KR20140117155A - High Flexible and Transparent Electrode based Oxide - Google Patents

High Flexible and Transparent Electrode based Oxide Download PDF

Info

Publication number
KR20140117155A
KR20140117155A KR1020130032237A KR20130032237A KR20140117155A KR 20140117155 A KR20140117155 A KR 20140117155A KR 1020130032237 A KR1020130032237 A KR 1020130032237A KR 20130032237 A KR20130032237 A KR 20130032237A KR 20140117155 A KR20140117155 A KR 20140117155A
Authority
KR
South Korea
Prior art keywords
transparent electrode
zito
substrate
highly flexible
ito
Prior art date
Application number
KR1020130032237A
Other languages
Korean (ko)
Other versions
KR101449258B1 (en
Inventor
김경국
최현준
김택균
유호돌
장웅
이병길
김환삼
Original Assignee
한국산업기술대학교산학협력단
(주) 누리베큠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국산업기술대학교산학협력단, (주) 누리베큠 filed Critical 한국산업기술대학교산학협력단
Priority to KR1020130032237A priority Critical patent/KR101449258B1/en
Publication of KR20140117155A publication Critical patent/KR20140117155A/en
Application granted granted Critical
Publication of KR101449258B1 publication Critical patent/KR101449258B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

An oxide based highly flexible transparent electrode according to the present invention has a highly flexible characteristic which can be applied to a highly flexible display device, which is a next generation display, and concurrently has excellent electrical and optical characteristics. The transparent electrode is manufactured by a first step of preparing a flexible substrate made of glass or polymer; a second step of fixating the substrate at a rotator arranged within a chamber to be rotatable, generating a vacuum by a high vacuum pump, a low vacuum pump and a vacuum pump, and adjusting the density of plasma and adjusting an indium content in overall thickness and materials of a ZITO:Ga or ZITO:Al thin film to form (deposit) the ZITO:Ga or ZITO:Al thin film by applying RF power to each of a first sputter gun equipped with a ZnO target doped with group 3 elements (Ga, Al) and a second sputter gun equipped with an ITO target; and a third step of performing heat treatment for the substrate that has passed the second step, at 200-300°C for 50-70 seconds. The present invention provides the oxide based highly flexible transparent electrode by optimizing process conditions when manufacturing a multi-component metal oxide based transparent electrode made of ZnO-ITO doped with the 3 group elements, to have excellent electrical characteristics and high light transmittance as well as high flexibility and to reduce usage of indium which is a main material of the ITO and a rare earth metal.

Description

산화물 기반의 고 유연성 투명전극{High Flexible and Transparent Electrode based Oxide}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to an oxide-based highly flexible transparent electrode,

본 발명은 차세대 디스플레이인 고 유연 디스플레이 소자에 적용할 수 있는 고유연의 특성을 갖으며 동시에 전기적, 광학적 특성이 뛰어난 투명 전극에 관한 것으로, 더욱 상세하게는 다성분 금속 산화물계 투명전극의 제조 시 공정 조건 등을 최적화시킴으로써, 고 유연성을 가지는 것은 물론이고 우수한 전기적 특성과 높은 광투과율을 가지는 산화물 기반의 고 유연성 투명전극에 관한 것이다.The present invention relates to a transparent electrode having inherent softness characteristics that can be applied to a high-flexible display device, which is a next-generation display, and has excellent electrical and optical characteristics. More particularly, And the like, to an oxide-based, highly flexible transparent electrode having high electrical properties and high light transmittance as well as having high flexibility.

투명 전극은 빛을 통과시키면서 높은 전도성을 가지는 고유한 특성으로 인해, LED나 태양전지뿐만 아니라 디스플레이 및 터치 패널 분야에서 필수적이고 중요한 요소이다. 일반적으로, 투명 전극으로서는 산화인듐, 산화주석 또는 산화아연 등의 산화물을 기판상에 박막을 형성하도록 만든 것이다. 그 중에서 디스플레이 분야 등에 가장 많이 사용되는 것은 산화인듐에 산화주석을 첨가한 ITO(Indium-Tin Oxide)가 주류이다. 이는 ITO가 높은 전도성과 높은 가시광 영역에서의 투과율인 것 외에 화학적 안정성, 기판에의 부착성 등이 양호하기 때문이다. ITO의 주원료는 희토류 금속인 인듐(In)으로써 세계적으로 매장량이 적어 현재와 같은 추세로 광전자 소자나 디스플레이 소재로써의 사용량이 증가될 경우 In의 급격한 고갈이 예상되고 있으며, 이에 따른 수급의 불안정성 요인이 내재하고 있어 ITO를 대체할 수 있는 재료에 관한 연구가 활발히 진행되어 왔다. ITO는 투명전도성 박막으로 우수한 투과율을 갖으며 전기전도도 역시 매우 높다 그러나 이러한 특징을 유지하기 위해서는 300℃ 정도의 고온에서 증착해야하는 한다. 이는 In이온과 Sn이온이 치환되어야만 우수한 전기적 특성을 갖는 물질 특징 때문에 피할 수 없는 증착 조건이다. 만약 저온에서 성장된다면 이온의 치환이 원활하게 이루어지지 않아 고전도도의 ITO 투명 전극의 특성은 확보하기 어렵다. 또한, ITO는 결정성을 바탕으로 높은 전자 이동도를 가지는 소재이다. 따라서 고온 성장을 통해서 우수한 결정성을 확보하는 것은 ITO의 전기전도도를 높이는 매우 중요한 조건이다. 그러나, 유연 소자는 유연기판을 이용하기 때문에 저온 성장이 필수적이다. 따라서, ITO를 저온에서 성장한다면 결정성이 떨어지고 이온 치환이 어려워 고전도도의 ITO 투명전도성 박막의 제작은 매우 어렵다. 특히 결정성을 가지는 특징 때문에 유연 특성을 갖는 기기에서 소자 구동 시 크랙(crack)이 발생하는 근본적인 문제점이 있다.Transparent electrodes are an essential and important element in the display and touch panel fields as well as LEDs and solar cells due to inherent characteristics of high conductivity while passing light. In general, as the transparent electrode, an oxide such as indium oxide, tin oxide, or zinc oxide is formed to form a thin film on a substrate. Among them, ITO (Indium-Tin Oxide), in which indium oxide is added to tin oxide, is mainly used in display fields and the like. This is because ITO has high conductivity and transmittance in a high visible light region, chemical stability, adhesion to a substrate, and the like. Indium (In), which is a rare earth metal, is a main raw material of ITO. If the amount of ITO used as optoelectronic device or display material is increased due to the small amount of world-wide reserves, the In is expected to be abruptly depleted. Research on materials that can replace ITO has been actively conducted. ITO is a transparent conductive thin film with excellent transmittance and electrical conductivity. However, in order to maintain this characteristic, it is necessary to deposit at a high temperature of about 300 ° C. This is an inevitable deposition condition due to the characteristics of materials having excellent electrical characteristics only when the In and Sn ions are substituted. If it grows at low temperature, the substitution of ions is not smooth and it is difficult to secure the characteristics of ITO transparent electrode of high conductivity. In addition, ITO is a material having high electron mobility based on crystallinity. Therefore, securing excellent crystallinity through high temperature growth is a very important condition for increasing the electrical conductivity of ITO. However, since the flexible device uses a flexible substrate, low-temperature growth is essential. Therefore, when ITO is grown at a low temperature, it is difficult to produce ITO transparent conductive thin film of high conductivity because crystallinity is low and ion substitution is difficult. Particularly, there is a fundamental problem in that cracking occurs when the device is driven in a device having a flexible characteristic because of its crystallinity.

대한민국 등록특허공보 제10-2007-0109705호(1007.10.30)Korean Patent Registration No. 10-2007-0109705 (Oct.

상술한 바와 같은 문제점을 해결하기 위하여, 본 발명에서는 고 유연성을 가지는 것은 물론이고 우수한 전기적 특성과 높은 광투과율을 가지며 ITO의 주된 물질이자 희토류 금속인 인듐의 사용량을 감소시킬 수 있도록 3족 원소가 도핑된 ZnO-ITO의 다성분계 금속산화물계 투명 전극으로 다성분 금속 산화물계 투명전극의 제조 시 공정 조건 등을 최적화시킴으로써,산화물 기반의 고 유연성 투명전극을 제공하는데 목적이 있다.In order to solve the above-mentioned problems, the present invention has a high flexibility and has excellent electrical characteristics and a high light transmittance. In order to reduce the amount of indium, which is a main material of ITO and a rare earth metal, Type transparent metal oxide based transparent electrode made of ZnO-ITO by optimizing process conditions and the like in the production of a multi-component metal oxide based transparent electrode.

목적을 달성하기 위한 과정은 다음과 같다. 유리 또는 폴리머 소재의 유연한 기판을 준비하는 제 1단계와 상기의 기판을 챔버내에 구비된 로테이터에 회전가능토록 고정한 후 고진공 펌프와 저진공 펌프 및 진공 벨브에 의하여 진공을 발생시키고, 3족 원소(Ga, Al)가 도핑된 ZnO 타겟(target)을 장착한 제 1스퍼터건과 ITO 타겟을 장착한 제 2스퍼터건에 각각 RF파워를 가함으로써 플라즈마 밀도를 조절하여 ZITO:Ga 또는 ZITO:Al 박막의 전체적인 두께와 물질에서 In(인듐)이 차지하는 함량을 조절하여 ZITO:Ga 또는 ZITO:Al의 박막을 형성(증착)하는 제 2단계 및 상기의 제 2단계를 완료한 기판을 200℃~300℃에서 50초~70초 동안 열처리하는 제 3단계로 제작되는 것을 특징으로 하는 산화물 기반의 고 유연성 투명전극이다.The process for achieving the objective is as follows. The method includes the steps of: preparing a flexible substrate made of glass or polymer; fixing the substrate to be rotatable on a rotator provided in the chamber; generating a vacuum by a high vacuum pump, a low vacuum pump and a vacuum valve; , Al) is applied to a first sputter gun having a ZnO target doped with ITO and a second sputter gun having an ITO target, respectively, to adjust the plasma density so as to form a ZITO: Ga or ZITO: Al thin film as a whole A second step of forming (depositing) a thin film of ZITO: Ga or ZITO: Al by adjusting the thickness and the content of In (indium) in the material, and a second step of forming the thin film of ZITO: Ga or ZITO: And a third step of performing heat treatment for a second time period of 60 seconds to 70 seconds.

본 발명의 다른 특징으로는 상기의 제 1단계에서 폴리머 소재의 유연한 기판은 폴리이미드(PI), 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리에틸렌나프탈레이트(PEN) 및 폴리에테프술폰(PES) 중 하나 이상을 포함하는 수지로부터 제조된 필름이며 상기의 ZnO 타겟(target)은 Ga2O3(산화갈륨) 5 중량%, ZnO(산화아연) 95중량% 또는 Al2O3(산화알루미늄) 2 중량%, ZnO(산화아연) 98중량%로 이루어진다. According to another aspect of the present invention, in the first step, the flexible substrate of the polymer material includes at least one selected from the group consisting of polyimide (PI), polyethylene terephthalate (PET), polycarbonate (PC), polyethylene naphthalate (PEN) PES). The ZnO target is a film made of a resin containing 5% by weight of Ga 2 O 3 (gallium oxide), 95% by weight of ZnO (zinc oxide) or Al 2 O 3 ) 2% by weight, and ZnO (zinc oxide) 98% by weight.

본 발명의 또 다른 특징으로는 상기의 제 2단계에서 기판의 온도는 상온, 초기 진공도는 2*10-6Torr 이하로 유지하고 로테이터는 3~5RPM로 회전하며 작업 압력은 3mTorr로 스퍼터건에 RF파워를 50~100W로 입력하고, 10~20분의 증착 시간을 갖는다.According to another aspect of the present invention, in the second step, the temperature of the substrate is maintained at room temperature, the initial degree of vacuum is 2 * 10 -6 Torr or less, the rotator is rotated at 3-5 RPM, the working pressure is 3 mTorr, The power is input at 50 to 100 W, and the deposition time is 10 to 20 minutes.

상기한 바와 같이, 본 발명은 고 유연성을 가지는 것은 물론이고 우수한 전기적 특성과 높은 광투과율을 가지며 ITO의 주된 물질이자 희토류 금속인 인듐의 사용량을 감소시킬 수 있도록 3족 원소가 도핑된 ZnO-ITO의 다성분계 금속산화물계 투명 전극으로 다성분 금속 산화물계 투명전극의 제조 시 공정 조건 등을 최적화시킴으로써 산화물 기반의 고 유연성 투명전극을 제공하는 효과가 있다.As described above, the present invention relates to a ZnO-ITO-doped Group III element doped ZnO-ITO having high electrical properties and high light transmittance as well as being highly flexible and capable of reducing the amount of indium used as a main material of ITO and rare earth metal There is an effect of providing an oxide-based highly flexible transparent electrode by optimizing processing conditions and the like in the production of a multi-component metal oxide based transparent electrode with a multi-component metal oxide based transparent electrode.

도 1은 본 발명에 따른 산화물 기반의 고 유연성 투명전극을 제작하기 위한 Sputtering System(진공 증착기)의 구성도.
도 2는 본 발명에 따른 산화물 기반의 고 유연성 투명전극인 ZITO:Ga와 ZITO:Al의 열처리 온도에 따른 특성 그래프.
1 is a schematic view of a sputtering system (vacuum evaporator) for manufacturing an oxide-based highly flexible transparent electrode according to the present invention.
FIG. 2 is a graph of characteristics of ZITO: Ga and ZITO: Al, which are oxide-based highly flexible transparent electrodes according to the present invention, according to a heat treatment temperature.

도 1은 본 발명에 따른 Sputtering System(진공 증착기)의 구성도이다. 이를 참조하여 본 발명의 구성요소를 설명하면 다음과 같다. 고 유연성 투명전극에 있어서, 유리 또는 폴리머 소재의 유연한 기판(10)을 준비하는 제 1단계(S10);와 상기의 기판(10)을 챔버(20)내에 구비된 로테이터(21)에 회전가능토록 고정한 후 고진공 펌프(22)와 저진공 펌프(23) 및 진공 벨브(24)에 의하여 진공을 발생시키고, 3족 원소(Ga, Al)가 도핑된 ZnO 타겟(target)(25)을 장착한 제 1스퍼터건(26)과 ITO 타겟(27)을 장착한 제 2스퍼터건(28)에 각각 RF파워를 가함으로써 플라즈마 밀도를 조절하여 ZITO:Ga 또는 ZITO:Al 박막의 전체적인 두께와 물질에서 In(인듐)이 차지하는 함량을 조절하여 ZITO:Ga 또는 ZITO:Al의 박막을 형성(증착)하는 제 2단계(S20); 및 상기의 제 2단계(S20)를 완료한 기판(10)을 200℃~300℃에서 50초~70초 동안 열처리하는 제 3단계(S30); 로 제작되는 것을 특징으로 하는 산화물 기반의 고 유연성 투명전극이다. 여기서 ZITO:Ga와 ZITO:Al은 각각 Ga(갈륨)과 Al(알루미늄)을 기반으로 한 Zinc Indium-Tin Oxide로서, 당 업계에서 상용된다. 또한, 제 2단계(S20)의 진공 증착 시스템은 상용화된 것으로 세부적인 작동 방법은 생략한다. 그리고, 상기의 제 1단계(S10)에서 폴리머 소재의 유연한 기판(10)은 폴리이미드(PI), 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리에틸렌나프탈레이트(PEN) 및 폴리에테프술폰(PES) 중 하나 이상을 포함하는 수지로부터 제조된 필름이며, 상기의 ZnO 타겟(target)(25)은 Ga2O3(산화갈륨) 5 중량%, ZnO(산화아연) 95중량% 또는 Al2O3(산화알루미늄) 2 중량%, ZnO(산화아연) 98중량%로 이루어지는 것을 특징으로 한다. 또한, 상기의 제 2단계(S20)에서 기판(10)의 온도는 상온, 초기 진공도는 2*10-6Torr 이하로 유지하고 로테이터(21)는 3~5RPM로 회전하며 작업 압력은 3mTorr로 스퍼터건(26)에 RF파워를 50~100W로 입력하고, 10~20분의 증착 시간을 갖는 것을 특징으로 한다.1 is a configuration diagram of a sputtering system (vacuum evaporator) according to the present invention. The components of the present invention will now be described with reference to the drawings. A flexible transparent electrode comprising a first step (S10) of preparing a flexible substrate (10) of glass or polymer material, and a step (10) of rotating the substrate (10) on a rotator (21) A vacuum is generated by the high vacuum pump 22, the low vacuum pump 23 and the vacuum valve 24 and a vacuum is applied to the ZnO target 25, which is a ZnO target 25 doped with a Group 3 element (Ga, Al) The total thickness of the ZITO: Ga or ZITO: Al thin film is controlled by controlling the plasma density by applying RF power to the first sputter gun 26 and the second sputter gun 28 equipped with the ITO target 27, A second step (S20) of forming a thin film of ZITO: Ga or ZITO: Al by controlling the content of ZITO: indium; And a third step (S30) of heat-treating the substrate (10) completed in the second step (S20) at 200 ° C to 300 ° C for 50 seconds to 70 seconds; The transparent electrode is formed of an oxide-based, highly flexible transparent electrode. ZITO: Ga and ZITO: Al are Zinc Indium-Tin Oxide based on Ga (gallium) and Al (aluminum), respectively. In addition, the vacuum deposition system of the second step S20 is commercialized, and the detailed operation method is omitted. In the first step S10, the flexible substrate 10 made of a polymer is formed of a material such as polyimide (PI), polyethylene terephthalate (PET), polycarbonate (PC), polyethylene naphthalate (PEN) (PES), and the ZnO target 25 is a film made of a resin containing 5% by weight of Ga 2 O 3 (gallium oxide), 95% by weight of ZnO (zinc oxide) or Al 2 2% by weight of O 3 (aluminum oxide), and 98% by weight of ZnO (zinc oxide). In the second step S20, the temperature of the substrate 10 is maintained at room temperature and the initial degree of vacuum is maintained at 2 * 10 -6 Torr or less, the rotator 21 is rotated at 3 to 5 RPM, the working pressure is maintained at 3 mTorr, The RF power is input to the gun 26 at 50 to 100 W, and the deposition time is 10 to 20 minutes.

하기의 표 1은 ZITO:Ga와 ZITO:Al의 제 2단계(S20)에서 박막을 형성(증착)하기 위한 조건이다. Table 1 below shows conditions for forming (depositing) a thin film in the second step (S20) of ZITO: Ga and ZITO: Al.

ParameterParameter ZITO:Ga conditionZITO: Ga condition ZITO:Al conditionZITO: Al condition 초기 진공도
(Base pressure)
Initial vacuum degree
(Base pressure)
2*10-6Torr2 * 10 -6 Torr 2*10-6Torr2 * 10 -6 Torr
작업 압력
(Working pressure)
Working pressure
(Working pressure)

3mTorr

3mTorr

3mTorr

3mTorr
타겟
(Target)
target
(Target)
ITO (In2O3(90wt%):SnO2(10wt%))
ZnO:Ga (Ga2O3(5wt%):ZnO(95%))
ITO (In2O3 (90 wt%): SnO2 (10 wt%))
ZnO: Ga (Ga 2 O 3 (5 wt%): ZnO (95%))
ITO (In2O3(90wt%):SnO2(10wt%))
ZnO:Al (Al2O3(2wt%):ZnO(98wt%))
ITO (In2O3 (90 wt%): SnO2 (10 wt%))
ZnO: Al (Al 2 O 3 (2 wt%): ZnO (98 wt%))
공정 시간
(Deposition time)
Process time
(Deposition time)

15min

15 min

15min

15 min

상기의 제 1단계(S10)에서 제 3단계(S30)의 제작과정을 마친 산화물 기반의 고 유연성 투명전극의 비저항과 이동도, 캐리어농도, 면저항의 특성은 하기의 표 2와 같다.Table 2 shows the resistivity, mobility, carrier concentration, and sheet resistance characteristics of the oxide-based highly flexible transparent electrode after the fabrication process of the first step (S10) to the third step (S30).

물질/항목Substance / item 비저항 (Ω㎝)Resistivity (Ω cm) 이동도 (cm2/VS)Mobility (cm 2 / VS) 캐리어농도 (/cm3)Carrier concentration (/ cm 3 ) 면저항 (Ω/sq)Sheet resistance (Ω / sq) ZITO:GaZITO: Ga 6.79*10-4 6.79 * 10 -4 30.0230.02 3.06*1020 3.06 * 10 20 37.7237.72 ZITO:AlZITO: Al 8.27*10-4 8.27 * 10 -4 27.4627.46 2.75*1020 2.75 * 10 20 45.9445.94

또한, 상기의 제 1단계(S10)에서 제 3단계(S30)의 제작과정을 마친 산화물 기반의 고 유연성 투명전극의 파장에 따른 투과도를 기존의 ITO투명전극과 비교하면 하기의 표 3과 같다.The transmittance according to the wavelength of the oxide-based highly flexible transparent electrode after the fabrication process of the first step (S10) to the third step (S30) is compared with the conventional ITO transparent electrode as shown in Table 3 below.

파장(nm)Wavelength (nm) 물질matter 400400 450450 500500 550550 600600 650650 700700 750750 800800 투과도
(%)
Permeability
(%)
ITOITO 61.961.9 7474 7272 80.280.2 8686 81.481.4 77.877.8 77.877.8 79.779.7
ZITO:GaZITO: Ga 5252 8181 81.581.5 96.296.2 98.298.2 90.290.2 83.883.8 82.182.1 83.683.6 ZITO:AlZITO: Al 65.865.8 78.278.2 96.196.1 98.398.3 89.389.3 83.983.9 83.583.5 86.486.4 90.690.6

도 2는 본 발명에 따른 산화물 기반의 고 유연성 투명전극인 ZITO:Ga와 ZITO:Al의 열처리 온도에 따른 특성 그래프로서 이를 참조하면 상기의 제 3단계(S30)에서 Rapid Thermal Annealing(RTA) 열처리 적용 후 XRD(X-ray diffraction)를 이용하여 구조변화를 보면 100℃~300℃까지는 비정질 구조를 갖으나 400℃의 경우 결정질 구조를 갖는다. FIG. 2 is a characteristic graph according to a heat treatment temperature of ZITO: Ga and ZITO: Al which are oxide-based highly flexible transparent electrodes according to the present invention. Referring to FIG. 2, in the third step S30, rapid thermal annealing (RTA) After X-ray diffraction (XRD), the structure changes from amorphous to 100 ° C to 300 ° C, but has a crystalline structure at 400 ° C.

본 발명에 따른 산화물 기반의 고 유연성 투명전극은 전자소자의 투명전극이나 터치 패널 등으로 유용하게 사용될 수 있다. 예를 들어, 차세대 디스플레이인 유연 디스플레이(flexible display), 액정 디스플레이(LCD : Liquid Crystal Display), 플라즈마 디스플레이(PDP : Plasma Display Panel), 전계 방사형 디스플레이(FED : Field Emission Display), 발광 디스플레이(LED Display : Light Emitting Device Display) 등과 같은 평판 디스플레이(FPD : Flat Panel Display) 분야에서 사용될 수 있다. 또한, 디스플레이뿐만 아니라, 모바일 시스템, 유연 유기발광소자, 전자 종이 및 태양전지 등에 사용될 수 있으며, 그 적용 분야는 제한되지 않는다.The oxide-based highly flexible transparent electrode according to the present invention can be advantageously used as a transparent electrode of an electronic device, a touch panel, or the like. For example, a next-generation display such as a flexible display, a liquid crystal display (LCD), a plasma display panel (PDP), a field emission display (FED) : Light Emitting Device Display) and the like. In addition to the display, it can be used for a mobile system, a flexible organic light emitting device, an electronic paper, a solar cell, and the like, and its application field is not limited.

본 발명은 특정의 실시 예 및 적용 예와 관련하여 도시 및 설명하였지만, 첨부된 특허청구범위에 의해 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도 내에서 다양한 개조 및 변화가 가능 하다는 것을 당 업계 에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다.Although the present invention has been shown and described with respect to specific embodiments and applications thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined by the appended claims. Anyone with knowledge will know easily.

10. 기판 20. 챔버
21. 로테이터 22. 고진공 펌프
23. 저진공 펌프 24. 진공 벨브
25. ZnO 타겟 26. 제 1스퍼터건
27. ITO 타겟 27. 제 2스퍼터건
10. Substrate 20. Chamber
21. Rotator 22. High Vacuum Pump
23. Low Vacuum Pump 24. Vacuum Valve
25. ZnO target 26. First sputter gun
27. ITO target 27. Second sputter gun

Claims (4)

고 유연성 투명전극에 있어서,
유리 또는 폴리머 소재의 유연한 기판(10)을 준비하는 제 1단계(S10);와
상기의 기판(10)을 챔버(20)내에 구비된 로테이터(21)에 회전가능토록 고정한 후 고진공 펌프(22)와 저진공 펌프(23) 및 진공 벨브(24)에 의하여 진공을 발생시키고, 3족 원소(Ga, Al)가 도핑된 ZnO 타겟(target)(25)을 장착한 제 1스퍼터건(26)과 ITO 타겟(27)을 장착한 제 2스퍼터건(28)에 각각 RF파워를 가함으로써 플라즈마 밀도를 조절하여 ZITO:Ga 또는 ZITO:Al 박막의 전체적인 두께와 물질에서 In(인듐)이 차지하는 함량을 조절하여 ZITO:Ga 또는 ZITO:Al의 박막을 형성(증착)하는 제 2단계(S20); 및
상기의 제 2단계(S20)를 완료한 기판(10)을 200℃~300℃에서 50초~70초 동안 열처리하는 제 3단계(S30); 로 제작되는 것을 특징으로 하는 산화물 기반의 고 유연성 투명전극.
In a highly flexible transparent electrode,
A first step (S10) of preparing a flexible substrate 10 made of a glass or polymer material;
The substrate 10 is rotatably fixed to the rotator 21 provided in the chamber 20 and then a vacuum is generated by the high vacuum pump 22 and the low vacuum pump 23 and the vacuum valve 24, RF power is applied to a first sputter gun 26 equipped with a ZnO target 25 doped with a group element (Ga, Al) and a second sputter gun 28 equipped with an ITO target 27 (Deposition) of a thin film of ZITO: Ga or ZITO: Al by controlling the total thickness of the ZITO: Ga or ZITO: Al thin film and the content of In (indium) in the material by controlling the plasma density, ); And
A third step (S30) of heat-treating the substrate (10) completed in the second step (S20) at 200 ° C to 300 ° C for 50 seconds to 70 seconds; Wherein the transparent electrode is formed of an oxide-based highly flexible transparent electrode.
제 1항에 있어서,
제 1단계(S10)에서 폴리머 소재의 유연한 기판(10)은 폴리이미드(PI), 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리에틸렌나프탈레이트(PEN) 및 폴리에테프술폰(PES) 중 하나 이상을 포함하는 수지로부터 제조된 필름인 것을 특징으로 하는 산화물 기반의 고 유연성 투명전극.
The method according to claim 1,
In the first step S10, the flexible substrate 10 made of a polymer is formed of a material selected from the group consisting of polyimide (PI), polyethylene terephthalate (PET), polycarbonate (PC), polyethylene naphthalate (PEN) and polyethersulfone Wherein the transparent electrode is a film made from a resin containing at least one of the metals.
제 1항에 있어서,
ZnO 타겟(target)(25)은 Ga2O3(산화갈륨) 5 중량%, ZnO(산화아연) 95중량% 또는 Al2O3(산화알루미늄) 2 중량%, ZnO(산화아연) 98중량%로 이루어지는 것을 특징으로 하는 산화물 기반의 고 유연성 투명전극.
The method according to claim 1,
The ZnO target 25 may be formed by using 5 wt% of Ga 2 O 3 (gallium oxide), 95 wt% of ZnO (zinc oxide), 2 wt% of Al 2 O 3 (aluminum oxide), 98 wt% Wherein the transparent electrode is formed of an oxide-based highly flexible transparent electrode.
제 1항에 있어서,
제 2단계(S20)에서 기판(10)의 온도는 상온, 초기 진공도는 2*10-6Torr 이하로 유지하고 로테이터(21)는 3~5RPM로 회전하며 작업 압력은 3mTorr로 스퍼터건(26)에 RF파워를 50~100W로 입력하고, 10~20분의 증착 시간을 갖는 것을 특징으로 하는 산화물 기반의 고 유연성 투명전극.
The method according to claim 1,
The temperature of the substrate 10 is maintained at room temperature and the initial degree of vacuum is 2 * 10 -6 Torr or less in the second step S20, the rotator 21 is rotated at 3 ~ 5 RPM, the working pressure is 3 mTorr, Wherein the RF power is 50 to 100 W and the deposition time is 10 to 20 minutes.
KR1020130032237A 2013-03-26 2013-03-26 High Flexible and Transparent Electrode based Oxide KR101449258B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130032237A KR101449258B1 (en) 2013-03-26 2013-03-26 High Flexible and Transparent Electrode based Oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130032237A KR101449258B1 (en) 2013-03-26 2013-03-26 High Flexible and Transparent Electrode based Oxide

Publications (2)

Publication Number Publication Date
KR20140117155A true KR20140117155A (en) 2014-10-07
KR101449258B1 KR101449258B1 (en) 2014-10-08

Family

ID=51990600

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130032237A KR101449258B1 (en) 2013-03-26 2013-03-26 High Flexible and Transparent Electrode based Oxide

Country Status (1)

Country Link
KR (1) KR101449258B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102112257B1 (en) 2018-12-21 2020-05-19 (주)아바텍 Method for manufacturing the transparent electrode for display having high flexibility
KR102112256B1 (en) 2018-12-21 2020-05-19 (주)아바텍 Method for manufacturing the transparent electrode for display having high flexibility
KR20210057535A (en) * 2019-11-12 2021-05-21 고려대학교 산학협력단 Method for doping using electric field
KR20210076447A (en) 2019-12-16 2021-06-24 주식회사 아바텍 Transparent electrode having high flexibility and method for manufacturing the same
CN113025970A (en) * 2019-12-09 2021-06-25 美光科技公司 Material deposition system and related methods, microelectronic devices, and memory devices

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100739457B1 (en) * 2005-08-26 2007-07-19 인하대학교 산학협력단 Method for fabricating ZnO thin film doped with metal using magnetron co-sputtering
KR20120028505A (en) * 2010-09-15 2012-03-23 경희대학교 산학협력단 Flexible multilayer transparent eletrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102112257B1 (en) 2018-12-21 2020-05-19 (주)아바텍 Method for manufacturing the transparent electrode for display having high flexibility
KR102112256B1 (en) 2018-12-21 2020-05-19 (주)아바텍 Method for manufacturing the transparent electrode for display having high flexibility
KR20210057535A (en) * 2019-11-12 2021-05-21 고려대학교 산학협력단 Method for doping using electric field
US11512396B2 (en) 2019-11-12 2022-11-29 Korea University Research And Business Foundation Method for doping using electric field
CN113025970A (en) * 2019-12-09 2021-06-25 美光科技公司 Material deposition system and related methods, microelectronic devices, and memory devices
KR20210076447A (en) 2019-12-16 2021-06-24 주식회사 아바텍 Transparent electrode having high flexibility and method for manufacturing the same

Also Published As

Publication number Publication date
KR101449258B1 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
KR101449258B1 (en) High Flexible and Transparent Electrode based Oxide
KR20100007605A (en) Conductive laminate and manufacturing method thereof
US20150279498A1 (en) Transparent conductive thin film electrodes, electronic devices and methods of producing the same
Wie et al. Fully crystallized ultrathin ITO films deposited by sputtering with in-situ electron beam irradiation for touch-sensitive screens
Xiao et al. Characteristics of indium zinc oxide thin films prepared by direct current magnetron sputtering for flexible solar cells
US10167545B2 (en) Indium tin oxide thin films with both near-infrared transparency and excellent resistivity
KR20090066047A (en) Conductive laminate and manufacturing method thereof
KR100859148B1 (en) High flatness transparent conductive thin films and its manufacturing method
US9546415B2 (en) Composite transparent electrodes
JP4358251B2 (en) Method for forming high resistance tin-doped indium oxide film
KR101607144B1 (en) Multilayer transparent eletrode comprising MgZnO alloy and Method for preparing the same
KR101298490B1 (en) The Mo dopped ITO TCO and coating methode of it
KR102181436B1 (en) Transparent conductive thin film
KR20120071100A (en) Method for fabricating transparent conductive film and transparent conductive film by thereof
CN106868470A (en) A kind of utilization technique for atomic layer deposition is by replacing the method that reaction prepares transparent Copper thin film conductive electrode
KR20170026730A (en) Transparent conductive substrate using pvd and its fabrication method
JP2010225384A (en) Substrate with transparent electrode, and method for manufacturing the same
KR101807957B1 (en) Highly conductive flexible transparent electrodes based oxide and method for manufacturing thereof
KR101315002B1 (en) Method for manufacturing abzo transparent conductive oxide
KR20110083802A (en) Inductively coupled plasma treated azo thin film and manufacturing method thereof
KR101924070B1 (en) Highly conductive flexible transparent electrodes based lanthanoid doping and method for manufacturing thereof
KR101314907B1 (en) Method for manufacturing abzo transparent conductive oxide
KR20130125345A (en) Conductive laminate and manufacturing method thereof
WO2013031688A1 (en) Transparent electroconductive film and method for manufacturing same
KR20160045389A (en) Fabricating method of transparent electrode using multilayered thin film consist of SnO2 and Zn and transparent electrode the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee