KR20150036852A - Method for manufacturing hollw fiber membrane and hollow fiber membrane using same - Google Patents

Method for manufacturing hollw fiber membrane and hollow fiber membrane using same Download PDF

Info

Publication number
KR20150036852A
KR20150036852A KR20130115800A KR20130115800A KR20150036852A KR 20150036852 A KR20150036852 A KR 20150036852A KR 20130115800 A KR20130115800 A KR 20130115800A KR 20130115800 A KR20130115800 A KR 20130115800A KR 20150036852 A KR20150036852 A KR 20150036852A
Authority
KR
South Korea
Prior art keywords
hollow fiber
fiber membrane
storage tank
spinning
weight
Prior art date
Application number
KR20130115800A
Other languages
Korean (ko)
Other versions
KR101536585B1 (en
Inventor
이원근이원근
이원근
조범래조범래
조범래
김헌덕김헌덕
김헌덕
박준우박준우
박준우
윤애천윤애천
윤애천
후건후건
후건
Original Assignee
(주)티피에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)티피에스 filed Critical (주)티피에스
Priority to KR1020130115800A priority Critical patent/KR101536585B1/en
Publication of KR20150036852A publication Critical patent/KR20150036852A/en
Application granted granted Critical
Publication of KR101536585B1 publication Critical patent/KR101536585B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • B01D69/0871Fibre guidance after spinning through the manufacturing apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • B01D67/00165Composition of the coagulation baths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/085Details relating to the spinneret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/08Addition of substances to the spinning solution or to the melt for forming hollow filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/18Pore-control agents or pore formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21839Polymeric additives
    • B01D2323/2185Polyethylene glycol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

The present invention relates to a hollow fiber membrane manufacturing method, comprising the steps of injecting a spinning solution consisting of polyvinylidene fluoride (PVDF), dimethylacetamide (DMAC) which is a solvent, lithium chloride (LiCl) which is a porosity forming agent and zinc chloride which is a porosity growing inhibitor to a first storage tank; injecting poly ethylene glycol (PEG) which is an additive to a second storage tank; and a preparation step of storing water or dimethylacetamide (DMAC) which is an internal coagulating solution in a third storage tank, thereby enabling manufactured hollow fiber membranes to treat water processes in a stable manner and leading to the reduction of production and maintenance cost of water treatment, and a hollow fiber membrane using the same.

Description

중공사막의 제조방법 및 이를 이용한 중공사막{Method for manufacturing hollw fiber membrane and hollow fiber membrane using same}TECHNICAL FIELD [0001] The present invention relates to a method for manufacturing a hollow fiber membrane,

본 발명은 중공사막의 제조방법 및 이를 이용한 중공사막에 관한 것으로서, 특히 폴리불화비닐리덴, 용매제, 기공 형성제, 기공성장 억제제로 이루어지는 방사용액에 중공사막의 친수성을 부여하는 첨가제를 혼합한 후 내부응고제와 2중관형노즐을 통하여 방사되며, 방사된 방사용액이 응고단계, 안정화단계, 권취단계를 거쳐 이루어지는 중공사막의 제조방법 및 이를 이용한 중공사막에 관한 것이다.The present invention relates to a method for producing a hollow fiber membrane and a hollow fiber membrane using the hollow fiber membrane, and more particularly, to a method for producing a hollow fiber membrane by mixing an additive for imparting hydrophilicity of a hollow fiber membrane to a spinning solution comprising polyvinylidene fluoride, a solvent, a pore- The present invention relates to a hollow fiber membrane manufacturing method and a hollow fiber membrane using the same, wherein the spinning solution is radiated through an inner coagulant and a double pipe type nozzle and is subjected to a coagulation step, a stabilization step and a winding step.

일반적으로 효과적인 물질의 분리를 위한 방법으로서, 증류, 추출, 흡수, 흡착 또는 재결정 등의 다양한 분리 공정이 이용되어 왔다. 그러나, 위와 같은 재래식 분리 공정은 다량의 에너지 소비 및 공간 이용의 비효율성 등과 같은 문제점을 가지고 있다.In general, as a method for effectively separating substances, various separation processes such as distillation, extraction, absorption, adsorption or recrystallization have been used. However, such conventional separation processes have problems such as a large amount of energy consumption and inefficiency of space utilization.

이에 따라 전술한 재래식 분리 공정을 대체하기 위한 에너지 절약형 분리 공정으로서 막분리의 중요성이 대두되고 있다. 막분리는 두 개의 상(phase)의 사이에 존재하는 선택적 장벽(selective barrier)으로 정의될 수 있는데, 특히 공업 및 농업 폐수, 음용수의 공급이나 독성 산업 폐기물의 처리 등을 포함하여, 환경 오염의 심각성이 전세계적으로 대두되면서 고분자 막분리에 대한 중요성은 더욱 커지고 있다.Accordingly, the importance of membrane separation as an energy-saving separation process for replacing the conventional separation process has arisen. Membrane separation can be defined as a selective barrier between two phases, in particular the severity of environmental pollution, including industrial and agricultural wastewater, the supply of drinking water and the treatment of toxic industrial wastes Is emerging worldwide, the importance of separating polymer membranes is increasing.

이와 더불어 막분리 기술은 분리막의 세공크기와 막표면 전하에 따라 처리수중에 존재하는 처리대상물질을 거의 완벽하게 분리하여 제거할 수 있는 고도의 분리기술로서 수처리 분야에서 양질의 음용수 및 공업용수의 생산, 하폐수의 고도처리 및 재이용, 무방류 시스템 개발과 관련된 청정생산공정 등 그 응용범위가 점차 확대되어 가고 있으며 21세기에 주목받게 될 핵심기술의 하나로서 자리잡고 있다.In addition, the membrane separation technology is a highly separation technology that can almost completely separate the substances to be treated in the treated water according to the pore size of the membrane and the membrane surface charge. As a result, the production of high quality drinking water and industrial water , The advanced treatment and reuse of wastewater, and the clean production process related to the development of the zero-discharge system, and it is becoming one of the core technologies that will be noticed in the 21st century.

종래의 수처리막은 오염된 원수로부터 정제된 생산수를 얻는 동안 파울링이라 불리는 막오염 현상을 불가피하게 경험하게 된다. 이러한 막오염 현상은 대개 원수속의 오염원이 막표면에 불가피하게 경험하게 된다. Conventional water treatment membranes inevitably experience film fouling, called fouling, while obtaining purified water from contaminated raw water. Such membrane contamination usually results in contamination of the source water inevitably on the membrane surface.

이러한 막오염 현상은 대개 원수속의 오염원이 막표면에 흡착하여 발생하는 것으로 알려져 있으며, 이러한 막 표면의 오염은 여과시 작용하는 압력을 상승시키고 생산수량을 점차 감소시켜 막여과 공정에 심각한 악영향을 주게 된다. Such membrane fouling is generally known to occur by adsorbing contaminants in the raw water on the membrane surface, and contamination of the membrane surface increases the pressure acting on the filtration and gradually decreases the production yield, thereby seriously affecting the membrane filtration process .

이러한 공정 중 막오염 현상을 방지하기 위해 통상의 수처리 운전은 역세공정을 삽입하여 막표면에 흡착된 오염물을 제거하게 되는데 이때 역세공정은 산, 염기성 물질을 포함한 수용액을 막여과 방향과 반대방향으로 공급하고 산, 염기성 물질에 의해 비대칭성의 막 표면과 외표 부분에 핑거 구조에 의해 불안정한 지지 형태를 보이고, 더불어 불규칙한 외표면과 거칠 스크래치 등에 의해 파울링 현상에 취약한 문제점을 내포하고 있는 실정이다.In order to prevent membrane contamination during this process, the normal water treatment operation inserts a backwash process to remove contaminants adsorbed on the membrane surface. In this case, the backwash process is performed by supplying an aqueous solution containing an acidic or basic substance in a direction opposite to the membrane filtration direction In addition, unstable support structures due to the finger structure are present on the asymmetric membrane surface and the outer surface of the asymmetric membrane due to acid and basic substances, and the membrane is vulnerable to fouling by irregular outer surfaces and rough scratches.

이에 따라 수처리 분야에서는 기계적 강도가 우수하면서도, 기공크기가 작고 투과유량이 높으며 막오염 저항성이 높은 분리막을 경제적으로 제조하는 방법에 대한 요구가 증가하고 있다.Accordingly, there is an increasing demand for a method for economically producing a membrane having a high mechanical strength, a small pore size, a high permeation flow rate, and high membrane fouling resistance in the water treatment field.

대한민국 공개특허 제10-2009-0013643호(2009. 2. 5)Korean Patent Publication No. 10-2009-0013643 (February 5, 2009)

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 발명된 것으로서, 중공사막의 원료가 되는 폴리불화비닐리덴에 디메틸아세트아미드를 용매제로 사용되고 중공사막의 친수성을 부여하도록 폴리에틸렌글리콜을 첨가제로 사용함으로서 내화학성 및 내구성이 향상되어 정수 및 오폐수 공정에 유용하게 사용될 수 있는 중공사막을 제조할 수 있는 중공사막의 제조방법을 제공하는 것에 목적이 있다.Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and it is an object of the present invention to provide a hollow fiber membrane in which dimethyl acetamide is used as a solvent for polyvinylidene, and polyethylene glycol is used as an additive for imparting hydrophilic properties to the hollow fiber membrane. The present invention provides a method for producing a hollow fiber membrane which can improve the chemical resistance and durability and can be usefully used in water purification and wastewater treatment.

본 발명의 또 다른 목적은 중공사막의 방사물이 응고조, 안정조, 권취조에 의해 응고, 그 형태의 안정화, 권취를 통한 잔존하는 용매의 배출이 단계적으로 수행되어 안정적인 중공사막의 형태로 유지시킴과 동시에 단계적인 과정을 통한 강도 를 일정하게 구비되는 중공사막을 제조할 수 있는 중공사막의 제조방법을 제공하는 것에 목적이 있다.Another object of the present invention is to provide a hollow fiber membrane in which the radiation of the hollow fiber membrane is coagulated by the coagulation bath, the stabilizer bath, the coagulating bath, the stabilization of its form and the discharge of the residual solvent through winding, And a method of manufacturing a hollow fiber membrane capable of simultaneously producing a hollow fiber membrane having a constant strength through a stepwise process.

상기와 같은 목적을 실현하기 위하여 본 발명은, 폴리불화비닐리덴(PVDF, Polyvinylidenefluoride), 용매인 디메틸아세트아미드(DMAC), 염화리튬(LiCl)인 기공 형성제, 기공성장 억제제인 염화아연(Zinc Chloride)으로 이루어지는 방사용액을 제1저장탱크에서 투입하고, 첨가제인 폴리에틸렌글리콜(PEG, Poly ethylene glycol)을 제2저장탱크에 투입하고, 내부응고액인 디메틸아세트아미드(DMAC) 또는 물을 제3저장탱크에 저장하는 준비단계; 상기 제1저장탱크 내부에 저장된 방사용액을 75 ~ 80℃의 온도로 유지시킨 후 교반기에 의해 교반시켜 혼합된 방사용액을 제2저장탱크로 투입하여 제2저장탱크에 저장된 첨가제와 혼합된 후 혼합된 방사용액과 제3저장탱크에 저장된 내부응고제를 2중관형노즐을 통하여 방사용액과 내부응고액을 방사하는 방사단계; 상기 2중관형노즐의 하부에 75 ~ 80℃로 유지되는 응고액이 담수되는 응고조를 구비한 후 방사단계를 통해 방사된 방사물에 다수의 롤러를 통해 응고액이 담수된 응고액이 침지되도록 안내되어 막이 형성되도록 응고시키는 응고단계; 상기 응고단계를 거친 방사물을 다수의 롤러를 통해 55 ~ 65℃로 유지되는 물이 담수되어 있는 안정조에 침지, 배출을 반복하도록 안내되어 안정조에 담수된 물에 의해 그 형태를 안정화시키는 안정화단계; 상기 안정화단계를 거친 방사물을 다수의 롤러를 통해 45 ~ 55℃로 유지되는 물이 담수되어 있는 권취조 내부에서 권취되어 권취된 상태를 23 ~ 25시간 동안 유지시켜 방사단계에서 잔존하는 용매의 배출이 이루어지는 권취단계;가 포함되어 이루어짐을 특징으로 하는 중공사막의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a process for producing a zirconium chloride (Zinc Chloride), which is a pore-forming agent which is a polyvinylidene fluoride (PVDF), a dimethylacetamide (DMAC) ) Is put in a first storage tank, and polyethylene glycol (PEG) as an additive is put into a second storage tank, and dimethyl acetamide (DMAC) or water as an internal coagulating liquid is stored in a third storage Preparation stage to store in tank; The spinning solution stored in the first storage tank is maintained at a temperature of 75 to 80 캜 and stirred by an agitator to mix the spinning solution with the additive stored in the second storage tank into the second storage tank, A spinning step of spinning the spinning solution and the internal coagulant stored in the third storage tank through spinneret nozzle and internal coagulating solution; And a coagulation bath in which the coagulation solution maintained at a temperature of 75 to 80 ° C is provided in the lower part of the double-tubular nozzle is immersed in the coagulation solution discharged from the spinning step through a plurality of rollers A solidifying step of guiding and coagulating so as to form a film; A stabilization step of stabilizing the shape of the radiation having passed through the coagulation step through the plurality of rollers so as to be guided repeatedly by immersing and discharging the water in a stabilizing tank in which water is kept at 55 to 65 ° C, The stabilized film was wound around a winding drum in which water maintained at 45 to 55 ° C was drained through a plurality of rollers, and the wound state was maintained for 23 to 25 hours to discharge the remaining solvent in the spinning stage And a step of winding the hollow fiber membrane into a hollow fiber membrane.

또한 상기 준비단계에서 폴리불화비닐리덴(PVDF, Polyvinylidenefluoride)은 중량 평균분자량이 300,000 ~ 600,000인 것을 사용하는 것을 특징으로 한다.In the preparing step, polyvinylidene fluoride (PVDF) having a weight average molecular weight of 300,000 to 600,000 is used.

그리고 상기 제1, 2저장탱크를 거쳐 2중관형노즐에 투입되는 방사용액은 폴리불화비닐리덴(PVDF, Polyvinylidenefluoride) 22 ~ 30중량%, 용매인 디메틸아세트아미드(DMAC) 58 ~ 66중량%, 첨가제인 폴리에틸렌글리콜(PEG, Poly ethylene glycol) 10 ~ 12중량%로 이루어짐을 특징으로 한다.The spinning solution to be injected into the double pipe type nozzle through the first and second storage tanks is composed of 22 to 30 wt% of polyvinylidene fluoride (PVDF), 58 to 66 wt% of dimethylacetamide (DMAC) as a solvent, And 10 to 12% by weight of polyethylene glycol (PEG).

또한 상기 준비단계에서 폴리불화비닐리덴(PVDF, Polyvinylidenefluoride) 100중량부를 기준으로 기공 형성제인 염화리튬(LiCl) 0.5 ~ 15 중량부가 혼합됨을 특징으로 한다.Also, 0.5 to 15 parts by weight of lithium chloride (LiCl) as a pore-forming agent is mixed with 100 parts by weight of polyvinylidene fluoride (PVDF) in the preparation step.

또한 상기 준비단계에서 폴리불화비닐리덴(PVDF, Polyvinylidenefluoride) 100중량부를 기준으로 기공성장 억제제인 염화아연(Zinc Chloride) 0.5 ~ 15 중량부가 혼합됨을 특징으로 한다.In addition, 0.5 to 15 parts by weight of zinc chloride (Zinc Chloride) as a pore growth inhibitor is mixed with 100 parts by weight of polyvinylidene fluoride (PVDF) in the preparation step.

그리고 상기 중공사막의 제조방법을 이용하여 표면 스킨층의 기공크기가 0.01 ~ 0.05㎛이고, 기공율이 70% ~ 95%로 이루어짐을 특징으로 하는 중공사막을 제공한다.The present invention provides a hollow fiber membrane characterized in that the surface skin layer has a pore size of 0.01 to 0.05 탆 and a porosity of 70% to 95% by using the hollow fiber membrane production method.

전술한 바와 같이 본 발명에 따르면, 중공사막의 원료가 되는 폴리불화비닐리덴에 디메틸아세트아미드를 용매제로 사용되고 중공사막의 친수성을 부여하도록 폴리에틸렌글리콜을 첨가제로 사용함으로서 내화학성 및 내구성이 향상되어 정수 및 오폐수 공정에 유용하게 사용될 수 있는 중공사막을 제조할 수 있는 효과가 있다.INDUSTRIAL APPLICABILITY As described above, according to the present invention, dimethyl acetamide is used as a solvent for polyvinylidene fluoride as a raw material for hollow fiber membranes, and polyethylene glycol is used as an additive for imparting hydrophilic properties to hollow fiber membranes, thereby improving chemical resistance and durability, It is possible to produce a hollow fiber membrane which can be usefully used in wastewater treatment.

또한 여기서 응고단계, 안정화단계, 권취단계에서 중공사막의 방사물이 응고조, 안정조, 권취조에 담수된 물에 의해 단계적으로 침지되어 단계적으로 온도가 낮아지게 됨으로서 중공사막의 방사물이 응고, 방사 형태의 안정화가 단계적으로 수행되어 안정적인 중공사막의 형태로 유지시키게 됨은 물론 기계적 강도가 향상되는 중공사막을 제조할 수 있는 효과가 있다.Also, in the coagulation step, the stabilization step, and the winding step, the radiation of the hollow fiber membrane is gradually immersed in the coagulation bath, the stabilizer bath, and the coagulating bath so that the temperature of the hollow fiber membrane is gradually lowered, The stabilization of the morphology can be carried out stepwise to maintain the morphology of the hollow fiber membrane in a stable state, as well as to improve the mechanical strength of the hollow fiber membrane.

또한 분자량 300,000 ~ 600,000인 폴리불화비닐리덴에 특정한 중량비율로 용매제 및 첨가제를 혼합하여 방사용액으로 사용함으로서 인장강도가 일반적인 기준치를 초과하는 고강도의 중공사막을 제조할 수 있게 되어 기계적 강도의 향상으로 파울링 제어에 효과적이면서도 우수한 역세성능 및 여과 성능을 구비하여 수질 처리 능력의 안정성을 높일 수 있는 중공사막을 제공할 수 있는 효과가 있다.In addition, when a solvent and additives are mixed in a specific weight ratio to polyvinylidene fluoride having a molecular weight of 300,000 to 600,000 and used as a spinning solution, it is possible to produce a high strength hollow fiber membrane having a tensile strength exceeding a general reference value, It is possible to provide a hollow fiber membrane which is effective for fouling control and which has excellent backwashing performance and filtration performance and can enhance the stability of water quality treatment capability.

또한 폴리불화비닐리덴에 기공 형성제 및 기공성장 억제제를 특정하게 한정된 범위로 사용함으로서 용매와 상호작용을 통하여 중공사막의 기공율을 높이고 표면 스킨층의 기공크기를 미세하게 하는 중공사막을 제공하는 효과가 있다.Further, by using the pore-forming agent and the pore growth inhibitor in a specific limited range, it is possible to increase the porosity of the hollow fiber membrane and to make the pore size of the surface skin layer fine by interacting with the solvent by providing polyvinylidene fluoride have.

또한 중공사막은 기공율 70% ~ 95%를 갖도록 하며, 표면 스킨층의 기공크기가 0.01 ~ 0.05 ㎛로 유지되도록 제조됨으로서 안정적인 수처리공정이 가능하게 됨으로써 수처리 생산비용 및 유지비용을 절감할 수 있고, 날로 엄격해지고 있는 고도정수처리, 용수처리공정을 포함한 차세대 고효율 분리공정산업에 유용하게 활용되는 효과가 있다.In addition, the hollow fiber membrane has a porosity of 70% to 95% and a pore size of the surface skin layer is maintained in a range of 0.01 to 0.05 탆, thereby making it possible to perform a stable water treatment process, thereby reducing water treatment production cost and maintenance cost, It is effective for the next generation high-efficiency separation process industry including advanced water treatment and water treatment process which is becoming severe.

도 1은 본 발명에 따른 중공사막의 제조방법을 나타내는 순서도,
도 2는 본 발명에 따른 중공사막의 제조방법을 나타내는 공정도.
1 is a flow chart showing a method for producing a hollow fiber membrane according to the present invention,
2 is a process chart showing a method for producing a hollow fiber membrane according to the present invention.

이하 본 발명의 실시를 위한 구체적인 내용을 첨부한 도면을 참조하여 더욱 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 중공사막의 제조방법을 나타내는 순서도이고, 도 2는 본 발명에 따른 중공사막의 제조방법을 나타내는 공정도로서, 여기서 본 발명에 따른 중공사막의 제조방법은 도 1에 도시된 바와 같이 준비단계(S100), 방사단계(S200), 응고단계(S300), 안정화단계(S400), 권취단계(S500)가 순차적으로 수행되어 이루어진다.FIG. 1 is a flow chart showing a method for producing a hollow fiber membrane according to the present invention, FIG. 2 is a process diagram showing a method for producing a hollow fiber membrane according to the present invention, The preparation step S100, the spinning step S200, the solidification step S300, the stabilization step S400, and the winding step S500 are performed sequentially.

상기 준비단계(S100)는 중공사막의 원료가 되는 방사용액을 준비하는 단계로서, 폴리불화비닐리덴(PVDF, Polyvinylidenefluoride), 용매인 디메틸아세트아미드(DMAC), 염화리튬(LiCl)인 기공 형성제, 기공성장 억제제인 염화아연(Zinc Chloride)으로 이루어지는 방사용액을 제1저장탱크(10)에서 투입한다.The preparing step S100 is a step of preparing a spinning solution to be a raw material of the hollow fiber membrane. The preparing step S100 is a step of preparing a spinning solution which is a raw material of a hollow fiber membrane, A spinning solution composed of zinc chloride (Zinc Chloride) as a pore growth inhibitor is introduced into the first storage tank 10.

또한 첨가제인 폴리에틸렌글리콜(PEG, Poly ethylene glycol)을 제2저장탱크(20)에 투입하고, 내부응고액인 디메틸아세트아미드(DMAC) 또는 물을 제3저장탱크(30)에 저장하는 단계이다.Also, polyethylene glycol (PEG) is added to the second storage tank 20, and dimethyl acetamide (DMAC) or water, which is an internal coagulating solution, is stored in the third storage tank 30.

방사단계(S200)는 상기 준비단계(S100)에서 준비된 방사용액을 혼합한 후 방사하는 단계로서, 제1저장탱크(10) 내부에 저장된 방사용액을 75 ~ 80℃의 온도로 유지시킨 후 교반기에 의해 교반시켜 혼합된 방사용액을 제2저장탱크(20)로 투입하여 제2저장탱크(20)에 저장된 첨가제와 혼합된 후 혼합된 방사용액과 제3저장탱크(30)에 저장된 내부응고제를 2중관형노즐(50)을 통하여 방사용액과 내부응고액을 방사하는 단계이다.The spinning step S200 is a step of mixing and discharging the spinning solution prepared in the preparing step S100. The spinning solution stored in the first storage tank 10 is maintained at a temperature of 75 to 80 占 폚, The mixed spinning solution is mixed with the additive stored in the second storage tank 20 and mixed with the spinning solution mixed with the internal coagulant stored in the third storage tank 30 to the second storage tank 20. [ And spraying the spinning solution and the inner coagulating solution through the middle pipe type nozzle 50.

상기 방사단계(S200)에서 방사용액의 교반은 150rpm으로 작동되는 교반기를 통해 23 ~ 25시간 동안 이루어지는 것이 바람직하며, 이는 75 ~ 80℃의 온도로 유지시킨 방사용액을 상기의 조건으로 교반함으로서 방사용액 중 안정성 고분자인 폴리불화비닐리덴의 용해 및 교반이 원활히 이루어지게 하기 위함이다.In the spinning step (S200), stirring of the spinning solution is preferably performed for 23 to 25 hours through a stirrer operated at 150 rpm, and the spinning solution maintained at a temperature of 75 to 80 캜 is stirred under the above- This makes it possible to smoothly dissolve and stir the polyvinylidene fluoride as a medium-stable polymer.

응고단계(S300)는 2중관형노즐(50)의 하부에 75 ~ 80℃로 유지되는 응고액이 담수되는 응고조(50)를 구비한 후 방사단계(S200)를 통해 방사된 방사물에 다수의 롤러를 통해 응고액이 담수된 응고액이 침지되도록 안내되어 방사물에 막이 형성되도록 응고시키는 단계이다.The coagulation step S300 includes a coagulation tank 50 in which the coagulation solution retained at 75 to 80 ° C is drained at the lower part of the double pipe type nozzle 50, Is coagulated to form a film on the radiation.

상기 응고단계(S300)에서 사용되는 응고액은 물로 이루어지는 것이 바람직하다.The coagulating solution used in the solidifying step (S300) is preferably water.

안정화단계(S400)는 상기 응고단계(S300)를 거친 방사물을 다수의 롤러를 통해 55 ~ 65℃로 유지되는 물이 담수되어 있는 안정조(60)에 침지, 배출을 반복하도록 안내되어 안정조(60)에 담수된 물에 의해 방사물의 응고된 형태를 안정화시키는 단계이다.In the stabilization step S400, the radiation having passed through the solidification step S300 is guided through the plurality of rollers so as to repeatedly immerse and discharge the water, which is kept at 55 to 65 ° C, in the water stored in the stabilizer 60, Is a step of stabilizing the coagulated form of the discharge by the water desiccated in the discharge port (60).

권취단계(S500)는 상기 안정화단계(S400)를 거친 방사물을 다수의 롤러를 통해 45 ~ 55℃로 유지되는 물이 담수되어 있는 권취조(70) 내부에서 권취봉에 의해 권취되어 권취된 상태를 23 ~ 25시간 동안 유지시켜 방사단계(S200)에서 잔존하는 용매의 배출을 도모하는 단계이다.The winding step S500 is a step in which the radiation after the stabilization step S400 is wound around a winding rod inside a winding drum 70 in which water kept at 45 to 55 ° C is drained through a plurality of rollers and wound Is maintained for 23 to 25 hours to release the remaining solvent in the spinning step (S200).

여기서 응고조(50), 안정조(60), 권취조(70)에 담수된 물의 온도가 단계적으로 낮아지는 것은 중공사막의 방사물이 응고조(50), 안정조(60), 권취조(70)에 담수된 물에 의해 단계적으로 침지됨으로서 단계적으로 온도가 낮아지게 되며, 이러한 과정을 통해 중공사막의 방사물이 응고, 방사 형태의 안정화가 단계적으로 수행되어 안정적인 중공사막의 형태로 유지시키게 되어 기계적 강도가 향상되는 중공사막을 제조하게 된다.The temperature of the water desalinated in the coagulation bath 50, the stabilizer bath 60 and the winding bath 70 is gradually lowered because the radiation of the hollow fiber membrane is supplied to the coagulation bath 50, the stabilizer bath 60, 70), the temperature is lowered step by step. Through this process, the radiation of the hollow fiber membrane is stabilized and the stabilization of the radiation form is performed in a stepwise manner to be maintained in the form of a stable hollow fiber membrane Thereby producing a hollow fiber membrane having improved mechanical strength.

또한 이와 더불어 이러한 단계적인 응고, 안정화 과정을 통한 방사물의 강도 또한 일정하게 구비되어 끊김이 없이 권취작업이 용이하게 이루어지기 하기 위함이다.In addition, the intensity of the radiation through the stepwise coagulation and stabilization process is also uniformly set so that the winding work can be easily performed without interruption.

따라서 상기의 단계를 수행하여 이루어지는 본 발명은 중공사막의 원료가 되는 폴리불화비닐리덴에 디메틸아세트아미드를 용매제로 사용되고 중공사막의 친수성을 부여하도록 폴리에틸렌글리콜을 첨가제로 사용함으로서 내화학성 및 내구성이 향상되어 정수 및 오폐수 공정에 유용하게 사용될 수 있는 중공사막을 제조할 수 있는 효과를 가지게 되는 것이다.Therefore, in the present invention obtained by performing the above-mentioned steps, dimethyl acetamide is used as a solvent for polyvinylidene fluoride as a raw material of the hollow fiber membrane, and polyethylene glycol is used as an additive to impart the hydrophilic property of the hollow fiber membrane to improve chemical resistance and durability It is possible to produce a hollow fiber membrane which can be usefully used in water purification and wastewater treatment.

여기서 상기 방사단계(S200)는 제1저장탱크(10) 내부에서 혼합된 방사용액이 제2저장탱크(20)로 투입되는 과정에서 필터장치를 이용하여 용해되지 않은 방사용액의 고분자 또는 이물질을 걸러주어 다시 제1저장탱크(10)로 투입시키는 것이 바람직하다.In the spinning step S200, the spinning liquid mixed in the first storage tank 10 is filtered into the second spinning tank 20 by filtering the undissolved spinning liquid by using a filter device It is preferable to feed the water into the first storage tank 10 again.

예컨데 상기 방사단계(S200)에서 필터장치를 이용하여 용해되지 않은 방사용액의 고분자 또는 이물질을 걸러주는 것은, 제1저장탱크(10)와 제2저장탱크(20) 사이에 제1저장탱크(10)의 방사용액을 제2저장탱크(20)로 투입시키는 배관이 구비시키고 상기 배관 내부에 필터장치를 구비시키는 것이 바람직하다.For example, in the spinning step (S200), filtering the undissolved spinning liquid polymer or foreign matter using a filter device may be performed in the first storage tank 10 (10) between the first storage tank 10 and the second storage tank 20 Is supplied to the second storage tank 20, and a filter device is provided in the pipe.

또한 걸러낸 방사용액의 고분자 또는 이물질을 다시 제1저장탱크(10)로 투입시키는 것은 필터장치와 제1저장탱크(10) 간에 리턴배관을 형성하여 자연낙하 형태로 방사용액의 고분자 또는 이물질을 제1저장탱크(10)에 투입되는 것이 바람직하다.In addition, the polymer or foreign substance of the filtrate used for filtration is returned to the first storage tank 10 by forming a return pipe between the filter device and the first storage tank 10 to form a polymer or foreign substance 1 storage tank 10, as shown in Fig.

한편, 상기 방사단계(S200)는 제2저장탱크(20)에 저장된 첨가제가 혼합된 방사용액에 탈포공정이 수행된 후 탈포공정이 이루어진 방사용액이 2중관형노즐(50)을 통하여 방사되도록 한다.Meanwhile, in the spinning step (S200), the spinning solution mixed with the additive stored in the second storage tank 20 is defoamed, and the spinning solution having the defoaming process is radiated through the double-pipe nozzle 50 .

이는 탈포 공정을 통한 방사용액의 기포가 제거되지 않을 경우 응고단계(S300), 안정화단계(S400), 권취단계(S500)가 순차적으로 수행되어 제조된 중공사막이 균일한 중공사 형태의 유지가 어려워지는 현상을 방지하기 위함이다.This is because when the bubble in the spinning solution is not removed through the defoaming process, the coagulation step (S300), the stabilization step (S400) and the winding step (S500) are sequentially performed so that the produced hollow fiber membrane is difficult to maintain a uniform hollow fiber shape This is to prevent the phenomenon of losing.

그리고 상기 응고단계(S300)는 방사용액과 내부응고액이 방사되는 2중관형노즐(50)의 하측 단부와 응고조(50)에 담수된 응고액의 최상단의 이격길이가 6.5 ~ 8.5㎝로 유지되도록 한다.In the solidifying step S300, the lower end of the double pipe type nozzle 50 through which the spinning solution and the internal coagulating solution are radiated and the uppermost end of the coagulating solution freshly flocculated in the coagulation bath 50 are maintained at 6.5 to 8.5 cm .

이는 2중관형노즐(50)에 높이조절수단을 구비시켜 2중관형노즐(50)의 하측 단부와 응고조(50)에 담수된 응고액의 최상단의 이격길이를 조절되도록 하며, 높이조절수단은 공지의 유, 공압실린더와 작용, 반작용에 의한 스크류를 통해 이루어질 수 있도록 한다.This is because the height adjustment means is provided in the double pipe type nozzle 50 to adjust the distance between the lower end of the double pipe type nozzle 50 and the top end of the coagulation liquid dipped in the coagulation bath 50, It is made possible to work with known oil, pneumatic cylinder and screw by reaction and reaction.

또한 중 관형 노즐의 하측 단부와 응고조(50)에 담수된 응고액의 최상단의 이격길이가 6.5 ~ 8.5㎝로 유지하는 것은 상기의 범위에서 방사물의 끊김이 발생되지 않으면서도 방사물의 응고를 위한 공기와의 접촉시간이 담보되기 때문이다.Also, keeping the lower end of the tubular nozzle and the uppermost distance of the top of the coagulation solution desiccated in the coagulation bath (50) at 6.5 to 8.5 cm is effective in preventing the coagulation of the radiation This is because the contact time with the air is ensured.

여기서 고강도로 유지되는 중공사막을 제조하기 위해 폴리불화비닐리덴의 중량 평균분자량을 300,000 ~ 600,000의 범위인 것을 사용한다.The polyvinylidene fluoride having a weight average molecular weight in the range of 300,000 to 600,000 is used for producing a hollow fiber membrane maintained at high strength.

이는 상기의 분자량 범위 내에 폴리불화비닐리덴을 사용하여야만 중공사막의 고강도를 유지할 수 있으면서도 성형온도 또한 적당한 온도로 요구되어 대량생산이 편리해지기 때문이다.This is because polyvinylidene fluoride should be used within the above-mentioned molecular weight range so that the high strength of the hollow fiber membrane can be maintained, and the molding temperature is also required to be a suitable temperature, thereby facilitating mass production.

상기 폴리불화비닐리덴의 중량 평균분자량이 100,000 ~ 300,000 미만의 범위와 300 ,000 ~ 600,000의 범위인 것을 각각 대비하여 용매 및 첨가물의 범위 또한 다양하게 함유되어 이루어져 제조된 중공사막에 대한 기공막의 형태 및 인장강도를 비교한 데이터를 아래[표 1]에서 나타내었다.The polyvinylidene fluoride has a weight average molecular weight in the range of 100,000 to less than 300,000 and a range of 300,000 to 600,000, and the range of the solvent and the additive is also variously contained. The data obtained by comparing the tensile strengths are shown in Table 1 below.

중공사막 제조용 방사용액Spray solution for hollow fiber manufacturing
sample

sample
폴리불화비닐리덴
(molecular weight)
Polyvinylidene fluoride
(molecular weight)
폴리불화비닐리덴
(wt%)
Polyvinylidene fluoride
(wt%)
첨가제additive 용매menstruum
Result

Result
폴리에틸렌글리콜
(wt%)
Polyethylene glycol
(wt%)
디메틸아세트아미드
(wt%)
Dimethylacetamide
(wt%)
1One

100,000 ~ 300,000 미만


100,000 ~ 300,000
1818 1616



58 ~ 66




58 ~ 66


기공막 형성 O
인장강도 55 ~101.8kgf/cm2


Porous film formation O
Tensile Strength 55 to 101.8 kgf / cm 2
22 2020 1616 33 2222 1616 44 2424 1616 55 2626 1616 66 2828 1616 77
300,000 ~ 600,000

300,000 ~ 600,000
22 ~ 3022 ~ 30 1616 Spinning불가
No Spinning
88 22 ~ 3022 ~ 30 1414 99 22 ~ 3022 ~ 30 10 ~ 1210-12 기공막 형성 O
인장강도 110. 2kgf/cm2
Porous film formation O
Tensile strength 110. 2 kgf / cm 2

상기 [표 1]에서 나타난 바와 같이 폴리불화비닐리덴의 중량 평균분자량이 100,000 ~ 300,000 미만의 범위일 때에는 중공사막의 기공막은 안전하게 형성되었으나 중공사막의 인장강도가 일반적인 기준치인 100kgf/cm2에 도달하지 못하는 경우가 있었다.As shown in Table 1, when the weight average molecular weight of the polyvinylidene fluoride was in the range of 100,000 to less than 300,000, the pore film of the hollow fiber membrane was safely formed, but the tensile strength of the hollow fiber membrane did not reach a general reference value of 100 kgf / cm 2 I could not.

또한 폴리불화비닐리덴의 중량 평균분자량이 300,000 ~ 600,000인 경우에도 첨가제인 폴리에틸렌글리콜의 함유량이 12중량%를 초과할 때에는 방적(Spinning)이 이루어지지 않아 중공사막의 형태로 성형되지 못하였다.In addition, even when the weight average molecular weight of the polyvinylidene fluoride is 300,000 to 600,000, when the content of polyethylene glycol as an additive exceeds 12% by weight, spinning can not be performed and molding can not be performed in the form of a hollow fiber membrane.

하지만 분자량 300,000 ~ 600,000인 폴리불화비닐리덴이 22 ~ 30중량%, 디메틸아세트아미드는 58 ~ 66중량% 폴리에틸렌글리콜은 10 ~ 12중량%로 이루어질 때 중공사막의 기공막의 형성은 물론 중공사막의 인장강도가 일반적인 기준치를 초과하는 110. 2kgf/cm2에 도달하여 고강도의 중공사막을 제조할 수 있게 되어 기계적 강도의 향상으로 파울링 제어에 효과적이면서도 우수한 역세성능 및 여과 성능을 구비하여 수질 처리 능력의 안정성을 높일 수 있는 중공사막을 제공할 수 있는 효과를 가지게 되는 것이다.However, when the polyvinylidene fluoride having a molecular weight of 300,000 to 600,000 is 22 to 30% by weight, the amount of dimethylacetamide is 58 to 66% by weight, and the content of polyethylene glycol is 10 to 12% by weight, not only the porous membrane of the hollow fiber membrane but also the tensile strength of the hollow fiber membrane Is able to produce a high strength hollow fiber membrane having a density of 110. 2 kgf / cm 2 , which exceeds the general standard value, thereby improving the mechanical strength and effective in fouling control, and having excellent backwashing performance and filtration performance, It is possible to provide a hollow fiber membrane capable of enhancing the strength of the hollow fiber membrane.

한편, 상기 준비단계(S100)에서 기공 형성제는 방사용액 중 폴리불화비닐리덴 100중량부를 기준으로 0.5 ~ 15 중량부가 혼합하는 것이 바람직하며, 이는 기공 형성제의 함유량이 0.5중량부 미만이면 기공 형성제의 효능이 미비하게 되어 기공크기가 커지지 않고 투과유량이 증가하지 않는 문제가 발생되고, 기공 형성제의 함유량이 15중량부를 초과하게 되면 중공막사의 강도가 약해지는 문제가 발생되기 때문이다.Meanwhile, in the preparation step (S100), 0.5 to 15 parts by weight of the pore-forming agent is preferably mixed with 100 parts by weight of polyvinylidene fluoride in the spinning solution. If the content of the pore-forming agent is less than 0.5 part by weight, There is a problem that the pore size is not increased and the permeation flow rate is not increased. When the content of the pore-forming agent is more than 15 parts by weight, the strength of the hollow bar yarn becomes weak.

또한 상기 기공성장 억제제는 방사용액 중 폴리불화비닐리덴 100중량부를 기준으로 0.5 ~ 15 중량부가 혼합하는 것이 바람직하다.The pore growth inhibitor is preferably used in an amount of 0.5 to 15 parts by weight based on 100 parts by weight of polyvinylidene fluoride in the spinning solution.

여기서 기공성장 억제제를 폴리불화비닐리덴 100중량부를 기준으로 0.5 ~ 15 중량부로 한정하는 것은 기공 형성제와 동일하게 한정된 범위로 한정하여 기공 형성제와 기공성장 억제제를 함께 사용함으로서 용매와 상호작용을 통하여 중공사막의 기공율을 높이고 표면 스킨층의 기공크기를 미세하게 하는 중공사막을 제공하는 효과를 가지게 되는 것이다.Herein, the pore growth inhibitor is limited to 0.5 to 15 parts by weight based on 100 parts by weight of polyvinylidene fluoride, and is limited to the same limited range as that of the pore-forming agent. By using the pore-forming agent together with the pore- It is possible to provide a hollow fiber membrane that increases the porosity of the hollow fiber membrane and makes the pore size of the surface skin layer fine.

한편, 상기에서 언급된 제조방법에 의해 제조되는 중공사막은 기공율 70% ~ 95%를 갖도록 하며, 표면 스킨층의 기공크기가 0.01 ~ 0.05 ㎛로 유지되도록 제조된다. 따라서 본 발명에 따른 안정적인 수처리공정이 가능하게 됨으로써 수처리 생산비용 및 유지비용을 절감할 수 있고, 날로 엄격해지고 있는 고도정수처리, 용수처리공정을 포함한 차세대 고효율 분리공정산업에 유용하게 활용되는 효과를 가지게 되는 것이다.Meanwhile, the hollow fiber membrane produced by the above-mentioned manufacturing method has a porosity of 70% to 95% and is manufactured such that the pore size of the surface skin layer is maintained at 0.01 to 0.05 탆. Therefore, the stable water treatment process according to the present invention can be performed, thereby reducing water treatment production cost and maintenance cost, and has an effect of being usefully utilized in the next generation high efficiency separation process industry including advanced water treatment process and water treatment process .

S100 : 준비단계 S200 : 방사단계
S300 : 응고단계 S400 : 안정화단계
S500 : 권취단계
10 : 제1저장탱크 20 : 제2저장탱크
30 : 제3저장탱크 40 : 2중관형노즐
50 : 응고조 60 : 안정조
70 : 권취조
S100: preparation step S200: radiation step
S300: solidification step S400: stabilization step
S500: winding step
10: first storage tank 20: second storage tank
30: Third storage tank 40: Two-pipe nozzle
50: Coagulation tank 60: Stable tank
70: winding

Claims (9)

폴리불화비닐리덴(PVDF, Polyvinylidenefluoride), 용매인 디메틸아세트아미드(DMAC), 염화리튬(LiCl)인 기공 형성제, 기공성장 억제제인 염화아연(Zinc Chloride)으로 이루어지는 방사용액을 제1저장탱크(10)에서 투입하고, 첨가제인 폴리에틸렌글리콜(PEG, Poly ethylene glycol)을 제2저장탱크(20)에 투입하고, 내부응고액인 디메틸아세트아미드(DMAC) 또는 물을 제3저장탱크(30)에 저장하는 준비단계(S100);
상기 제1저장탱크(10) 내부에 저장된 방사용액을 75 ~ 80℃의 온도로 유지시킨 후 교반기에 의해 교반시켜 혼합된 방사용액을 제2저장탱크(20)로 투입하여 제2저장탱크(20)에 저장된 첨가제와 혼합된 후 혼합된 방사용액과 제3저장탱크(30)에 저장된 내부응고제를 2중관형노즐(50)을 통하여 방사용액과 내부응고액을 방사하는 방사단계(S200);
상기 2중관형노즐(50)의 하부에 75 ~ 80℃로 유지되는 응고액이 담수되는 응고조(50)를 구비한 후 방사단계(S200)를 통해 방사된 방사물에 다수의 롤러를 통해 응고액이 담수된 응고액이 침지되도록 안내되어 막이 형성되도록 응고시키는 응고단계(S300);
상기 응고단계(S300)를 거친 방사물을 다수의 롤러를 통해 55 ~ 65℃로 유지되는 물이 담수되어 있는 안정조(60)에 침지, 배출을 반복하도록 안내되어 안정조(60)에 담수된 물에 의해 그 형태를 안정화시키는 안정화단계(S400);
상기 안정화단계(S400)를 거친 방사물을 다수의 롤러를 통해 45 ~ 55℃로 유지되는 물이 담수되어 있는 권취조(70) 내부에서 권취되어 권취된 상태를 23 ~ 25시간 동안 유지시켜 방사단계(S200)에서 잔존하는 용매의 배출이 이루어지는 권취단계(S500);
가 포함되어 이루어짐을 특징으로 하는 중공사막의 제조방법.
A spinning solution composed of polyvinylidene fluoride (PVDF), dimethylacetamide (DMAC) as a solvent, a pore forming agent as a lithium chloride (LiCl) and zinc chloride as a pore growth inhibitor is supplied to the first storage tank 10 , And polyethylene glycol (PEG) as an additive is put into a second storage tank 20 and dimethyl acetamide (DMAC) or water as an internal coagulating solution is stored in a third storage tank 30 (S100);
The spinning solution stored in the first storage tank 10 is maintained at a temperature of 75 to 80 캜 and stirred by a stirrer to transfer the mixed spinning solution into the second storage tank 20, A spinning step S200 of mixing the spinning solution mixed with the additive stored in the third storage tank 30 and the spinning solution and the internal coagulating solution through the double pipe type nozzle 50;
The coagulation tank 50 is provided with a coagulation tank 50 in which a coagulation liquid is maintained at a temperature of 75 to 80 ° C. in the lower part of the double pipe type nozzle 50, A solidifying step (S300) of solidifying the solidified liquid so that the solidified liquid is desiccated so as to form a film;
The radiation having passed through the solidifying step S300 is guided to repeatedly immerse and discharge the radiation through the plurality of rollers into the stabilizer tank 60 in which the water maintained at 55 to 65 ° C is drained, A stabilization step (S400) for stabilizing the shape by water;
The radiation after the stabilization step (S400) is wound around a winding drum (70) in which water maintained at 45 to 55 ° C is drained through a plurality of rollers, and the wound state is maintained for 23 to 25 hours, A winding step S500 of discharging the solvent remaining in step S200;
Wherein the hollow fiber membranes are formed by a method comprising the steps of:
제1항에 있어서,
상기 방사단계(S200)는 제1저장탱크(10) 내부에서 혼합된 방사용액이 제2저장탱크(20)로 투입되는 과정에서 필터장치를 이용하여 용해되지 않은 방사용액의 고분자 또는 이물질을 걸러주어 다시 제1저장탱크(10)로 투입시키는 것을 특징으로 하는 중공사막의 제조방법.
The method according to claim 1,
In the spinning step S200, the spinning solution mixed in the first storage tank 10 is filtered through the filtering device to remove the polymer or foreign matter in the spinning solution that has not been dissolved And then introduced into the first storage tank (10).
제1항에 있어서,
상기 방사단계(S200)는 제2저장탱크(20)에 저장된 첨가제가 혼합된 방사용액에 탈포공정이 수행된 후 탈포공정이 이루어진 방사용액이 2중관형노즐(50)을 통하여 방사됨을 특징으로 하는 중공사막의 제조방법.
The method according to claim 1,
In the spinning step (S200), the spinning liquid mixed with the additive stored in the second storage tank (20) is defoamed and the defoaming liquid is radiated through the double-tube nozzle (50) (Method for producing hollow fiber membrane).
제1항에 있어서,
상기 응고단계(S300)는 방사용액과 내부응고액이 방사되는 2중관형노즐(50)의 하측 단부와 응고조(50)에 담수된 응고액의 최상단의 이격길이가 6.5 ~ 8.5㎝로 유지되도록 함을 특징으로 하는 중공사막의 제조방법.
The method according to claim 1,
The solidifying step S300 is performed such that the lower end of the double pipe type nozzle 50 through which the spinning solution and the internal coagulating solution are radiated and the uppermost end of the coagulation solution floated in the coagulation bath 50 are maintained at 6.5 to 8.5 cm Wherein the hollow fiber membrane is formed of a hollow fiber membrane.
제1항에 있어서,
상기 준비단계(S100)에서 폴리불화비닐리덴(PVDF, Polyvinylidenefluoride)은 중량 평균분자량이 300,000 ~ 600,000인 것을 사용하는 것을 특징으로 하는 중공사막의 제조방법.
The method according to claim 1,
Wherein the polyvinylidene fluoride (PVDF) having a weight average molecular weight of 300,000 to 600,000 is used in the preparation step (S100).
제5항에 있어서,
상기 제1, 2저장탱크(10, 20)를 거쳐 2중관형노즐(50)에 투입되는 방사용액은 폴리불화비닐리덴(PVDF, Polyvinylidenefluoride) 22 ~ 30중량%, 용매인 디메틸아세트아미드(DMAC) 58 ~ 66중량%, 첨가제인 폴리에틸렌글리콜(PEG, Poly ethylene glycol) 10 ~ 12중량%로 이루어짐을 특징으로 하는 중공사막의 제조방법.
6. The method of claim 5,
The spinning liquid to be injected into the double pipe type nozzle 50 through the first and second storage tanks 10 and 20 is 22 to 30 wt% of polyvinylidene fluoride (PVDF), dimethylacetamide (DMAC) 58 to 66% by weight of a polypropylene glycol, and 10 to 12% by weight of polyethylene glycol (PEG) as an additive.
제1항에 있어서,
상기 준비단계(S100)에서 폴리불화비닐리덴(PVDF, Polyvinylidenefluoride) 100중량부를 기준으로 기공 형성제인 염화리튬(LiCl) 0.5 ~ 15 중량부가 혼합됨을 특징으로 하는 중공사막의 제조방법.
The method according to claim 1,
Wherein 0.5 to 15 parts by weight of lithium chloride (LiCl) as a pore forming agent is mixed with 100 parts by weight of polyvinylidene fluoride (PVDF) in the preparation step (S100).
제1항에 있어서,
상기 준비단계(S100)에서 폴리불화비닐리덴(PVDF, Polyvinylidenefluoride) 100중량부를 기준으로 기공성장 억제제인 염화아연(Zinc Chloride) 0.5 ~ 15 중량부가 혼합됨을 특징으로 하는 중공사막의 제조방법.
The method according to claim 1,
Wherein 0.5 to 15 parts by weight of zinc chloride (Zinc Chloride) as a pore growth inhibitor is mixed with 100 parts by weight of polyvinylidene fluoride (PVDF) in the preparing step (S100).
상기 제1항 내지 제8항 중 어느 한 항으로 이루어지는 중공사막의 제조방법을 이용하여 표면 스킨층의 기공크기가 0.01 ~ 0.05㎛이고, 기공율이 70% ~ 95%로 이루어짐을 특징으로 하는 중공사막.The hollow fiber membrane according to any one of claims 1 to 8, wherein the surface skin layer has a pore size of 0.01 to 0.05 탆 and a porosity of 70% to 95% .
KR1020130115800A 2013-09-30 2013-09-30 Method for manufacturing hollw fiber membrane and hollow fiber membrane using same KR101536585B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130115800A KR101536585B1 (en) 2013-09-30 2013-09-30 Method for manufacturing hollw fiber membrane and hollow fiber membrane using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130115800A KR101536585B1 (en) 2013-09-30 2013-09-30 Method for manufacturing hollw fiber membrane and hollow fiber membrane using same

Publications (2)

Publication Number Publication Date
KR20150036852A true KR20150036852A (en) 2015-04-08
KR101536585B1 KR101536585B1 (en) 2015-07-22

Family

ID=53032941

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130115800A KR101536585B1 (en) 2013-09-30 2013-09-30 Method for manufacturing hollw fiber membrane and hollow fiber membrane using same

Country Status (1)

Country Link
KR (1) KR101536585B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107486039A (en) * 2017-08-02 2017-12-19 同济大学 It is a kind of suitable for modification NF membrane of industrial effluent reusing and its preparation method and application
CN109289545A (en) * 2018-10-18 2019-02-01 浙江工业大学 A kind of preparation method of polyvinylidene fluoride hollow fiber microporous membrane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712419B2 (en) * 1986-05-30 1995-02-15 エヌオーケー株式会社 Production method of polyvinylidene fluoride porous hollow fiber membrane
KR20130040625A (en) * 2011-10-14 2013-04-24 에치투엘 주식회사 Polyvinylidenefluoride hollow fiber membrane with secondary barrier for water treatment and preparation thereof

Also Published As

Publication number Publication date
KR101536585B1 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
EP1166859B1 (en) Porous hollow fiber membranes and method of making the same
WO2016115908A1 (en) Polyvinylidene fluoride hollow fibre membrane of in-situ pore-forming agent and preparation method therefor
KR20110033729A (en) Fluorinated hollow fiber membrane and method for preparing the same
KR101026690B1 (en) Highly porous membrane using that and preparing method thereof
US11338253B2 (en) Porous hollow fiber membrane, method for producing same, and water purification method
KR101738976B1 (en) polyvinylidene fluoride hollow fiber membrane and manufacturing method thereof
KR20160090535A (en) Dual-layer ultrafiltration hollow fiber membrane and manufacturing method thereof
KR101536585B1 (en) Method for manufacturing hollw fiber membrane and hollow fiber membrane using same
KR101939328B1 (en) Hollow Fiber Membrane Having Novel Structure and Method of Preparing the Same
KR100750289B1 (en) Preparation method of fouling-resistant multi-channel hollow fiber membrane
CN110871037A (en) Hollow fiber separation membrane and preparation method thereof
KR20150036857A (en) Hollow fiber membrane composition and hollow fiber membrane using same
KR101432516B1 (en) Membrane bio-reactor for improving the water treatment efficiency
KR101134348B1 (en) Hydrophilic pvdf membrane and manufacturing method thereof
KR101335948B1 (en) Manufacturing method of separation membrane for water treatment and separation membrane for water treatment thereby
KR20130047226A (en) Pvdf membrane for water treatment improving membrane properties and manufacturing method thereof
KR101105204B1 (en) Manufacturing method of high strength hollow fiber membrane and high strength hollow fiber membrane thereby
JP6649779B2 (en) Hollow fiber type semipermeable membrane and method for producing the same
KR20160041646A (en) Preparation Method of Hollow Fiber Membrane and Manufacturing System Thereof
KR101401867B1 (en) Manufacturing method of fluorinated porous hollow fiber membrane
KR20120007277A (en) Hollow fiber membrane of poly(ethylenechlorotrifluoroethylene) with enhanced water permeability and manufacturing method thereof
KR101414193B1 (en) Manufacturing method of ECTFE hollow fiber membrane
KR20130040623A (en) The preparation method of hollow fiber membrane with high permeation using hydrophilic polyvinylidenefluoride composites for water treatment
KR101572732B1 (en) Manufacturing method for aftertreatment of hollow fiber membrane capable of dry keeping and using thereof
KR20130078824A (en) Hollow fiber membrane having high water permeability for water treatment and manufacturing method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee