KR20140036847A - Polymer electrolyte membrane of metallophthalocyanine contained sulfonated poly(ether sulfone)s and preparing method thereof - Google Patents

Polymer electrolyte membrane of metallophthalocyanine contained sulfonated poly(ether sulfone)s and preparing method thereof Download PDF

Info

Publication number
KR20140036847A
KR20140036847A KR1020120103477A KR20120103477A KR20140036847A KR 20140036847 A KR20140036847 A KR 20140036847A KR 1020120103477 A KR1020120103477 A KR 1020120103477A KR 20120103477 A KR20120103477 A KR 20120103477A KR 20140036847 A KR20140036847 A KR 20140036847A
Authority
KR
South Korea
Prior art keywords
polymer
dhtpe
ether sulfone
diphenylethenylidene
poly
Prior art date
Application number
KR1020120103477A
Other languages
Korean (ko)
Other versions
KR101436011B1 (en
Inventor
김환기
임영돈
서동완
이순호
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020120103477A priority Critical patent/KR101436011B1/en
Publication of KR20140036847A publication Critical patent/KR20140036847A/en
Application granted granted Critical
Publication of KR101436011B1 publication Critical patent/KR101436011B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/205Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic, containing only six-membered aromatic rings as cyclic parts with unsaturation outside the rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a sulfonated poly(ether sulfone) polymer electrolyte membrane including metallophthalocyanine and a preparing method thereof. More specifically, the present invention relates to a polymer having an excellent membrane durability, a low moisture absorptivity in an aqueous solution, and a high proton conductivity; a manufacturing method thereof; an electrolyte membrane based on the polymer; and a polymer electrolyte membrane fuel cell using the same. The hybrid membrane made of sulfonated poly(ether sulfone) including metallophthalocyanine according to the present invention has excellent moisture absorptivity and proton conductivity despite a relatively low ion exchange capacity (IEC). Also, the hybrid membrane can be used for the electrolyte membrane of a fuel cell because the hybrid membrane has excellent membrane durability and plays an important role as an antioxidant and an ion conductivity accelerator.

Description

금속 프탈로시아닌을 포함하는 설폰화 폴리(에테르설폰) 고분자 전해질막 및 그 제조방법{POLYMER ELECTROLYTE MEMBRANE OF METALLOPHTHALOCYANINE CONTAINED SULFONATED POLY(ETHER SULFONE)S AND PREPARING METHOD THEREOF}TECHNICAL FIELD [0001] The present invention relates to a sulfonated poly (ether sulfone) polymer electrolyte membrane containing a metal phthalocyanine and a method for producing the same. BACKGROUND ART < RTI ID = 0.0 >

본 발명은 금속 프탈로시아닌을 포함하는 설폰화 폴리(에틸르설폰) 고분자 전해질막 및 그 제조방법에 관한 것으로, 더욱 상세하게는 막 내구성이 우수하며 수용액에서 낮은 수분 흡수 및 높은 양성자 전도성을 갖는 고분자와 그의 제조방법, 상기 고분자를 기반으로 하는 전해질막 및 이를 채용한 고분자 전해질막 연료전지에 관한 것이다.The present invention relates to a sulfonated poly (ethylsulfone) polymer electrolyte membrane containing a metal phthalocyanine and a method for producing the same. More particularly, the present invention relates to a polymer having excellent membrane durability and low water absorption in aqueous solution and high proton conductivity, An electrolyte membrane based on the polymer, and a polymer electrolyte membrane fuel cell employing the electrolyte membrane.

화학 에너지를 전기 에너지로 전환시키는 고분자 전해질막 연료전지(polymer electrolyte membrane fuel cells, PEMFCs)는, 고효율, 고에너지 밀도, 조용한 작동 및 환경친화성과 같은 이점으로 인해 유망한 미래 전력원으로 여겨진다. Polymer electrolyte membrane fuel cells (PEMFCs), which convert chemical energy into electrical energy, are seen as a promising future power source because of their advantages such as high efficiency, high energy density, quiet operation and environmental friendliness.

PEMFC의 주요 재료 중 하나가 양성자 교환막(proton exchange membrane, PEM)인데, 이는 양극(anode)로부터 음극(cathode)으로의 양성자 수송을 가능하게 한다.One of the main materials of the PEMFC is a proton exchange membrane (PEM), which allows proton transport from the anode to the cathode.

수십 년 동안, 퍼플루오르화 설폰산 막(Nafina® 및 Acoplex®)이 이의 우수한 화학적, 물리적 및 전기적 특성으로 인해 사용되어 왔다. 그러나, Nafion은 100℃ 이상에서의 사용에는 적절하지 않다. 이에 따라, 연료전지에 대한 새로운 고분자막이 연구되고 있다. 화학적 개질에 의해 개발되었다.For decades, perfluorinated sulfonic acid membranes (Nafina ® and Acoplex ® ) have been used due to their excellent chemical, physical and electrical properties. However, Nafion is not suitable for use at temperatures above 100 ° C. Accordingly, a new polymer membrane for a fuel cell is being studied. It was developed by chemical modification.

이러한 유형의 단점을 극복하기 위해, 설폰화 방향족 탄화수소 중합체를 기반으로 하는 대안적인 양성자 전도성막을 개발하기 위해 예의 노력이 이루어져 왔다(Matsumoto, K., T. Higashihara, and M. Ueda. 2009. Locally and Densely Sulfonated Poly(ether sulfone)s as Proton Exchange Membrane. Macromolecules 42:1161-1166; Mauritz, K. A. and R. B. Moore. State of understanding of Nafion. 2004. Chem. Rev. 104:4535-4585; Savadogo, O. Emerging membranes for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems. 1998. J. New Mater. Electrochem. Syst. 1:47-66).In order to overcome this type of disadvantage, courtesy efforts have been made to develop alternative proton conducting membranes based on sulfonated aromatic hydrocarbon polymers (Matsumoto, K., T. Higashihara, and M. Ueda, 2009. Locally and Densely Sulfonated Poly (ether sulfone) s as Proton Exchange Membrane Macromolecules 42:.... 1161-1166; Mauritz, KA and RB Moore State of understanding of Nafion 2004. Chem Rev. 104: 4535-4585; Savadogo, O. Emerging membranes for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems 1998. J. New Mater. Electrochem. Syst. 1: 47-66).

그러나, 이들은 80℃ 이상의 온도에서 불량한 성능, 퍼플루오르화 재료의 높은 생산 가공 비용 및 환경 비친화성과 같은 단점이 있다.
However, they have disadvantages such as poor performance at temperatures above 80 캜, high production cost of perfluorinated materials, and environmental incompatibility.

최근, 다수의 연구 그룹이 Nafion 막의 단점을 극복하기 위해 시도하여 왔다(Li, Q., R. He, J. O. Jensen and N. J. Bjerrum. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100ㅀ. 2003. Chemistry of Materials 15:4896-4915; Hickner, M. A., H. Ghassemi, Y. S. Kim, B. R. Einsla and J. E. McGrath. Alternative Polymer Systems for Proton Exchange Membranes (PEMs). 2004. Chem. Rev. 104:4587-4611; Hickner, M. A. and B. S. Pivovar. The chemical and structural nature of proton exchange membrane fuel cell properties. 2005. Fuel Cells 5:213-229; Lufrano, F., O. Squadrito, A. Patti and B. Passalacqua. Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells. 2000. J. Appl. Polym. Sci. 77:1250-1257).Recently, a number of research groups have attempted to overcome the disadvantages of Nafion membranes (Li, Q., R. He, JO Jensen and NJ Bjerrum. Approaches and recent developments of polymer electrolyte membranes for fuel cells operating above 100 ㅀ. Chemistry of Materials 15: 4896-4915; Hickner, MA, H. Ghassemi, YS Kim, BR Einsla and JE McGrath, Alternative Polymer Systems for Proton Exchange Membranes (PEMs), 2004. Chem. Rev. 104: 4587-4611; Huckner, MA and BS Pivovar., 2005. Fuel Cells 5: 213-229; Lufrano, F., O. Squadrito, A. Patti and B. Passalacqua. promising membranes for polymer electrolyte fuel cells 2000. J. Appl. Polym. Sci. 77: 1250-1257).

특히, 열안정성 방향족 탄화수소 중합체가 100℃를 초과하는 고온에서 사용하기 위한 후보 막으로서 부상되고 있다.In particular, thermally stable aromatic hydrocarbon polymers are floating as candidate films for use at high temperatures exceeding 100 캜.

폴리(에테르설폰) 및 폴리(에테르케톤)이 우선적으로 선택되는데, 왜냐하면 이들은 열안정성, 높은 열변형 온도, 화학적 불활성, 전기적 성능 및 난연성과 같은 우수한 특성으로 인해 열가소성 중합체 중에서 우수한 위치를 달성하였기 때문이다(Bailly, C., D. J. Williams, F. E. Karasz and W. J. MacKnight. The sodium salts of sulfonated poly(aryl-ether-ether-ketone) (PEEK): preparation and characterization. 1987. Polymer 28:1009-1016; Zaidi, S. M. J., S. D. Mikhailenko, G. P. Robertson, M. D. Guiver and S. Kaliaguine. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. 2000. J. Membr. Sci. 173:17-34; Liu, B., G. P. Robertson, D. S. Kim, M. D. Guiver, W. Hu and Z. Jiang. Aromatic Poly(ether ketone)s with Pendant Sulfonic Acid Phenyl Groups Prepared by a Mild Sulfonation Method for Proton Exchange Membranes. 2007. Macromolecules 40:1934-1944; Harrison, W. L., M. A. Hickner, Y. S. Kim and J. E. McGrath. Poly(arylene ether sulfone) copolymers and related systems from disulfonated monomer building blocks: synthesis, characterization, and performance - a topical review. 2005. Fuel Cells 5:201-212; Miyatake, K., Y. Chikashige, E. Higuchi and M. Watanabe. Tuned Polymer Electrolyte Membranes Based on Aromatic Polyethers for Fuel Cell Applications. 2007. J. Am. Chem. Soc. 129:3879-3887; Asensio, J. A., S. Borrㆃs and P. Gㆃmez-Romero. Sulfonated poly(2,5-benzimidazole) (SABPBI) impregnated with phosphoric acid as proton conducting membranes for polymer electrolyte fuel cells. 2004. Electrochimica Acta 49:4461-4466; Mikhailenk, S. D., O. K. Wang, S. Kaliaguine, P. Xing, G. P. Robertson and M. D. Guiver. Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK). 2004. J. Membr. Sci. 233:93-99).
Poly (ether sulfone) and poly (ether ketone) are preferentially chosen because they have achieved excellent positions in thermoplastic polymers due to their excellent properties such as thermal stability, high heat distortion temperature, chemical inertness, electrical performance and flame retardancy (PEEK): preparation and characterization, 1987. Polymer 28: 1009-1016; Zaidi, SMJ, et al. , SD Mikhailenko, GP Robertson, MD Guiver and S. Kaliaguine. Proton conducting composite membranes from polyetheretherketone and heteropolyacids for fuel cell applications. 2000. J. Membr. Sci. 173: 17-34; Liu, B., GP Robertson , DS Kim, MD Guiver, W. Hu and Z. Jiang, Aromatic Poly (ether ketone) s with Pendant Sulfonic Acid Phenyl Groups Prepared by a Mild Sulfonation Method for Proton Exchange Membranes 2007. Macromolecules 40: 1934-1944; Harrison, WL, MA Hickner, YS Kim and JE McGrath. Poly (arylene ether sulfone) copolymers and related systems from disulfonated monomer building blocks: synthesis, characterization, and performance - a topical review 2005. Fuel Cells 5: 201-212; Miyatake, K., Y. Chikashige, E. Higuchi and M. Watanabe. Tuned Polymer Electrolyte Membranes Based on Aromatic Polyethers for Fuel Cell Applications. 2007. J. Am. Chem. Soc. 129: 3879-3887; Asensio, JA, S. Borr ㆃ s and P. G ㆃ mez-Romero. Sulfonated poly (2,5-benzimidazole) (SABPBI) impregnated with phosphoric acid as proton conducting membranes for polymer electrolyte fuel cells. 2004. Electrochimica Acta 49: 4461-4466; Mikhailenk, SD, OK Wang, S. Kaliaguine, P. Xing, GP Robertson and MD Guiver. Proton conducting membranes based on cross-linked sulfonated poly (ether ether ketone) (SPEEK). 2004. J. Membr. Sci. 233: 93-99).

요즘, 탄화수소막의 연구가 상당히 진전을 이루고 있다. 이것은 양성자 전도성 및 전력 밀도 등과 같은 성능이 퍼플루오르화 막과 유사하고 비용은 그보다 낮다. 그러나, 이의 내구성은 이들 재료에 미치지 못한다. Nowadays, research on hydrocarbon membranes is making considerable progress. This is similar to perfluorinated membranes and has lower cost, such as proton conductivity and power density. However, its durability does not reach these materials.

막의 화학적 안정성은 연료전지 작동 하에서 막 내구성과 직접 관련되어 있다. 작동 중인 PEMFC에서 막의 화학적 분해를 가장 가능하게 하는 개시제는 막-전극 계면에서 생성된 하이드록시(OH·) 및 하이드로퍼옥시(HOO·) 라디칼이라는 것이 널이 인정되었다. 상기 라디칼들은 모두 중합체와의 반응성이 커서 분해에 기여한다(Lei, Z., and M. Sanjeev. Investigation of Durability Issues of Selected Nonfluorinated Proton Exchange Membranes for Fuel Cell Application. 2006. Journal of The Electrochemical Society, 153:A1062-A1072).
The chemical stability of the membrane is directly related to membrane durability under fuel cell operation. Initiators that are most likely to allow chemical degradation of the membrane in a working PEMFC have been found to be hydroxy (OH) and hydroperoxy (HOO) radicals generated at the membrane-electrode interface. All of these radicals are highly reactive with the polymer and contribute to the degradation (Lei, Z., and M. Sanjeev. Investigation of Durability Issues of Selected Non-Fluorinated Proton Exchange Membranes for Fuel Cell Application, 2006. Journal of The Electrochemical Society, A1062-A1072).

본 발명자들은 이점에 주목하고, 과산화수소(H2O2)의 산화 촉진제로서의 금속 프탈로시아닌(metallophthalocyanine, MPc)에 중점을 두었다. 프탈로시아닌(phthalocyanine, Pc)은 π-시스템(원자 오비탈이 평행하게 중합되어 핵간 축 상하에 전자 밀도 구름을 형성하는 결합)이 컨쥬게이트 탄소 및 질소 원자의 배열 위에 편재화되어 이의 독특한 화학적 및 물리적 특성을 제공하는 대환식 착체(Macrocyclic complex)이다(Amaral, G. P., G. O. Puntel, C. L. D. Corte, F. Dobrachinski, R. P. Barcelos, L. L. Bastos, D. S. Avila, J. B. T. Rocha, E. O. Silva, R. L. Puntel and F. A. A. Soares. The antioxidant properties of different phthalocyanines. 2012. Toxicology in Vitro 26:125-132; Leznoff, C. C. and A. B. P. Lever. 2004. Phthalocyanines : properties and applications . New York:VHC).The present inventors paid attention to this point and focused on a metallophthalocyanine (MPc) as an oxidation promoter of hydrogen peroxide (H 2 O 2 ). Phthalocyanine (Pc) is a system in which the π-system (a bond in which an atomic orbitals are polymerized in parallel to form an electron density cloud below the nucleus axis) is localized on the arrangement of conjugated carbon and nitrogen atoms, and its unique chemical and physical properties (Amaral, GP, GO Puntel, CLD Corte, F. Dobrachinski, RP Barcelos, LL Bastos, DS Avila, JBT Rocha, EO Silva, RL Puntel and FAA Soares. The antioxidant properties of different phthalocyanines. 2012. Toxicology in Vitro 26: 125-132; Leznoff, CC and ABP Lever. 2004. Phthalocyanines : properties and applications . New York: VHC).

중심 공동(central cavity)에 수소 원자를 치환하여 생성된 금속 착체로서의 MPc(M: Co, Ni, Fe, Cu)는 특성 제어에 중요한 역할을 한다(Hanack, M., T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom and R. G. S. Pong.Indium phthalocyanines and naphthalocyanines for optical limiting. 2001. Coord. Chem. Rev. 219:235-258).
MPc (M: Co, Ni, Fe, Cu) as metal complexes formed by substituting hydrogen atoms in the central cavity play an important role in controlling the properties (Hanack, M., T. Schneider, M. Barthel , JS Shirk, SR Flom and RGS Pong. Indium phthalocyanines and naphthalocyanines for optical limiting, 2001. Coord. Chem. Rev. 219: 235-258).

MPc는 과산화수소의 용액상 전기화학 산화 및 환원에 대한 촉매로서 작용한다. Trogler는 CoPc이 운동 및 포화 레짐(regim) 모두에서 일정한 습도의 존재 또는 부재 하에서 전류를 손실시키면서 각각의 과산화수소 용량에 반응한다고 보고하였다. 역으로, NiPc, CuPc 및 H2Pc는 일정한 습도의 존재 또는 부재 하에 전류를 획득하면서 과산화수소에 반응한다(Forest I. Bohrer, Corneliu N. Colesniuc, Jeongwon Park, Ivan K. Schuller, Andrew C. Kummel, and William C. Trogler Selective Detection of Vapor Phase Hydrogen Peroxide with Phthalocyanine Chemiresistors J. AM. CHEM. SOC. 2008, 130, 3712-3713).MPc serves as a catalyst for the electrochemical oxidation and reduction of solution of hydrogen peroxide. Trogler reported that CoPc responded to the respective hydrogen peroxide capacity while losing current in the presence and absence of constant humidity in both the exercise and saturation regim. Conversely, NiPc, CuPc, and H2Pc respond to hydrogen peroxide in the presence or absence of constant humidity (Forest I. Bohrer, Corneliu N. Colesniuc, Jeongwon Park, Ivan K. Schuller, Andrew C. Kummel, and William C. Trogler Selective Detection of Vapor Phase Hydrogen Peroxide with Phthalocyanine Chemiresistors J. Am. CHEM SOC. 2008, 130, 3712-3713).

또한, MPc 화합물은 Fe2+, Fe2+ + H2O2, 및 H2O2 용액을 사용시 전지의 산화에서 상당한 보호 효과를 발휘한다(Amaral, G. P. , G. O. Puntel, C. L. D. Corte , F. Dobrachinski , R. P. Barcelos, L. L. Bastos, D. S. Avila, J. B. T. Rocha, E. O. Silva, R. L. Puntel and F. A. A. Soares. The antioxidant properties of different phthalocyanines. 2012. Toxicology in Vitro 26:125-132).
The MPc compound also exhibits a considerable protective effect in the oxidation of the cell when Fe 2+ , Fe 2+ + H 2 O 2 , and H 2 O 2 solutions are used (Amaral, GP, GO Puntel, CLD Corte, F. Dobrachinski , RP Barcelos, LL Bastos, DS Avila, JBT Rocha, EO Silva, RL Puntel and FAA Soares 2012. Toxicology in Vitro 26: 125-132).

이에 본 발명자들은 MPc 함유 폴리(에테르설폰) 공중합체(PMPc) 및 보통의 설폰화 공중합체를 합성한 후, 상기 PMPc 및 설폰화 공중합체의 혼합물로부터 하이브리드막을 제조하여 PMPc의 금속 및 함량 변화에 따른 산화 안정성을 확인하고 본 발명을 완성하였다. Therefore, the present inventors synthesized a MPc-containing poly (ether sulfone) copolymer (PMPc) and a usual sulfonated copolymer, and then produced a hybrid membrane from a mixture of the PMPc and the sulfonated copolymer, And confirmed the oxidation stability and completed the present invention.

결국, 본 발명의 주된 목적은 막 내구성이 우수하며 수용액에서 낮은 수분 흡수 및 높은 양성자 전도성을 갖는 고분자 및 그 제조방법을 제공하는데 있다.As a result, the main object of the present invention is to provide a polymer having excellent membrane durability and low water absorption and high proton conductivity in an aqueous solution, and a method for producing the same.

또한, 본 발명의 다른 목적은 상기 고분자를 기반으로 하는 전해질막을 제공하는데 있다.Another object of the present invention is to provide an electrolyte membrane based on the polymer.

또한, 본 발명의 또 다른 목적은 상기 전해질막을 채용한 고분자 전해질막 연료전지를 제공하는데 있다.It is still another object of the present invention to provide a polymer electrolyte membrane fuel cell employing the electrolyte membrane.

상기 목적을 달성하기 위하여, 본 발명은 막 내구성이 우수하며 수용액에서 낮은 수분 흡수 및 높은 양성자 전도성을 갖는 고분자로서 금속 프탈로시아닌을 포함하는 설폰화 폴리(에테르설폰) 및 그 제조방법을 제공한다.In order to achieve the above object, the present invention provides a sulfonated poly (ether sulfone) containing metal phthalocyanine as a polymer having excellent membrane durability and low water absorption and high proton conductivity in an aqueous solution, and a process for producing the same.

또한, 본 발명은 상기 금속 프탈로시아닌을 포함하는 설폰화 폴리(에테르설폰)을 기반으로 하는 전해질막을 제공한다.In addition, the present invention provides an electrolyte membrane based on sulfonated poly (ether sulfone) containing the metal phthalocyanine.

또한, 본 발명은 상기 전해질막을 채용한 고분자 전해질막 연료전지를 제공한다.The present invention also provides a polymer electrolyte membrane fuel cell employing the electrolyte membrane.

상기와 같은 본 발명에 따르면, 본 발명의 금속 프탈로시아닌을 포함하는 설폰화 폴리(에테르 설폰)으로 제조한 하이브리드막은 상대적으로 낮은 이온 교환능(IEC)에도 불구하고 수분 흡수율 및 양성자 전도성이 우수하다.According to the present invention, the hybrid membrane made of the sulfonated poly (ether sulfone) containing the metal phthalocyanine of the present invention is excellent in water absorption rate and proton conductivity despite relatively low ion exchange capacity (IEC).

또한, 상기 하이브리드막은 막 내구성이 우수할 뿐만 아니라 항산화제 및 양성자 전도성 촉진제로서 중요한 역할을 하기 때문에 연료전지의 전해질막으로 유용하게 이용될 수 있다.In addition, since the hybrid membrane not only has excellent membrane durability but also plays an important role as an antioxidant and a proton conductivity promoter, the hybrid membrane can be effectively used as an electrolyte membrane of a fuel cell.

도 1은 본 발명에 따른 DHTPE 및 HPDCP의 1H NMR 스펙트럼이다.
도 2는 본 발명에 따른 PDHTPE 및 PHPDCP의 1H NMR 스펙트럼이다.
도 3은 본 발명에 따른 PMPc의 FT-IR 및 1H NMR 스펙트럼이다.
도 4는 본 발명에 따른 PMPc 및 SPDHTPE 40의 TGA 그래프이다.
도 5는 본 발명에 따른 PMPc 및 SPDHTPE 40의 이온 교환능(IEC) 및 수분 흡수(Wateruptake) 그래프이다.
도 6은 본 발명의 일 실시예에 따라 제조한 막(membrane)의 4 ppm Fe2+ Fenton 시약에서의 화학적 분해 가속 시험 결과 그래프이다.
도 7은 본 발명의 일 실시예에 따라 제조한 H-Ni 하이브리드막의 양성자 전도성을 나타낸 것이다(1: 80% RH, 40-90℃; 2: 30-90% RH, 80℃).
도 8은 본 발명의 일 실시예에 따라 제조한 막의 양성자 전도성을 나타낸 것이다(1: 80% RH, 40-90℃; 2: 30-90% RH, 80℃).
1 is a 1 H NMR spectrum of DHTPE and HPDCP according to the present invention.
2 is a 1 H NMR spectrum of PDHTPE and PHPDCP according to the present invention.
3 shows FT-IR and 1 H NMR spectra of PMPc according to the present invention.
4 is a TGA graph of PMPc and SPDHTPE 40 according to the present invention.
5 is a graph of ion exchange capacity (IEC) and water uptake of PMPc and SPDHTPE 40 according to the present invention.
Figure 6 is a graph of the results of accelerated chemical degradation test in 4 ppm Fe 2+ Fenton reagent of the membrane (membrane) prepared according to an embodiment of the present invention.
7 shows the proton conductivity of a H-Ni hybrid membrane prepared according to an embodiment of the present invention (1: 80% RH, 40-90 ° C; 2: 30-90% RH, 80 ° C).
Figure 8 illustrates the proton conductivity of membranes prepared according to one embodiment of the present invention (1: 80% RH, 40-90 C; 2: 30-90% RH, 80 C).

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은, 하기 화학식 1로 표시되는 4,4′-(2,2-디페닐에테닐리덴) 디페놀(4,4′-(2,2-diphenylethenylidene) diphenol, DHTPE)을 제공한다.The present invention provides 4,4 '- (2,2-diphenylethenylidene) diphenol (DHTPE) represented by the following formula (1).

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

본 발명의 상기 DHTPE는, 하기 반응식 1에 따라, 디페닐메탄(diphenylmethane) 및 4,4-디메톡시벤조페논(4,4-dimethoxybenzophenone)을 출발물질로 하여, 맥머리 탄소-탄소 이중결합 커플링 반응 및 삼브롬화붕소(BBr3)를 이용한 디메틸화(demethylation)를 통해 제조할 수 있다.The DHTPE of the present invention can be synthesized according to the following Reaction Scheme 1 by using a diphenylmethane and 4,4-dimethoxybenzophenone as starting materials, Reaction and demethylation using boron tribromide (BBr 3 ).

[반응식 1][Reaction Scheme 1]

Figure pat00002

Figure pat00002

또한, 본 발명은, 상기 DHTPE를 함유하는 설폰화 폴리(에테르설폰)(SPDHTPE)를 제공한다.The present invention also provides a sulfonated poly (ether sulfone) (SPDHTPE) containing the DHTPE.

본 발명의 SPDHTPE는 하기 화학식 3으로 표시되며, 하기 반응식 2에 따라 4,4′-(2,2-디페닐에테닐리덴) 디페놀(4,4′-(2,2-diphenylethenylidene, DHTPE), 4,4-플루오로페닐설폰(4,4-fluorophenylsulfone) 및 설포닐디페놀(sulfonyldiphenol)을 출발물질로 하여 공중합체(PDHTPE, 화학식 2)를 제조한 후 설포화반응(sulfonation)을 통해 제조가 가능하다. 이때, 상기 DHTPE는 40%mol로 함유되는 것이 바람직하다.The SPDHTPE of the present invention is represented by the following general formula (3), and 4,4 '- (2,2-diphenylethenylidene), DHTPE (PDHTPE, Formula 2) is prepared from 4,4-fluorophenylsulfone and sulfonyldiphenol as starting materials, and then sulfonated to prepare a copolymer It is preferable that the DHTPE is contained in an amount of 40 mol%.

[화학식 2](2)

Figure pat00003

Figure pat00003

[화학식 3](3)

Figure pat00004
Figure pat00004

상기 화학식 2 및 3에서, n : m의 비율은 0.4 : 0.6 이며, 고분자의 Mw는 10,000~150,000 이다.
In the above Formulas 2 and 3, the ratio of n: m is 0.4: 0.6, and the Mw of the polymer is 10,000 to 150,000.

[반응식 2][Reaction Scheme 2]

Figure pat00005
Figure pat00005

여기에서, n : m의 비율은 0.4 : 0.6 이며, 고분자의 Mw는 10,000~150,000 이다.
Here, the ratio of n: m is 0.4: 0.6, and the Mw of the polymer is 10,000 to 150,000.

또한, 본 발명은 하기 화학식 6으로 표시되는 금속 프탈로시아닌(MPc)을 함유하는 폴리(아릴렌 에테르설폰)(PMPc)를 제공한다.The present invention also provides a poly (arylene ether sulfone) (PMPc) containing a metal phthalocyanine (MPc) represented by the following general formula (6).

본 발명의 PMPc는 하기 화학식 4로 표시되는 1,4-비스(4-하이드록시페닐)-2,3-디시아노나프탈렌(1,4-bis(4-hydroxyphenyl)-2,3-dicyanonaphthalene, HPDCP)를 출발물질로 하여 상기 HPDCP를 함유하는 고분자 중합체(polymer HPDCP, PHPDCP; 화학식 5)를 합성한 후, 1,2-디시아노벤젠(1,2-dicyanobenzene)과 퀴놀린(quinoline) 중의 금속(Ⅱ) 염화물과 반응시켜 제조할 수 있다(반응식 4).The PMPc of the present invention is 1,4-bis (4-hydroxyphenyl) -2,3-dicyanonaphthalene, HPDCP (Polymer HPDCP, PHPDCP; Chemical Formula 5) containing the above-mentioned HPDCP was synthesized starting from 1,2-dicyanobenzene and quinoline, ) ≪ / RTI > chloride (scheme 4).

이때, 상기 금속은 니켈(Ni), 코발트(Co), 및 철(Fe)에서 선택되는 것이 바람직하며, 또한 상기 금속은 1 내지 20중량%로 포함되는 것이 바람직하다.
At this time, the metal is preferably selected from nickel (Ni), cobalt (Co), and iron (Fe), and the metal is preferably included in an amount of 1 to 20 wt%.

한편, 상기 HPHCP는 하기 반응식 3과 같이, 환원된 페놀프탈레인(reduced phenolphthalein)을 진한 황산과 반응시켜 이소벤조푸란(isobenzofuran)을 제조한 후 푸마로니트릴(fumaronitrile)과 딜스-알더(Diels-Alder)반응을 통해 제조 가능하다.The HPHCP can be prepared by reacting reduced phenolphthalein with concentrated sulfuric acid to produce isobenzofuran and then reacting with fumaronitrile and Diels-Alder reaction ≪ / RTI >

[화학식 4][Chemical Formula 4]

Figure pat00006

Figure pat00006

[화학식 5] [Chemical Formula 5]

Figure pat00007

Figure pat00007

[화학식 6][Chemical Formula 6]

Figure pat00008
Figure pat00008

상기 화학식 5 및 6에서, n : m의 비율은 0.4 : 0.6 이며, 고분자의 Mw는 10,000~150,000 이다.
In the above Formulas 5 and 6, the ratio of n: m is 0.4: 0.6, and the Mw of the polymer is 10,000 to 150,000.

[반응식 3] Scheme 3

Figure pat00009

Figure pat00009

[반응식 4] [Reaction Scheme 4]

Figure pat00010
Figure pat00010

여기에서, n : m의 비율은 0.4 : 0.6 이며, 고분자의 Mw는 10,000~150,000 이다.Here, the ratio of n: m is 0.4: 0.6, and the Mw of the polymer is 10,000 to 150,000.

또한, 본 발명은 상기 DHTPE를 함유하는 설폰화 폴리(에테르설폰)(SPDHTPE) 및 금속 프탈로시아닌(MPc)를 함유하는 폴리(아릴렌 에테르 설폰)(PMPc)으로 제조한 하이브리드 공중합체를 제공한다.The present invention also provides hybrid copolymers prepared from sulfonated poly (ether sulfone) (SPDHTPE) containing the DHTPE and poly (arylene ether sulfone) (PMPc) containing a metal phthalocyanine (MPc).

이때, 상기 SPDHTPE 및 PMPc는 각각 80 내지 99중량% 및 1 내지 20중량%로 혼합되는 것이 바람직하다.
At this time, SPDHTPE and PMPc are preferably mixed in 80 to 99 wt% and 1 to 20 wt%, respectively.

본 발명은 또한 상기 금속 프탈로시아닌(MPc)를 함유하는 폴리(아릴렌 에테르 설폰)(PMPc)을 기반으로 하는 연료전지용 전해질막을 제공한다.The present invention also provides an electrolyte membrane for a fuel cell based on poly (arylene ether sulfone) (PMPc) containing the above metal phthalocyanine (MPc).

본 발명에서, 상기 연료전지용 전해질막은 상기 DHTPE를 함유하는 설폰화 폴리(에테르설폰)(SPDHTPE)과 금속 프탈로시아닌(MPc)을 함유하는 폴리(아릴렌 에테르설폰)(PMPc)으로 제조한 하이브리드 공중합체가 바람직하다.In the present invention, the electrolyte membrane for a fuel cell is a hybrid copolymer prepared from a sulfonated poly (ether sulfone) (SPDHTPE) containing DHTPE and a poly (arylene ether sulfone) (PMPc) containing a metal phthalocyanine (MPc) desirable.

또한, 본 발명의 연료전지는 당 분야에서 알려진 통상적인 방법에 따라 제조될 수 있으며, 상기 연료전지는 당업계에서 연료전지로 분류되는 모든 연료전지를 포함하는데, 특히 고분자 전해질막 연료전지(PEMFC)인 것이 바람직하다.
In addition, the fuel cell of the present invention can be manufactured according to a conventional method known in the art, and the fuel cell includes all the fuel cells classified in the art as a fuel cell, in particular, a polymer electrolyte membrane fuel cell (PEMFC) .

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예 1. 4,4′-(2,2-디페닐에테닐리덴)디페놀(DHTPE) 합성Example 1. Synthesis of 4,4 '- (2,2-diphenylethenylidene) diphenol (DHTPE)

DHTPE 모노머는 하기 반응식 1에 도시된 바와 같이 합성하였다.The DHTPE monomer was synthesized as shown in Scheme 1 below.

구체적으로, 질소 분위기 하 0℃에서 무수 테트라하이드로푸란(80.0 ㎖) 중 디페닐메탄(10.1 g, 60.0 mmol)의 용액에 헥산 중 n-부틸 리튬(60.0 mmol)의 2.5 M 용액 24 ㎖를 첨가하였다. 생성된 적오렌지색 용액은 그 온도에서 30분간 교반하였다.Specifically, 24 mL of a 2.5 M solution of n-butyllithium (60.0 mmol) in hexane was added to a solution of diphenylmethane (10.1 g, 60.0 mmol) in anhydrous tetrahydrofuran (80.0 mL) . The resulting red orange solution was stirred at that temperature for 30 minutes.

이 용액에 4,4′-디메톡시벤조페논(10.9 g, 45.0 mmol)을 첨가하고, 반응 혼합물을 6시간 동안 교반하면서 실온으로 승온시켰다. 염화암모늄의 수용액을 첨가하여 반응을 억제하고, 유기층을 디클로로메탄으로 추출한 후, 합한 유기층을 포함 염수로 세척하고, 무수 황산마그네슘(MgSO4) 상에서 건조시켰다.To this solution, 4,4'-dimethoxybenzophenone (10.9 g, 45.0 mmol) was added and the reaction mixture was allowed to warm to room temperature with stirring for 6 hours. Inhibit the reaction by the addition of an aqueous solution of ammonium chloride, and the organic layer was extracted with dichloromethane, washing the combined organic layers to contain brine, dried over anhydrous magnesium sulfate (MgSO 4).

용매를 증발시키고, 생성된 조 알코올(crude alcohol)(과량의 디페닐메탄 함유)을 하기와 같이 산 촉매화 탈수시켰다.The solvent was evaporated and the resulting crude alcohol (containing excess diphenylmethane) was acid catalysed and dehydrated as follows.

조 알코올은 딘 스타크 트랩이 구비된 500 ㎖ 둥근 바닥 플라스크에서 약 300.0 ㎖의 톨루엔에 용해시켰다.The crude alcohol was dissolved in about 300.0 mL of toluene in a 500 mL round bottom flask equipped with a Dean Stark trap.

촉매량의 p-톨루엔설폰산(1.71 g, 9.0 mmol)을 첨가하고, 혼합물을 3-4시간 동안 환류 시킨 후, 실온으로 냉각시켰다. 톨루엔층은 10% 중탄산나트륨 수용액으로 세척하고, 무수 황산마그네슘 상에서 건조시켜 증발시킨 후 조 디메톡시테트라페닐 에틸렌 유도체를 얻었다.A catalytic amount of p-toluenesulfonic acid (1.71 g, 9.0 mmol) was added and the mixture was refluxed for 3-4 hours and then cooled to room temperature. The toluene layer was washed with a 10% aqueous sodium bicarbonate solution, dried over anhydrous magnesium sulfate and evaporated to obtain a crude dimethoxytetraphenylethylene derivative.

조 생성물은 디클로메탄과 메탄올의 혼합물로부터 간단한 재결정에 의해 정제하였다(Banerjee, M., S. J. Emond, S. V. Lindeman and R. Rathore. Practical Synthesis of Unsymmetrical Tetraarylethylenes and Their Application for the Preparation of [Triphenylethylene-Spacer-Triphenylethylene] Triads. 2007. J. Org. Chem. 72:8054-8061).The crude product was purified by simple recrystallization from a mixture of dichloromethane and methanol (Banerjee, M., SJ Emond, SV Lindeman and R. Rathore, Practical Synthesis of Unsymmetrical Tetraarylethylenes and Their Application for Preparation of [Triphenylethylene-Spacer- Triphenylethylene] Triads. 2007. J. Org. Chem. 72: 8054-8061).

이어서, 질소 분위기 하 0℃에서 디클로로메탄(150.0 ㎖) 중의 디메톡시테트라페닐 에틸렌(10.0 g, 25.5 mmol)의 용액에 디클로로메탄 중의 1.0 M 삼브롬화붕소 용액 58.0 ㎖(60.0 mmol)를 천천히 첨가하고, 반응 혼합물을 24시간 동안 교반하면서 실온으로 승온시켰다.Subsequently, to a solution of dimethoxytetraphenylethylene (10.0 g, 25.5 mmol) in dichloromethane (150.0 mL) at 0 ° C under nitrogen atmosphere was slowly added 58.0 mL (60.0 mmol) of a 1.0 M boron tribromide solution in dichloromethane, The reaction mixture was allowed to warm to room temperature with stirring for 24 hours.

물을 첨가하여 반응을 억제하고, 유기층은 에틸 아세테이트 및 1.0 M HCl 용액으로 추출하여, 합한 유기층을 포화 염수 용액으로 세척한 후, 황산마그네슘 상에서 건조시키고, 용매를 증발시켰다.Water was added to inhibit the reaction, and the organic layer was extracted with ethyl acetate and 1.0 M HCl solution. The combined organic layers were washed with saturated brine, dried over magnesium sulfate and evaporated.

생성물은 아세토니트릴과 증류수의 혼합물로부터 간단한 재결정에 의해 정제하였다.The product was purified by simple recrystallization from a mixture of acetonitrile and distilled water.

[반응식 1][Reaction Scheme 1]

Figure pat00011

Figure pat00011

실시예 2. 40%mol DHTPE 함유 설폰화 폴리(에테르설폰)(SPDHTPE 40)의 합성Example 2. Synthesis of sulfonated poly (ether sulfone) (SPDHTPE 40) containing 40% mol DHTPE

하기 반응식 2에 도시된 바와 같이 고분자를 합성하였다.A polymer was synthesized as shown in Reaction Scheme 2 below.

구체적으로, 딘 스타크 트랩, 응축기(condenser), 질소 출입구 및 자석 교반기가 구비된 100 ㎖ 3구 둥근 바닥 플라스크에, 상기 실시예 1에서 합성한 모노머 DHTPE(0.5734 g, 1.57 mmol), 4,4-플루오로페닐설폰(1.0000 g, 3.93 mmol), 설포닐페놀(0.5906 g, 2.36 mmol), 탄산칼륨(0.6523 g, 4.72 mmol), DMAc(디메틸아세트아미드) 10 ㎖, 및 톨루엔 10 ㎖를 채웠다. 혼합물은 130℃에서 3시간 동안 환류시켰다.Specifically, the monomer DHTPE (0.5734 g, 1.57 mmol) synthesized in Example 1, 4,4-dihydroxybenzene sulfonyl chloride, and 4,4'-diaminobiphenyl were synthesized in a 100 ml three-necked round bottom flask equipped with a Dean-Stark trap, a condenser, a nitrogen inlet and a magnetic stirrer. (1.0000 g, 3.93 mmol), sulfonylphenol (0.5906 g, 2.36 mmol), potassium carbonate (0.6523 g, 4.72 mmol), DMAc (dimethylacetamide) 10 ml and toluene 10 ml were charged. The mixture was refluxed at 130 < 0 > C for 3 hours.

생성된 물은 톨루엔으로 공비시킨 후, 혼합물을 고점성 용액이 얻어질 때까지 약 1-2시간 동안 160-180℃에서 가열하였다.The resulting water was azeotroped with toluene and the mixture was heated at 160-180 ° C for about 1-2 hours until a viscous solution was obtained.

생성된 혼합물은 냉각시킨 후 메탄올(100 ㎖)/물(100 ㎖)/HCl(10 ㎖)의 혼합물에 부어 백색 섬유질 고분자를 침전시킨 다음, 여과하여 수집하고, 물로 세척하였다. 여과에 의해 수집된 고분자(PDHTPE)는 24시간 동안 80℃의 진공에서 건조시켰다.The resulting mixture was cooled and poured into a mixture of methanol (100 mL) / water (100 mL) / HCl (10 mL) to precipitate white fibrous polymer, which was then collected by filtration and washed with water. The polymer (PDHTPE) collected by filtration was dried in a vacuum at 80 DEG C for 24 hours.

50 ㎖ 플라스크에, 0.5 g의 PDHTPE 공중합체 및 6 ㎖의 진한 황산(95~98%)을 첨가하고, 혼합물을 12시간 동안 45℃에서 교반하였다. 혼합물을 냉수에 부었다. 그런 다음, 고분자를 물로 3회 철저히 세척하고, 24시간 동안 80℃의 진공에서 건조하였다.To a 50 ml flask, 0.5 g of PDHTPE copolymer and 6 ml of concentrated sulfuric acid (95-98%) were added and the mixture was stirred for 12 hours at 45 < 0 > C. The mixture was poured into cold water. The polymer was then thoroughly washed three times with water and dried in a vacuum at 80 DEG C for 24 hours.

[반응식 2][Reaction Scheme 2]

Figure pat00012
Figure pat00012

이때, n : m의 비율은 0.4 : 0.6 이며, 고분자의 Mw는 10,000~150,000 이다.
In this case, the ratio of n: m is 0.4: 0.6, and the Mw of the polymer is 10,000 to 150,000.

실시예 3. 금속 프탈로시아닌(MPc)을 함유하는 폴리(아릴렌 에테르설폰)(PMPc-40)의 합성Example 3. Synthesis of poly (arylene ether sulfone) (PMPc-40) containing metal phthalocyanine (MPc)

하기 반응식 3에 도시된 바와 같이, 1,4-비스(4-하이드록시페닐)-2,3-디시아노나프탈렌(1,4-bis(4-hydroxyphenyl)-2,3-dicyanonaphthalene, HPDCP) 모노머를 합성하였다.Bis (4-hydroxyphenyl) -2,3-dicyanonaphthalene (HPDCP) monomer as shown in the following Reaction Scheme 3 Were synthesized.

먼저, 기계적 교반기가 구비된 건조 25 ㎖ 둥근 바닥 플라스크에, 2 g(6.24 mmol)의 건조, 미세 분말화된 환원된 페놀프탈레인을 첨가하였다. 플라스크를 10분 동안 아세톤 냉조(ice-acetone bath)에 침지시킨 후, 진한 황산(6.5 ㎖, 또한 0℃로 냉각됨)을 플라스크에 부었다. 혼합물은 2-3분 동안 격렬하게 교반하여 고체를 용해시켰다. 그런 다음, 혼합물을 상기 온도에서 추가로 7-8분 동안 교반하였다.First, 2 g (6.24 mmol) of dry, finely powdered reduced phenolphthalein was added to a dry 25 ml round bottom flask equipped with a mechanical stirrer. The flask was immersed in an ice-acetone bath for 10 minutes and then concentrated sulfuric acid (6.5 mL, also cooled to 0 C) was poured into the flask. The mixture was vigorously stirred for 2-3 minutes to dissolve the solid. The mixture was then stirred at this temperature for an additional 7-8 minutes.

생성된 황갈색 슬러리(이소벤조푸란)를 120 ㎖의 얼음물을 담긴 500 ㎖ 비이커에 재빨리 부었다. 여과하여 고체를 분리하고, 20 ㎖의 냉수(0℃)로 세척한 다음, 딜스-알더 반응(Diels-Alder reaction)에서 직접 사용하기 전에 5-15분 동안 여과지 위에서 건조시켰다. 13 ㎖의 아세트산 중 2.0 g(20.41 mmol) 푸마로니트릴을 담은 50 ㎖ 둥근 바닥 플라스크에, 이소벤조푸란을 첨가하였다. 혼합물을 완료 유도로 빠르게 가열하였다. 15-20분 후, 황색 생성물, 1,4-비스-(4-하이드록시-페닐)-나프타-2,3-디카르보니트릴렌이 반응 혼합물로부터 침전되었다. 반응은 상기 온도에서 2시간을 더 계속하여 반응을 완료시켰다.The resulting yellowish brown slurry (isobenzofuran) was quickly poured into a 500 mL beaker containing 120 mL of ice water. The solid was separated by filtration, washed with 20 ml of cold water (0 C) and dried on filter paper for 5-15 minutes before being used directly in the Diels-Alder reaction. To a 50 mL round bottom flask containing 2.0 g (20.41 mmol) of fumaronitrile in 13 mL of acetic acid was added isobenzofuran. The mixture was heated rapidly to completion. After 15-20 minutes, the yellow product, 1,4-bis- (4-hydroxy-phenyl) -naphta-2,3-dicarbonitrile, precipitated from the reaction mixture. The reaction was continued at this temperature for a further 2 hours to complete the reaction.

생성물을 여과에 의해 분리하고 최소량의 아세트산으로 2회 세척하였다.
The product was isolated by filtration and washed twice with a minimum amount of acetic acid.

HPDCP를 함유하는 고분자(PHPDCP)는 반응식 4에 도시된 바와 같이 합성하였다.The polymer containing HPDCP (PHPDCP) was synthesized as shown in Scheme 4.

딘 스타크 트랩, 콘덴서, 질소 출입구 및 자기 교반기가 구비된 100 ㎖ 3구 둥근 바닥 플라스크에, 모노머 HPDCP(0.5701 g, 1.57 mmol), 4,4-바이페놀(0.4394 g, 2.36 mmol), 비스(4-플루오로페닐)설폰(1.0000 g, 3.93 mmol), 탄산칼륨(0.6523 g, 4.72 mmol), DMAc(10 ㎖) 및 톨루엔(10 ㎖)을 채워 130℃에서 3시간 동안 환류시켰다. 생성된 물은 톨루엔으로 공비시킨 후, 혼합물을 고점성 용액이 얻어질 때까지 약 1-2시간 동안 160-180℃에서 가열하였다. 반응 혼합물의 점도가 너무 높아지면, 반응기에 5 ㎖의 DAMc를 첨가하였다. 반응 혼합물은 DMAc로 3회 이상 희석시킨 후, 점성의 용액을 천천히 소량의 염산이 포함된 메탄올에 천천히 부어 격렬하게 교반하였다.Monomer HPDCP (0.5701 g, 1.57 mmol), 4,4-biphenol (0.4394 g, 2.36 mmol), bis (4-hydroxyphenyl) propane and the like were charged in a 100 ml 3-neck round bottom flask equipped with a stirrer, condenser, nitrogen inlet and magnetic stirrer. (1.0000 g, 3.93 mmol), potassium carbonate (0.6523 g, 4.72 mmol), DMAc (10 mL) and toluene (10 mL) were charged and refluxed at 130 ° C for 3 hours. The resulting water was azeotroped with toluene and the mixture was heated at 160-180 ° C for about 1-2 hours until a viscous solution was obtained. When the viscosity of the reaction mixture became too high, 5 ml of DAMc was added to the reactor. The reaction mixture was diluted with DMAc three times or more, and then the viscous solution was slowly poured slowly into methanol containing a small amount of hydrochloric acid and vigorously stirred.

공중합체가 긴 섬유(lengthy fiber)로서 침전되었고, 상기 재료를 클로로포름에 용해시킨 후, 셀라이트의 박층을 통해 여과하였다. 여과액(filtrate)은 교반하면서 메탄올에 천천히 부은 다음 고분자를 여과하여 분리하였다.The copolymer was precipitated as a lengthy fiber and the material was dissolved in chloroform and then filtered through a thin layer of celite. The filtrate was slowly poured into methanol with stirring and the polymer was separated by filtration.

콘덴서 및 질소 가스 입구가 구비된 100 ㎖ 3구 플라스크에, PHPDCP 공중합체(0.5 g), 1,2-디시아노벤젠(0.5 g, 3.9 mmol), 니켈(Ni), 철(Fe) 및 코발트(Co)의 금속 염화물(0.3 g) 및 50 ㎖의 퀴놀린을 첨가하였다. 질소 분위기 하에서 혼합물을 4-6시간 동안 220-240℃로 가열하였다. 반응 혼합물은 청흑색이 되었다.PhDCP copolymer (0.5 g), 1,2-dicyanobenzene (0.5 g, 3.9 mmol), nickel (Ni), iron (Fe) and cobalt (0.5 g) were added to a 100 ml three-necked flask equipped with a condenser and a nitrogen gas inlet Co) < / RTI > (0.3 g) and 50 ml of quinoline were added. The mixture was heated to 220-240 DEG C for 4-6 hours under a nitrogen atmosphere. The reaction mixture turned blue-black.

혼합물을 격렬하게 교반하면서 메탄올과 몇 방울의 염산(36%)의 액상 혼합물에 부었다. 진한 녹색에서 청색이 된 침전 입자를 아세톤, 물, 묽은 염산으로 세척하고, 마지막으로 물과 에탄올로 세척하였다. 침전물은 여과하여 수집하고 클로로포름으로 추출하였다. 클로로포름 용액을 농축시키고 메탄올에 침전시켰다.The mixture was poured into a liquid mixture of methanol and a few drops of hydrochloric acid (36%) with vigorous stirring. The precipitated particles that turned blue to dark green were washed with acetone, water, dilute hydrochloric acid, and finally washed with water and ethanol. The precipitate was collected by filtration and extracted with chloroform. The chloroform solution was concentrated and precipitated in methanol.

[반응식 3] HPDCP의 합성[Reaction Scheme 3] Synthesis of HPDCP

Figure pat00013

Figure pat00013

[반응식 4] PMPc의 합성[Reaction Scheme 4] Synthesis of PMPc

Figure pat00014
Figure pat00014

이때, n : m의 비율은 0.4 : 0.6 이며, 고분자의 Mw는 10,000~150,000 이다.
In this case, the ratio of n: m is 0.4: 0.6, and the Mw of the polymer is 10,000 to 150,000.

실시예 4. 하이브리드 공중합체의 제조Example 4 Preparation of Hybrid Copolymer

DMSO에 상기 실시예 2에서 합성한 SPDHTPE 40과 함께 각각 5, 10 및 15중량%의 상기 실시예 3의 PMPc를 용해시켜 하이브리드 공중합체를 제조하였다.5, 10 and 15% by weight of the PMPc of Example 3 were dissolved in DMSO together with the SPDHTPE 40 synthesized in Example 2 to prepare a hybrid copolymer.

H-Ni 5의 하이브리드막은 95중량%의 SPDHTPE 40과 5중량%의 Ni-PMPc의 혼합물이고, H-Ni 10의 하이브리드막은 90중량%의 SPDHTPE 40과 10중량%의 Ni-PMPc의 혼합물이다.The hybrid membrane of H-Ni 5 is a mixture of 95% by weight of SPDHTPE 40 and 5% by weight of Ni-PMPc, and the hybrid membrane of H-Ni 10 is a mixture of 90% by weight of SPDHTPE 40 and 10% by weight of Ni-PMPc.

이때, 하이브리드막의 나머지는 중량%를 바꾸면서 제조하였다.
At this time, the remainder of the hybrid membrane was prepared by changing the weight%.

실험예 1. 화학적 막 분해 촉진Experimental Example 1. Chemical film decomposition promotion

75℃에서 Fenton 시약(4 ppm Fe, 3% H2O2)에 침지하여 막 분해를 관찰하였다.The membrane decomposition was observed by immersion in Fenton reagent (4 ppm Fe, 3% H 2 O 2 ) at 75 ° C.

시료는 SPDHTPE 40와 상기 실시예 4에서 제조한 하이브리드막, 및 Nafion 211이었다.The sample was SPDHTPE 40, the hybrid membrane prepared in Example 4, and Nafion 211. [

초기 시료 중량을 측정하고, 시료를 MilliQ water(45 ㎖) 중 황산철(Ⅱ) 칠수화물 용액에 넣고, 75℃로 가열하고, 5 ㎖의를 이 용액에 첨가하였다.The initial sample weight was measured and the sample was placed in an iron (II) sulfate heptahydrate solution in MilliQ water (45 ml), heated to 75 ° C, and 5 ml was added to the solution.

막 시료는 칭량을 위해 실험 동안 정기적으로 꺼냈다. 증류수로 시료를 세척하여 분해반응을 억제하고, 최종 중량을 결정하기 전에 노출된 막을 건조시켰다(Lei, Z., and M. Sanjeev. Investigation of Durability Issues of Selected Nonfluorinated Proton Exchange Membranes for Fuel Cell Application. 2006. Journal of The Electrochemical Society, 153:A1062-A1072; Gode, P., J. Ihonen, A. Strandroth, H. Ericson, G. Lindbergh, M. Paronen, F. Sundholm, G. Sundholm and N. Walsby. Membrane Durability in a PEM Fuel Cell Studied Using PVDF Based Radiation Grafted Membranes. 2003. Fuel Cells 3:21-27).
Membrane samples were taken out periodically during the experiment for weighing. The samples were washed with distilled water to inhibit the degradation reaction and the exposed membranes were dried prior to final weight determination (Lei, Z., and M. Sanjeev., Investigations of Selected Non-Fluorinated Proton Exchange Membranes for Fuel Cell Application 2006 Gordon, G. Sundholm and N. Walsby, < RTI ID = 0.0 > G. < / RTI > Membrane Durability in a PEM Fuel Cell Studied Using PVDF Based Radiation Grafted Membranes 2003. Fuel Cells 3: 21-27).

실험예 2. 막 제조 및 특성화Experimental Example 2. Membrane Fabrication and Characterization

DMSO에 고분자를 재용해하여 얻은 20중량%의 투명용액을 60, 80, 100 및 120℃의 고온에서 용액을 주조하여 막(25 ㎛)을 제조하였다. 고분자 구조를 FT-IR 분광법으로 확인하였다. 측정은 얇은 균질 캐스트 필름(thin homogeneous cast film)은 MIDAC FT-IR 분광계(M-2000, MIDAC, 미국)를 이용하여 기록하였다. A 20 wt% clear solution obtained by redissolving the polymer in DMSO was cast at a high temperature of 60, 80, 100 and 120 DEG C to prepare a membrane (25 mu m). The polymer structure was confirmed by FT-IR spectroscopy. Measurements were made using a thin homogeneous cast film using a MIDAC FT-IR spectrometer (M-2000, MIDAC, USA).

용매로서 DMSO-d6를, 그리고 내부 표준물질로서 테트라메틸실란(TMS)을 사용하여 Bruker DRX(400 ㎒) 분광계 상에서 1H-NMR 스펙트럼을 기록하고, Perkin-Elmer TGA-7 분석기로 열중량 분석(TGA)을 수행하였다. 1 H-NMR spectra were recorded on a Bruker DRX (400 MHz) spectrometer using DMSO-d 6 as solvent and tetramethylsilane (TMS) as internal standard and analyzed by thermogravimetric analysis with a Perkin-Elmer TGA- (TGA).

고분자의 분자량은 Perkin Elmer 시리즈 200 고압액체크로마토그래피(high-pressure-liquid chromatography) 및 RI 검출기 상에서 용리액으로서 CHCl3 중에서 겔 투과크로마토그래피(GPC)에 의해 폴리스틸렌 표준물질과 대비하여 결정하였다.The molecular weight of the polymer was determined by gel permeation chromatography (GPC) in CHCl 3 as the eluent on a Perkin Elmer series 200 high-pressure-liquid chromatography and RI detector as compared to the polystyrene standards.

막을 24시간 동안 100℃에서 진공 건조하여 칭량하고, 24시간 동안 30℃ 및 80℃에서 탈이온수에 침지하였다. 습윤막을 건조를 위해 닦아내고, 재차 빠르게 칭량하였다. 막의 수분흡수(WU)는 다음이 식에 따라 중량%로 나타내었다.The membrane was vacuum dried at 100 ° C for 24 hours and weighed and immersed in deionized water at 30 ° C and 80 ° C for 24 hours. The wet film was wiped away for drying and again quickly weighed. The water absorption (WU) of the membrane was expressed by wt% according to the following formula.

수분흡수(WU) = {(wwet - wdry)/wdry} × 100
Water absorption (WU) = {(w wet - w dry ) / w dry } × 100

여기에서 wwet 및 wdry는 각각 젖은 막 및 건조 막의 무게이다.
Where w wet and w dry are the weights of the wet film and the dry film, respectively.

막의 이온 교환능(IEC)은 적정법을 사용하여 결정하였다. 24시간 동안 1.0 M NaCl 용액에 막을 침지하여 산 형태(H+)의 막을 나트륨염 형태로 전환시켜 H+ 이온을 Na+ 이온으로 교환시켰다. 그런 다음, 용액 내 교환된 H+ 이온을 0.02 N NaOH 용액으로 적정하였다. 이론적 IEC는 설폰화도(sulfonated degree)를 계산하여 다음 식으로부터 얻었다.The ion exchange capacity (IEC) of the membrane was determined using the titration method. The membrane was immersed in a 1.0 M NaCl solution for 24 hours to convert the membrane in acid form (H +) to the sodium salt form and exchange H + ions for Na + ions. The exchanged H + ions in the solution were then titrated with 0.02 N NaOH solution. Theoretical IEC was calculated from the following equation by calculating the sulfonated degree.

IEC(meq./g) = 이온 mmol 농도 / 25℃에서의 건조 막 중량
IEC (meq./g) = ionic mmol concentration / dry film weight at 25 ° C

막의 평면 방향으로부터의 양성자 전도성(proton conductivity)은 Newtons4th Ltd(N4L)을 구비한 스크라이브너 막 시험 시스템(Membrane test system; MTS-740, Scribner, 미국)을 이용하여 80% 습도 하 40-80℃ 및 30-90% 습도 하 80℃에서 측정하였다.The proton conductivity from the planar direction of the membrane was measured at 80-80 < 0 > C using a Scribner test system (MTS-740, Scribner, USA) equipped with Newtons4th Ltd And was measured at 80 ° C under 30-90% humidity.

EIS(electrochemical impedance spectroscopy)는 낮은 교류 전압(10 ㎷)을 인가하고 교류 전압의 주파수를 1부터 1×105 ㎐까지 변화시켜 개방 회로 조건에서 유도하였다.
EIS (electrochemical impedance spectroscopy) was induced under open circuit conditions by applying a low alternating voltage (10 ㎷) and varying the frequency of the alternating voltage from 1 to 1 × 10 5 ㎐.

실시예 5. 결과Example 5. Results

5-1. 모노머 및 고분자 합성5-1. Monomer and polymer synthesis

모노머 4,4′-(2,2-디페닐에테닐리덴) 디페놀(DHTPE)는, 맥머리 탄소-탄소 이중결합 커플링 반응(McMurry carbon-carbon double bond coupling reation; Banerjee, M., S. J. Emond, S. V. Lindeman and R. Rathore. Practical Synthesis of Unsymmetrical Tetraarylethylenes and Their Application for the Preparation of [Triphenylethylene-Spacer-Triphenylethylene] Triads. 2007. J. Org. Chem. 72:8054-8061) 및 BBr3를 이용한 디메틸화에 의해 62% 수율로 합성하였다.The monomer 4,4 '- (2,2-diphenylethenylidene) diphenol (DHTPE) was synthesized by the McMurry carbon-carbon double bond coupling reaction (Banerjee, M., SJ Emond, SV Lindeman and R. Rathore, Practical Synthesis of Unsymmetrical Tetraarylethylenes and Their Application for Preparation of Triphenylethylene-Spacer-Triphenylethylene Triads, 2007. J. Org. Chem. 72: 8054-8061) and BBr 3 Dimethylation yielded 62% yield.

DHTPE의 화학적 구조는 도 1-(1)에 도시된 1H-NMR에 의해 확인하였다.
The chemical structure of DHTPE was confirmed by 1 H-NMR shown in Fig. 1- (1).

도 1-(1)에서, 페닐 고리의 오쏘(ortho) 및 파라(para) 위치의 6개의 양성자 피크(Hc 및 He)가 7.02-7.15 ppm에서 관찰되었고, 페닐 고리의 메타(meta) 위치의 4개의 양성자 피크(Hd)가 6.94 ppm에 할당되었다. 페놀기의 바로 옆의 에틸렌의 4개의 양성자 피크(Hb) 및 페놀기의 바로 옆의 OH의 4개의 양성자 피크(Ha)는 각각 6.76 ppm 및 6.49 ppm에서 관찰되었다. 또한, OH 피크가 9.35 ppm에서 나타났다.
In Figure 1- (1), was observed in the ortho-phenyl (ortho) and p (para) 6 proton peaks (H c and H e) 7.02-7.15 ppm in the position of the ring, meth (meta) position of the phenyl ring (H d ) were assigned to 6.94 ppm. Four proton peaks (H b ) of ethylene immediately adjacent to the phenolic group and four proton peaks (H a ) of OH immediately adjacent to the phenolic group were observed at 6.76 ppm and 6.49 ppm, respectively. Also, the OH peak appeared at 9.35 ppm.

또한, 다른 모노머인 1,4-비스(4-하이드록시페닐)-2,3-디시아노나프탈렌(HPDCP)은 딜스-알더 반응에 의해 67%의 수율로 합성하였다(Wana, W., Y. Z. Menga, Q. Zhu, S. C. Tjong and A. S. Hay. Synthesis of a series of metallophthalocyanine end-capped poly(aryl ether sulfone)s from a dicyanoarylene group containing biphenol. 2003. Polymer 44:575-582). HPDCP의 화학적 구조는 도 1-(2)에 도시된 1H-NMR에 의해 확인하였다. 나프탈렌 고리의 4개의 양성자 피크(Hc 및 Hd)가 7.65-7.93 ppm에서 관찰되었고, 페놀기의 오쏘 위치의 4개의 양성자 피크(Ha)가 6.79 ppm에 할당되었다. 페놀기의 메타 위치의 4개의 양성자 피크(Hb)가 7.11 ppm에 할당되었다. 또한, OH 피크가 9.71 ppm에서 나타났다.
In addition, 1,4-bis (4-hydroxyphenyl) -2,3-dicyanonaphthalene (HPDCP), another monomer, was synthesized at a yield of 67% by the Diels-Alder reaction (Wana, W., YZ Menga , Q. Zhu, SC Tjong and AS Hay, Synthesis of a series of metallophthalocyanine end-capped poly (aryl ether sulfone) s from a dicyanoarylene group containing biphenol 2003. Polymer 44: 575-582). The chemical structure of HPDCP was confirmed by 1 H-NMR shown in Fig. 1- (2). Was four proton peaks of the naphthalene ring (H c and H d) observed at 7.65-7.93 ppm, 4 protons of the ortho position of a phenol group peak (H a) was assigned to 6.79 ppm. Four proton peaks (H b ) at the meta position of the phenolic group were assigned to 7.11 ppm. Also, the OH peak appeared at 9.71 ppm.

PDHTPE 및 SPDHTPE 40의 화학적 구조는 도 2에 도시된 1H-NMR에 의해 확인하였다. PDHTPE의 DHTPE 단위의 파라 위치의 양성자 피크가 7.24 ppm에서 나타났고, 설폰화 반응 후 소실되었다. 새로운 피크가 7.43 ppm에서 나타났는데, 이는 바로 옆의 설폰산의 양성자 피크와 일치한다.
The chemical structure of PDHTPE and SPDHTPE 40 was confirmed by 1 H-NMR as shown in Fig. The proton peak at para position of DHTPE units of PDHTPE appeared at 7.24 ppm and disappeared after the sulfonation reaction. A new peak appeared at 7.43 ppm, consistent with the proton peak of the immediate side of the sulfonic acid.

한편, PHDPCP 및 PMPc의 화학적 구조는 도 3에 도시된 FT-IR 및 1H-NMR에 의해 확인하였다. 도 3-(1)의 PHDPCP의 스펙트럼에서, -CN의 신장 피크가 2229 ㎝-1에서 관찰되었다. PMPc의 스펙트럼으로부터, 2229 ㎝-1에서의 피크가 사라진 것은 이 위치에서의 완결 반응을 시사함이 명백하다. PMPc의 1H-NMR 스펙트럼은 도 3-(2)에 도시하였다. 양성자 Ha 및 Hb의 신호가 각각 9.41 및 8.45 ppm에서 나타났다.
On the other hand, the chemical structures of PHDPCP and PMPc were confirmed by FT-IR and 1 H-NMR shown in FIG. In the spectrum of PHDPCP in Fig. 3- (1), the elongation peak of -CN was observed at 2229 cm < -1 & gt ;. From the spectrum of PMPc, it is evident that the disappearance of the peak at 2229 cm -1 suggests a complete reaction at this position. The 1 H-NMR spectrum of PMPc is shown in Fig. 3- (2). The signals of protons H a and H b were 9.41 and 8.45 ppm, respectively.

5-2. 고분자 및 하이브리드막의 성질5-2. Properties of Polymers and Hybrid Membranes

도 4는, SPDHTPE 40 및 PMPc의 열안정성을 열중량 분석(TGA)을 이용하여 확인한 것이다. 대부분의 고분자는 공기 분위기 하의 고온에서 양호한 열안정성을 나타내었다. SPDHTPE 40에서, 100-250℃ 부근에서의 초기 중량 손실은 SPDHTPE 40으로부터 잔류용매(DMAc) 및 물 방출로 인한 것이었으며, 250℃ 이상에서의 제2 중량 손실은 설폰산기의 분해로 인한 것이었다. 또한, 510℃ 부근에서의 제3 중량 손실은 고분자 주쇄의 분해로 인한 것이었다.
FIG. 4 shows the thermal stability of SPDHTPE 40 and PMPc using thermogravimetric analysis (TGA). Most of the polymers showed good thermal stability at high temperature under air atmosphere. In SPDHTPE 40, the initial weight loss near 100-250 ° C was due to residual solvent (DMAc) and water release from SPDHTPE 40, and the second weight loss above 250 ° C was due to decomposition of the sulfonic acid group. Also, the third weight loss at around 510 ° C was due to the decomposition of the polymer backbone.

PMPc에서, 100-250℃ 부근에서의 초기 중량 손실은 PMPc 로부터 잔류 용매(DMAc) 및 물 방출로 인한 것이었으며, 500℃ 이상에서의 제2 중량 손실은 고분자 주쇄의 분해로 인한 것이었다.
In PMPc, the initial weight loss at around 100-250 DEG C was due to residual solvent (DMAc) and water release from PMPc, and the second weight loss above 500 DEG C was due to decomposition of the polymer backbone.

고분자의 분자량은 겔투과 크로마토그래피(GPC)에 의해 결정하였는데, 합성된 공중합체의 평균 분자량(Mw) 및 다중 분산도(Mw/Mn)은 각각 68,000-83,000 및 2.12-2.43 범위였다.
The molecular weight of the polymer was determined by gel permeation chromatography (GPC), and the average molecular weight (M w ) and polydispersity (M w / M n ) of the synthesized copolymer ranged from 68,000-83,000 and 2.12-2.43, respectively.

SPDHTPE 40 및 PMPc는 DMSO(디메틸설폭사이드), DMAc(디메틸아세트아미드) 및 NMP(N-메틸피릴리디논) 등과 같은 비양자성 극성용매에 가용성인 것으로 확인되었다.
SPDHTPE 40 and PMPc were found to be soluble in aprotic polar solvents such as DMSO (dimethylsulfoxide), DMAc (dimethylacetamide) and NMP (N-methylpyrrolidinone).

설폰화 공중합체(95, 90, 85중량%)와 PMPc-Ni(5, 10, 15중량%)의 혼합물로부터 일련의 하이브리드막(H-Ni, 5, 10, 15)을 제고하고, 이를 DMAc 용액 중에서 주조하여 밝은 황색 투명 필름을 형성시켰다. 설폰화도(DS)를 이온 교환능(IEC; meq./g)의 형태로 표시하였다. 고분자에 증가된 수의 설폰산기를 도입하는 것은 이의 이온 전도성을 개선시킬 뿐만 아니라, 고분자를 더욱 친수성으로 만들기로 한다.
A series of hybrid membranes (H-Ni, 5, 10, 15) were prepared from a mixture of sulfonated copolymer (95, 90, 85 wt.%) And PMPc-Ni And cast in solution to form a light yellow transparent film. The sulfonation degree (DS) was expressed in the form of ion exchange capacity (IEC; meq./g). The introduction of an increased number of sulfonic acid groups into the polymer not only improves its ion conductivity but also makes the polymer more hydrophilic.

기계적 완결성을 유지하면서 적절한 양성자 전도성을 제공하기 위한 충분한 설폰기를 함유하는 PEMFC에 적절한 막을 얻기 위해 SPDHTPE 40을 선택하였다. 도 5에 도시된 바와 같이, SPDHTPE 40, H-Ni 5, 10 및 15의 IEC는 1.40, 1.31, 1.27 및 1.19 meq./g인 반면, Nafion® 211의 IEC는 0.91 meq./g였다. 하이브리드막의 IEC는 PMPc-Ni의 중량%가 증가할수록 감소하였다. 또한 도 5에는 80℃에서의 막의 수분 흡수율을 도시하였다. 하이브리드막은 SPDHTPE 40의 낮은 함량으로 인해 SPDHTPE 40의 45% 보다 낮은 40% 부근을 나타내었다.
SPDHTPE 40 was chosen to obtain a membrane suitable for a PEMFC containing sufficient sulfone groups to provide adequate proton conductivity while maintaining mechanical integrity. As shown in FIG. 5, the IECs of SPDHTPE 40, H-Ni 5, 10 and 15 were 1.40, 1.31, 1.27 and 1.19 meq./g, while the IEC of Nafion ® 211 was 0.91 meq./g. The IEC of the hybrid membrane decreased as the weight percentage of PMPc-Ni increased. Figure 5 also shows the moisture absorption rate of the membrane at 80 ° C. Hybrid membranes showed around 40%, which is lower than 45% of SPDHTPE 40 due to the low content of SPDHTPE 40.

계외(Ex situ) 과산화수소 시험을 모든 막, SPDHTPE 40, Nafion 211 및 SPES 40(4,4-바이페놀 40mol%를 함유하는 설폰화 폴리(에테르설폰), 화학식 7)에 대해 동일한 온도에서 실시하였다.An Ex situ hydrogen peroxide test was conducted at the same temperature for all membranes, SPDHTPE 40, Nafion 211 and SPES 40 (sulfonated poly (ether sulfone) containing 40 mol% 4,4-biphenol, Formula 7).

[화학식 7][Formula 7]

Figure pat00015
Figure pat00015

여기에서, n : m의 비율은 0.4 : 0.6 이며, 고분자의 Mw는 10,000~150,000 이다.
Here, the ratio of n: m is 0.4: 0.6, and the Mw of the polymer is 10,000 to 150,000.

시험은 막의 화학적 분해 가속 시험으로서 5시간 동안 고온 Fenton 시약 중에서 평가하였다. 시험 후 막의 중량 및 IEC의 손실을 시간에 따른 막의 나머지 질량의 함수로서 나타내었다(도 6 및 표 1 참조).The test was evaluated in a high temperature Fenton reagent for 5 hours as an accelerated chemical decomposition test of the membrane. The weight of the membrane after testing and the loss of the IEC were expressed as a function of the remaining mass of the membrane over time (see FIG. 6 and Table 1).

H-Ni 5, 10 및 15의 중량 손실을 도 6-(1)에 도시하였다. H-Ni 10 및 15는 큰 차이를 나타내지 않았지만, 낮은 중량%의 PMPc를 함유하는 H-Ni 5는 빠른 분해를 빠른 분해를 보였다. 도 6-(2)는 Nafion 211이 화학적으로 분해되지 않았고, Ni 및 Co 함유 H-Ni 10 및 H-Co 10 막이 93중량%를 유지하였음을 보여주었다. 그러나, Fe 함유 H-Fe 10막은 PMPc가 없는 SPDHTPE 40 및 H-Ni 10 및 H-Co 10 막보다 훨씬 빠른 분해를 보여주었다.
The weight loss of H-Ni 5, 10 and 15 is shown in Fig. 6- (1). H-Ni 10 and 15 did not show a significant difference, but H-Ni 5 containing low weight percent PMPc showed fast decomposition and fast decomposition. Fig. 6- (2) showed that Nafion 211 was not chemically decomposed, and the Ni and Co-containing H-Ni 10 and H-Co 10 films retained 93 wt%. However, Fe-containing H-Fe 10 membranes showed much faster decomposition than SPDHTPE 40 and H-Ni 10 and H-Co 10 membranes without PMPc.

안정성은, PMPc-Fe가 산화 촉진제로서 작용하는 반면, PMPc-Co 및 Ni는 항산화제의 역할을 함을 설명해주었다. 측쇄 설폰화막(SPDHTPE 40)은 주쇄 설폰화막(SPES 40)보다 산화에 더 안정적이다.Stability explained that PMPc-Fe acts as an oxidation promoter while PMPc-Co and Ni act as antioxidants. The branched sulfonated membrane (SPDHTPE 40) is more stable to oxidation than the main sulfonated membrane (SPES 40).

하기 표 1은 중량 손실과 양호하게 일치하는 필적하는 IEC 값을 보여준다.Table 1 below shows comparable IEC values that are in good agreement with weight loss.

막의 중량 및 IEC 손실Membrane weight and IEC loss 고분자Polymer H-Ni 5H-Ni 5 H-Ni 10H-Ni 10 H-Ni 15H-Ni 15 H-Co 10H-Co 10 H-Fe 10H-Fe 10 SPDHTPE 40SPDHTPE 40 SPES 40SPES 40 IECa(meq./g)IEC a (meq. / G) 1.321.32 1.271.27 1.191.19 1.271.27 1.281.28 1.401.40 1.611.61 IECa(meq./g)IEC a (meq. / G) 1.151.15 1.181.18 1.121.12 1.161.16 -- 1.131.13 --

여기에서, a는 제1 초기 IEC; b는 Fenton 시약 중에서 5시간 후의 IEC; 중량 손실은 Fenton 시약 중에서 5시간 후의 손실 중량%이다.Where a is a first initial IEC; b is IEC after 5 hours in Fenton reagent; The weight loss is the loss weight percent after 5 hours in the Fenton reagent.

하이브리드막의 양성자 전도성을 80% RH, 40-90℃에서, 그리고 30-90% RH 범위, 80℃에서 특정하고 도 7에 도시하였다.The proton conductivity of the hybrid membrane is specified at 80% RH, 40-90 占 폚, and 30-90% RH, at 80 占 폚, and is shown in Fig.

상이한 온도 및 상대 습도에서의 H-Ni 5, 10 및 15막의 양성자 전도성은 거동이 유사하였고, 90% RH, 80℃에서 72.2, 72.4 및 68.5 mS/㎝로 측정되었다. 이들 결과에서, 낮은 IEC값을 가지는 높은 중량%의 PMPc를 함유하는 H-Ni 15는 H-Ni 5와 매우 유사한 값을 나타내었는데, 이는 PMPc-Ni가 항산화제 및 양성자 전도성 촉진제로서 중요한 역할을 함을 시사한다.
The proton conductivities of the H-Ni 5, 10 and 15 membranes at different temperatures and relative humidity were similar and were measured at 72.2, 72.4 and 68.5 mS / cm at 90% RH, 80 ° C. In these results, H-Ni 15 containing a high weight percentage of PMPc with low IEC values showed very similar values to H-Ni 5, indicating that PMPc-Ni plays an important role as an antioxidant and a proton conductivity promoter .

한편, 도 8에는 10중량%의 PMPc를 함유한 하이브리드막의 양성자 전도성을 SPDHTPE 40 및 Nafion 211과 비교하여 도시하였다. H-Ni 10, H-Co 10 및 SPDHTPE 40의 양성자 전도성은 Nafion 211의 93.1 mS/㎝과 비교할 때, 90% RH, 80℃에서 72.4, 71.6 및 72.3 mS/㎝이었다. 흥미롭게도, 하이브리드막의 IEC는 낮았지만, H-Ni 10, H-Co 10의 IEC는 PMPc가 없는 SPDHTPE 40의 수분 흡수율 및 양성자 전도성에 필적하였다 이 거동은 고분자의 프탈로시아닌 내의 금속 이온에 기인한 것으로 판단된다. 이러한 고분자는 비교적 낮은 수분 흡수율 및 낮은 IEC를 가지면서 우수한 양성자 전도성을 제공할 수 있다. On the other hand, FIG. 8 shows the proton conductivity of a hybrid membrane containing 10 wt% of PMPc compared to SPDHTPE 40 and Nafion 211. The proton conductivities of H-Ni 10, H-Co 10 and SPDHTPE 40 were 72.4, 71.6 and 72.3 mS / cm at 90% RH and 80 ° C, respectively, as compared to 93.1 mS / cm for Nafion 211. Interestingly, the IEC of the hybrid membrane was low, but the IEC of H-Ni 10 and H-Co 10 was comparable to the water uptake and proton conductivity of SPDHTPE 40 without PMPc. This behavior is believed to be due to the metal ion in the phthalocyanine of the polymer . These polymers can provide good proton conductivity with relatively low water uptake and low IEC.

이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. Having described specific portions of the present invention in detail, those skilled in the art will appreciate that these specific descriptions are only for the preferred embodiment and that the scope of the present invention is not limited thereby. It will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (17)

하기 화학식 1로 표시되는 4,4′-(2,2-디페닐에테닐리덴) 디페놀(4,4′-(2,2-diphenylethenylidene) diphenol, DHTPE).
[화학식 1]
Figure pat00016

4,4 ′-(2,2-diphenylethenylidene) diphenol represented by the following Formula 1 (4,4 ′-(2,2-diphenylethenylidene) diphenol, DHTPE).
[Chemical Formula 1]
Figure pat00016

하기 화학식 3으로 표시되고 제1항의 4,4′-(2,2-디페닐에테닐리덴) 디페놀(4,4′-(2,2-diphenylethenylidene, DHTPE)을 함유하는 설폰화 폴리(에테르설폰)(sulfonated poly(ether sulfone)s containing DHTPE, SPDHTPE).
[화학식 3]
Figure pat00017

여기에서, n : m의 비율은 0.4 : 0.6 이며, 고분자의 Mw는 10,000~150,000 이다.
Sulfonated poly (4)-(2,2-diphenylethenylidene) diphenol (4,4 '-(2,2-diphenylethenylidene, DHTPE) represented by the following formula (3) Sulfonated poly (ether sulfone) s containing DHTPE, SPDHTPE).
(3)
Figure pat00017

Here, the ratio of n: m is 0.4: 0.6, and the Mw of the polymer is 10,000 to 150,000.
제2항에 있어서,
상기 DHTPE가 40%mol로 함유되는 것을 특징으로 하는 4,4′-(2,2-디페닐에테닐리덴) 디페놀(4,4′-(2,2-diphenylethenylidene, DHTPE)을 함유하는 설폰화 폴리(에테르설폰)(sulfonated poly(ether sulfone)s containing DHTPE, SPDHTPE).
3. The method of claim 2,
4,4 ′-(2,2-diphenylethenylidene) diphenol (4,4 ′-(2,2-diphenylethenylidene, DHTPE), characterized in that the DHTPE is contained in 40% mol Sulfonated poly (ether sulfones) containing DHTPE, SPDHTPE.
하기 화학식 4로 표시되는 1,4-비스(4-하이드록시페닐)-2,3-디시아노나프탈렌(1,4-bis(4-hydroxyphenyl)-2,3-dicyanonaphthalene, HPDCP).
[화학식 4]
Figure pat00018

1,4-bis (4-hydroxyphenyl) -2,3-dicyonanaphthalene (1,4-bis (4-hydroxyphenyl) -2,3-dicyanonaphthalene, HPDCP) represented by the following formula (4).
[Chemical Formula 4]
Figure pat00018

하기 화학식 5로 표시되고, 제4항의 1,4-비스(4-하이드록시페닐)-2,3-디시아노나프탈렌(1,4-bis(4-hydroxyphenyl)-2,3-dicyanonaphthalene, HPDCP)를 포함하는 고분자 중합체(polymer HPDCP, PHPDCP).
[화학식 5]
Figure pat00019

여기에서, n : m의 비율은 0.4 : 0.6 이며, 고분자의 Mw는 10,000~150,000 이다.
1,4-bis (4-hydroxyphenyl) -2,3-dicyonanaphthalene (1,4-bis (4-hydroxyphenyl) -2,3-dicyanonaphthalene, HPDCP) Polymer comprising a polymer (polymer HPDCP, PHPDCP).
[Chemical Formula 5]
Figure pat00019

Here, the ratio of n: m is 0.4: 0.6, and the Mw of the polymer is 10,000 to 150,000.
하기 화학식 6으로 표시되며, 금속 프탈로시아닌(metallophthalocyanine, MPc)을 함유하는 폴리(아릴렌 에테르 설폰)[(poly(arylene ether sulfone), PMPc].
[화학식 6]
Figure pat00020

여기에서, n : m의 비율은 0.4 : 0.6 이며, 고분자의 Mw는 10,000~150,000 이다.
A poly (arylene ether sulfone), represented by the following formula (6), containing metallophthalocyanine (MPc) [(poly (arylene ether sulfone), PMPc].
[Chemical Formula 6]
Figure pat00020

Here, the ratio of n: m is 0.4: 0.6, and the Mw of the polymer is 10,000 to 150,000.
제6항에 있어서,
상기 금속은 니켈(Ni), 코발트(Co), 및 철(Fe)에서 선택되는 것을 특징으로 하는 금속 프탈로시아닌(metallophthalocyanine, MPc)을 함유하는 폴리(아릴렌 에테르 설폰)[(poly(arylene ether sulfone), PMPc].
The method according to claim 6,
The metal is poly (arylene ether sulfone) containing a metal phthalocyanine (MPc), characterized in that selected from nickel (Ni), cobalt (Co), and iron (Fe). , PMPc].
제6항에 있어서,
상기 금속은 1 내지 20중량%로 포함되는 것을 특징으로 하는 금속 프탈로시아닌(metallophthalocyanine, MPc)을 함유하는 폴리(아릴렌 에테르 설폰)[(poly(arylene ether sulfone), PMPc].
The method according to claim 6,
The metal is poly (arylene ether sulfone) containing a metal phthalocyanine (metallophthalocyanine, MPc), characterized in that it is contained in 1 to 20% by weight [(poly (arylene ether sulfone), PMPc].
제1항의 4,4′-(2,2-디페닐에테닐리덴) 디페놀(4,4′-(2,2-diphenylethenylidene, DHTPE)을 함유하는 설폰화 폴리(에테르설폰)(sulfonated poly(ether sulfone)s containing DHTPE, SPDHTPE) 및 제6항의 금속 프탈로시아닌(metallophthalocyanine, MPc)을 함유하는 폴리(아릴렌 에테르 설폰)[(poly(arylene ether sulfone), PMPc]으로 제조한 하이브리드 공중합체.
Sulfonated poly (ethersulfone) containing 4,4 '-(2,2-diphenylethenylidene) diphenol of claim 1 (4,4'-(2,2-diphenylethenylidene, DHTPE) A hybrid copolymer made of poly (arylene ether sulfone), containing (ether sulfone) s containing DHTPE, SPDHTPE) and the metallophthalocyanine (MPc) of claim 6.
제9항에 있어서,
상기 SPDHTPE 및 PMPc는 각각 80 내지 99중량% 및 1 내지 20중량%로 혼합되는 것을 특징으로 하는 하이브리드 공중합체.
10. The method of claim 9,
Wherein the SPDHTPE and PMPc are mixed in an amount of 80 to 99 wt% and 1 to 20 wt%, respectively.
디페닐메탄(dimethylmethane) 및 4,4-디메톡시벤조페논(4,4-dimethyoxybenzophenone)을 출발물질로 하여 맥머리 탄소-탄소 이중결합 커플링 반응(McMurry Carbon-carbon double bond coupling reaction) 및 삼브롬화붕소(BBr3)를 이용한 디메틸화(demethylation)를 통해 제조하는 것을 특징으로 하는 4,4′-(2,2-디페닐에테닐리덴) 디페놀(4,4′-(2,2-diphenylethenylidene, DHTPE)의 제조방법.
McMurry Carbon-carbon double bond coupling reaction and tribromide using dimethylmethane and 4,4-dimethyoxybenzophenone as starting materials 4,4 ′-(2,2-diphenylethenylidene) diphenol (4,4 ′-(2,2-) characterized in that it is prepared by dimethylation using boron (BBr 3 ). diphenylethenylidene, DHTPE).
4,4′-(2,2-디페닐에테닐리덴) 디페놀(4,4′-(2,2-diphenylethenylidene, DHTPE), 4,4-플루오로페닐설폰(4,4-fluorophenylsulfone) 및 설포닐디페놀(sulfonyldiphenol)을 출발물질로 하여 공중합체(PDHTPE)를 제조한 후 설포화반응(sulfonation)을 통해 제조하는 것을 특징으로 하는 4,4′-(2,2-디페닐에테닐리덴) 디페놀(4,4′-(2,2-diphenylethenylidene, DHTPE)을 함유하는 설폰화 폴리(에테르설폰)(sulfonated poly(ether sulfone)s containing DHTPE, SPDHTPE)의 제조방법.
4,4 ′-(2,2-diphenylethenylidene) diphenol (4,4 ′-(2,2-diphenylethenylidene, DHTPE), 4,4-fluorophenylsulfone And 4,4 ′-(2,2-diphenylethenyl), characterized in that a copolymer (PDHTPE) is prepared by using sulfonyldiphenol as a starting material and then prepared by sulfonation. A method for preparing sulfonated poly (ether sulfone) s containing DHTPE, SPDHTPE, containing a den) diphenol (4,4 ′-(2,2-diphenylethenylidene, DHTPE).
환원된 페놀프탈레인(reduced phenolphthalein)을 진한 황산과 반응시켜 이소벤조푸란(isobenzofuran)을 제조한 후 푸마로니트릴(fumaronitrile)과 딜스-알더(Diels-Alder) 반응을 통해 제조하는 것을 특징으로 하는 1,4-비스(4-하이드록시페닐)-2,3-디시아노나프탈렌(1,4-bis(4-hydroxyphenyl)-2,3-dicyanonaphthalene, HPDCP)의 제조방법.
1,4 characterized in that isobenzofuran is prepared by reacting reduced phenolphthalein with concentrated sulfuric acid, followed by fumaronitrile and Diels-Alder reaction. A process for preparing bis (4-hydroxyphenyl) -2,3-dicyonanaphthalene (1,4-bis (4-hydroxyphenyl) -2,3-dicyanonaphthalene, HPDCP).
1,4-비스(4-하이드록시페닐)-2,3-디시아노나프탈렌(1,4-bis(4-hydroxyphenyl)-2,3-dicyanonaphthalene, HPDCP), 4,4-바이페놀(4,4-biphenol) 및 비스(4-플루오로페닐)설폰(bis(4-flourophenyl)sulfone)을 출발물질로 하여 상기 HPDCP를 함유하는 고분자 중합체 HPDCP를 제조한 후, 1,2-디시아노벤젠(1,2-dicyanobenzene)과 퀴놀린(quinoline) 중의 금속(Ⅱ) 염화물과의 반응을 통해 금속 프탈로시아닌(metallophthalocyanine, MPc)을 함유하는 폴리(아릴렌 에테르 설폰)[(poly(arylene ether sulfone), PMPc]의 제조방법.
1,4-bis (4-hydroxyphenyl) -2,3-dicyonanaphthalene (1,4-bis (4-hydroxyphenyl) -2,3-dicyanonaphthalene, HPDCP), 4,4-biphenol (4, A polymer polymer HPDCP containing the HPDCP was prepared using 4-biphenol) and bis (4-fluorophenyl) sulfone as starting materials, and then 1,2-dicyanobenzene (1 Of poly (arylene ether sulfone) [PMPc] containing metallophthalocyanine (MPc) through reaction of, 2-dicyanobenzene with metal (II) chloride in quinoline Manufacturing method.
제9항의 금속 프탈로시아닌(MPc)을 함유하는 폴리(아릴렌 에테르 설폰)(PMPc)을 기반으로 하는 연료전지용 전해질막.
An electrolyte membrane for a fuel cell based on poly (arylene ether sulfone) (PMPc) containing the metal phthalocyanine (MPc) of claim 9.
제15항에 있어서,
상기 연료전지용 전해질막은 제9항의 하이브리드 공중합체인 것을 특징으로 하는 연료전지용 전해질막.
16. The method of claim 15,
The fuel cell electrolyte membrane is a fuel cell electrolyte membrane, characterized in that the hybrid copolymer of claim 9.
제15항의 전해질막을 채용한 고분자 전해질막 연료전지(PEMFC).A polymer electrolyte membrane fuel cell (PEMFC) employing the electrolyte membrane of claim 15.
KR1020120103477A 2012-09-18 2012-09-18 Polymer electrolyte membrane of metallophthalocyanine contained sulfonated poly(ether sulfone)s and preparing method thereof KR101436011B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120103477A KR101436011B1 (en) 2012-09-18 2012-09-18 Polymer electrolyte membrane of metallophthalocyanine contained sulfonated poly(ether sulfone)s and preparing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120103477A KR101436011B1 (en) 2012-09-18 2012-09-18 Polymer electrolyte membrane of metallophthalocyanine contained sulfonated poly(ether sulfone)s and preparing method thereof

Publications (2)

Publication Number Publication Date
KR20140036847A true KR20140036847A (en) 2014-03-26
KR101436011B1 KR101436011B1 (en) 2014-09-02

Family

ID=50646008

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120103477A KR101436011B1 (en) 2012-09-18 2012-09-18 Polymer electrolyte membrane of metallophthalocyanine contained sulfonated poly(ether sulfone)s and preparing method thereof

Country Status (1)

Country Link
KR (1) KR101436011B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109692582A (en) * 2017-10-20 2019-04-30 中国石油化工股份有限公司 Reverse osmosis membrane and its preparation method and application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101059197B1 (en) * 2008-08-29 2011-08-24 한국화학연구원 Sulfonated polyarylene ether sulfone copolymer including a photocrosslinked group, a method for producing a hydrogen ion conductive polymer electrolyte membrane using the same, and a fuel cell having a polymer electrolyte membrane prepared therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109692582A (en) * 2017-10-20 2019-04-30 中国石油化工股份有限公司 Reverse osmosis membrane and its preparation method and application
CN109692582B (en) * 2017-10-20 2021-08-03 中国石油化工股份有限公司 Reverse osmosis membrane and preparation method and application thereof

Also Published As

Publication number Publication date
KR101436011B1 (en) 2014-09-02

Similar Documents

Publication Publication Date Title
Wang et al. Poly (arylene ether sulfone) proton exchange membranes with flexible acid side chains
Li et al. A novel branched side-chain-type sulfonated polyimide membrane with flexible sulfoalkyl pendants and trifluoromethyl groups for vanadium redox flow batteries
Ahmed et al. Comparative study of sulfonated branched and linear poly (phenylene) s polymer electrolyte membranes for fuel cells
Seo et al. Preparation and characterization of block copolymers containing multi-sulfonated unit for proton exchange membrane fuel cell
JP5542833B2 (en) Polymer electrolyte membrane
Han et al. Considerations of the morphology in the design of proton exchange membranes: cross-linked sulfonated poly (ether ether ketone) s using a new carboxyl-terminated benzimidazole as the cross-linker for PEMFCs
Seo et al. Preparation and characterization of sulfonated poly (tetra phenyl ether ketone sulfone) s for proton exchange membrane fuel cell
Lim et al. Synthesis and properties of sulfonated poly (phenylene sulfone) s without ether linkage by Diels–Alder reaction for PEMFC application
JP4706023B2 (en) Sulfonated aromatic polyether, method for producing the same, and electrolyte membrane
EP3340350B1 (en) Polyphenylsulfone-based proton conducting polymer electrolyte, proton conducting solid polymer electrolyte membrane and method for producing the same, electrode catalyst layer for solid polymer fuel cells and method for producing the same, and solid polymer fuel cells
Zhang et al. Cross-linked tri-side chains poly (arylene ether ketone) s containing pendant alkylsulfonic acid groups for proton exchange membranes
Huang et al. Synthesis of novel sulfonated poly (arylene ether) s containing a tetra-trifluoromethyl side chain and multi-phenyl for proton exchange membrane fuel cell application
KR20160081117A (en) Sulfonated poly(isatin-ethersulfone), method for preparing the same and polymer membrane composition for fuel cell using the same
KR101436011B1 (en) Polymer electrolyte membrane of metallophthalocyanine contained sulfonated poly(ether sulfone)s and preparing method thereof
Oh et al. Preparation and characterization of acid-acid blend membranes for direct methanol fuel cell applications
Lim et al. Synthesis and characterization of pendant propane sulfonic acid on phenylene based copolymers by superacid-catalyzed reaction
JP5549970B2 (en) Aromatic polyelectrolytes having superacid groups and their use
KR101538761B1 (en) Sulfonated polyphenylene polymer containing fluorine moiety
Lim et al. High efficiency of proton transport by clustering nanochannels in multi-sulfonated propeller-like nonplanar hexaphenylbenzene poly (ether sulfone) s
Shimura et al. Synthesis, properties, and fuel cell performance of perfluorosulfonated poly (arylene ether) s
Lim et al. Synthesis and properties of sulfonated poly (ether sulfone) membranes containing metallophthalocyanine
EP2297225A1 (en) Proton-conducting polymeric poly(arylene ether)s with pendant phenyl sulfonic acids
Lim et al. Proton conducting hybrid membrane electrolytes of sulfonated poly (ether sulfone) s and poly (ether sulfone) s containing metallophthalocyanine
Lim et al. New multi-phenylene polymer electrolyte containing hexabenzocoronene interior for PEMFC
KR102567197B1 (en) Poly(phenylenebenzopheneone) based polymer for proton exchange membrane of fuel cell, polymer proton exchange membrane for fuel cell, and fuel cell comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20170821

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180813

Year of fee payment: 5