n : 히트펌프시스템(HP)
201’~20n’ : 이원사이클 히트펌프시스템(2C_HP)
221 : 축열조
222 : 열순환펌프
223 : 열교환수 리턴 메인도관
224 : 응축열 회수 도관
225 : 회수열 전송 펌프
226 : 회수열 전송 도관
300 : 폐열회수 공급시스템
301 : 발전용 축열조
301’ : 지역난방수 공급용 축열조
302,302’ : 순환폄프
303 : 폐열교환기
304 : 폐열원
305 : 지역난방수공급 가압펌프
306 : 지역난방수회수 순환펌프
307a,307b, 307a;,307b’ : 전자밸브
ORC: Organic Rankine Cycle
HP: Single cycle heat pump system
2C_HP: Dual cycle heat pump system
10: High temperature transfer cycle
11: First compressor
12, 22 ': a first heat exchanger
13, 30 ': a fourth heat exchanger
14: first expansion valve
20: Heat recovery cycle
21, 21 ': a second compressor
22, 22 ': a second heat exchanger
23, 23 ': a second expansion valve
24, 24 ': third heat exchanger
33, 33 ': circulation pump
100: ORC distributed generation system
101: Heat source supply pump for power generation
102: Main conduit for power generation heat source supply
103: Heat source recovery main conduit for power generation
111 to 11n: ORC (Organic Rankine Cycle)
V11 to V1n: Solenoid valve
L11 to L1n: power generation heat source supply conduit
200: Heat pump system for cooling water supply
211: Axial cooling
212: Cooling water supply pump
213: cooling water supply main conduit
214: cooling water circulation pump
215: cooling water circulation conduit
201 ~ 20n: Heat pump system (HP)
201 'to 20n': Dual cycle heat pump system (2C_HP)
221:
222: Heat circulation pump
223: Heat exchange water return main conduit
224: Condensation heat recovery conduit
225: Recovery heat transfer pump
226: Recovery heat transfer conduit
300: waste heat recovery supply system
301: Thermal storage tank for power generation
301 ': Reservoir for supplying district heating water
302, 302 ': circulating pump
303: waste heat exchanger
304: Waste heat source
305: District heating water supply pressure pump
306: District heating water collection circulation pump
307a, 307b, 307a, and 307b '

Claims (5)

폐열회수 발전시스템에 있어서,

증발기, 발전기가 축으로 연결괸 터빈, 응축기, 압축펌프로 폐루프를 구성하는 유기랭킨사이클;
발전용 열원을 공급받는 공급펌프가 구비된 발전용 열원 공급 메인 도관, 발전용 열원 최소, 최대 공급량으로 부터 용량과 설치대수를 산정 배열된 다수의 유기랭킨사이클, 전자밸브가 구비되고 발전용 열원 공급 메인 도관에서 분기되어 한측이 상기 유기랭킨사이클 증발기에 연결되고 타측이 발전용 열원 회수 메인 도관 에 연결된 발전용 열원 공급도관,으로 구성된 유기랭킨사이클 분산발전시스템(100);

상기 유기랭킨사이클 분산발전시스템의 최소, 최대 냉각수 필요 수량으로 부터 용량과 설치대수를 산정하여 설치된 다수의 축열, 축냉방식의 냉각수 공급용 히트펌프시스템(200);

상기 유기랭킨사이클 분산발전시스템의 발전용 열원 회수 메인 도관으로 부터 발전용 열원 공급 후 유입되는 잔여 열원을 상기 히트펌프시스템의 축냉조에 저장하고, 히트펌프시스템에 의해 열원을 회수하여 냉각된 축냉조의 냉각수를 상기 유기랭킨사이클의 응축기로 공급하고, 응축기에서 방출된 응축열을 흡수한 냉각수를 상기 히트펌프시스템의 축열조에 저장하여, 히트펌프시스템에 의해서 생산된 열원과 함께 다시 상기 유기랭킨사이클 분산발전시스템의 발전용 열원으로 공급함을 특징으로 하는 가변용량 유기랭킨사이클 분산발전시스템.
.
In a waste heat recovery power generation system,

Evaporator, generator connected to the shaft. Turbine, condenser, organic Rankine cycle constituting a closed loop with a compression pump;
A main conduit for power generation with a supply pump supplied with a power source for generating electricity, a plurality of organic Rankine cycles arranged in the order of capacity and installation number from the minimum and maximum supply amounts for power generation, An organic Rankine cycle distributed generation system 100 comprising a power generation heat source supply conduit branching from the main conduit, one side of which is connected to the organic Rankine cycle evaporator, and the other side of which is connected to the power generation heat recovery main conduit;

A plurality of heat accumulation and cooling system type cooling water heat pump systems 200 installed in the organic Rankine cycle distributed generation system by calculating the capacity and installation number from the minimum and maximum required cooling water quantities of the organic Rankine cycle distributed generation system;

A residual heat source that is introduced after a power source for power generation is supplied from a power source heat recovery main conduit of the organic Rankine cycle distributed generation system is stored in a shaft cooler of the heat pump system, a heat source is recovered by a heat pump system, The cooling water is supplied to the condenser of the organic Rankine cycle and the cooling water absorbing the condensation heat emitted from the condenser is stored in the heat storage tank of the heat pump system and the heat generated by the heat pump system is returned to the organic Rankine cycle dispersion generation Wherein the system is provided as a heat source for power generation of the system.
.
청구항 1항의 냉각수 공급용 히트펌프시스템에 있어서,

제2압축기, 제1열교환기, 제4열교환기, 제2팽창밸브, 제3열교환기로 폐루프를 구성한 단사이클 히트펌프시스템;

상기 히트펌프시스템의 제4열교환기, 순환펌프, 제3열교환기를 순환도관으로 연결하여 피드백 폐루프 구성하여, 제1열교환기에서 응축된 작동열매체로 부터 잉여의 열을 제4열교환기에서 피드백 폐루프 작동열매체와 열교환 하여 흡수된 열을 제3열교환기에서 축냉조로 부터 회수한 열원과 함께 히트펌프시스템 작동열매체가 증발하면서 흡수하게 함으로서, 흡수열량을 높혀 상기 히트펌프시스템 효율을 제어하고, 축냉조의 냉각수를 낮게 제어 가능하게 하여, 유기랭킨사이클 냉각수로 공급하고, 히트펌프시스템에서 생산 저장한 열을 축열조에 저장하여 다시 발전용 열원으로 공급하는 단사이클 히트펌프시스템을 구비함을 특징으로 가변용량 유기랭킨사이클 분산발전시스템.
The heat pump system for supplying cooling water according to claim 1,

A single cycle heat pump system constituting a closed loop by a second compressor, a first heat exchanger, a fourth heat exchanger, a second expansion valve, and a third heat exchanger;

The fourth heat exchanger, the circulation pump, and the third heat exchanger of the heat pump system are connected to each other through a circulation conduit to constitute a feedback closed loop so that surplus heat from the working heat medium condensed in the first heat exchanger is sent to the feedback pulsation The heat absorbed by the heat pump system is absorbed while the heat pump system operating heat medium is evaporated together with the heat source recovered from the condenser cooler in the third heat exchanger to control the efficiency of the heat pump system, Cycle heat pump system capable of controlling the cooling water of the cooling water to a low level and supplying it to the organic Rankine cycle cooling water and storing the heat produced and stored in the heat pump system in the heat storage tank and supplying the heat to the heat source for power generation again. Capacity Organic Rankine Cycle Dispersed Generation System.
청구항 1항의 냉각수 공급용 히트펌프시스템에 있어서,
제2압축기, 제2열교환기, 제2팽창밸브, 제3열교환기로 폐루프를 구성한 열취득사이클;
제1압축기, 제1열교환기, 제4열교환기, 제1팽창밸브, 제2열교환기로 폐루프를 구성한 고온전달사이클;
제4열교환기, 제3열교환기 ,순환펌프가 순환도관으로 연결되어 구성된 피드백 폐루프;
제1열교환기에서 고온전달사이클의 작동열매체가 축열조로 응축열을 방출한 뒤 응축되고, 축열조 부하변동으로 인해 방출되지 못한 고온전달사이클 작동열매체의 열을 제4열교환기에서 재응축하여, 상기 피드백 폐루프 작동열매체로 전달하고, 열취득사이클의 제3열교환기에 연결된 축냉조로 부터 흡수한 열량과 피드백 폐루프를 통해 흡수한 고온전달사이클의 응축열을 열취득사이클의 작동열매체로 전달 흡수열량을 증대시켜 히트펌프시스템 효율을 제어하고,
상기 고온전달사이클, 열취득사이클, 피드백 폐루프로 구성된 이원사이클 히트펌프시스템을 통해, 축냉조의 냉각수 온도를 낮추어 발전사이클 시스템효율을 증가시키고, 고온전달사이클을 통해 축열조에 저장된 고온의 열을 발전용 열원으로 다시 공급 함을 특징으로 하는 냉각수 공급용 히트펌프시스템을 구비한 가변용량 유기랭킨사이클 분산발전시스템
The heat pump system for supplying cooling water according to claim 1,
A second compressor, a second heat exchanger, a second expansion valve, and a third heat exchanger;
A high-temperature transfer cycle constituting a closed loop by a first compressor, a first heat exchanger, a fourth heat exchanger, a first expansion valve, and a second heat exchanger;
The fourth heat exchanger, the third heat exchanger, and the feedback closed loop formed by connecting the circulation pump to the circulation conduit;
The heat of the high-temperature transfer cycle in the first heat exchanger is condensed after releasing the condensation heat to the heat storage tank, and the heat of the high-temperature transfer cycle operation heat medium which has not been released due to the heat storage tank load fluctuation is recycled in the fourth heat exchanger, The heat absorbed from the axial cooling tank connected to the third heat exchanger in the heat acquisition cycle and the heat of condensation in the high temperature transfer cycle absorbed through the feedback closed loop are transferred to the working heat medium in the heat acquisition cycle. Control the heat pump system efficiency,
Through the two-cycle heat pump system consisting of the high temperature transfer cycle, the heat acquisition cycle and the feedback closed loop, it is possible to increase the efficiency of the power generation cycle system by lowering the cooling water temperature of the condensation cooler and to generate heat of high temperature stored in the heat storage tank Wherein the heat pump system is provided with a heat pump system for supplying cooling water for cooling water.
발전용 열원을 공급하는 폐열회수공급시스템에 있어서,

폐열원으로 부터 폐열원 열교환기를 통해 회수한 열량을 축열조에 저장하여 지역난방수 및 발전용 열원으로 공급하는 방법에 있어서,

축열조를 지역난방수 공급용 축열조와 발전용 축열조로 분리하여, 각각 폐열교환기로 부터 열교환하여 열원을 공급받기 위한 순환펌프와 전자밸브가 구비된 순환도관을 구성하여, 전자밸브 제어에 의해 폐열교환기로 부터 폐열원을 지역난방수 공급용 축열조와 발전용 축열조에 선택적으로 폐열원을 공급하는 폐열회수공급시스템을 구비함을 특징으로 하는 가변용량 유기랭킨사이클 분산발전시스템.
A waste heat recovery and supply system for supplying a power generation heat source,

A method for supplying heat to a district heating water and a power generation heat source by storing heat recovered from a waste heat source through a waste heat source heat exchanger in a heat storage tank,

The heat storage tank is divided into a heat storage tank for supplying the district heating water and a heat storage tank for power generation, and a circulation conduit having a circulation pump and a solenoid valve for receiving heat source by heat exchange from the waste heat exchanger is constituted, And a waste heat recovery / supply system for selectively supplying a waste heat source to the thermal storage tank for district heating water supply and the thermal storage tank for power generation.
청구항 1항 있어서,
발전용 열원공급도관을 통해 공급되는 열원의 량에 따라 가동해야 할 유기랭킨사이클 발전시스템 대수를 결정하여, 가동시키고, 전자밸브 제어에 의해 가동되는 유기랭킨사이클 발전시스템 증발기로만 열원을 공급하고, 가동되는 유기랭킨사이클 발전시스템 대수로 부터 요구되는 냉각수량을 산출하여 도출된 대수의 냉각수 공급용 히트펌프시스템을 가동시킴을 특징으로 하는 가변용량 유기랭킨사이클 분산발전시스템..
The method of claim 1,
The number of organic Rankine cycle power generation systems to be operated according to the amount of the heat source supplied through the power generation heat source supply conduit is determined and operated and only the heat source is supplied to the evaporator of the organic Rankine cycle power generation system operated by the solenoid valve control, And the heat pump system for supplying the extracted cooling water is operated by calculating the cooling water demanded from the logarithm of the organic Rankine cycle power generation system.
KR1020140009298A 2014-01-27 2014-01-27 Scalable ORC distribute electricity generation system KR20150089110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140009298A KR20150089110A (en) 2014-01-27 2014-01-27 Scalable ORC distribute electricity generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140009298A KR20150089110A (en) 2014-01-27 2014-01-27 Scalable ORC distribute electricity generation system

Publications (1)

Publication Number Publication Date
KR20150089110A true KR20150089110A (en) 2015-08-05

Family

ID=53885627

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140009298A KR20150089110A (en) 2014-01-27 2014-01-27 Scalable ORC distribute electricity generation system

Country Status (1)

Country Link
KR (1) KR20150089110A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10012448B2 (en) 2012-09-27 2018-07-03 X Development Llc Systems and methods for energy storage and retrieval
US20180187597A1 (en) * 2016-12-31 2018-07-05 X Development Llc Modular Thermal Storage
US10082104B2 (en) 2016-12-30 2018-09-25 X Development Llc Atmospheric storage and transfer of thermal energy
US10082045B2 (en) 2016-12-28 2018-09-25 X Development Llc Use of regenerator in thermodynamic cycle system
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
CN109166637A (en) * 2018-07-25 2019-01-08 华北电力大学 A kind of pressurized-water reactor nuclear power plant nuclear safety system and method based on ORC
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US10280804B2 (en) 2016-12-29 2019-05-07 Malta Inc. Thermocline arrays
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10801404B2 (en) 2016-12-30 2020-10-13 Malta Inc. Variable pressure turbine
KR102254729B1 (en) * 2021-02-08 2021-05-24 창조이앤이 주식회사 Hydrogen and carbon dioxide manufacturing method using combustible waste
KR102256668B1 (en) * 2021-02-02 2021-05-27 김강륜 Gasification apparatus having electricity generating device of organic rankine cycle for treating combustible waste
KR102256662B1 (en) * 2021-02-02 2021-05-27 김강륜 Gasification apparatus having electricity generating device using organic rankine cycle and brown's gas generating module for treating combustible waste
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
US11678615B2 (en) 2018-01-11 2023-06-20 Lancium Llc Method and system for dynamic power delivery to a flexible growcenter using unutilized energy sources
US11852043B2 (en) 2019-11-16 2023-12-26 Malta Inc. Pumped heat electric storage system with recirculation
US11982228B2 (en) 2021-08-12 2024-05-14 Malta Inc. Pumped heat energy storage system with steam cycle

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
US11761336B2 (en) 2010-03-04 2023-09-19 Malta Inc. Adiabatic salt energy storage
US10907513B2 (en) 2010-03-04 2021-02-02 Malta Inc. Adiabatic salt energy storage
US11156385B2 (en) 2012-09-27 2021-10-26 Malta Inc. Pumped thermal storage cycles with working fluid management
US10012448B2 (en) 2012-09-27 2018-07-03 X Development Llc Systems and methods for energy storage and retrieval
US10428694B2 (en) 2012-09-27 2019-10-01 Malta Inc. Pumped thermal and energy storage system units with pumped thermal system and energy storage system subunits
US11754319B2 (en) 2012-09-27 2023-09-12 Malta Inc. Pumped thermal storage cycles with turbomachine speed control
US10458283B2 (en) 2012-09-27 2019-10-29 Malta Inc. Varying compression ratios in energy storage and retrieval systems
US10458721B2 (en) 2012-09-27 2019-10-29 Malta Inc. Pumped thermal storage cycles with recuperation
US10443452B2 (en) 2012-09-27 2019-10-15 Malta Inc. Methods of hot and cold side charging in thermal energy storage systems
US10428693B2 (en) 2012-09-27 2019-10-01 Malta Inc. Pumped thermal systems with dedicated compressor/turbine pairs
US10288357B2 (en) 2012-09-27 2019-05-14 Malta Inc. Hybrid pumped thermal systems
US10422250B2 (en) 2012-09-27 2019-09-24 Malta Inc. Pumped thermal systems with variable stator pressure ratio control
US10920667B2 (en) 2016-12-28 2021-02-16 Malta Inc. Pump control of closed cycle power generation system
US11371442B2 (en) 2016-12-28 2022-06-28 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US11927130B2 (en) 2016-12-28 2024-03-12 Malta Inc. Pump control of closed cycle power generation system
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US11591956B2 (en) 2016-12-28 2023-02-28 Malta Inc. Baffled thermoclines in thermodynamic generation cycle systems
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US11512613B2 (en) 2016-12-28 2022-11-29 Malta Inc. Storage of excess heat in cold side of heat engine
US11454168B2 (en) 2016-12-28 2022-09-27 Malta Inc. Pump control of closed cycle power generation system
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US10082045B2 (en) 2016-12-28 2018-09-25 X Development Llc Use of regenerator in thermodynamic cycle system
US10920674B2 (en) 2016-12-28 2021-02-16 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10907510B2 (en) 2016-12-28 2021-02-02 Malta Inc. Storage of excess heat in cold side of heat engine
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US10280804B2 (en) 2016-12-29 2019-05-07 Malta Inc. Thermocline arrays
US11578622B2 (en) 2016-12-29 2023-02-14 Malta Inc. Use of external air for closed cycle inventory control
US10907548B2 (en) 2016-12-29 2021-02-02 Malta Inc. Use of external air for closed cycle inventory control
US10082104B2 (en) 2016-12-30 2018-09-25 X Development Llc Atmospheric storage and transfer of thermal energy
US11352951B2 (en) 2016-12-30 2022-06-07 Malta Inc. Variable pressure turbine
US10801404B2 (en) 2016-12-30 2020-10-13 Malta Inc. Variable pressure turbine
US10436109B2 (en) 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
US10830134B2 (en) 2016-12-31 2020-11-10 Malta Inc. Modular thermal storage
US20180187597A1 (en) * 2016-12-31 2018-07-05 X Development Llc Modular Thermal Storage
CN110546351B (en) * 2016-12-31 2022-08-19 马耳他股份有限公司 Power generation system
WO2018125638A3 (en) * 2016-12-31 2018-08-16 X Development Llc Modular thermal storage
EP3563042A4 (en) * 2016-12-31 2020-08-19 Malta Inc. Modular thermal storage
US11655759B2 (en) 2016-12-31 2023-05-23 Malta, Inc. Modular thermal storage
CN110546351A (en) * 2016-12-31 2019-12-06 马耳他股份有限公司 Modular heat storage
US11678615B2 (en) 2018-01-11 2023-06-20 Lancium Llc Method and system for dynamic power delivery to a flexible growcenter using unutilized energy sources
CN109166637B (en) * 2018-07-25 2024-05-14 华北电力大学 ORC-based pressurized water reactor nuclear power station nuclear safety system and method
CN109166637A (en) * 2018-07-25 2019-01-08 华北电力大学 A kind of pressurized-water reactor nuclear power plant nuclear safety system and method based on ORC
US11852043B2 (en) 2019-11-16 2023-12-26 Malta Inc. Pumped heat electric storage system with recirculation
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11578650B2 (en) 2020-08-12 2023-02-14 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11840932B1 (en) 2020-08-12 2023-12-12 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11846197B2 (en) 2020-08-12 2023-12-19 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11885244B2 (en) 2020-08-12 2024-01-30 Malta Inc. Pumped heat energy storage system with electric heating integration
KR102256662B1 (en) * 2021-02-02 2021-05-27 김강륜 Gasification apparatus having electricity generating device using organic rankine cycle and brown's gas generating module for treating combustible waste
KR102256668B1 (en) * 2021-02-02 2021-05-27 김강륜 Gasification apparatus having electricity generating device of organic rankine cycle for treating combustible waste
KR102254729B1 (en) * 2021-02-08 2021-05-24 창조이앤이 주식회사 Hydrogen and carbon dioxide manufacturing method using combustible waste
US11982228B2 (en) 2021-08-12 2024-05-14 Malta Inc. Pumped heat energy storage system with steam cycle

Similar Documents

Publication Publication Date Title
KR20150089110A (en) Scalable ORC distribute electricity generation system
US9746191B2 (en) System for producing heat source for heating or electricity using medium/low temperature waste heat, and method for controlling the same
JP5999322B2 (en) Power generation system
JP6021313B2 (en) Method, power plant, and cooling system for cooling a carrier fluid in a power plant
KR101453046B1 (en) System for supplying energy by tri-generation
Van Erdeweghe et al. “Preheat-parallel” configuration for low-temperature geothermally-fed CHP plants
Khalilzadeh et al. Using waste heat of high capacity wind turbines in a novel combined heating, cooling, and power system
KR101499810B1 (en) Hybrid type condenser system
KR101315918B1 (en) Organic rankine cycle for using low temperature waste heat and absorbtion type refrigerator
CN204098972U (en) Adopt the low temperature water power generation system of extraction cycle technology
KR20100057573A (en) The condensing system for steam turbine using refrigerant evaporation heat
KR20150094190A (en) Combined cogeneration Organic Rankine cycle electricity generation system
KR20150109102A (en) Organic Rankine Cycle electricity generation system
KR101528935B1 (en) The generating system using the waste heat of condenser
CN102865112A (en) Back thermal cycle power generation, multi-level back thermal cycle power generation and poly-generation system
CN116641769A (en) Energy storage utilization system based on carbon dioxide working medium
KR20150098163A (en) ORC distribute electricity generation system
KR101425962B1 (en) Binary Geothermal Power Generation System
KR102285675B1 (en) Power generation system by Organic Rankine Cycle using outdoor units waste heat of refrigerating and air-conditioning systems and solar energy
KR20150096266A (en) Combined cogeneration Organic Rankine cycle electricity generation system
KR102239453B1 (en) Organic rankine cycle generating system with thermal storage tank
Ehtiwesh et al. Modelling and performance evaluation of a direct steam generation solar power system coupled with steam accumulator to meet electricity demands for a hospital under typical climate conditions in Libya
RU62166U1 (en) COOLING COOLING SYSTEM FOR STEAMED STEAM TURBINES
CN202900338U (en) Back-pressure-heating circulation power generation and multi-stage back-pressure-heating circulation power generation and multi-generation system
KR20110115196A (en) Power plant system of ocean thermal energy conversion with reheating process

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination