KR20140050081A - 금속 나노 입자의 pcp 복합체와 그 제작 방법 - Google Patents

금속 나노 입자의 pcp 복합체와 그 제작 방법 Download PDF

Info

Publication number
KR20140050081A
KR20140050081A KR1020147005064A KR20147005064A KR20140050081A KR 20140050081 A KR20140050081 A KR 20140050081A KR 1020147005064 A KR1020147005064 A KR 1020147005064A KR 20147005064 A KR20147005064 A KR 20147005064A KR 20140050081 A KR20140050081 A KR 20140050081A
Authority
KR
South Korea
Prior art keywords
pcp
metal
composite
metal nanoparticles
complex
Prior art date
Application number
KR1020147005064A
Other languages
English (en)
Other versions
KR101596608B1 (ko
Inventor
히로시 기타가와
히로카즈 고바야시
Original Assignee
고쿠리츠 다이가쿠 호진 교토 다이가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고쿠리츠 다이가쿠 호진 교토 다이가쿠 filed Critical 고쿠리츠 다이가쿠 호진 교토 다이가쿠
Publication of KR20140050081A publication Critical patent/KR20140050081A/ko
Application granted granted Critical
Publication of KR101596608B1 publication Critical patent/KR101596608B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0411Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/307Monocyclic tricarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/01Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups
    • C07C65/03Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0202Polynuclearity
    • B01J2531/0205Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/10Non-coordinating groups comprising only oxygen beside carbon or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Dispersion Chemistry (AREA)

Abstract

본 발명은, 금속 나노 입자를 다공성 배위 고분자(PCP)의 내부에 포함하는 복합체이며, 상기 PCP가 금속 이온과 유기 배위자로 구성되는, 복합체를 제공한다.

Description

금속 나노 입자의 PCP 복합체와 그 제작 방법{METAL NANOPARTICLE-PCP COMPLEX AND MANUFACTURING METHOD THEREFOR}
본 발명은, 금속 나노 입자와 PCP(Porous Coordination Polymer; 다공성 배위 고분자)를 갖는 복합체와 그 제조 방법에 관한 것이다.
촉매 반응에 관여하는 가스를 PCP에 의해 포획하고, 확실하게 반응시켜, 고효율·고선택의 반응을 실현하기 위해서는, 나노 촉매 표면에 PCP가 피복된 구조를 갖는 PCP 복합 촉매의 개발이 필요 불가결하다.
비특허문헌 1은, PCP를 미리 제작한 후에 금속 나노 입자를 복합화하고 있기 때문에, 금속 나노 입자는 PCP의 외부에 부착된 구조를 갖고, 금속 나노 입자와 PCP의 복합 효과는 한정된 것이었다.
비특허문헌 2는, 산화철의 존재 하에 금속 이온(Al, Cu)과 배위자(bpdc, btc)를 작용시켜 금속 이온과 배위자의 복합체를 형성시키고 있지만, 이 복합체는 약물의 서방성 제재 등의 용도에 사용되는 것이며, 산화철은 그 자성에 의해 자석을 사용하여 원하는 위치에 수송하기 위한 것이고, 산화철 나노 입자의 표면의 일부에서 PCP와 일체화되어 있을 뿐이며, 산화철 입자는 PCP의 내부에 존재하지 않는다.
Eur.J.Inorg.Chem., 2010, 3701-3714 ChemCo㎜, 2011, 47, 3075-3077
본 발명은, 금속 나노 입자와 PCP가 상호 작용하는 복합체를 제공하는 것을 목적으로 한다.
본 발명은, 이하의 복합체 및 그의 제조 방법을 제공하는 것이다.
항 1. 금속 나노 입자를 다공성 배위 고분자(PCP)의 내부에 포함하는 복합체이며, 상기 PCP가 금속 이온과 유기 배위자로 구성되는 복합체.
항 2. 상기 금속 나노 입자가 귀금속 나노 입자인, 항 1 또는 2에 기재된 복합체.
항 3. 표면으로부터 금속 나노 입자에 도달할 때까지의 PCP층의 평균 두께가 1 내지 200㎚인, 항 1에 기재된 복합체.
항 4. 상기 PCP가 금속 이온과 카르복실기를 갖는 배위자와 환 내 질소 원자에 의해 배위 가능한 질소 함유 방향족 화합물로 구성되는, 항 1 내지 3 중 어느 한 항에 기재된 복합체.
항 5. 상기 금속 나노 입자가 금, 백금, 팔라듐, 니켈, 코발트, 망간, 크롬, 은, 구리, 철, 루테늄, 로듐, 아연, 그들의 합금 또는 산화물로 이루어지는 군으로부터 선택되는 적어도 1종의 촉매인, 항 1 내지 4 중 어느 한 항에 기재된 복합체.
항 6. 상기 복합체의 크기가 1 내지 500㎚인, 항 1 내지 5 중 어느 한 항에 기재된 복합체.
항 7. 상기 금속 나노 입자의 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90% 이상 또는 95% 이상이 상기 PCP층을 통과하는 가스상의 반응물과 접촉할 수 있는, 항 1 내지 6 중 어느 한 항에 기재된 복합체.
항 8. 항 1 내지 7 중 어느 한 항에 기재된 복합체의 촉매로서의 용도.
항 9. 항 1 내지 7 중 어느 한 항에 기재된 복합체의 금속 나노 입자와, 상기 PCP에 의해 흡착되는 가스를 반응시켜 화합물을 생성시키는 것을 특징으로 하는, 상기 화합물의 제조 방법.
항 10. 상기 가스가 수소와 질소이며, 금속 나노 입자가 철계의 촉매이며, 생성물이 암모니아인, 항 9에 기재된 제조 방법.
항 11. 금속 나노 입자 및 용매의 존재 하에서 금속 이온과 다가 카르복실산 배위자 및/또는 질소 함유 헤테로환 배위자를 혼합하는 것을 특징으로 하는, 항 1 내지 7 중 어느 한 항에 기재된 복합체의 제조 방법.
본 발명의 PCP는 금속 이온과 그것과 배위하는 유기 배위자에 의해 구성되고, 금속 이온과 유기 배위자의 종류를 조합함으로써, 무한하다고 할 수 있을 정도의 물질의 다양성이 있다. 제올라이트, 활성탄 등의 흡착재에 비하여 분자 설계의 자유도는 매우 높고, 가스 분자를 대량이면서 또한 안정적으로 저장하는 흡착재로서의 성질을 갖고 있다. 또한, PCP는 그 세공 내부에 가스를 선택적으로 또한 고농도로 도입하는 것이 가능하기 때문에, 다공성 배위 고분자(PCP) 복합 촉매에서는, 기존의 나노 재료를 능가하는 고효율·고선택성이 우수한 촉매 재료로 될 수 있다.
본 발명에 따르면, 금속 나노 입자를 PCP의 내부에 포함하는 코어·쉘 타입의 PCP 복합 입자가 얻어진다.
또한, PCP 부분에 선택적으로 가스가 흡착되어 금속 촉매와 반응되기 때문에, 선택적인 촉매 반응이 가능하게 된다.
본 발명의 PCP계 복합 촉매에서는, 합목적, 합리적인 구축 방법에 의해, 다양한 촉매 개발 연구에 널리 응용 이용이 가능하다. 특히, 균일계 촉매(분자 촉매)의 PCP에 대한 고정화나 나노 금속 촉매의 PCP 복합화에 의해, 균일계 촉매의 장기 이용에 의한 비용 삭감이나 「확실하게 도입하여(PCP에 의한 선택 흡착), 확실하게 반응시킨다(나노 촉매에 의한 물질 변환)」라는, 고효율·고선택의 반응을 실현할 수 있다. 말하자면, 촉매 활성화되는 부생 가스만을 PCP에 의해 포획하여, 확실하게 반응시킬 수 있다. 또한, PCP 복합 촉매에 있어서는, 분자 촉매나 나노 촉매를 고밀도로 담지시키는 것 외에, 세공벽이 말하자면 「구획판」으로 되므로, 신터링(입성장에 의한 활성점의 열화)을 방지할 수 있어, 금속 나노 입자끼리의 응집·융합이 억제되기 때문에, 금속 나노 촉매의 장수명화가 기대된다. 또한, 균일계 촉매인 착체 분자 촉매를 PCP 세공 내에 고정화하는 점에서 유출을 방지할 수 있어, 반복 사용 가능한 촉매로 된다.
또한, 세공이 흡착 가스를 갖는 점에서 촉매독이 되는 가스로부터의 피독을 방지하는 것도 가능하다. 한편, PCP의 나노 세공이 분자 스트레스를 일으키는 것이 보고되고 있다. 이러한 점에서, 기질이 특이한 나노 공간 스트레스에 의해 변형되어 그 결과 활성화되고, 또한 병존하는 촉매에 효율적으로 활성화되는 것이 기대된다.
지금까지 PCP 복합 촉매는 PCP의 표면에 촉매가 분산된 것밖에 얻지 못했다. 특히 가스 변환의 촉매로서 사용할 때, PCP와 촉매의 계면의 비율이 중요하지만, PCP는 마이크로미터 오더로 매우 크고, 활성 금속종과 접하고 있는 비율은 매우 적어, 고효율의 반응을 일으키는 것은 매우 곤란하다.
PCP의 내부에 나노 촉매를 매립하거나, 또는 나노 촉매 표면에 PCP를 피복한 코어·쉘 타입의 본 발명의 PCP 복합체는, 활성 금속종과 접하고 있는 비율은 매우 커, 고효율의 반응을 일으킬 수 있다.
도 1은 PCP-활성 금속종 복합체의 합성 스킴(scheme)
도 2는 PCP-활성 금속종 복합체의 XRD 패턴(좌측)과 IR 스펙트럼(우측)
도 3은 PCP-활성 금속종 복합체의 TEM 이미지(좌측)와 EDS 스펙트럼(우측)
도 4는 PCP-활성 금속종 복합체의 N2 흡착 등온 곡선(77 K).
도 5는 금속 나노 입자의 형상(입방체, 플레이트, 절두팔면체(truncated octahedron), 정팔면체)을 나타낸다.
도 6은 Pd 분말(흑색), 입방체형의 활성 금속종(청색) 및 복합체(적색)의 순환 전압 전류 곡선.
본 발명의 복합체는, 금속 나노 입자를 다공성 배위 고분자(PCP)의 내부에 포함하는 복합체이다. 여기서, 「내부에 포함한다」란, 금속 나노 입자를 PCP에 의해 피복하는 것, 또는 금속 나노 입자를 PCP의 내부에 매립한 것을 의미한다. PCP는, 예를 들어 도 4의 우측에 도시된 바와 같이, 몇 개의 층을 형성하고, 금속 나노 입자 전체를 덮고 있다. 상기 복합체는, 금속 나노 입자가 내부에 1개만 존재하고 있는 것이 바람직하지만, 금속 나노 입자가 복수개 존재하고 있을 수도 있다. PCP는, 다수의 세공을 갖고, 이 세공은, 도 4에 도시한 바와 같이 3차원적으로 형성되어 있는 것이 바람직하지만, 이차원 또는 일차원적으로 형성될 수도 있다. PCP의 세공은, 통상 규칙적으로 형성되어 있다. 금속 나노 입자는 PCP에 밀착 고정하여 내부에 포함되어 있을 수도 있고, PCP의 내부로 이동 가능한 상태에서 포함되어 있을 수도 있다. 예를 들어 주머니상의 PCP의 내부에, PCP의 내강보다도 작은 적어도 1개의 금속 나노 입자가 이동 가능하게 포함되어 있을 수도 있다. PCP와 친화성이 있는 가스상의 물질은 이 세공을 통하여 내부의 금속 나노 입자 표면에 농축되어 공급되어, 반응 후의 물질은 PCP의 세공으로부터 외부로 방출된다. PCP는 반응 원료의 가스상 물질과의 친화성이 높고, 반응 후의 생성물의 친화성이 낮은 것이, 금속 나노 입자 촉매를 사용하여 촉매 반응을 행하기 때문에 바람직하다. 이와 같이, 새로운 물질이 PCP로부터 금속 나노 입자에 잇달아 공급되어, 반응 후의 생성물은 세공으로부터 외부로 잇달아 방출되기 때문에, 금속 나노 입자가 촉매인 경우, 그 반응 효율은 매우 커진다. 금속 나노 입자의 촉매는, 예를 들어 수소와 질소로부터 암모니아를 제조하는 촉매, 암모니아, 메탄, 에탄, 프로판 등의 탄화수소, 메탄올, 에탄올, 프로판올 등의 알코올로부터 수소를 생성하는 촉매, 탄산 가스, 일산화탄소 등과 반응하여 COOH, CHO, CH2OH 등의 탄소수 1의 기를 신장시키는 촉매 등을 들 수 있다.
예를 들어, 금속 나노 입자가 촉매인 경우에는, 촉매 반응에 필요한 반응 물질을 촉매 표면에 농축할 수 있어, 화학 반응 등을 효율적으로 행할 수 있다. PCP는, 구성하는 금속 이온, 배위자의 종류를 바꿈으로써, 세공의 크기, 세공에 도입되는 화합물의 종류를 자유롭게 바꿀 수 있기 때문에, 다양한 반응을 금속 나노 입자 표면에서 행할 수 있다. PCP를 표면에 가짐으로써, 복합체 외부의 반응 원료의 가스상 물질 농도가 낮아도, PCP와 친화성이 있는 가스상 물질의 PCP 내부 및 금속 나노 입자 표면의 농도는 비약적으로 높아지므로, PCP의 존재에 의해 반응 효율은 현저하게 향상된다. 또한, 동일한 반응을 행하는 경우의 가스상의 반응 원료의 분압을 현저하게 저하시킬 수 있다.
바람직한 실시 형태에 있어서, 본 발명의 복합체는 코어(금속 나노 입자)-쉘(PCP) 구조를 갖는 것이다. 여기서, 코어-쉘 구조를 갖는 복합체는, 단일의 금속 나노 입자(코어)가 PCP(쉘)에 의해 덮여 있을 수도 있고, 복수의 금속 나노 입자(코어)가 PCP(쉘)에 의해 덮여 있을 수도 있다. 또한, 본 발명의 복합체는, 분말상일 수도 있고, 박막상 등의 막상일 수도 있다. 또한, 본 발명의 복합체가 분말상인 경우, 입상으로 성형할 수도 있다.
금속 나노 입자는, PCP의 세공으로부터 공급된 가스상의 물질과 상호 작용(화학 반응, 촉매 반응 등)하는 것이기 때문에, 복합체의 내부에서 금속 나노 입자는 촉매 반응 등에 이용 가능한 표면을 가능한 한 많이 공급하는 것이 바람직하다. 따라서, 본 발명의 복합체는, 시트상 또는 필름상과 같은 형상이면 금속 나노 입자가 다수 존재하고 있어도 유효 표면적이 충분히 크므로 좋고, 괴상인 경우에는, 내부에 갇힌 금속 나노 입자가 가능한 한 적어지도록, 입자 크기가 작은 것이 바람직하다. 괴상의 형상인 경우의 복합체의 크기는, 1 내지 500㎚ 정도, 바람직하게는 1 내지 100㎚ 정도이다. 이들 입자가 가로 방향으로 퍼지는 경우에는, 복합체가 많은 입자를 포함하고 있을 수도 있다. 예를 들어, 도 3의 복합체는 많은 금속 나노 입자가 가로 방향으로 퍼진 것이므로, 본 발명의 바람직한 복합체의 하나의 실시 형태이다. 한편, 도 4의 복합체는, PCP의 세공으로부터 다수의 반응 물질이 금속 나노 입자에 공급되어, 반응 후의 생성물은 외부로 방출된다. PCP층은, 외부의 가스상 물질을 PCP층의 내부에서 농축하기 위해서는 어느 정도의 두께가 필요해지지만, PCP층이 지나치게 두꺼우면 금속 나노 입자가 있는 곳까지 가스상 물질이 도달하는 데 시간이 걸리게 된다. 바람직한 PCP층의 두께는 1 내지 100㎚ 정도, 바람직하게는 1 내지 20㎚ 정도이다.
본 발명의 금속 나노 입자는, 입방체, 직육면체, 플레이트상, 절두팔면체 또는 (정)팔면체 등의 주로 평면으로 구성되는 형상을 갖는 것이 바람직하지만(도 5), 구상, 타원체상, 인편상 등의 임의의 형상일 수도 있다.
본 발명의 복합체는, 금속 나노 입자가 전면적으로 PCP에 의해 덮인 구조를 갖고, 외부로부터 공급되는 가스상 또는 액체상인 물질은 PCP의 일정한 크기의 구멍을 통하여 금속 나노 입자의 표면에 공급된다. 따라서, 금속 나노 입자가 촉매 작용을 갖는 경우, 본 발명의 복합체는 특정한 원료(PCP에 흡착되는 가스)로부터 특정한 물질을 높은 선택성으로 얻을 수 있다.
금속 나노 입자는, 금속(합금을 포함한다) 또는 금속 산화물로 구성된다.
금속으로서는, 금, 백금, 은, 구리, 루테늄, 주석, 팔라듐, 로듐, 이리듐, 오스뮴, 니켈, 코발트, 아연, 철, 이트륨, 마그네슘, 망간, 티타늄, 지르코늄, 하프늄 등을 들 수 있다. 금속 산화물로서는, PtO2, CuO, 산화루테늄(IV), 산화로듐, 산화루테늄, Fe2O3, Fe3O4, ZnO, 산화오스뮴(IV) 등을 들 수 있다.
금속 나노 입자의 크기로서는, 0.5 내지 200㎚ 정도, 바람직하게는 1 내지 100㎚ 정도, 보다 바람직하게는 5 내지 20㎚ 정도이다.
본 발명의 금속 나노 입자는, 표면 처리를 할 수 있다. 이러한 표면 처리로서는, 폴리비닐피롤리돈, 폴리아크릴아미드, 폴리디메틸아크릴아미드, 폴리(메트)아크릴레이트, 폴리옥시에틸렌옥시드, 폴리옥시에틸렌알킬에테르, 폴리비닐알코올 등의 친수성 중합체에 의한 표면 처리가 바람직하다. 이러한 표면 처리에 의해 친수성 중합체를 결합시킬 수 있다. 또는, SH기를 갖는 친수성 중합체를 금속 나노 입자와 반응시킴으로써, 친수성 중합체를 도입(표면 처리)할 수 있다.
본 발명의 다른 실시 형태에서는, SH기와 다른 반응성기(예를 들어 아미노기, 수산기, 카르복실기 등)를 갖는 화합물과 금속 나노 입자를 반응시켜 금속-S 결합을 생성시키고, 그것에 의해 도입된 다른 반응성기(예를 들어 아미노기, 수산기, 카르복실기 등)에 배위자와 금속 이온을 반응시킴으로써, PCP층을 형성할 수 있다. 또는 금속 나노 입자의 표면 또는 표면 부근에 PCP의 구성 요소인 금속 이온 또는 유기 배위자를 결합, 흡착 또는 상호 작용 등에 의해 존재시킬 수 있으면 그곳으로부터 PCP를 형성할 수 있다.
또한, SH기를 갖는 중합체, 화합물 등은, 광조사에 의해 금속 나노 입자와의 결합을 절단할 수 있고, 그것에 의해 금속 나노 입자 표면을 노출시킬 수 있다. 금속 나노 입자는 촉매 반응 등에 사용하는 경우, 활성 표면이 노출되어 있는 것이 바람직하기 때문이다.
본 발명의 복합체는, 금속 나노 입자의 묽은 용액(현탁액)에 PCP의 구성 요소(금속 이온, 배위자)를 저농도로 가하여 PCP를 형성시키고, 금속 이온이 PCP의 내부에 포함된 복합체만을 원심 분리 등의 방법에 의해 분리하여 제조할 수도 있다. 이러한 방법에 의하면, 금속 이온은 티올 화합물 등에 의해 표면 처리되어 있지 않으므로, 촉매 반응을 효율적으로 행할 수 있는 이점이 있다. 복합체의 제조를 초음파 등의 작용으로 행함으로써, 복합체의 입자를 작게 하여, 금속 나노 입자의 응집(겹침)을 방지할 수도 있다.
금속 나노 입자의 표면에 PCP를 구성 가능한(배위 결합 가능한) 관능기를 도입하기 위한 물질로서는, 예를 들어 p-머캅토페놀, 아미노벤젠티올, p-머캅토피리딘, p-머캅토벤조산, 11-머캅토-1-운데칸올, 11-머캅토운데칸산 등을 들 수 있다. SH기를 개재하여 금속 나노 입자에 PCP를 구성 가능한(배위 결합 가능한) 관능기를 도입하는 경우, 이 관능기는 SH기보다도 금속 나노 입자와의 결합이 약한 것을 들 수 있다. 금속 나노 입자가 금속 산화물인 경우에는, OH, COOH 등의 산소를 갖는 관능기에 의해 금속 나노 입자와 결합시킬 수 있다.
본 발명에서 사용하는 금속 나노 입자는, 공지의 방법에 따라 제조할 수 있다. 구체적으로는 Adv. Funct. Mater. 2009, 19, 189-200에 기재된 방법을 예시할 수 있다.
본 발명의 복합체로서, 예를 들어 실시예에서 사용한 표면 처리된 Pd 나노 입자는, 보호 중합체인 폴리(N-비닐-2-피롤리돈) 및 Na2PdCl4 수용액으로 환원제 및 (100)면만을 보호하고, 결정 성장을 제어하는 캐핑 시약을 첨가하고, 환원함으로써 입방체의 형상을 갖는 Pd 나노크리스탈을 제작할 수 있다. 본 발명의 복합체는 금속 나노 입자의 표면으로부터 PCP를 짜 올려 감으로써 얻을 수 있다. PCP의 배위자 성분과 동일한 관능기를 말단에 갖는 자기 조직화 단분자막(SAM)에 의해 금속 표면을 치환하는 것이 바람직하다. SAM으로 치환된 금속 나노 입자에 PCP의 원료를 첨가하여 가열·교반함으로써, 금속 나노 입자-PCP 복합체를 제작할 수 있다.
Pd 이외의 금속 나노 입자에 대해서도 마찬가지로 하여 본 발명의 복합체를 제조할 수 있다.
PCP는, 통상 2층 이상(예를 들어 2 내지 100층, 바람직하게는 3 내지 50층, 보다 바람직하게는 4 내지 30층, 특히 4 내지 20층)의 금속과 배위자로 이루어지는 층을 갖고, 이 층이 반복되지만, 예를 들어 금속 이온 및/또는 배위자는 층마다 바꾸어 전자의 일련의 흐름을 실현함으로써 태양 전지의 소자로서 사용할 수 있다.
본 명세서에 있어서, PCP로서는, 금속 이온과 유기 배위자로 구성되고, 카운터 음이온을 포함하고 있을 수도 있다. 금속 이온으로서는, 마그네슘, 칼슘, 망간, 철, 루테늄, 코발트, 로듐, 니켈, 팔라듐, 구리, 아연, 카드뮴, 티타늄, 바나듐, 크롬, 망간, 백금, 루테늄, 몰리브덴, 지르코늄, 스칸듐 등의 이온이 바람직하고, 마그네슘, 망간, 철, 코발트, 니켈, 구리, 아연 등의 금속의 이온이 보다 바람직하다. 금속 이온은, 단일의 금속 이온을 사용할 수도 있고, 2종 이상의 금속 이온을 병용할 수도 있다.
PCP를 구성하는 리간드로서는, 벤젠, 나프탈렌, 안트라센, 페난트렌, 플루오렌, 인단, 인덴, 피렌, 1,4-디히드로나프탈렌, 테트랄린, 비페닐렌, 트리페닐렌, 아세나프틸렌, 아세나프텐 등의 방향환에 2개, 3개 또는 4개의 카르복실기가 결합된 화합물(상기 리간드는, F, Cl, Br, I 등의 할로겐 원자, 니트로기, 아미노기, 아세틸아미노기 등의 아실아미노기, 시아노기, 수산기, 메틸렌디옥시, 에틸렌디옥시, 메톡시, 에톡시 등의 직쇄 또는 분지를 갖는 탄소수 1 내지 4의 알콕시기, 메틸, 에틸, 프로필, tert-부틸, 이소부틸 등의 직쇄 또는 분지를 갖는 탄소수 1 내지 4의 알킬기, SH, 트리플루오로메틸기, 술폰산기, 카르바모일기, 메틸아미노 등의 알킬아미노기, 디메틸아미노 등의 디알킬아미노기 등의 치환기로 1,2 또는 3 치환되어 있을 수도 있다), 푸마르산, 말레산, 시트라콘산, 이타콘산 등의 불포화 2가 카르복실산, 피라진, 4,4'-비피리딘, 디아자피렌 등의 2 이상의 환 내 질소 원자에 의해 배위 가능한 질소 함유 방향족 화합물(상기 치환기로 1, 2 또는 3 치환되어 있을 수도 있다) 등을 들 수 있다. 배위자가 중성인 경우, 금속 이온을 중화하는 데 필요한 카운터 음이온을 갖는다. 이러한 카운터 음이온으로서는, 염화물 이온, 브롬화물 이온, 요오드화물 이온, 황산 이온, 질산 이온, 인산 이온, 트리플루오로아세트산 이온, 메탄술폰산 이온, 톨루엔술폰산 이온, 벤젠술폰산 이온, 과염소산 이온 등을 들 수 있다.
상기한 금속 이온과 유기 배위자를 포함하는 PCP는, 시트상 등의 이차원 세공 또는 복수의 시트가 액셜(axial) 위치에 배위하는 2좌 배위자를 구성 요소로서 포함하는 삼차원 세공을 갖는 PCP를 포함하지만, 예를 들어 이하의 일차원 세공을 갖는 PCP를 사용할 수도 있다.
Figure pct00001
본 발명에서 사용하는 PCP는, 예를 들어 이하의 문헌, 총설(Angew. Chem. Int. Ed. 2004, 43, 2334-2375.; Angew. Chem. Int. Ed. 2008, 47, 2-14.; Chem. Soc. Rev., 2008, 37, 191-214.; PNAS, 2006, 103, 10186-10191.; Chem. Rev., 2011, 111, 688-764.; Nature, 2003, 423, 705-714) 등에 기재되어 있지만, 이들에 한정되지 않고, 공지의 PCP 또는 gid후 제조될 수 있는 PCP를 널리 사용할 수 있다.
PCP와 금속 나노 입자의 비율(중량비)은, PCP 1 내지 99중량% : 금속 나노 입자 99 내지 1중량%, 바람직하게는 PCP 10 내지 50중량% : 금속 나노 입자 50 내지 90중량%이다.
PCP에 의해 흡착되는 가스(메탄, 에탄, 일산화탄소, 이산화탄소, 에틸렌, 아세틸렌, 벤젠, 톨루엔 등), 금속 나노 입자 촉매(Au, Pt, Pd, Ni 등), 다른 반응 성분(수소, 암모니아, 산소, 물, 실란, HCN 등), 생성물(포름알데히드, 아세트알데히드, 아세트산, 메탄올, 에탄올 등)은, 이하와 같은 조합을 들 수 있다. 또한, PCP는 모두 적용 가능하다.
Figure pct00002
실시예
이하, 본 발명을 실시예에 기초하여 보다 상세하게 설명하지만, 본 발명이 이들 실시예에 한정되지 않는 것은 말할 필요도 없다.
실시예 1
(1) Pd 입방체의 합성(도 1)
입방체형 활성 금속종(Pd)을 사용하여, PCP의 복합화의 검토를 행했다.
입방체형 Pd는, Na2PdCl4 수용액(17.4㎜)에 폴리비닐피롤리돈(PVP; 105㎎), 아스코르브산(60㎎) 및 KBr(300㎎)을 첨가하고, 80℃에서 3시간 환원함으로써, 표면에 PVP가 부착된 Pd 나노 입자(10㎚)를 얻었다.
(2) 배위자 치환(PVP→SAM)
(1)에 의해 얻어진 Pd 나노 입자의 수용액에 HOOC-(CH2)10-SH(70㎎)의 에탄올 용액을 첨가하고, 80℃에서 1시간 반응시킴으로써, HOOC-(CH2)10-SH를 SH기를 개재하여 Pd 입자에 결합시켰다.
HOOC-(CH2)10-SH는, 활성 금속종의 표면으로부터 PCP를 짜 올려 가기 위하여, PCP의 배위자 성분과 동일한 관능기(COOH)를 말단에 갖는 자기 조직화 단분자막(SAM)에 의해 금속(Pd) 표면을 치환하기 위하여 사용했다.
(3) 복합화
자기 조직화 단분자막(SAM)에 의해 금속(Pd) 표면을 치환한 입자의 물 현탁액에 Zn(NO3)2/DMF(40㎎)를 첨가하고, 100℃에서 1.5시간 반응시켜, Zn 이온을 HOOC-(CH2)10-SH의 말단의 COOH기에 결합하고, 계속하여 디히드록시 1,4-벤젠디카르복실산(10㎎)의 DMF 용액을 첨가하고, 100℃에서 24시간 가열·교반함으로써, 활성 금속종-PCP 복합체를 제작했다(도 1).
도 2에 얻어진 복합체의 분말 X선 회절의 결과를 나타낸다. 복합체의 분말 X선 회절 패턴으로는 활성 금속종과 PCP에서 유래하는 회절 피크가 각각 관측되었다. 또한, 적외 흡수 스펙트럼 측정의 결과로부터, 단일 PCP와 동일 위치에 PCP에서 유래하는 신축 진동이 되는 점에서 원하는 생성물이 생긴 것을 확인했다. 복합체를 구성하는 PCP의 XRD 피크는 단독의 PCP에 비하여, 브로드(broad)하다는 것을 알 수 있다. 이 결과는 제작된 PCP 복합체의 PCP의 결정자 크기가 작은 것을 나타내고 있다.
따라서, PCP와 활성 금속종의 복합 상태에 대하여 검토하기 위하여, 투과형 전자 현미경을 사용한 고분해능 TEM 관찰 및 EDS 스펙트럼 측정을 행했다. 도 3으로부터, 입방체형의 활성 금속종 주위에 매우 얇은 막이 형성되어 있는 것을 알 수 있다. 이 막의 성분에 대하여 조사하기 위하여 EDS 스펙트럼의 분석을 했다. 중심 부분은 활성 금속종과 PCP를 구성하는 금속 이온에서 유래하는 스펙트럼이 얻어졌다. 한편, 표면 부분을 분석하면, PCP를 구성하는 금속 이온 성분만 얻어졌다. 활성 금속종 주위에 PCP막이 형성된 복합체를 얻는데 성공했다. 지금까지 나노 촉매 표면에 PCP를 피복한 코어·쉘 타입의 PCP 복합체에 관한 보고예는 없고, 이 결과가 첫 예이다.
실제로, 얻어진 복합체가 다공성 재료인지의 여부를 검토하기 위하여, 77 K에 있어서 질소의 흡착 등온 곡선의 측정을 행했다. 도 4에 흡착 측정의 결과를 나타낸다. N2 압력에 수반하여 저압력측에서 매크로 구멍에서 유래하는 흡착이 관측된 점에서, 이 복합체는 다공성을 갖는 것이 밝혀졌다. 이렇게 활성 금속종의 주위를 PCP에 의해 덮는 방법을 발견하기에 성공했다.
실시예 2
실시예 1에서 얻은 복합체를 전극 촉매로서 사용하여, 포름산 산화 반응을 실시했다. 입방체형의 활성 금속종 및 복합체를 각각 2.5㎎과 카본 페이스트(CPO) 2.5㎎을 에탄올 11.5μl와 「나피온(등록 상표)」〔듀퐁사제, 고형분 농도 5질량%의 10배 희석 샘플〕 11.5μl의 혼합 용매에 첨가하고, 초음파를 조사하여 현탁액으로 했다. 이 현탁액 23μL를 글래시 카본 전극〔3㎜ 직경, 전극 면적은 7.1㎟〕에 도포하고, 건조함으로써 수식 전극을 얻었다. 이 수식 전극을 농도 0.5M의 황산 및 1.0M 포름산의 혼합 용액 중에 침지하고, 실온, 대기압 하, 아르곤 분위기에 있어서, 은염화은 전극 전위에 대하여 -0.1 내지 1.00V의 주사 범위에서, 10mV/s의 주사 속도로 전위를 사이클했다. 결과를 도 6에 나타낸다.
문헌 1(J.Phys.Chem. C 2010, 114, 21417-21422)과 마찬가지로, Pd 분말을 사용한 경우에는 0.15V 및 0.65V 부근에, 포름산의 산화 반응에 대응하는 전류 피크를 확인할 수 있다. 복합체에 있어서도 포름산의 산화 반응에 대응하는 촉매 전류가 관측된 점에서, 당해 복합체는 촉매 활성을 갖는 것을 알 수 있다. 또한, 복합체의 포름산 산화 전류값은 2mA 정도이고, 입방체형의 활성 금속종의 전류값과 비교하면, 매우 높은 촉매 활성을 나타내고 있는 점에서, PCP를 피복함으로써 촉매 활성을 비약적으로 향상시키는 것을 알 수 있다.
<산업상 이용가능성>
PCP에 대한 담지 기술에 있어서도, 균일계 촉매부터 고상인 상태로 사용하는 불균일계 촉매까지 다양한 촉매 개발 연구에 널리 응용 이용이 가능하기 때문에 매우 중요하다. 구체적으로는, 암모니아 합성, 유기 반응 촉매(크로스 커플링 반응, 메타세시스 반응 등) 등 다방면에 걸쳐 산업계에 임펙트를 부여하는 기반 기술이 될 수 있다. 당해 복합체는 수소, 메탄올, 포름산 등을 연료로서 사용한 연료 전지의 전극 촉매로서도 유용하다. 기질을 농축시킬 수 있는 PCP를 사용함으로써, 고효율로 반응이 진행되어, 높은 전류 효율을 나타내는 것이 기대된다. 또한, 메탄올, 포름산을 사용한 계에서는 중간 생성물인 일산화탄소가 촉매독이 되어, 전극의 촉매 활성을 저하시키는 문제가 있지만, 일산화탄소를 흡착하는 PCP를 사용함으로써, 생성된 일산화탄소를 PCP가 흡착하여, 계 외로 방출 가능하기 때문에, 효율적으로 반응을 진행시키면서 또한 내구성도 겸비한 전극 촉매로 될 수 있다. 전극상의 산화·환원 반응에 있어서도 유용하고, PCP에 의한 기질의 농축 효과나 분자 스트레스 등에 의해, 보다 저에너지의 전위이면서 또한 효율적으로 반응을 일으키는 것이 가능하다. CO2를 환원시키는 전극 촉매로서 사용한 경우, PCP 세공 내부에 CO2를 고밀도로 도입하여 전자와 반응하여 포름산이나 옥살산 등의 산소 함유 화합물을 생성시킬 수 있다. 또한, PCP 세공 내부를 소수성으로 함으로써, 생성물을 세공 밖으로 재빨리 제거할 수 있기 때문에, 신터링(입자의 응집)에 수반하는 촉매 활성의 열화를 방지할 수 있다. 또한, 일산화탄소의 산화 반응의 경우에도 CO, O2만을 흡착할 수 있는 PCP(오픈 메탈 사이트나 CO나 O2만 통과시킬 수 있는 세공 직경으로 한다)를 합성함으로써, 일산화탄소와 산소만을 농축하여, 내부의 금속 촉매로 반응시킬 수 있다. 탄소-탄소 결합을 만드는 데 있어서 없어서는 안되는 반응(크로스 커플링 반응, 메타세시스 반응 등)을 행하는 경우, PCP의 세공 내부를 소수성으로 하여, 세공 크기를 제어함으로써, 어느 한 크기를 갖는 유기물(기질)만 도입할 수 있도록 설계하고, 선택적으로 반응시킬 수 있어, 마일드한 조건이면서 또한 높은 선택성을 갖는 유용한 유기 반응 촉매도 된다. 또한, 세공 내에 불포화 사이트를 부여함으로써, 예를 들어 이중 결합을 갖는 올레핀만을 흡착시켜, 반응시킬 수도 있다. 이렇게 PCP의 세공 직경, 세공 내의 성질(소수성·친수성), 불포화 사이트를 고려함으로써 목적의 기질만을 고효율이면서 또한 고선택적으로 반응시킬 수 있다.

Claims (11)

  1. 금속 나노 입자를 다공성 배위 고분자(Porous Coordination Polymer; PCP)의 내부에 포함하는 복합체이며, 상기 PCP가 금속 이온과 유기 배위자로 구성되는 복합체.
  2. 제1항 또는 제2항에 있어서, 상기 금속 나노 입자가 귀금속 나노 입자인 복합체.
  3. 제1항에 있어서, 표면으로부터 금속 나노 입자에 도달할 때까지의 PCP층의 평균 두께가 1 내지 200㎚인 복합체.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 PCP가 금속 이온과 카르복실기를 갖는 배위자와 환 내 질소 원자에 의해 배위 가능한 질소 함유 방향족 화합물로 구성되는 복합체.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 금속 나노 입자가 금, 백금, 팔라듐, 니켈, 코발트, 망간, 크롬, 은, 구리, 철, 루테늄, 로듐, 아연, 그들의 합금 또는 산화물로 이루어지는 군으로부터 선택되는 적어도 1종의 촉매인 복합체.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 복합체의 크기가 1 내지 500㎚인 복합체.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 금속 나노 입자의 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90% 이상 또는 95% 이상이 상기 PCP층을 통과하는 가스상의 반응물과 접촉할 수 있는 복합체.
  8. 제1항 내지 제7항 중 어느 한 항에 기재된 복합체의 촉매로서의 용도.
  9. 제1항 내지 제7항 중 어느 한 항에 기재된 복합체의 금속 나노 입자와, 상기 PCP에 의해 흡착되는 가스를 반응시켜 화합물을 생성시키는 것을 특징으로 하는, 상기 화합물의 제조 방법.
  10. 제9항에 있어서, 상기 가스가 수소와 질소이며, 금속 나노 입자가 철계의 촉매이며, 생성물이 암모니아인 제조 방법.
  11. 금속 나노 입자 및 용매의 존재 하에서 금속 이온과 다가 카르복실산 배위자 및/또는 질소 함유 헤테로환 배위자를 혼합하는 것을 특징으로 하는, 제1항 내지 제7항 중 어느 한 항에 기재된 복합체의 제조 방법.
KR1020147005064A 2011-08-05 2012-08-03 금속 나노 입자의 pcp 복합체와 그 제작 방법 KR101596608B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011171542 2011-08-05
JPJP-P-2011-171542 2011-08-05
PCT/JP2012/069845 WO2013021944A1 (ja) 2011-08-05 2012-08-03 金属ナノ粒子のpcp複合体とその作製方法

Publications (2)

Publication Number Publication Date
KR20140050081A true KR20140050081A (ko) 2014-04-28
KR101596608B1 KR101596608B1 (ko) 2016-02-22

Family

ID=47668452

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147005064A KR101596608B1 (ko) 2011-08-05 2012-08-03 금속 나노 입자의 pcp 복합체와 그 제작 방법

Country Status (6)

Country Link
US (1) US9586196B2 (ko)
EP (1) EP2740754A4 (ko)
JP (1) JP5946456B2 (ko)
KR (1) KR101596608B1 (ko)
CN (1) CN103717647B (ko)
WO (1) WO2013021944A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170142426A (ko) * 2016-06-17 2017-12-28 주식회사 엘지화학 리튬 코발트 산화물을 포함하는 코어 및 리간드 화합물을 포함하는 배위 고분자 코팅층으로 구성된 양극활물질 입자 및 이를 제조하는 방법

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099382A1 (ja) 2011-12-28 2013-07-04 株式会社村田製作所 機能性材料の製造方法および電子部品
KR20150059759A (ko) * 2012-09-20 2015-06-02 고쿠리츠 다이가쿠 호진 교토 다이가쿠 금속 나노 입자 복합체 및 그 제조 방법
JP6004500B2 (ja) * 2012-11-20 2016-10-12 国立研究開発法人理化学研究所 新規錯体およびその利用
JPWO2015137272A1 (ja) * 2014-03-11 2017-04-06 国立大学法人京都大学 多孔性構造体およびその製造方法並びに複合金属ナノ粒子の製造方法
JPWO2015170688A1 (ja) * 2014-05-07 2017-04-20 国立大学法人北陸先端科学技術大学院大学 金属担持多孔性配位高分子触媒
CN104399529B (zh) * 2014-11-18 2016-11-23 中国石油大学(北京) 一种二烯烃选择性加氢催化剂及其制备方法与应用
JP2018510053A (ja) * 2015-01-29 2018-04-12 ビーエーエスエフ コーポレーション 自動車排ガス処理用白金族金属(pgm)触媒
US10159969B2 (en) * 2015-03-31 2018-12-25 Colorado School Of Mines Ammonia synthesis at moderate conditions using hydrogen permeable membrane reactors
MY181155A (en) * 2015-04-20 2020-12-19 Anteo Tech Pty Ltd A composition
CN104923256B (zh) * 2015-06-11 2017-07-28 哈尔滨工业大学 负载钯的功能化纳米粒子磁性催化剂的制备方法
EP3323507B1 (en) 2015-07-15 2021-04-14 Furukawa Electric Co. Ltd. Catalyst comprising an integrated base material and a nanocrystalline metal oxide composite, production method therefor, and catalyst component
EP3323506A4 (en) 2015-07-15 2019-05-08 Furukawa Electric Co. Ltd. CATALYST OF A NANOCRYSTAL COMPOUNT FOR HYDROGEN STORAGE / SUPPLY, CATALYST MIXTURE OF A NANOCRYSTAL COMPLEX FOR HYDROGEN STORAGE / SUPPLY AND METHOD OF SUPPLEMENTING HYDROGEN
CN105233872B (zh) * 2015-10-22 2018-06-26 辽宁大学 一种Pd@MIL-101复合材料及其制备方法和应用
JP6691293B2 (ja) * 2016-02-26 2020-04-28 富士通株式会社 二酸化炭素還元用電極、容器、及び二酸化炭素還元装置
JP2017160476A (ja) * 2016-03-08 2017-09-14 富士通株式会社 二酸化炭素還元装置
CN106064097B (zh) * 2016-06-08 2018-10-30 南京科技职业学院 一种常温合成氨催化剂及其制备方法
RU2622293C1 (ru) * 2016-06-30 2017-06-14 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения катализатора и способ гидрогенизационной конверсии диоксида углерода в жидкие углеводороды с его использованием
JP6795762B2 (ja) * 2016-12-16 2020-12-02 富士通株式会社 二酸化炭素還元用電極、二酸化炭素還元用電極の製造方法、及び二酸化炭素還元装置
CN107221458B (zh) * 2017-05-25 2019-11-15 温州大学 镍配合物为前躯体的掺碳氧化镍复合电极材料及其制备方法
KR102123148B1 (ko) * 2018-04-18 2020-06-15 인천대학교 산학협력단 금속착물을 활용한 탄소껍질을 가진 금속 촉매의 합성방법
CN111092234B (zh) * 2019-12-04 2022-04-12 东南大学 一种高性能氧还原催化剂的制备方法
JP7290330B2 (ja) * 2020-01-29 2023-06-13 平岡織染株式会社 消臭抗菌性シート状物及びその製造方法
CN111215147B (zh) * 2020-02-19 2024-05-03 中国科学技术大学 一种负载型蛋黄-蛋壳结构纳米催化剂及其制备方法
JP7348654B2 (ja) * 2020-03-04 2023-09-21 平岡織染株式会社 帯電防止性消臭シート状物及びその製造方法
JP7339666B2 (ja) * 2020-03-16 2023-09-06 平岡織染株式会社 消臭抗菌性シート状物及びその製造方法
CN111450889B (zh) * 2020-04-03 2023-08-01 哈尔滨师范大学 一种Ni2Fe-ICP纳米片及其室温生长的制备方法
JP2022013196A (ja) * 2020-07-03 2022-01-18 平岡織染株式会社 消臭性抗菌防黴物質、消臭性抗菌防黴塗料組成物、及び消臭性抗菌防黴塗膜
CN114622242B (zh) * 2022-02-15 2023-01-06 苏州大学 Ni/NiO纳米异质结多孔石墨碳复合材料及其制备方法与应用
CN115385317A (zh) * 2022-09-23 2022-11-25 宜都兴发化工有限公司 一种赝晶转化法制备介孔纳米磷酸铁的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080064077A (ko) * 2007-01-03 2008-07-08 주식회사 인실리코텍 다공성 금속-유기 골격 구조를 갖는 배위중합체 결정 및이의 제조방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005075870A (ja) * 2003-08-29 2005-03-24 Kyoto Univ アニオン部位を規則的に有する配位高分子
JP2005255651A (ja) 2004-03-15 2005-09-22 Kyoto Univ 有機金属錯体構造体及びその製造方法、並びに、該有機金属錯体構造体を用いた機能性膜、機能性複合材料、機能性構造体及び吸脱着センサー
JP4783894B2 (ja) * 2005-03-10 2011-09-28 国立大学法人京都大学 多孔性配位高分子およびそれからなる触媒
KR100864313B1 (ko) * 2007-05-21 2008-10-20 한국화학연구원 불포화 금속자리를 갖는 다공성 유-무기 혼성체 또는메조세공체의 표면 기능화 및 그의 응용
US20100183497A1 (en) * 2007-11-06 2010-07-22 Quantumsphere, Inc. System and method for ammonia synthesis
CN101596465B (zh) * 2009-06-30 2011-08-24 北京大学 基于金属有机框架结构的金属催化剂及其制备方法和应用
CN101733162A (zh) * 2009-12-24 2010-06-16 上海交通大学 有机金属框架物负载钯及其制备方法、用途
US9139601B2 (en) * 2010-04-30 2015-09-22 Commonwealth Scientific And Industrial Research Organisation Crystallisation facilitators for the synthesis of metal organic frameworks

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080064077A (ko) * 2007-01-03 2008-07-08 주식회사 인실리코텍 다공성 금속-유기 골격 구조를 갖는 배위중합체 결정 및이의 제조방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ChemCo㎜, 2011, 47, 3075-3077
Eur.J.Inorg.Chem., 2010, 3701-3714
S.Turner 외 5, Direct Imaging of Loaded Metal-Organic Framework Materials(Metal@MOF-5), Chem. Mater., Vol.20, N.17, pp.5622-5627(2008.08.07.) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170142426A (ko) * 2016-06-17 2017-12-28 주식회사 엘지화학 리튬 코발트 산화물을 포함하는 코어 및 리간드 화합물을 포함하는 배위 고분자 코팅층으로 구성된 양극활물질 입자 및 이를 제조하는 방법

Also Published As

Publication number Publication date
CN103717647A (zh) 2014-04-09
WO2013021944A1 (ja) 2013-02-14
EP2740754A4 (en) 2015-10-14
JP5946456B2 (ja) 2016-07-06
KR101596608B1 (ko) 2016-02-22
CN103717647B (zh) 2016-12-07
US20140186253A1 (en) 2014-07-03
JPWO2013021944A1 (ja) 2015-03-05
US9586196B2 (en) 2017-03-07
EP2740754A1 (en) 2014-06-11
WO2013021944A9 (ja) 2013-05-02

Similar Documents

Publication Publication Date Title
KR101596608B1 (ko) 금속 나노 입자의 pcp 복합체와 그 제작 방법
Lai et al. Atomic‐local environments of single‐atom catalysts: synthesis, electronic structure, and activity
Chen et al. Multicomponent metal oxides derived from Mn-BTC anchoring with metal acetylacetonate complexes as excellent catalysts for VOCs and CO oxidation
Jang et al. Metal organic framework-templated chemiresistor: sensing type transition from P-to-N using hollow metal oxide polyhedron via galvanic replacement
Zhu et al. Metal–organic framework composites
Dai et al. Recent progresses in metal–organic frameworks based core–shell composites
Falcaro et al. Application of metal and metal oxide nanoparticles@ MOFs
Kobayashi et al. Metal nanoparticles covered with a metal–organic framework: from one-pot synthetic methods to synergistic energy storage and conversion functions
Schrinner et al. Stable bimetallic gold-platinum nanoparticles immobilized on spherical polyelectrolyte brushes: synthesis, characterization, and application for the oxidation of alcohols
Jiang et al. Porous metal–organic frameworks as platforms for functional applications
Rong et al. Non-noble metal@ carbon nanosheet derived from exfoliated MOF crystal as highly reactive and stable heterogeneous catalyst
Chen et al. Controlled encapsulation of flower-like Rh–Ni alloys with MOFs via tunable template Dealloying for enhanced selective hydrogenation of alkyne
Zhao et al. Nanoscale MIL-101 supported RhNi nanoparticles: an efficient catalyst for hydrogen generation from hydrous hydrazine
EP2899223A1 (en) Metal nanoparticle complex and method for producing same
Zhao et al. Monodisperse metal–organic framework nanospheres with encapsulated core–shell nanoparticles Pt/Au@ Pd@{Co2 (oba) 4 (3-bpdh) 2} 4H2O for the highly selective conversion of CO2 to CO
Lai et al. Plasmon-induced carrier separation boosts high-selective photocatalytic CO2 reduction on dagger-axe-like Cu@ Co core–shell bimetal
Shi et al. A new bifunctional electrochemical sensor for hydrogen peroxide and nitrite based on a bimetallic metalloporphyrinic framework
JP2009515679A (ja) 高分散金属触媒
Jiang et al. In situ synthesis of core–shell Pt–Cu frame@ metal–organic frameworks as multifunctional catalysts for hydrogenation reaction
Ghosh et al. Noble metal–manganese oxide hybrid nanocatalysts
Kute et al. A review on the synthesis and applications of sustainable copper-based nanomaterials
Wu et al. Pt-Embedded CuO x–CeO2 Multicore–Shell Composites: Interfacial Redox Reaction-Directed Synthesis and Composition-Dependent Performance for CO Oxidation
Gangu et al. The pioneering role of metal–organic framework-5 in ever-growing contemporary applications–a review
Shan et al. Self-template synthesis of a MnCeOδ/Co3O4 polyhedral nanocage catalyst for toluene oxidation
Ning et al. Rare earth oxide anchored platinum catalytic site coated zeolitic imidazolate frameworks toward enhancing selective hydrogenation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190130

Year of fee payment: 4