KR20140102757A - 플라즈마 처리 장치 및 플라즈마 처리 방법 - Google Patents

플라즈마 처리 장치 및 플라즈마 처리 방법 Download PDF

Info

Publication number
KR20140102757A
KR20140102757A KR1020147019573A KR20147019573A KR20140102757A KR 20140102757 A KR20140102757 A KR 20140102757A KR 1020147019573 A KR1020147019573 A KR 1020147019573A KR 20147019573 A KR20147019573 A KR 20147019573A KR 20140102757 A KR20140102757 A KR 20140102757A
Authority
KR
South Korea
Prior art keywords
waveguide
plasma
coil
electrode
longitudinal direction
Prior art date
Application number
KR1020147019573A
Other languages
English (en)
Inventor
마사키 히라야마
Original Assignee
도호쿠 다이가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도호쿠 다이가쿠 filed Critical 도호쿠 다이가쿠
Publication of KR20140102757A publication Critical patent/KR20140102757A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32247Resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32229Waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32577Electrical connecting means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

본 발명은 큰 사이즈의 기판에 대해, VHF 주파수대와 같은 고주파로 여기되는 플라즈마의 밀도의 균일성을 개선할 수 있는 플라즈마 처리 장치를 제공하는 것이다. 도파로(WG)를 구획하는 도파로 부재(401)와, 도파로(WG)의 길이 방향(A)에 있어서의 소정의 급전 위치로부터 전자기 에너지를 당해 도파로 내에 공급하는 동축관과, 플라즈마 형성 공간(PS)에 면하도록 배치된 전계 형성용의 제1 및 제2 전극(460A, 460B)과, 자장에 의한 전자기 유도 작용에 의해 전압을 발생하도록 도파로 내에 배치되고, 또한 제1 및 제2 전극(460A, 460B)과 전기적으로 접속된 코일 부재(410)를 갖는다.

Description

플라즈마 처리 장치 및 플라즈마 처리 방법 {PLASMA-TREATMENT DEVICE AND PLASMA TREATMENT METHOD}
본 발명은 기판에 플라즈마 처리를 실시하는 플라즈마 처리 장치 및 플라즈마 처리 방법에 관한 것이다.
평판 디스플레이, 태양 전지, 반도체 장치 등의 제조 공정에서는, 박막의 형성이나 에칭 등에 플라즈마가 사용되고 있다. 플라즈마는, 예를 들어, 진공 챔버 내에 가스를 도입하여, 챔버 내에 설치된 전극에 수㎒ 내지 수백㎒의 고주파를 인가함으로써 생성된다. 생산성을 향상시키기 위해, 평판 디스플레이나 태양 전지용의 유리 기판의 사이즈는 해마다 커지고 있어, 이미 한 변이 2m를 넘는 유리 기판으로 양산이 행해지고 있다.
플라즈마 CVD(Chemical Vapor Deposition) 등의 성막 프로세스에서는, 성막 속도를 향상시키기 위해, 더 높은 밀도의 플라즈마가 요구되고 있다. 또한, 기판 표면에 입사하는 이온의 에너지를 낮게 억제하여 이온 조사 데미지를 저감함과 함께, 가스 분자의 과잉 해리를 억제하기 위해, 전자 온도가 낮은 플라즈마가 요구되고 있다. 일반적으로, 플라즈마 여기 주파수를 높게 하면, 플라즈마 밀도가 증가하여 전자 온도가 저하된다. 따라서, 고품질 박막을 높은 스루풋으로 성막하기 위해서는, 플라즈마 여기 주파수를 높게 할 필요가 있다. 따라서, 통상의 고주파 전원의 주파수인 13.56㎒보다 높은 30 내지 300㎒의 VHF(Very High Frequency)대의 고주파를 플라즈마 처리에 사용하는 것이 행해지고 있다(예를 들어, 특허문헌 1, 2 참조).
일본 특허 출원 공개 평9-312268호 공보 일본 특허 출원 공개 제2009-021256호 공보
그런데, 처리하는 유리 기판의 사이즈가, 예를 들어, 한변이 2m와 같이 커지면, 상기와 같은 VHF대의 플라즈마 여기 주파수로 플라즈마 처리한 경우에는, 고주파가 인가되는 전극 내에 발생하는 표면파의 정재파에 의해 플라즈마 밀도의 균일성이 저하되어 버린다. 일반적으로는, 고주파가 인가되는 전극의 사이즈가 자유 공간의 파장의 1/20보다 커지면, 어떤 대책을 행하지 않으면 균일한 플라즈마를 여기할 수 없다.
본 발명은, 한변이 2m를 초과하는 보다 큰 사이즈의 기판에 대해, VHF 주파수대와 같은 고주파로 여기되는 플라즈마 밀도의 균일성을 개선할 수 있는 플라즈마 처리 장치를 제공한다.
본 발명의 플라즈마 처리 장치는, 도파로를 형성하는 도파로 부재와, 상기 도파로의 도파 방향에 있어서의 소정의 급전 위치로부터 전자기 에너지를 당해 도파로 내로 공급하는 전송로와, 플라즈마 형성 공간에 면하도록 배치된 전계 형성용 중 적어도 하나의 전극과, 자장에 의한 전자기 유도 작용에 의해 전압을 발생하도록 상기 도파로 내에 배치되고, 또한 상기 적어도 하나의 전극과 전기적으로 접속된 적어도 하나의 코일 부재를 갖는 것을 특징으로 한다.
본 발명에 따르면, 보다 큰 사이즈의 피처리체(기판)에 대해, VHF 주파수대에서 여기되는 플라즈마의 플라즈마 밀도의 균일성을 도파로의 길이 방향에 있어서 개선할 수 있다.
도 1은 플라즈마 처리 장치의 일례를 도시하는 단면도이다.
도 2는 도 1의 플라즈마 처리 장치의 Ⅱ-Ⅱ 단면도이다.
도 3a는 컷오프 상태에 있는 도파관을 도시하는 사시 단면도이다.
도 3b는 도 3a의 도파관과 등가의 관계에 있는 도파로의 사시 단면도이다.
도 4는 도 1의 플라즈마 처리 장치에 있어서의 기본 타입의 플라즈마 발생 기구의 구조를 도시하는 사시 단면도이다.
도 5는 본 발명의 제1 실시 형태에 관한 플라즈마 발생 기구의 구조를 도시하는 사시 단면도이다.
도 6은 도 5의 도파로와 동축관의 접속 관계를 나타내는 단면 사시도이다.
도 7은 도 5의 도파로 구조를 사용한 경우와 도 3의 도파로 구조를 사용한 경우의, 전극간 전압의 길이 방향의 분포를 나타내는 그래프이다.
도 8은 본 발명의 제2 실시 형태에 관한 플라즈마 발생 기구의 구조를 도시하는 사시 단면도이다.
도 9는 도 8의 플라즈마 발생 기구의 외관 사시도이다.
이하 첨부 도면을 참조하면서, 본 발명의 실시 형태에 대해 상세하게 설명한다. 또한, 본 명세서 및 도면에 있어서, 실질적으로 동일한 기능 구성을 갖는 구성 요소에 대해서는, 동일한 부호를 부여함으로써 중복 설명을 생략한다.
[플라즈마 처리 장치의 기본 구성]
먼저, 본 발명이 적용되는 타입의 플라즈마 처리 장치의 일례에 대해 도 1 및 도 2를 참조하여 설명한다. 도 1은 도 2의 Ⅰ-Ⅰ 단면도이고, 도 2는 도 1의 Ⅱ-Ⅱ 단면도이다. 도 1 및 도 2에 도시한 플라즈마 처리 장치(10)는, 공급된 전자기파가 공진하도록 설계된 도파로를 이용하여 전자기 에너지를 전극에 공급함으로써, 도파로의 길이 방향을 따라 균일한 밀도의 플라즈마를 여기할 수 있는 구성을 갖는다.
여기서, 도파로의 공진에 대해 설명한다. 먼저, 도 3a에 도시한 바와 같이, 장변의 길이 a, 단변의 길이 b라고 하는 단면을 갖는 직사각형 도파관 GT의 관내 파장에 대해 생각한다. 관내 파장 λg는 수학식 1로 나타난다.
Figure pct00001
여기서, λ는 자유 공간의 파장, εr은 도파관 내의 비유전율, μr은 도파관 내의 비투자율이다. 수학식 1에 따르면, εr=μr=1일 때, 도파관 GT의 관내 파장 λg는 자유 공간의 파장 λ보다 항상 긴 것을 알 수 있다. λ<2a일 때, 관내 파장 λg는 장변의 길이 a가 짧아지면 길어진다. λ=2a일 때, 즉 장변의 길이 a가 자유 공간의 파장 λ의 1/2에 동등해지면, 분모가 0으로 되어 관내 파장 λg가 무한대로 된다. 이 때 도파관 GT는 컷오프 상태로 되고, 도파관 GT 내를 전반하는 전자기파의 위상 속도는 무한대, 군속도는 0이 된다. 또한, λ>2a로 되면, 전자기파는 도파관 내를 전반할 수 없게 되지만, 어느 정도의 거리는 진입할 수 있다. 또한, 일반적으로는 이 상태도 컷오프 상태라고 말할 수 있지만, 여기서는, λ=2a일 때를 컷오프 상태라고 한다. 예를 들어, 플라즈마 여기 주파수가 60㎒에 있어서, 중공 도파관에서는 a가 250㎝로 되고, 알루미나 도파관에서는 a가 81㎝로 된다.
도 3b는 플라즈마 처리 장치(10)에 사용되는 기본적인 타입의 도파로를 도시하고 있다. 이 도파로 WG를 구획하는 도파로 부재 GM은, 도전성 부재로 형성되고, 도파 방향(길이 방향) A, 폭 방향 B에 있어서 서로 대향하는 측벽부 W1, W2와, 측벽부 W1 및 W2의 높이 방향 H에 있어서의 하단부에 플랜지 형상으로 연장되는 제1 및 제2 전극부 EL1, EL2를 갖는다. 또한, 측벽부 W1 및 W2의 사이에 형성되는 간격에는, 플레이트 형상의 유전체 DI가 삽입되어 있다. 이 유전체 DI는 도파로 WG 내에서 플라즈마가 여기되는 것을 방지하는 역할을 한다. 도 3b에 도시하는 도파로 WG의 폭 w는 도파로의 단변의 길이 b와 동등한 값으로 설정되고, 높이 h는, 컷오프 상태에 있는 도파관 GT와 전기적으로 등가로 되도록 λ/4(a/2)보다 작은 최적값으로 설정된다. 도파로 WG에서는, L(인덕턴스)과 C(캐패시턴스)에 의한 LC 공진 회로가 형성되어 컷오프 상태로 됨으로써, 공급되는 전자기파가 공진한다. 도파로 WG 중을 도파 방향 A로 전반하는 고주파의 파장을 무한대로 하면, 전극 EL1 및 EL2의 길이 방향을 따라 균일한 고주파 전계가 형성되어, 길이 방향으로 밀도가 균일한 플라즈마가 여기된다. 또한, 도파로 WG로부터 플라즈마측을 본 임피던스가 가령 무한대라고 하면, 도파로 WG는, 직사각형 도파관을 장변 방향에 있어서 정확히 2등분한 전송로라고 간주할 수 있다. 따라서, 도파로 WG의 높이 h가 λ/4일 때, 관내 파장 λg가 무한대로 된다. 그러나, 실제로는 도파로 WG로부터 플라즈마측을 본 임피던스는 용량성이므로, 관내 파장 λg를 무한대로 하는 도파로 WG의 높이 h는 λ/4보다 작다.
플라즈마 처리 장치(10)는, 내부에 기판 G를 탑재하는 진공 용기(100)를 갖고, 내부에서 유리 기판(이하, 기판 G라 함)을 플라즈마 처리한다. 진공 용기(100)는 단면이 직사각 형상이고, 알루미늄 합금 등의 금속으로 형성되어, 접지되어 있다. 진공 용기(100)의 상부 개구는 천장부(105)로 덮여 있다. 기판 G는 적재대(115)에 탑재되어 있다. 또한, 기판 G는 피처리체의 일례이고, 이에 한정되는 것은 아니고, 실리콘 웨이퍼 등이어도 된다.
진공 용기(100)의 바닥부에는, 기판 G를 놓기 위한 적재대(115)가 설치되어 있다. 적재대(115)의 상방에는, 플라즈마 형성 공간 PS를 통해 복수(2개)의 플라즈마 발생 기구(200)가 설치되어 있다. 플라즈마 발생 기구(200)는 진공 용기(100)의 천장부(105)에 고정되어 있다.
각 플라즈마 발생 기구(200)는 알루미늄 합금으로 형성된 동일 사이즈인 2개의 도파로 부재(201A, 201B)와, 동축관(225)과, 2개의 대향하는 도파로 부재(201A, 201B) 사이에 형성되는 도파로 WG 내에 삽입된 유전체판(220)을 갖는다.
도파로 부재(201A, 201B)는, 도파로 WG를 형성하기 위해, 서로 소정의 간격을 두고 대향하는 평판부(201W)와, 이 평판부(201W)의 하단부에 플랜지 형상으로 형성된 플라즈마를 여기하는 전계 형성용의 전극부(201EA, 201EB)를 각각 갖는다. 도파로 부재(201A, 201B)의 상단부는 도전성 재료로 형성된 천장부(105)에 접속되고, 도파로 부재(201A, 201B)의 상단부는 서로 전기적으로 접속되어 있다.
유전체판(220)은 산화 알루미늄 또는 석영 등의 유전체로 형성되어, 도파로 WG의 하단부로부터 상방을 향해 당해 도파로 WG의 도중까지 연장되어 있다. 도파로 WG의 상부가 단락되어 있으므로, 도파로 WG의 상측은 하측에 비해 전계가 약하다. 따라서, 전계가 강한 도파로 WG의 하측을 유전체판(220)으로 폐색해 두면 도파로 WG의 상부는 공동이어도 된다. 물론, 도파로 WG의 상부까지 유전체판(220)으로 매립되어 있어도 된다.
동축관(225)은, 도 2에 도시한 바와 같이, 도파로 WG의 길이 방향 A의 대략 중앙 위치에 접속되고, 이 위치가 급전 위치로 된다. 동축관(225)의 외부 도체(225b)는 도파로 부재(201B)의 일부로 구성되고, 외부 도체(225b)의 중심부를 내부 도체(225a1)가 통과하고 있다. 내부 도체(225a1)의 하단부는, 당해 내부 도체(225a1)에 대해 수직으로 배치된 내부 도체(225a2)에 전기적으로 접속되어 있다. 내부 도체(225a2)는 유전체판(220)에 개방된 구멍을 관통하여, 도파로 부재(201A)측의 전극부(201EA)에 전기적으로 접속되어 있다.
동축관(225)의 내부 도체(225a1, 225a2)는, 플라즈마 발생 기구(200)의 한쪽의 전극부(201EA)에 전기적으로 접속되고, 동축관(225)의 외부 도체(225b)는 플라즈마 발생 기구(200)의 다른 쪽의 전극부(201EB)에 전기적으로 접속된다. 동축관(225)의 상단부에는, 정합기(245)를 통해 고주파 전원(250)이 접속되어 있다. 고주파 전원(250)으로부터 급전된 고주파 전력은 동축관(225)을 통해 길이 방향 A의 중앙 위치로부터 도파로 WG의 양단부를 향해 전반한다.
내부 도체(225a2)는 유전체판(220)을 관통한다. 인접하는 플라즈마 발생 기구(200)에 각각 설치된 내부 도체(225a2)가 각 플라즈마 발생 기구(200)의 유전체판(220)을 관통하는 방향은 서로 역방향이다. 여기서, 2개의 플라즈마 발생 기구(200)의 동축관(225)에 동진폭, 동위상의 고주파를 각각 급전하면, 도 4에 도시한 바와 같이, 2개의 플라즈마 발생 기구(200)의 전극부(201EA, 201EB)에는 각각 진폭이 동등하고 역위상의 고주파가 인가된다. 또한, 본 명세서에서는, 고주파라 함은, 10㎒ 내지 3000㎒의 주파수대를 말하고, 전자기파의 일례이다. 또한, 동축관(225)은 고주파를 공급하는 전송로의 일례이고, 동축관(225) 대신에, 동축 케이블이나 직사각형 도파관 등을 사용해도 된다.
도 1에 도시한 바와 같이, 전극부(201EA, 201EB)의 측면에서의 방전과 상부로의 플라즈마의 침입을 방지하기 위해, 전극부(201EA, 201EB)의 폭 방향 B에 있어서의 측면은, 제1 유전체 커버(221)로 덮여 있다. 도 2에 도시한 바와 같이, 도파로 WG의 길이 방향 A의 단부면을 개방 상태로 함과 함께, 양 측면에서의 방전을 방지하기 위해, 평판부(201W)의 길이 방향 A의 양 측면은 제2 유전체 커버(215)로 덮여 있다.
전극부(201EA, 201EB)의 하면은 유전체판(220)의 하단부면과 대략 동일면이 되도록 형성되어 있지만, 유전체판(220)의 하단부면은 전극부(201EA, 201EB)의 하면에 대해 돌출되어 있어도 되고, 오목하게 되어 있어도 된다. 전극부(201EA, 201EB)는 샤워플레이트를 겸하고 있다. 구체적으로는, 전극부(201EA, 201EB)의 하면에는 오목부가 형성되고, 오목부에 샤워플레이트용의 전극 덮개(270)가 끼워 넣어져 있다. 전극 덮개(270)에는 복수의 가스 방출 구멍이 형성되어 있고, 가스 유로를 통과한 가스는 이 가스 방출 구멍으로부터 기판 G측으로 방출된다. 가스 유로의 하단부에는 산화 알루미늄 등의 전기 절연체를 포함하는 가스 노즐이 설치되어 있다(도 4 참조).
균일한 프로세스를 행하기 위해서는, 플라즈마의 밀도가 균일한 것만으로는 충분하지 않다. 가스의 압력, 원료 가스의 밀도, 반응 생성 가스의 밀도, 가스의 체류 시간, 기판 온도 등이 프로세스에 영향을 미치므로, 이들이 기판 G 상에서 균일하게 되어 있어야만 한다. 통상의 플라즈마 처리 장치에서는, 기판 G와 대향하는 부분에 샤워플레이트가 설치되어, 기판을 향해 가스가 공급된다. 가스는 기판 G의 중앙부로부터 외주부를 향해 흐르고, 기판의 주위로부터 배기되도록 되어 있다. 필연적으로, 압력은 기판의 중앙부가 외주부보다 높고, 체류 시간은 기판의 외주부가 중앙부보다 길어진다. 기판 사이즈가 커지면, 이 압력과 체류 시간의 균일성의 악화에 의해 균일한 프로세스를 실시할 수 없게 된다. 대면적 기판에 대해서도 균일한 프로세스를 행하기 위해서는, 기판 G의 바로 위로부터 가스를 공급하는 동시에, 기판의 바로 위로부터 배기할 필요가 있다.
플라즈마 처리 장치(10)에서는, 인접하는 플라즈마 발생 기구(200) 사이에 배기 슬릿 C가 형성되어 있다. 즉, 가스 공급기(290)로부터 출력된 가스는, 플라즈마 발생 기구(200) 내에 형성된 가스 유로를 통해 플라즈마 발생 기구(200)의 하면으로부터 처리실 내에 공급되고, 기판 G의 바로 위에 형성된 배기 슬릿 C로부터 상측 방향으로 배기된다. 배기 슬릿 C를 통과한 가스는 인접하는 플라즈마 발생 기구(200)에 의해 배기 슬릿 C의 상부에 형성되는 제1 배기로(281) 내를 흐르고, 제2 유전체 커버(215)와 진공 용기(100) 사이에 설치된 제2 배기로(283)로 유도된다. 또한, 진공 용기(100)의 측벽에 설치된 제3 배기로(285) 중을 하측 방향으로 흘러, 제3 배기로(285)의 하방에 설치된 진공 펌프(도시하지 않음)에 의해 배기 된다.
천장부(105)에는 냉매 유로(295a)가 형성되어 있다. 냉매 공급기(295)로부터 출력된 냉매는 냉매 유로(295a)에 흐르고, 이에 의해, 플라즈마 발생 기구(200)를 통해 천장부(105) 측에 플라즈마로부터 유입된 열을 전달하도록 되어 있다.
플라즈마 처리 장치(10)에서는, 도파로 WG의 실효적인 높이 h를 전기적으로 바꾸기 위해, 임피던스 가변 회로(380)가 설치되어 있다. 전극 길이 방향의 중앙부에 설치된 고주파를 공급하는 동축관(225) 외에, 전극 길이 방향의 양단부 부근에는, 2개의 임피던스 가변 회로(380)를 각각 접속하는 2개의 동축관(385)이 설치되어 있다. 제1 가스 배기로(281)의 가스 흐름을 방해하지 않도록 하기 위해, 동축관(385)의 내부 도체(385a2)는 동축관(225)의 내부 도체(225a2)보다 상방에 설치되어 있다.
임피던스 가변 회로(380)의 구성예로서는, 가변 콘덴서만의 구성, 가변 콘덴서와 코일을 병렬 접속한 구성, 가변 콘덴서와 코일과 직렬 접속한 구성 등을 생각할 수 있다.
플라즈마 처리 장치(10)에 있어서는, 컷오프 상태로 되었을 때, 동축관(225)에서 본 반사가 가장 작아지도록 도파로 WG의 실효적인 높이를 조절한다. 또한, 프로세스 중이라도 도파로의 실효적인 높이를 조절하는 것이 바람직하다. 따라서, 플라즈마 처리 장치(10)에서는, 정합기(245)와 동축관(225) 사이에 반사계(300)가 설치되어 있고, 동축관(225)에서 본 반사의 상태를 모니터하도록 되어 있다. 반사계(300)에 의한 검출값은 제어부(305)로 송신된다. 제어부(305)에서는, 검출값에 기초하여 임피던스 가변 회로(380)를 조정하도록 지시한다. 이에 의해 도파로 WG의 실효적인 높이를 조정하여 동축관(225)에서 본 반사를 최소로 한다. 또한, 이상의 제어를 하면 반사 계수는 상당히 작게 억제할 수 있으므로, 정합기(245)의 설치를 생략할 수도 있다.
이웃하는 2개의 플라즈마 발생 기구(200)에 역위상의 고주파를 공급하면, 도 4에 도시한 바와 같이, 이웃하는 2개의 전극부(201EA, 201EA)에는 동위상의 고주파가 인가된다. 이 상태에서는, 플라즈마 발생 기구(200) 사이의 배기 슬릿 C에 고주파 전계가 인가되지 않으므로, 이 부분에서 플라즈마가 발생하는 경우는 없다.
배기 슬릿 C에 전계가 생기지 않도록 하기 위해서는, 인접하는 플라즈마 발생 기구(200)의 도파로 WG의 각각을 전반하는 고주파의 위상을 180° 어긋나게 하여, 고주파의 전계가 역방향으로 걸리도록 한다.
도 1에 도시한 바와 같이, 좌측의 플라즈마 발생 기구(200)에 배치된 동축관의 내부 도체(225a2)와, 우측의 플라즈마 발생 기구(200)에 배치된 동축관의 내부 도체(225a2)가 역방향으로 배치된다. 이에 의해, 고주파 전원(250)으로부터 공급되는 동위상의 고주파는 동축관을 통해 도파로 WG에 전달될 때 역상으로 된다.
또한, 내부 도체(225a2)를 동일 방향으로 배치한 경우에는, 고주파 전원(250)으로부터 역상의 고주파를 인접하는 전극쌍에 각각 인가함으로써, 플라즈마 발생 기구(200)의 모든 전극부(201EA, 201EB)의 하면에 형성되는 고주파의 전계를 동일한 방향으로 할 수 있고, 배기 슬릿 C에서 고주파의 전계를 0으로 할 수 있다.
제1 실시 형태
상기 구성의 플라즈마 처리 장치(10)에서는, 도파로 WG를 컷오프 상태로 함으로써, 예를 들어, 길이 2m 이상의 전극 상에서 균일한 플라즈마를 여기하는 것이 가능하다. 그러나, 어떤 조건 하에서는, 도파로 WG 내에 축적되는 전자기 에너지의 일부가 플라즈마를 포함하는 부하의 저항 성분에 의해 소비되고, 이 전자기 에너지는 상기한 소정의 급전 위치[동축관(225)과 도파로 WG의 접속부]로부터 멀어짐에 따라 점차 감쇠해 간다. 특히, 플라즈마의 저항 성분이 큰 조건에서는, 전자기 에너지의 감쇠가 크고 도파로 WG의 길이 방향 A에 있어서 플라즈마의 밀도가 불균일한 분포로 되어 버린다. 본 실시 형태에서는, 상기와 같은 플라즈마의 저항 성분이 큰 조건 하에 있어서도, 도파로 WG의 길이 방향 A에 있어서의 플라즈마 밀도의 균일성의 저하를 억제할 수 있는 플라즈마 발생 기구에 대해 설명한다.
도 5는 본 실시 형태에 관한 플라즈마 발생 기구(400)의 사시 단면도이다. 도 6은 도 5의 플라즈마 발생 기구(400)에 있어서의 도파로와 동축관의 접속 관계를 나타내는 단면 사시도이다. 또한, 플라즈마 발생 기구(400)는 도 1 및 도 4에 도시하는 2개의 플라즈마 발생 기구(200)의 각각에 대응하고 있다. 즉, 본 실시 형태에 관한 플라즈마 처리 장치는, 도 1 및 도 4에 도시하는 2개의 플라즈마 발생 기구(200, 200)의 각각을 도 5에 도시하는 플라즈마 발생 기구(400)로 각각 치환한 것이다. 본 실시 형태에 관한 플라즈마 처리 장치는, 부하가 바뀌어도 도파로를 항상 컷오프 상태로 하기 위한 조정 기구, 즉, 상기한 2개의 임피던스 가변 회로(380)와, 2개의 임피던스 가변 회로(380)를 각각 접속하는 2개의 동축관(385)이 설치되어 있다.
플라즈마 발생 기구(400)는, 도파로 WG를 구획하는 도파로 부재(401)와, 도파로 WG 내에 배치된 복수의 코일 부재(410)와, 복수의 코일 부재(410)를 관통하는 유전체판(420)과, 유전체판(420)의 양측에 배치된 유전체판(421, 422)과, 제1 및 제2 전극(460A, 460B), 제1 및 제2 전극(460A, 460B)의 사이를 전기적으로 분리함과 함께 도파로 부재(401)와 제1 및 제2 전극(460A, 460B) 사이를 전기적으로 분리하는 유전체판(450)을 갖는다.
도파로 부재(401)는, 알루미늄 합금 등의 도전성 재료로 길이 방향 A를 따라 관형상으로 형성되고, 길이 방향 A를 횡단하는 방향의 단면이 직사각 형상의 도파로 WG를 구획하고 있다. 구체적으로는, 도파로 부재(401)는 상벽부(401t)와, 이 상벽부(401t)의 폭 방향 B의 양단부로부터 하방을 향해 연장되는 측벽부(401w1, 401w2)와, 이 측벽부(401w1, 401w2)의 하단부에 연결되어 일부가 측벽부(401w1, 401w2)의 외측으로 플랜지 형상으로 돌출되도록 형성되는 저벽부(401b)를 갖는다.
복수의 코일 부재(410)는, 도파로 WG 내의 저벽부(401b) 상에, 길이 방향 A로 연장되는 2개의 유전체판(421, 422)을 통해, 길이 방향 A를 따라 소정의 간격으로 배열되어 있다. 유전체판(421, 422)은 불소 수지 등의 유전체로 형성되어 있다. 복수의 코일 부재(410)는 도파로 부재(401)와 전기적으로 분리되어 있다. 코일 부재(410)는 알루미늄 합금 등의 도전성 재료로 형성되고, 길이 방향 A를 횡단하는 방향의 단면이 직사각 형상으로 되도록 형성되고, 2개의 유전체판(421, 422) 상에 배치되는 단부(410e1, 410e2)가 소정의 간격을 두고 서로 대향하고 있다. 코일 부재(410)는 약 1턴의 코일이고, 도파로 WG 내의 자장에 의한 전자기 유도 작용에 의해 전압을 발생하도록 당해 도파로 WG 내에 배치된다.
제1 및 제2 전극(460A, 460B)은 알루미늄 합금 등의 금속판으로 형성되고, 각각 길이 방향 A로 연장됨과 함께, 유전체판(450)의 길이 방향 A를 따라 연장되는 돌기부(451)에 의해 서로 전기적으로 분리되어 있다. 제1 및 제2 전극(460A, 460B)은 상기한 플라즈마 형성 공간 PS에 면하도록 배치된 전계 형성용의 전극이다. 제1 전극(460A)은 복수의 코일 부재(410)의 저부(410b1)와 복수의 접속 핀(430)과 전기적으로 접속되어 있다. 제2 전극(460B)은 복수의 코일 부재(410)의 저부(410b2)와 복수의 접속 핀(430)에 의해 전기적으로 접속되어 있다. 또한, 복수의 접속 핀(430)은 2개의 유전체판(421, 422)을 각각 관통하고 있음과 함께, 산화 알루미늄 등의 유전체(440)를 통해 각각 도파로 부재(401)의 저벽부(401b)와 전기적으로 분리되어 있다. 또한, 복수의 접속 핀(430)은 길이 방향 A를 따라 배열되어 있다. 또한, 저벽부(401b)에는, 전극의 온도를 일정하게 하기 위한 냉매 유로가 형성되어 있어도 된다.
유전체판(420)은 불소 수지 등의 유전체로 형성되어, 복수의 코일 부재(410)의 내부를 관통하도록, 길이 방향 A를 따라 배치되어 있다. 이 유전체판(420)은, 그 하단부가, 코일 부재(410)의 대향하는 단부(410e1, 410e2) 사이의 간격을 통과하고 있다.
도 6에 도시한 바와 같이, 플라즈마 발생 기구(400)의 도파로 WG에는, 길이 방향 A의 대략 중앙 위치에 있어서, 동축관(225)이 접속되어 있다. 동축관(225)의 내부 도체는, 높이 방향 H로 연장되는 내부 도체(225a1)와 이에 접속되어 폭 방향 B로 연장되는 내부 도체(225a2)를 갖는다. 내부 도체(225a2)가 한쪽의 측벽부(401w1)에 전기적으로 접속되어 있다. 동축관(225)의 외부 도체도 마찬가지로 높이 방향 H로 연장되는 외부 도체(225b1)와 이에 접속된 폭 방향 B로 연장되는 외부 도체(225b2)를 갖는다. 외부 도체(225b2)가 다른 쪽의 측벽부(401w1)에 전기적으로 접속되어 있다.
본 실시 형태의 플라즈마 발생 기구(400)에 있어서는, 동축관(225)으로부터 복수의 코일 부재(410)를 통해 전자기 에너지가 제1 및 제2 전극(460A, 460B)에 공급된다. 이로 인해, 복수의 코일 부재(410)를 통하지 않고, 제1 및 제2 전극(460A, 460B)에 전자기 에너지가 직접적으로 공급되는 경우에 비해, 제1 및 제2 전극(460A, 460B) 사이의 전압을 작게 할 수 있다. 제1 및 제2 전극(460A, 460B) 사이의 전압이 상대적으로 작으면, 플라즈마를 포함하는 부하의 저항 성분에 의해 소비되는 전자기 에너지가 상대적으로 작아져, 도파로 WG 내에 축적되는 전자기 에너지의 감쇠가 억제된다.
도 7은 일정한 전력을 공급했을 때의 제1 및 제2 전극(460A, 460B) 사이의 전압을 계산한 결과를 나타내는 그래프이다. 실선은 코일 부재(410)를 통해 급전한 경우이고, 점선은 비교예로서 도 3b에 나타내는 타입의 도파로를 사용하여 직접 급전한 경우를 나타내고 있다. 플라즈마의 여기 조건은 동일하게 했다. 플라즈마 여기 주파수는 60㎒이다. 양자 모두 도파로 WG의 길이 방향의 균일성이 가장 양호해지도록 도파로 WG의 단면의 사이즈가 최적화되어 있다.
직접 급전한 경우의 길이 방향 A에 있어서의 전압 분포에서는, 점선으로 나타낸 바와 같이, 도파로 WG의 길이 방향의 중앙에 있는 급전 위치 부근에서의 전압 변화가 매우 크게 되어 있다. 한편, 실선으로 나타낸 바와 같이, 코일 부재를 통해 급전한 경우의 길이 방향 A에 있어서의 전압의 분포에서는, 도파로 WG의 길이 방향의 중앙 부근에서의 전압 변화가 비교예에 비해 상당히 작아져, 길이 방향 A에 있어서의 전압의 분포의 균일성이 현저하게 개선되는 것을 알 수 있다. 본 발명 및 비교예의 어느 쪽에 있어서도, 공급되는 전력은 동일하므로, 플라즈마를 포함하는 부하의 저항 성분에 의해 소비되는 에너지에 차이는 없다. 따라서, 코일 부재(410)를 통해 급전하는 쪽이 도파로 내에 축적되는 전자기 에너지가 커지므로, 소비되는 에너지가 동일해도, 전자기 에너지가 감쇠되기 어려워, 보다 균일한 분포로 된다.
본 실시 형태에서는, 복수의 코일 부재(410)를 길이 방향 A를 따라 배치하고 있다. 복수의 코일 부재(410)가 하나로 연결되어 있으면, 조건에 따라서는, 코일 부재(410) 내를 길이 방향 A로 전반하는 모드가 발생하여 길이 방향 A에 있어서의 플라즈마 밀도의 균일성이 저하되는 경우가 있다. 본 실시 형태에서는, 코일 부재를 복수로 분할함으로써, 이와 같은 모드 발생을 억제할 수 있다. 또한, 조건에 따라서는, 코일 부재는 길이 방향 A에 있어서 복수로 분할되어 있지 않아도 된다. 코일 부재(410)의 형태는 본 실시 형태로 한정되지 않는다. 예를 들어, 단면 형상을 직사각 형상 이외에, 원형, 타원 등의 다양한 형상을 채용할 수 있다. 또한, 약 1턴의 코일이 아니어도, 예를 들어 반턴이나, 혹은 수턴의 코일이라도 된다.
제2 실시 형태
도 8은 제2 실시 형태에 관한 플라즈마 발생 기구(500)의 사시 단면도이다. 도 9는 도 8의 플라즈마 발생 기구(500)의 사시 외관도이다. 또한, 본 실시 형태에 관한 플라즈마 발생 기구(500)는 도 1 및 도 4에 도시하는 2개의 플라즈마 발생 기구(200, 200)의 각각에 대응하고 있다. 즉, 본 실시 형태에 관한 플라즈마 처리 장치는 도 1 및 도 4에 도시하는 2개의 플라즈마 발생 기구(200, 200)를 도 8 및 도 9에 도시하는 플라즈마 발생 기구(500)로 각각 치환한 것이다. 본 실시 형태에 관한 플라즈마 처리 장치는, 부하가 변해도 도파로를 항상 컷오프 상태로 하기 위한 조정 기구, 즉 상기한 2개의 임피던스 가변 회로(380)와, 2개의 임피던스 가변 회로(380)를 각각 접속하는 2개의 동축관(385)이 설치되어 있다.
플라즈마 발생 기구(500)는 제1 및 제2 도파로 부재(501, 502)를 갖는다. 제1 도파로 부재(501)는 알루미늄 합금 등의 도전성 재료로 형성되어, 병렬하는 2개의 융기부(501rA, 501rB)와, 2개의 융기부(501rA, 501rB) 사이에서 연장되는 평탄부(501f)를 갖는다. 제2 도파로 부재(502)는 알루미늄 합금 등의 도전성 재료로 평판 형상으로 형성되고, 이 제2 도파로 부재(502) 상에, 제1 도파로 부재(501)가 배치되어 있다. 도파로 부재(501)와 도파로 부재(502) 사이에 2개의 융기부를 갖는 도파로 WG가 구획되어 있다.
도파로 WG의 2개의 융기부 내에는, 상기한 코일 부재(410)와 동일한 구성의 제1 및 제2 코일 부재(510A, 510B)가 각각 복수 배치되어 있다. 제1 및 제2 코일 부재(510A, 510B)와 제2 도파로 부재(502) 사이에는, 불소 수지 등의 유전체 재료로 형성된 유전체판(521, 522, 523)이 설치되어 있다. 또한, 제2 도파로 부재(502)에는, 전극의 온도를 일정하게 하기 위한 냉매 유로가 형성되어 있어도 된다.
제2 도파로 부재(502)의 아래에는, 불소 수지 등의 유전체 재료로 형성된 유전체판(550)을 통해 제1 내지 제3 전극(560A 내지 560C)이 배치되어 있다. 제1 내지 제3 전극(560A 내지 560C)은 유전체판(550)의 돌출부(551a, 551b)에 의해 서로 전기적으로 분리되어 있다. 또한, 제1 전극(560A)은 상기한 접속 핀(430)과 동일의 복수의 접속 핀(530)에 의해 제1 코일 부재의 일단부에 전기적으로 접속되어 있다. 제2 전극(560B)은 복수의 접속 핀(530)에 의해 제1 코일 부재(510A)의 타단부에 전기적으로 접속되어 있음과 함께, 제2 코일 부재(510B)의 일단부에 전기적으로 접속되어 있다. 제3 전극(560C)은 복수의 접속 핀(530)에 의해 제2 코일 부재(B)의 타단부에 전기적으로 접속되어 있다.
동축관(225)은, 도 8 및 도 9에 도시한 바와 같이, 제1 및 제2 도파로 부재(501, 502)와 전기적으로 접속되어, 도파로 WG 내에 전자기 에너지를 각각 공급한다. 구체적으로는, 동축관(225)은 제1 및 제2 융기부의 사이에 설치되어, 도파로 WG의 높이 방향을 따라 배치되어 있다. 그리고, 내부 도체(225a)의 하단부는 높이 방향 H로부터 유전체판(521)을 관통하여 평판 형상의 제2 도파로 부재(502)에 전기적으로 접속되어 있다. 외부 도체(225a)의 하단부는 제1 도파로 부재(502)의 평단부(501f)에 전기적으로 접속되어 있다.
상기 구성에 따르면, 제1 실시 형태 비해, 도파로의 높이를 절반 이하로 할 수 있음과 함께. 제1 내지 제3 전극(560A 내지 560C)의 폭 방향 B의 치수를 제1 실시 형태의 제1 및 제2 전극의 폭 방향 B의 치수의 약 2배로 할 수 있다. 이 결과, 플라즈마 발생 기구의 제조 코스트를 삭감할 수 있다. 또한, 본 실시 형태에 따르면, 동축관(225)을 도중에 구부리는 일 없이 스트레이트하게 도파로 부재에 접속할 수 있으므로, 구조를 간소화할 수 있다.
상기 제1 및 제2 실시 형태에서는, 급전 위치를 도파로의 길이 방향의 중앙 위치로 했지만, 이에 한정되는 것은 아니고, 필요에 따라 변경 가능하다.
상기 실시 형태에서는, 전극(460A, 460B, 560A 내지 560C)이 도 1에 있어서 설명한 바와 같이 샤워플레이트를 겸하고 있지만, 이에 한정되지 않고, 샤워플레이트를 겸하지 않아도 된다.
이상, 첨부 도면을 참조하면서 본 발명의 실시 형태에 대해 상세하게 설명했지만, 본 발명은 이러한 예로 한정되지 않는다. 본 발명이 속하는 기술의 분야에 있어서의 통상의 지식을 가진 자이면, 특허청구의 범위에 기재된 기술 목표 사상의 범주 내에 있어서, 각종 변경예 또는 수정예에 상도할 수 있는 것은 명백하고, 이에 대해서도, 당연히 본 발명의 기술 목표 범위에 속하는 것으로 이해된다.
225 : 동축관
400, 500 : 플라즈마 발생 기구
410, 510A, 510B : 코일 부재
401, 501, 502 : 도파로 부재
WG : 도파로
460A, 460B, 560A 내지 560C : 전극
PS : 플라즈마 형성 공간

Claims (11)

  1. 도파로를 구획하는 도파로 부재와,
    상기 도파로의 길이 방향에 있어서의 소정의 급전 위치로부터 전자기 에너지를 당해 도파로 내에 공급하는 전송로와,
    플라즈마 형성 공간에 면하도록 배치된 전계 형성용의 적어도 하나의 전극과,
    자장에 의한 전자기 유도 작용에 의해 전압을 발생하도록 상기 도파로 내에 배치되고, 또한 상기 적어도 하나의 전극과 전기적으로 접속된 적어도 하나의 코일 부재를 갖는 것을 특징으로 하는, 플라즈마 처리 장치.
  2. 제1항에 있어서, 상기 적어도 하나의 코일 부재는 복수의 코일 부재를 포함하고,
    상기 복수의 코일 부재는 상기 길이 방향을 따라 배열되어 있는 것을 특징으로 하는, 플라즈마 처리 장치.
  3. 제1항 또는 제2항에 있어서, 상기 길이 방향으로 연장되고, 상기 적어도 하나의 코일 부재 내를 관통하는 유전체를 더 갖는 것을 특징으로 하는, 플라즈마 처리 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 적어도 하나의 코일 부재는 유전체를 통해 상기 도파로 부재 상에 배치되어 있는 것을 특징으로 하는, 플라즈마 처리 장치.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 적어도 하나의 전극은 제1 및 제2 전극을 포함하고,
    상기 적어도 하나의 코일은 상기 제1 및 제2 전극에 각각 전기적으로 접속되어 있는 것을 특징으로 하는, 플라즈마 처리 장치.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 도파로 부재는 병렬하는 제1 및 제2 융기부를 갖는 도파로를 구획하도록 형성된 제1 도파로 부재와,
    상기 제1 도파로 부재와 협동하여 상기 도파로를 구획하는 제2 도파로 부재를 갖고,
    상기 적어도 하나의 코일 부재는 상기 도파로의 제1 및 제2 융기부 내에 각각 배치되는 제1 및 제2 코일 부재를 포함하는 것을 특징으로 하는, 플라즈마 처리 장치.
  7. 제6항에 있어서, 상기 전송로는 동축관을 포함하고,
    상기 동축관은 상기 도파로의 제1 및 제2 융기부의 사이에 있어서, 상기 제1 및 제2 융기부의 높이 방향으로 연장하여 상기 제1 및 제2 도파로 부재에 접속되어 있는 것을 특징으로 하는, 플라즈마 처리 장치.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 적어도 하나의 코일 부재는 양단부가 대향하도록 통형상으로 형성되어 있는 것을 특징으로 하는, 플라즈마 처리 장치.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 소정의 급전 위치는 상기 도파로의 상기 길이 방향에 있어서의 대략 중앙 위치에 있는 것을 특징으로 하는, 플라즈마 처리 장치.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 전송로로부터 공급되는 소정의 플라즈마 여기 주파수의 고주파가 공진하도록, 상기 도파로가 구성되어 있는 것을 특징으로 하는, 플라즈마 처리 장치.
  11. 도파로를 구획하는 도파로 부재와, 상기 도파로의 길이 방향에 있어서의 소정의 급전 위치로부터 전자기 에너지를 당해 도파로 내에 공급하는 전송로와, 플라즈마 형성 공간에 면하도록 배치된 전계 형성용의 적어도 하나의 전극과, 자장에 의한 전자기 유도 작용에 의해 전압을 발생하도록 상기 도파로 내에 배치되고, 또한 상기 적어도 하나의 전극과 전기적으로 접속된 적어도 하나의 코일 부재를 갖는 플라즈마 발생 기구가 내부에 설치된 용기 내의 상기 플라즈마 형성 공간에 면하는 위치에 피처리체를 설치하는 스텝과,
    상기 플라즈마 발생 기구에 의해 플라즈마를 여기시켜 상기 피처리체를 플라즈마 처리하는 스텝을 갖는 것을 특징으로 하는, 플라즈마 처리 방법.
KR1020147019573A 2012-02-17 2012-02-17 플라즈마 처리 장치 및 플라즈마 처리 방법 KR20140102757A (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001072 WO2013121467A1 (ja) 2012-02-17 2012-02-17 プラズマ処理装置およびプラズマ処理方法

Publications (1)

Publication Number Publication Date
KR20140102757A true KR20140102757A (ko) 2014-08-22

Family

ID=48983638

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147019573A KR20140102757A (ko) 2012-02-17 2012-02-17 플라즈마 처리 장치 및 플라즈마 처리 방법

Country Status (5)

Country Link
US (1) US20140368110A1 (ko)
JP (1) JP5483245B2 (ko)
KR (1) KR20140102757A (ko)
CN (1) CN104094677A (ko)
WO (1) WO2013121467A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190070283A (ko) * 2017-12-12 2019-06-20 도쿄엘렉트론가부시키가이샤 안테나 및 플라즈마 성막 장치
KR20210098939A (ko) * 2020-01-27 2021-08-11 주식회사 히타치하이테크 플라스마 처리 장치

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5520455B2 (ja) * 2008-06-11 2014-06-11 東京エレクトロン株式会社 プラズマ処理装置
US10640870B2 (en) * 2016-04-25 2020-05-05 Applied Materials, Inc. Gas feedthrough assembly
US10823668B2 (en) * 2018-04-24 2020-11-03 Honeywell International Inc. Apparatuses and methods for alkali spectroscopy
JP7162837B2 (ja) * 2018-12-06 2022-10-31 東京エレクトロン株式会社 プラズマ処理装置、及び、プラズマ処理方法
JP7184254B2 (ja) * 2018-12-06 2022-12-06 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130492A (ja) * 1993-11-04 1995-05-19 Mitsubishi Heavy Ind Ltd プラズマ製造方法及び装置
US6418874B1 (en) * 2000-05-25 2002-07-16 Applied Materials, Inc. Toroidal plasma source for plasma processing
JP2005158564A (ja) * 2003-11-27 2005-06-16 Matsushita Electric Ind Co Ltd プラズマ励起用コイル、プラズマ励起装置、及びプラズマ処理装置
WO2007083795A1 (ja) * 2006-01-20 2007-07-26 Tokyo Electron Limited プラズマ処理装置
WO2008123605A1 (en) * 2007-03-29 2008-10-16 Tokyo Electron Limited Plasma process apparatus
JP2008288348A (ja) * 2007-05-16 2008-11-27 Canon Inc プラズマ処理装置及びプラズマ処理方法
CN102089867B (zh) * 2008-07-11 2013-11-27 东京毅力科创株式会社 等离子体处理装置
JP2010238881A (ja) * 2009-03-31 2010-10-21 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP5136574B2 (ja) * 2009-05-01 2013-02-06 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP5496568B2 (ja) * 2009-08-04 2014-05-21 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP5643062B2 (ja) * 2009-11-24 2014-12-17 東京エレクトロン株式会社 プラズマ処理装置
JP5572019B2 (ja) * 2010-07-15 2014-08-13 国立大学法人東北大学 プラズマ処理装置及びプラズマ処理方法
JP5686996B2 (ja) * 2010-07-15 2015-03-18 国立大学法人東北大学 プラズマ処理装置
JP5631088B2 (ja) * 2010-07-15 2014-11-26 国立大学法人東北大学 プラズマ処理装置及びプラズマ処理方法
US8808496B2 (en) * 2011-09-30 2014-08-19 Tokyo Electron Limited Plasma tuning rods in microwave processing systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190070283A (ko) * 2017-12-12 2019-06-20 도쿄엘렉트론가부시키가이샤 안테나 및 플라즈마 성막 장치
KR20210098939A (ko) * 2020-01-27 2021-08-11 주식회사 히타치하이테크 플라스마 처리 장치

Also Published As

Publication number Publication date
CN104094677A (zh) 2014-10-08
US20140368110A1 (en) 2014-12-18
JPWO2013121467A1 (ja) 2015-05-11
WO2013121467A1 (ja) 2013-08-22
JP5483245B2 (ja) 2014-05-07

Similar Documents

Publication Publication Date Title
KR20140102757A (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
KR101541642B1 (ko) 플라즈마 처리 장치
US20130140984A1 (en) Plasma processing apparatus and plasma processing method
US20040011465A1 (en) Plasma Processing apparatus
US20100258529A1 (en) Plasma Processing Apparatus and Plasma Processing Method
JP5419055B1 (ja) プラズマ処理装置およびプラズマ処理方法
US10991549B2 (en) Antenna and plasma deposition apparatus
US20100170872A1 (en) Plasma processing apparatus and method for using plasma processing apparatus
JP7473760B2 (ja) Vhfプラズマ処理のためのシステム及び方法
KR101358780B1 (ko) 히터가 설치된 유도 결합 플라즈마 소스를 구비한 플라즈마반응기
WO2012008525A1 (ja) プラズマ処理装置及びプラズマ処理方法
JP5273759B1 (ja) プラズマ処理装置およびプラズマ処理方法
US9526160B2 (en) Cavity resonator of microwave plasma generating apparatus
JP2013175480A (ja) プラズマ処理装置およびプラズマ処理方法
US20060150914A1 (en) Plasma process device
JP5686996B2 (ja) プラズマ処理装置
US10674595B2 (en) Plasma processing apparatus and method for controlling plasma processing apparatus
KR20090079696A (ko) 선형 안테나를 구비한 플라즈마 처리 장치
CN109219226B (zh) 一种等离子体发生装置
JP2010219004A (ja) プラズマ発生装置
KR20240051940A (ko) 플라즈마 처리 장치 및 플라즈마 제어 방법
KR20080024624A (ko) 대면적 유도 결합 플라즈마 반응기

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
NORF Unpaid initial registration fee