KR20130097253A - In-situ purification and surface treatment method of boron nitride nanotubes - Google Patents

In-situ purification and surface treatment method of boron nitride nanotubes Download PDF

Info

Publication number
KR20130097253A
KR20130097253A KR1020120018434A KR20120018434A KR20130097253A KR 20130097253 A KR20130097253 A KR 20130097253A KR 1020120018434 A KR1020120018434 A KR 1020120018434A KR 20120018434 A KR20120018434 A KR 20120018434A KR 20130097253 A KR20130097253 A KR 20130097253A
Authority
KR
South Korea
Prior art keywords
boron nitride
bnnts
amine
supernatant
nitride nanotubes
Prior art date
Application number
KR1020120018434A
Other languages
Korean (ko)
Other versions
KR101429559B1 (en
Inventor
김재우
서영수
최진혁
서덕봉
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to KR1020120018434A priority Critical patent/KR101429559B1/en
Publication of KR20130097253A publication Critical patent/KR20130097253A/en
Application granted granted Critical
Publication of KR101429559B1 publication Critical patent/KR101429559B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE: An in-situ purification and surface treatment method for boron nitride nanotubes is provided to improve the polymer dispersibility and integrity of boron nitride nanotubes by removing impurities and improving polymer wettability. CONSTITUTION: An in-situ purification and surface treatment method for boron nitride nanotubes comprises: a step of obtaining a mixture by combining boron nitride nanotubes with polymers after mixing the boron nitride nanotubes with the polymers in a reduction atmosphere; and a step of obtaining supernatant by separating a mixture into the supernatant and precipitates by a centrifugal process. [Reference numerals] (AA) Before purification; (BB) Amine-PEG first upper fluid; (CC) Amine-PEG first precipitate; (DD) Amine-PEG second fluid

Description

질화붕소나노튜브의 정제 및 표면처리 방법{In-situ purification and surface treatment method of boron nitride nanotubes}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying boron nitride nanotubes,

본 발명은 질화붕소나노튜브의 정제 및 표면처리 방법에 관한 것으로서 보다 상세하게는 고분자로 질화붕소나노튜브의 표면을 처리함으로써 질화붕소나노튜브의 고분자 젖음성 향상 및/또는 불순물을 제거할 수 있어 분산성과 나노튜브 순수성이 향상된 질화붕소나노튜브의 정제 및 표면처리 방법에 관한 것이다.
The present invention relates to a method for purifying and treating a surface of a boron nitride nanotube, and more particularly, to a method for improving the wettability of a boron nitride nanotube with a polymer and / or removing impurities by treating the surface of the boron nitride nanotube with a polymer, The present invention relates to a method of purifying and treating a boron nitride nanotube having improved purity of nanotubes.

질화붕소나노튜브(boron nitride nanotubes, BNNTs)는 탄소나노튜브(carbon nanotubes, CNTs)에 필적하는 기계적 성질과 열전도성을 가지고 있으면서, CNTs와 차별화된 전기절연성, 내산화성 등의 특성을 지녀 고분자와의 복합화를 통한 전기절연 방열소재(열전달이 매우 우수한 소재)로의 응용과 고온에서 수행되는 세라믹 및 금속과의 복합화에 유리한 재료이다. 또한 수소 저장매체로서의 가능성이 매우 높아 많은 관련 연구가 진행되고 있다.Boron nitride nanotubes (BNNTs) have mechanical properties and thermal conductivity comparable to carbon nanotubes (CNTs), and have properties such as electrical insulation and oxidation resistance different from CNTs, It is an advantageous material for the application to electric insulation heat-dissipating material (material with excellent heat transfer) through compounding and the composite of ceramics and metal to be performed at high temperature. In addition, the possibility as a hydrogen storage medium is very high, and a lot of related researches are going on.

BNNTs는 아크방전법, 레이저 어블레이션법, 치환반응법, 화학증착법, 볼밀링-어닐링법(ball milling-annealing), 플라즈마 보조 레이저 증착법, 열분해법 등을 이용한 다양한 방법에 의해 합성될 수 있으나, BNNTs 합성 시 불순물을 함유하므로 정제과정이 필요하며 고분자, 세라믹 및 금속과의 나노 복합화를 위해서는 분산성 향상을 위한 전처리가 필요하다.BNNTs can be synthesized by various methods such as arc discharge, laser ablation, substitution reaction, chemical vapor deposition, ball milling-annealing, plasma assisted laser deposition, pyrolysis, etc. However, BNNTs Purification process is required because it contains impurities during synthesis, and preprocessing is required for improvement of dispersibility for nanocomposite with polymers, ceramics and metals.

상기에서 언급한 질화붕소나노튜브(BNNTs) 합성방법 중에서 특히 볼밀링-어닐링법은 BNNTs의 대량 생산에 가장 유리한 방법이지만 볼밀링 중 발생하는 금속성 물질과 어닐링 공정 중 발생하는 미반응 보론화합물의 불순물이 다량 생성되므로 볼밀링-어닐링법은 BNNTs의 정제 공정이 필요하다.Among the above-mentioned methods of synthesizing boron nitride nanotubes (BNNTs), the ball milling-annealing method is the most advantageous method for mass production of BNNTs, but the metallic material generated during ball milling and the impurities of the unreacted boron compound generated during the annealing process The ball milling-annealing method requires a purification process of BNNTs because it is produced in large quantities.

볼밀링-어닐링법으로 합성된 BNNTs를 정제하는 방법 중의 하나는 볼밀링 과정 중에서 생성되는 불순물을 산처리 방법을 통하여 제거하는 방법이다. 2006년 H. Chen 등이 발표한 바에 의하면 스테인레스 스틸 볼을 이용한 볼밀링 과정 중에서 생긴 금속 촉매제들을 염산(HCl)에 녹여 BNNTs의 순도를 높이는 방법을 제시하였다(Hua Chen, Ying Chen, Jun Yu, James S. Williams. Chemical Physics Letters 425 (2006) 315??319 "Purification of boron nitride nanotubes", DOI : 10.1016/j.cplett.2006.05.058). 이 논문에서는 BNNTs를 염산 처리를 한 후 철(Fe)의 함량비가 4.5wt%에서 0.1wt%로 감소하였고, 크롬(Cr)의 함량비가 0.7wt%에서 0.2wt%로 효과적으로 줄었다고 발표하였다. One of the methods for purifying BNNTs synthesized by the ball milling-annealing method is to remove the impurities generated in the ball milling process by an acid treatment method. In 2006, H. Chen et al. Proposed a method of increasing the purity of BNNTs by dissolving the metal catalysts formed in the ball milling process using stainless steel balls in hydrochloric acid (HCl) (Hua Chen, Ying Chen, Jun Yu, James S. Williams, Chemical Physics Letters 425 (2006) 315-319 "Purification of boron nitride nanotubes", DOI: 10.1016 / j.cplett.2005.05.058). In this paper, after the treatment of BNNTs with hydrochloric acid, the content of iron (Fe) decreased from 4.5wt% to 0.1wt%, and the content of chromium (Cr) decreased from 0.7wt% to 0.2wt%.

미반응 보론화합물의 경우에는 구조적으로 안정하고 산화에 강한 보론화합물의 특징으로 인해 앞에서 언급한 2006년 H. Chen 등이 발표한 염산 처리에 의한 제거가 힘든 단점이 있다. In the case of unreacted boron compounds, it is difficult to remove boron by the hydrochloric acid treatment described in H. Chen, 2006 mentioned above because of its structural stability and oxidation-resistant characteristics of boron compounds.

본 발명은 상기에서 언급한 단점을 극복하고 좀 더 효과적인 BNNTs의 정제방법으로서 표면처리를 이용하여 정제와 표면처리를 동시에 수행할 수 있는 BNNTs 정제 및 표면처리 방법을 제시하고 있다. 즉, BNNTs 표면을 고분자로 처리하여 BNNTs와 고분자를 결합시킨 후 용매에 용해시켜 불용의 불순물을 분리, 제거하여 BNNTs를 정제하는 방법이다. 현재 일반적으로 연구된 BNNTs의 표면처리 방법은 π-π 상호작용을 이용하여 고분자 등을 BNNTs 표면에 붙이는 표면처리 방법이다(Chunyi Zhi, Yoshio Bando, Chengchun Tang, Susumu Honda, Kazuhiko Sato, Hiroaki Kuwahara, and Dmitri GolbergThe Journal of Physical Chemistry B 110 (2006) No. 4 "Purification of Boron Nitride Nanotubes through Polymer Wrapping", DOI : 10.1021/jp054941f CCC ; Chunyi Zhi, Yoshio Bando, Chengchun Tang, Susumu Honda, Kazuhiko Sato, Hiroaki Kuwahara, and Dmitri Golberg, Angewandte Chemie 117 (2005) 8143??8146 "Characteristics of Boron Nitride Nanotube??Polyaniline Composites", DOI : 10.1002/ange.200502591).The present invention overcomes the disadvantages mentioned above and suggests a method for purifying BNNTs and a surface treatment method which can simultaneously perform purification and surface treatment using surface treatment as a more effective purification method of BNNTs. That is, BNNTs are treated with a polymer to bond the BNNTs to the polymer, and then dissolved in a solvent to separate and remove insoluble impurities, thereby purifying the BNNTs. The surface treatment method of BNNTs, which has been generally studied at present, is a surface treatment method in which polymers are attached to the surface of BNNTs using π-π interaction (Chunyi Zhi, Yoshio Bando, Chengchun Tang, Susumu Honda, Kazuhiko Sato, Hiroaki Kuwahara, and Dmitri Golberg The Journal of Physical Chemistry B 110 (2006) No. 4 "Purification of Boron Nitride Nanotubes through Polymer Wrapping", DOI: 10.1021 / jp054941f CCC Chunyi Zhi, Yoshio Bando, Chengchun Tang, Susumu Honda, Kazuhiko Sato, Hiroaki Kuwahara, and Dmitri Golberg, Angewandte Chemie 117 (2005) 8143-8146 "Characteristics of Boron Nitride Nanotube Polyaniline Composites", DOI: 10.1002 / ange.200502591).

이에 본 발명은 특정 고분자의 극성 상호작용을 이용하여 특정 고분자를 BNNTs와 결합시켜 BNNTs의 표면을 고분자로 감싸 BNNTs의 용매에 대한 용해성을 증진시키거나 밀도를 감소시켜 불순물을 제거할 수 있는 BNNTs의 정제 및 표면처리 방법을 제공하고자 한다.Accordingly, the present invention relates to a method for purifying BNNTs capable of removing impurities by increasing the solubility of BNNTs in a solvent or decreasing the density of BNNTs by binding specific polymers to BNNTs by using polar interactions of specific polymers And a surface treatment method.

한편 본 발명과 관련된 선행기술로서 한국공개특허 제2010-0033964호에 대기압 이상으로 증가된 질소 압력 하에서 붕소 함유 표적물을 챔버 내에서 열적으로 여기 시키는 단계(thermally exciting)를 포함함을 특징으로 하는 질화붕소나노튜브 및 나노구조물 제조방법을 나타내고 있다.As a prior art related to the present invention, Korean Patent Publication No. 2010-0033964 includes thermally exciting a boron-containing target in a chamber under an increased nitrogen pressure above atmospheric pressure. Boron nanotubes, and nanostructures.

또한 일본공개특허 제2007-230830호에 질화붕소나노튜브의 폴리머 랩핑(polymer wrapping)에 의한 균일하고 투명한 신규 질화붕소나노튜브 분산액 및 그 제조방법, 이 분산액을 사용한 질화붕소나노튜브의 정제방법을 나타내고 있다.Japanese Unexamined Patent Application Publication No. 2007-230830 discloses a uniform and transparent new boron nitride nanotube dispersion by polymer wrapping of boron nitride nanotubes, a method for producing the same, and a method for purifying boron nitride nanotubes using the dispersion have.

그러나 본 발명과 상기 선행기술들은 발명의 기술적 특징이 서로 상이하여 본 발명과 상기 선행기술들은 발명의 구성이 서로 다른 발명이다.
However, the present invention and the prior art are different from the technical features of the present invention, and thus the present invention and the prior art are inventions having different configurations.

본 발명의 목적은 질화붕소나노튜브의 정제 및 표면처리 방법을 제공하고자 한다. An object of the present invention is to provide a method for purifying and surface-treating a boron nitride nanotube.

본 발명의 다른 목적은 상기에서 언급한 방법에 의해 정제 및 표면처리된 질화붕소나노튜브를 제공하고자 한다.
Another object of the present invention is to provide a boron nitride nanotube purified and surface-treated by the above-mentioned method.

본 발명은 질화붕소나노튜브에 고분자를 첨가하고 반응시켜 상기 고분자에 의해 질화붕소나노튜브의 표면을 처리하여 질화붕소나노튜브의 불용성을 개선하고 원심분리 공정을 이용하여 질화붕소나노튜브의 불순물을 제거할 수 있어 분산성이 향상된 질화붕소나노튜브의 정제 및 표면처리 방법을 제공할 수 있다.The present invention relates to a method for removing boron nitride nanotubes by adding a polymer to a boron nitride nanotube and reacting the surface of the boron nitride nanotube with the polymer to improve the insolubility of the boron nitride nanotube and to remove impurities of the boron nitride nanotube And can provide a method for purifying and surface-treating a boron nitride nanotube having improved dispersibility.

본 발명은 상기에서 언급한 질화붕소나노튜브의 정제 및 표면처리 방법에 의해 정제되어 고분자 젖음성 향상 및/또는 불순물이 제거되어 고분자 분산성 및 순수성이 향상된 질화붕소나노튜브를 제공할 수 있다.
The present invention can provide a boron nitride nanotube which is refined by the above-mentioned purification and surface treatment method of boron nitride nanotubes to improve polymer wettability and / or remove impurities to improve polymer dispersibility and purity.

본 발명의 질화붕소나노튜브의 정제 및 표면처리 방법에 의해 정제된 질화붕소나노튜브는 고분자 젖음성 향상 및/또는 불순물이 제거되어 고분자 분산성 및 순수성이 향상된 질화붕소나노튜브를 제공할 수 있다.
The boron nitride nanotube purified by the purification and surface treatment method of the present invention can provide a boron nitride nanotube having improved polymer wettability and / or impurity removal and improved polymer dispersibility and purity.

도 1은 본 발명의 질화붕소나노튜브의 정제 시 사용된 장치를 나타낸 개략도이다.
도 2는 <실시예 1-1>에서의 Amine-PEG과 BNNTs를 반응시켜 얻은 반응물을 1차 원심분리 후 얻은 침전물을 나타낸 사진(왼쪽)과 Amine-PEG과 BNNTs를 반응시켜 얻은 반응물을 1차 원심분리 후 얻은 1차 상등액을 나타낸 사진(오른쪽)이다.
도 3은 <실시예 1-1> 및 <실시예 1-2>에서 정제전의 BNNTs를 나타낸 사진(상단부 왼쪽), Amine-PEG과 BNNTs를 반응시킨 다음 1차 원심분리 후 얻은 1차 상등액을 나타낸 사진(상단부 오른쪽), Amine-PEG과 BNNTs를 반응시킨 다음 1차 원심분리 후 얻은 1차 침전물을 나타낸 사진(하단부 왼쪽) 및 Amine-PEG과 BNNTs를 반응시킨 다음 1차 원심분리 후 얻은 1차 상등액에 증류수를 첨가하고 초음파 처리로 분산시킨 다음 2차 원심분리 후 얻은 2차 상등액을 나타낸 사진(하단부 오른쪽)이다.
도 4는 폴리옥시프로필렌디아민(OPA)와 BNNTs를 반응시킨 다음 원심분리 후 얻은 상등액을 나타낸 사진이다.
도 5는 산화 폴리에틸렌왁스(oxidized polyethylene wax)와 BNNTs를 반응시킨 다음 원심분리 후 얻은 상등액을 나타낸 사진이다.
도 6은 BNNTs의 정제 방법에 따른 라만분광 스펙트럼이다. 위에서부터 원시료 BNNTs, amine-PEG 2차 상등액 시료, OPA 2차 상등액 시료, oxi-PE 왁스 2차 상등액 시료의 스펙트럼이다.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing an apparatus used for purifying boron nitride nanotubes of the present invention. FIG.
FIG. 2 is a photograph showing the precipitate obtained by primary centrifugation of the reaction product obtained by reacting Amine-PEG with BNNTs in Example 1-1 (left) and the reaction product obtained by reacting Amine-PEG with BNNTs (Right) showing the first supernatant obtained after centrifugation.
FIG. 3 is a photograph showing the BNNTs before purification in Examples 1-1 and 1-2 (top left), the first supernatant obtained after primary centrifugation after reacting Amine-PEG with BNNTs (Top right), photographs showing the primary precipitate obtained after primary centrifugation (bottom left), and Amine-PEG and BNNTs were reacted with Amine-PEG and BNNTs, and then the first supernatant obtained after the first centrifugation (Right bottom of the figure) showing the second supernatant obtained after adding distilled water to the supernatant and dispersing it by ultrasonic treatment.
4 is a photograph showing the supernatant obtained by reacting polyoxypropylene diamine (OPA) with BNNTs and then centrifuging.
FIG. 5 is a photograph showing a supernatant obtained by reacting oxidized polyethylene wax with BNNTs and then centrifuging. FIG.
6 is a Raman spectroscopic spectrum according to a purification method of BNNTs. From the above, it is the spectrum of the primary sample BNNTs, the amine-PEG secondary supernatant sample, the OPA secondary supernatant sample, and the oxi-PE wax secondary supernatant sample.

본 발명은 질화붕소나노튜브의 정제 및 표면처리 방법을 나타낸다.The present invention shows a method for purifying and surface-treating a boron nitride nanotube.

본 발명은 질화붕소나노튜브(BNNTs)를 고분자와 혼합한 후 환원 분위기 존재하에서 결합시켜 혼합물을 얻는 단계; 상기 혼합물을 원심분리하여 상등액과 침전물을 분리하여 상등액을 얻는 단계를 포함하는 질화붕소나노튜브의 정제 및 표면처리 방법을 나타낸다.
The present invention relates to a method for producing boron nitride nanotubes (BNNTs), which comprises mixing boron nitride nanotubes (BNNTs) with a polymer and then combining them in the presence of a reducing atmosphere to obtain a mixture; Centrifuging the mixture to separate the supernatant and the precipitate to obtain a supernatant, and then refining and surface treating the boron nitride nanotube.

상기에서 BNNTs와 고분자의 혼합은 BNNTs를 BNNTs 중량 대비 1∼20배량의 고분자와 혼합시킬 수 있다.The mixing of the BNNTs and the polymer may be performed by mixing the BNNTs with the polymer of 1 to 20 times the weight of the BNNTs.

상기에서 BNNTs와 고분자의 결합은 200℃ 이하의 온도에서 84시간(Hr) 이하의 시간 조건의 환원 분위기 하에서 실시할 수 있다.The BNNTs and the polymer may be bonded in a reducing atmosphere at a temperature of 200 ° C or lower and a time of 84 hours (Hr) or lower.

상기에서 BNNTs와 고분자의 결합은 0∼200℃에서 1∼84시간 동안 환원 분위기 하에서 실시할 수 있다.The BNNTs and the polymer may be bonded at 0 to 200 ° C for 1 to 84 hours under a reducing atmosphere.

상기에서 BNNTs와 고분자의 결합은 25∼200℃에서 1∼84시간 동안 환원 분위기 하에서 실시할 수 있다.The BNNTs and the polymer may be bonded at 25 to 200 DEG C for 1 to 84 hours under a reducing atmosphere.

상기에서 BNNTs와 고분자를 결합시 온도는 고분자의 용융온도에 따라 적절한 온도에서 실시할 수 있다. 즉, BNNTs와 고분자를 결합시 온도는 고분자의 용융 온도 이상에서 실시할 수 있다.The temperature at which the BNNTs and the polymer are bonded to each other may be suitably adjusted according to the melting temperature of the polymer. That is, the temperature at which the BNNTs and the polymer are bonded can be higher than the melting temperature of the polymer.

상기에서 BNNTs와 고분자의 결합시 환원 분위기는 BNNTs 및/또는 고분자의 산화를 억제하기 위해 필요하다. 이때 환원 분위기는 질소(N), 헬륨(He), 네온(Ne), 아르곤(Ar) 중에서 선택된 어느 하나 이상의 가스 분위기하에서 실시할 수 있다.In the above, a reducing atmosphere at the time of bonding of BNNTs and a polymer is necessary to inhibit oxidation of BNNTs and / or polymers. At this time, the reducing atmosphere can be carried out in an atmosphere of at least one gas selected from nitrogen (N), helium (He), neon (Ne), and argon (Ar)

상기에서 BNNTs와 고분자의 결합시 BNNTs의 분산을 위해 초음파 처리를 추가로 실시할 수 있다.In the above, ultrasound treatment may be further applied to disperse BNNTs when BNNTs and polymer are combined.

상기의 BNNTs와 고분자의 결합시 BNNTs의 분산을 위해 20∼40kHz로 1∼30분 동안 초음파 처리를 추가로 실시할 수 있다.
In order to disperse the BNNTs when the BNNTs are combined with the polymer, ultrasonic treatment may be further performed at 20 to 40 kHz for 1 to 30 minutes.

상기에서 BNNTs와 고분자가 결합된 혼합물은 상온(20∼25℃)으로 냉각시킨 다음 2×g∼20,000×g 조건으로 10초∼30분 동안 원심분리를 실시할 수 있다.The mixture of the BNNTs and the polymer may be cooled to room temperature (20 to 25 ° C) and centrifuged at 2 × g to 20,000 × g for 10 seconds to 30 minutes.

상기에서 BNNTs와 고분자가 결합된 혼합물을 상온(20∼25℃)으로의 냉각은 통상의 냉각방법을 이용하여 실시할 수 있다. 이러한 냉각의 일예로서 혼합물을 상온(20∼25℃)에서 방치하여 냉각시키는 방법, 혼합물을 냉풍(0∼5℃)으로 냉각시키는 방법, 혼합물을 냉수(0∼5℃)에서 냉각시키는 방법 중에서 선택된 어느 하나 이상의 방법을 실시할 수 있다. 상기의 냉각방법은 종래 냉각방법 중에서 본 발명의 기술분야에서 통상의 지식을 가진 당업자가 적의 선택하여 실시할 수 있으면 족하므로, 이하 냉각에 대한 자세한 내용은 생략하기로 한다.
The cooling of the mixture of the BNNTs and the polymer to the room temperature (20 to 25 ° C) can be carried out using a conventional cooling method. As an example of such cooling, there is a method of leaving the mixture at room temperature (20 to 25 캜) to cool, a method of cooling the mixture to cool air (0 to 5 캜), and a method of cooling the mixture in cold water Any one or more of the methods may be practiced. The cooling method described above may be carried out by a person skilled in the art who has ordinary knowledge in the technical field of the present invention among the conventional cooling methods. Therefore, the details of the cooling will be omitted.

본 발명의 질화붕소나노튜브의 정제시 BNNTs와 혼합되는 고분자는 고분자의 양말단이 아민(amine)으로 처리된 고분자를 사용할 수 있다.The polymer to be mixed with the BNNTs when purifying the boron nitride nanotube of the present invention can be a polymer in which the end of the polymer is treated with an amine.

상기에서 양말단이 아민(amine)으로 처리된 고분자의 일예로서 폴리에틸렌글리콜(polyethylene glycol, PEG)의 양말단이 아민(amine)으로 처리된 폴리에틸렌글리콜-아민(amine-PEG)을 사용할 수 있다.As an example of the polymer treated with amines at both ends, polyethylene glycol-amine (PEG) in which polyethylene glycol (PEG) is treated with an amine at both ends can be used.

상기에서 양말단이 아민(amine)으로 처리된 고분자의 일예로서 폴리에틸렌(polyethylene, PE)의 양말단이 아민(amine)으로 처리된 폴리에틸렌-아민(amine-PE)을 사용할 수 있다. As an example of the polymer treated with amines at both terminals, polyethylene-amine (PE) treated with an amine at both ends of polyethylene (PE) may be used.

상기에서 양말단이 아민(amine)으로 처리된 고분자의 일예로서 폴리프로필렌(polypropylene, PP)의 양말단이 아민(amine)으로 처리된 폴리프로필렌-아민(amine-PP)을 사용할 수 있다.As an example of the polymer treated with amines at both ends, polypropylene-amine (PP) having polypropylene (PP) treated at both ends with amine may be used.

상기에서 양말단이 아민(amine)으로 처리된 고분자의 일예로서 폴리부텐(polybutene, PB)의 양말단이 아민(amine)으로 처리된 폴리부텐-아민(amine-PB)을 사용할 수 있다.As an example of the polymer treated with an amine at both terminals, polybutene-amine (PB-PB) treated with an amine at both ends of polybutene (PB) can be used.

상기에서 양말단이 아민(amine)으로 처리된 고분자는 중량평균분자량(weight-average molecular weight, MW)이 수백 내지 수백만인 것을 사용할 수 있다.The polymers treated with amines at both terminals may have a weight-average molecular weight (MW) of several hundreds to several millions.

상기에서 양말단이 아민(amine)으로 처리된 고분자는 중량평균분자량(MW)이 100∼100,000인 것을 사용할 수 있다.
In the above, the polymer treated with amines at both ends may have a weight average molecular weight (MW) of 100 to 100,000.

본 발명의 질화붕소나노튜브의정제시 BNNTs와 혼합되는 고분자는 아민(amine)이 포함된 고분자를 사용할 수 있다.The polymer to be mixed with the BNNTs during purification of the boron nitride nanotube of the present invention may be an amine-containing polymer.

상기에서 아민(amine)이 포함된 고분자의 일예로서 폴리옥시프로필렌디아민(polyoxypropylenediamine, OPA)을 사용할 수 있다.As an example of the amine-containing polymer, polyoxypropylenediamine (OPA) may be used.

상기에서 아민이 포함된 고분자는 중량평균분자량(MW)이 수백 내지 수백만인 것을 사용할 수 있다.The amine-containing polymer may have a weight average molecular weight (MW) of several hundreds to several millions.

상기에서 아민이 포함된 고분자는 중량평균분자량(MW)이 100∼100,000인 것을 사용할 수 있다.
The amine-containing polymer may have a weight average molecular weight (MW) of 100 to 100,000.

본 발명의 질화붕소나노튜브의정제시 BNNTs와 혼합되는 고분자는 산화된 폴리올레핀을 사용할 수 있다.The polymer to be mixed with the BNNTs during the purification of the boron nitride nanotube of the present invention may be an oxidized polyolefin.

상기에서 산화된 폴리올레핀의 일예로서 산화 폴리에틸렌 왁스(oxidized polyethylene wax, Oxi-PE 왁스)를 사용할 수 있다.As an example of the oxidized polyolefin, oxidized polyethylene wax (Oxi-PE wax) may be used.

상기에서 산화된 폴리올레핀의 일예로서 산화 폴리프로필렌 왁스(oxidized polypropylene wax)를 사용할 수 있다.As an example of the oxidized polyolefin, oxidized polypropylene wax may be used.

상기에서 산화된 폴리올레핀의 일예로서 산화 폴리부텐 왁스(oxidized polybutene wax)를 사용할 수 있다.As an example of the oxidized polyolefin, oxidized polybutene wax may be used.

상기에서 산화된 폴리올레핀은 산화도가 1∼30인 것을 사용할 수 있다.The oxidized polyolefin may have an oxidation degree of 1 to 30.

상기에서 산화된 폴리올레핀은 산화도가 1∼20인 것을 사용할 수 있다.The oxidized polyolefin may have an oxidation degree of 1 to 20.

상기에서 산화된 폴리올레핀은 산화도가 1∼10인 것을 사용할 수 있다. The oxidized polyolefin may have an oxidation degree of 1 to 10.

상기에서 산화된 폴리올레핀은 중량평균분자량(MW)이 수백 내지 수백만인 것을 사용할 수 있다.The oxidized polyolefin may have a weight average molecular weight (MW) of several hundreds to several millions.

상기에서 산화된 폴리올레핀은 중량평균분자량(MW)이 100∼100,000인 것을 사용할 수 있다.The oxidized polyolefin may have a weight average molecular weight (MW) of 100 to 100,000.

상기에서 산화된 폴리올레핀은 산화도가 1∼30이고, 중량평균분자량(MW)이 100∼100,000인 것을 사용할 수 있다.The oxidized polyolefin may have an oxidation degree of 1 to 30 and a weight average molecular weight (MW) of 100 to 100,000.

상기에서 산화된 폴리올레핀은 산화도가 1∼20이고, 중량평균분자량(MW)이 100∼100,000인 것을 사용할 수 있다.The oxidized polyolefin may have an oxidation degree of 1 to 20 and a weight average molecular weight (MW) of 100 to 100,000.

상기에서 산화된 폴리올레핀은 산화도가 1∼10이고, 중량평균분자량(MW)이 100∼100,000인 것을 사용할 수 있다.
The oxidized polyolefin may have an oxidation degree of 1 to 10 and a weight average molecular weight (MW) of 100 to 100,000.

상기에서 질화붕소나노튜브(BNNTs)의 정제방법은 원심분리 후 얻은 상등액에 용매를 첨가한 다음 상기에서 언급한 조건의 원심분리를 추가로 수회, 바람직하게는 2∼9회 원심분리를 추가로 실시하여 질화붕소나노튜브(BNNTs)의 순도를 더욱 향상시킬 수 있다.The method for purifying boron nitride nanotubes (BNNTs) is a method in which a solvent is added to a supernatant obtained by centrifugation, and centrifugation under the above-mentioned conditions is further performed several times, preferably 2 to 9 times, The purity of the boron nitride nanotubes (BNNTs) can be further improved.

상기에서 질화붕소나노튜브(BNNTs)의 정제방법은 원심분리 후 얻은 상등액에 용매를 첨가한 다음 2×g∼20,000×g 조건으로 10초∼30분 동안 원심분리를 추가로 수회, 바람직하게는 2∼9회 원심분리를 추가로 실시하여 질화붕소나노튜브(BNNTs)의 순도를 더욱 향상시킬 수 있다.The method for purifying boron nitride nanotubes (BNNTs) is a method for purifying boron nitride nanotubes (BNNTs) by adding a solvent to a supernatant obtained by centrifugation, and further centrifuging for 10 to 30 minutes at 2 x g to 20,000 x g for several times, The centrifugal separation can be further carried out nine times to further improve the purity of the boron nitride nanotubes (BNNTs).

상기에서 질화붕소나노튜브(BNNTs)의 정제방법은 원심분리 후 얻은 상등액에 용매를 첨가한 다음 20∼40kHz로 5∼15분 동안 초음파 처리 후 2×g∼20,000×g 조건으로 10초∼30분 동안 원심분리를 추가로 수회, 바람직하게는 2∼9회 원심분리를 추가로 실시하여 질화붕소나노튜브(BNNTs)의 순도를 더욱 향상시킬 수 있다.The method for purifying boron nitride nanotubes (BNNTs) is a method for purifying boron nitride nanotubes (BNNTs) by adding a solvent to a supernatant obtained by centrifugation, sonicating at 20 to 40 kHz for 5 to 15 minutes, Centrifugation is further carried out by further centrifuging several times, preferably 2 to 9 times, to further improve the purity of the boron nitride nanotubes (BNNTs).

상기에서 원심분리 후 얻은 상등액에 용매를 첨가시 용매는 상등액 중량 대비 1∼20배량의 용매를 첨가할 수 있다.When the solvent is added to the supernatant obtained by centrifugation in the above, the solvent may be added in an amount of 1 to 20 times the weight of the supernatant.

상기에서 원심분리 후 얻은 상등액에 용매를 첨가시 용매는 상등액 중량 대비 3∼15배량의 용매를 첨가할 수 있다.When the solvent is added to the supernatant obtained by centrifugation in the above, a solvent of 3 to 15 times the weight of the supernatant may be added to the solvent.

상기에서 원심분리 후 얻은 상등액에 용매를 첨가시 용매는 상등액 중량 대비 5∼10배량의 용매를 첨가할 수 있다.When the solvent is added to the supernatant obtained by centrifugation, the solvent may be added in an amount of 5 to 10 times the weight of the supernatant.

상기에서 원심분리 후 얻은 상등액에 용매를 첨가시 용매는 증류수(distilled water, 蒸溜水), 에탄올(ethanol), 자일렌(xylene) 중에서 선택된 어느 하나 이상을 사용할 수 있다.
When the solvent is added to the supernatant obtained after centrifugal separation, any one or more selected from distilled water, ethanol, and xylene may be used as the solvent.

상기에서 질화붕소나노튜브(BNNTs)는 현재 알려진 통상적인 방법에 의해 제조한 것을 사용하여 이를 정제할 수 있다.The boron nitride nanotubes (BNNTs) may be purified by using a method known in the art.

상기에서 질화붕소나노튜브는 현재 알려진 통상적인 방법, 예를 들면 아크방전법, 레이저 어블레이션법, 치환반응법, 화학증착법, 볼밀링-어닐링법, 플라즈마 보조 레이저 증착법, 열분해법 중에서 선택된 어느 하나 이상을 이용한 방법에 의해 제조한 질화붕소나노튜브를 정제할 수 있다.The boron nitride nanotubes may be formed by any of the currently known methods such as an arc discharge method, a laser ablation method, a substitution reaction method, a chemical vapor deposition method, a ball milling-annealing method, a plasma assisted laser deposition method, The boron nitride nanotubes can be purified by the method using a boron nitride nanotube.

상기에서 질화붕소나노튜브는 볼밀링-어닐링법에 의해 제조한 질화붕소나노튜브를 정제할 수 있다.
The boron nitride nanotubes can be purified by the ball milling-annealing method.

본 발명의 질화붕소나노튜브의 정제방법에 대해 다양한 조건으로 실시한바, 본 발명의 목적을 달성하기 위해서는 상기에서 언급한 조건에 의해 질화붕소나노튜브의 정제방법을 제공하는 것이 바람직하다.
In order to achieve the object of the present invention, it is preferable to provide a method for purifying boron nitride nanotubes according to the above-mentioned conditions in the method for purifying boron nitride nanotubes of the present invention under various conditions.

본 발명은 상기에서 언급한 질화붕소나노튜브의 정제방법에 의해 정제된 질화붕소나노튜브를 포함한다.
The present invention includes boron nitride nanotubes purified by the aforementioned method for purifying boron nitride nanotubes.

이하 본 발명의 내용을 실시예를 통하여 구체적으로 설명한다. 그러나 이들은 본 발명을 보다 상세하게 설명하기 위한 것으로 본 발명의 권리범위가 이들에 의해 한정되는 것은 아니다.
Hereinafter, the content of the present invention will be described in detail through examples. It should be understood, however, that these examples are provided for illustrative purposes only and are not to be construed as limiting the scope of the present invention.

<실시예 1-1> 폴리에틴렌글리콜(PEG)의 양말단이 아민(amine)으로 처리된 폴리에틴렌글리콜-아민(amine-PEG)을 이용한 질화붕소나노튜브의 정제방법Example 1-1 Purification of Boron Nitride Nanotube Using Polyethylene Glycol-Amine (amine-PEG) Treated with Amine at Both Ends of Polyethylene Glycol (PEG)

고분자로서 중량평균분자량이 1,500g/mol이며, 양말단이 아민(amine)으로 처리된 폴리에틴렌글리콜-아민(amine-PEG) 1.5g와 질화붕소나노튜브(BNNTs) 원시료 0.15g를 넣은 삼구 둥근 플라스크를 가열 맨틀에 넣은 후 고정하였다. 도 1에서와 같이 둥근 플라스크 안에는 마그네틱 교반봉을 넣어주고 맨틀 아래에 교반기를 설치하여 반응 시에 교반을 할 수 있도록 하였다. 플라스크 목의 한쪽에는 온도계를 꽂고, 가운데 목에는 콘덴서를 설치하여 차가운 물을 흘려주어 기화되는 고분자를 액화시켜주는 역할을 한다. 온도계는 시료의 온도를 직접 잴 수 있도록 플라스크의 바닥면 샘플에 직접 닿도록 설치한다. 콘덴서의 끝에는 고온에서 시료가 산화되지 않도록 반응하는 동안 유량 조절기를 설치하여 질소 기체를 흘려주었다. 1.5 g of polyethyleneglycol-amine (amine-PEG) having a weight average molecular weight of 1,500 g / mol as a polymer and treated with an amine at both terminals and 0.15 g of a raw material of boron nitride nanotubes (BNNTs) The round flask was placed in a heating mantle and fixed. As shown in FIG. 1, a magnetic stirrer rod was placed in a round flask, and a stirrer was installed under the mantle to allow stirring during the reaction. A thermometer is placed on one side of the neck of the flask, and a condenser is installed in the middle neck to give cold water to liquefy the vaporized polymer. The thermometer is mounted directly on the bottom surface of the flask so that the temperature of the sample can be measured directly. At the end of the condenser, a flow regulator was installed to flow the nitrogen gas during the reaction so that the sample was not oxidized at high temperature.

고분자(amine-PEG)와 BNNTs를 100℃에서 72시간 동안 질소기체의 환원 분위기하에서 결합시키는 반응을 실시하였다.Polymer (amine-PEG) and BNNTs were reacted at 100 ℃ for 72 hours under reducing atmosphere of nitrogen gas.

반응이 끝난 후 온도를 상온(25℃)으로 낮추고 증류수 10ml를 넣어 용해시킨 후 28kHz로 10분 동안 초음파 처리를 실시한 다음 600×g 조건에서 30초 동안 원심분리를 진행한 후 상등액과 침전물을 분리하여 상등액의 정제한 BNNTs를 얻었다.After the reaction was completed, the temperature was lowered to room temperature (25 ° C), and 10 ml of distilled water was added to dissolve. Ultrasonic treatment was performed at 28 kHz for 10 minutes, followed by centrifugation at 600 × g for 30 seconds. Separation of the supernatant and precipitate Purified BNNTs of the supernatant were obtained.

도 2는 Amine-PEG과 BNNTs를 결합시켜 Amine-PEG이 BNNTs를 감싼 혼합물을 나타낸 사진(왼쪽)이고, Amine-PEG과 BNNTs를 결합시켜 Amine-PEG이 BNNTs를 감싼 혼합물을 원심분리 후 얻은 상등액을 나타낸 사진(오른쪽)이다. Amine-PEG과 BNNTs를 결합시켜 얻은 혼합물을 원심분리 후 얻은 상등액은 황색 투명한 액체이며(도 2 오른쪽 사진), Amine-PEG과 BNNTs를 결합시켜 Amine-PEG과 BNNTs를 감싼 혼합물은 대체적으로 검은색을 띠고 있다(도 2 왼쪽 사진).
FIG. 2 is a photograph (left) showing a mixture of Amine-PEG and BNNTs in which Amine-PEG is wrapped around BNNTs, and a supernatant obtained by centrifuging a mixture containing Amine-PEG and BNNTs and wrapping Amine- (Right). The supernatant obtained after centrifugation of the mixture obtained by combining Amine-PEG with BNNTs is a yellow transparent liquid (Fig. 2, right). The mixture of Amine-PEG and BNNTs bound to Amine-PEG and BNNTs is generally black (Fig. 2, left picture).

<실시예 1-2> 폴리에틴렌글리콜(PEG)의 양말단이 아민(amine)으로 처리된 폴리에틴렌글리콜-아민(amine-PEG)을 이용한 질화붕소나노튜브의 정제방법Example 1-2 Purification of Boron Nitride Nanotube Using Polyethylene Glycol-Amine (amine-PEG) Treated with Amine at Both Ends of Polyethylene Glycol (PEG)

상기 실시예 1-1에서 얻은 상등액을 1차 상등액이라 하고, 상기 1차 상등액에 1차 상등액 중량 대비 20배량의 증류수를 첨가하고 28kHz로 10분 동안 초음파 처리를 실시한 다음 600×g 조건에서 180초 동안 원심분리를 실시하고 2차 상등액과 2차 침전물을 분리하여 1차 상등액의 BNNTs 보다 더욱 정제된 2차 상등액의 BNNTs를 얻었다.The supernatant obtained in Example 1-1 was referred to as a primary supernatant. Ultrasonic treatment was performed at 28 kHz for 10 minutes by adding distilled water 20 times as much as the weight of the primary supernatant to the primary supernatant. And the second supernatant and the second precipitate were separated to obtain BNNTs of the second supernatant more purified than the BNNTs of the first supernatant.

한편, 정제전의 BNNTs, Amine-PEG과 BNNTs를 결합시켜 얻은 혼합물을 원심분리 후 얻은 1차 상등액 및 1차 침전물, 1차 상등액을 2차 원심분리 후 얻은 2차 상등액에 대한 각각의 전자현미경 사진을 도 3에 나타내었다. On the other hand, the mixture obtained by combining BNNTs, Amine-PEG and BNNTs before purification was centrifuged to obtain the first supernatant and the first supernatant, and the second supernatant obtained from the second supernatant was subjected to electron microscopic photographs 3.

도 3에 보면 정제전의 원시료 BNNTs(도 3 상단부 좌측)에 비하여 1차 상등액(도 3 상단부 우측)에서는 BNNTs가 많이 발견되고, 반면에 1차 침전물(도 3 하단부 좌측)에서는 BNNTs가 거의 발견되지 않았으며, 2차 상등액(도 3 하단부 우측)에서는 1차 상등액 보다 BNNTs가 많이 보여 1차 상등액 보다 더욱 정제된 BNNTs를 얻을 수 있음을 알 수 있었다. 3, BNNTs were found in the first supernatant (right upper part of FIG. 3), whereas BNNTs were almost not found in the first precipitate (left part of FIG. 3) in comparison with the raw samples BNNTs before the purification And the BNNTs were more abundant than the first supernatant in the second supernatant (the lower right of FIG. 3), indicating that more purified BNNTs could be obtained than the first supernatant.

한편, 도 6과 표 1에서 정리한 라만분석을 보면 원시료인 정제전의 BNNTs에 비하여 1차 상등액 및 2차 상등액의 중심 피크가 증가하였고 반치폭(full width at half maximum, FWHM)은 크게 감소하여 이러한 결과를 통해 상기의 실시예 1-1 및 실시예 1-2에서 Amine-PEG를 이용한 BNNTs의 정제방법에 의해 얻은 BNNTs는 정제하기 전의 원시료인 BNNTs에 비해 보다 정제되었음을 알 수 있었다.
6 and Table 1 show that the center peak of the first supernatant and the second supernatant increase and the FWHM of the first supernatant and the second supernatant increase significantly compared with the BNNTs before purification, As a result, it was found that the BNNTs obtained by the purification method of BNNTs using Amine-PEG in Examples 1-1 and 1-2 were more purified than the BNNTs before the purification.

<실시예 2> 폴리옥시프로필렌디아민(polypropylenediamine, OPA)을 이용한 질화붕소나노튜브의 정제방법<Example 2> Purification method of boron nitride nanotubes by using polypropylenediamine (OPA)

고분자로서 중량평균분자량이 400g/mol인 폴리옥시프로필렌디아민(OPA) 1.5g와 BNNTs 원시료 0.15g를 넣은 삼구 둥근 플라스크를 가열 맨틀에 넣은 후 고정하였다. 도 1에서와 같이 둥근 플라스크 안에는 마그네틱 교반봉을 넣어주고 맨틀 아래에 교반기를 설치하여 반응 시에 교반을 할 수 있도록 하였다. 플라스크 목의 한쪽에는 온도계를 꽂고, 가운데 목에는 콘덴서를 설치하여 차가운 물을 흘려주어 기화되는 고분자를 액화시켜주는 역할을 한다. 온도계는 시료의 온도를 직접 잴수 있도록 플라스크의 바닥면 샘플에 직접 닿도록 설치한다. 콘덴서의 끝에는 고온에서 시료가 산화되지 않도록 반응하는 동안 유량 조절기를 설치하여 질소 기체를 흘려주었다. A three-neck round flask containing 1.5 g of polyoxypropylenediamine (OPA) having a weight average molecular weight of 400 g / mol as a polymer and 0.15 g of a raw sample of BNNTs was placed in a heating mantle and fixed. As shown in FIG. 1, a magnetic stirrer rod was placed in a round flask, and a stirrer was installed under the mantle to allow stirring during the reaction. A thermometer is placed on one side of the neck of the flask, and a condenser is installed in the middle neck to give cold water to liquefy the vaporized polymer. The thermometer is mounted directly on the bottom surface of the flask so that the temperature of the sample can be measured directly. At the end of the condenser, a flow regulator was installed to flow the nitrogen gas during the reaction so that the sample was not oxidized at high temperature.

고분자(OPA)와 BNNTs를 100℃에서 72시간 동안 질소기체의 환원 분위기하에서 결합시키는 반응에 의해 혼합물을 얻었다.The mixture was obtained by reacting polymer (OPA) and BNNTs at 100 ℃ for 72 hours under reducing atmosphere of nitrogen gas.

반응이 끝난 후 온도를 상온(25℃)으로 낮추고 상기 혼합물을 28kHz로 10분 동안 초음파 처리를 실시한 다음 600×g 조건에서 30초 동안 원심분리를 진행한 후 상등액과 침전물을 분리하여 상등액의 정제한 BNNTs를 얻었다.After the reaction was completed, the temperature was lowered to room temperature (25 ° C), and the mixture was sonicated for 10 minutes at 28 kHz. After centrifugation at 600 xg for 30 seconds, the supernatant was separated from the precipitate and the supernatant was purified BNNTs were obtained.

상기 상등액에 상등액 중량 대비 3배량의 에탄올을 첨가하고 35kHz로 10분 동안 초음파 처리를 실시한 다음 600×g 조건에서 180초 동안 원심분리를 실시하여 2차 상등액과 2차 침전물을 분리하여 2차 상등액의 정제된 BNNTs를 얻었다.Ethanol was added to the supernatant three times as much as the weight of the supernatant, and the supernatant was subjected to ultrasonic treatment at 35 kHz for 10 minutes, followed by centrifugation at 600 xg for 180 seconds to separate the second supernatant and the second precipitate, Purified BNNTs were obtained.

상기에서 2차 상등액의 정제한 BNNTs의 FE-SEM 사진을 도 4에 나타내었다.
An FE-SEM photograph of the purified BNNTs of the second supernatant is shown in FIG.

상기에서 얻은 2차 상등액의 정제한 BNNTs를 라만(Raman) 분석을 통하여 이의 결과를 도 6과 표 1에 나타내었다.The purified BNNTs of the second supernatant obtained above were analyzed by Raman analysis, and the results are shown in FIG. 6 and Table 1.

도 6과 표 1에서 정리한 라만분석을 보면 원시료인 정제전 BNNTs에 비하여 상기 OPA를 이용하여 정제한 BNNTs(OPA 상등액)의 중심 피크가 증가하였고 반치폭(full width at half maximum, FWHM)은 크게 감소하였다. 이러한 결과를 통해 상기에서 OPA를 이용한 정제방법에 의해 얻은 BNNTs는 원시료인 정제전 BNNTs에 비해 정제되었음을 알 수 있다.
6 and Table 1, the center peak of the BNNTs (OPA supernatant) purified using the OPA was increased and the full width at half maximum (FWHM) was larger than that of the original BNNTs Respectively. From these results, it can be seen that the BNNTs obtained by the purification method using OPA as above are purified compared to the pre-purification BNNTs as the original sample.

<실시예 3> 산화 폴리에틸렌 왁스(oxidized polyethylene wax)를 이용한 질화붕소나노튜브의 정제방법Example 3 Purification of Boron Nitride Nanotube by Using Oxidized Polyethylene Wax

고분자로서 산화도가 3±1인 산화 폴리에틸렌 왁스(oxidized polyethylene wax) 1.5g와 BNNTs 원시료 0.15g를 넣은 삼구 둥근 플라스크를 가열 맨틀에 넣은 후 고정하였다. 도 1에서와 같이 둥근 플라스크 안에는 마그네틱 교반봉을 넣어주고 맨틀 아래에 교반기를 설치하여 반응 시에 교반을 할 수 있도록 하였다. 플라스크 목의 한쪽에는 온도계를 꽂고, 가운데 목에는 콘덴서를 설치하여 차가운 물을 흘려주어 기화되는 고분자를 액화시켜주는 역할을 한다. 온도계는 시료의 온도를 직접 잴수 있도록 플라스크의 바닥면 샘플에 직접 닿도록 설치한다. 콘덴서의 끝에는 고온에서 시료가 산화되지 않도록 반응하는 동안 유량 조절기를 설치하여 질소 기체를 흘려주었다. A three-neck round flask containing 1.5 g of oxidized polyethylene wax having an oxidation degree of 3 ± 1 and 0.15 g of a raw BNNTs sample as a polymer was placed in a heating mantle and fixed. As shown in FIG. 1, a magnetic stirrer rod was placed in a round flask, and a stirrer was installed under the mantle to allow stirring during the reaction. A thermometer is placed on one side of the neck of the flask, and a condenser is installed in the middle neck to give cold water to liquefy the vaporized polymer. The thermometer is mounted directly on the bottom surface of the flask so that the temperature of the sample can be measured directly. At the end of the condenser, a flow regulator was installed to flow the nitrogen gas during the reaction so that the sample was not oxidized at high temperature.

산화 폴리에틸렌 왁스(oxidized polyethylene wax)와 BNNTs를 100℃에서 72시간 동안 질소기체의 환원 분위기하에서 결합시키는 반응에 의해 혼합물을 얻었다.The mixture was obtained by reacting oxidized polyethylene wax and BNNTs at 100 캜 for 72 hours in a reducing atmosphere of nitrogen gas.

반응이 끝난 후 온도를 상온(25℃)으로 낮추고 자일렌 10ml를 첨가한 후 혼합물 용액을 수득한 다음 28kHz로 10분 동안 초음파 처리를 실시한 다음 600×g 조건에서 30초 동안 원심분리를 진행한 후 상등액과 침전물을 분리하여 상등액의 정제한 BNNTs를 얻었다.After the reaction was completed, the temperature was lowered to room temperature (25 ° C), and 10 ml of xylene was added. A mixture solution was obtained. Ultrasonic treatment was performed at 28 kHz for 10 minutes, followed by centrifugation at 600 × g for 30 seconds The supernatant and the precipitate were separated to obtain purified BNNTs of the supernatant.

상기의 상등액에 상등액 중량 대비 3배량의 자일렌(xylene) 10ml를 첨가한 후 28kHz로 10분 동안 초음파 처리를 실시한 다음 600×g 조건에서 180초 동안 원심분리를 실시하여 2차 상등액과 침전물을 분리하여 2차 상등액의 정제한 BNNTs를 얻었다.10 ml of xylene was added to the supernatant in three times the weight of the supernatant, and the supernatant was sonicated at 28 kHz for 10 minutes and then centrifuged at 600 xg for 180 seconds to separate the supernatant and the precipitate To give purified BNNTs of the second supernatant.

상기에서 2차 상등액의 정제한 BNNTs의 FE-SEM 사진을 도 5에 나타내었다.
An FE-SEM photograph of the purified BNNTs of the second supernatant is shown in FIG.

상기에서 얻은 2차 상등액의 정제한 BNNTs를 라만(Raman) 분석을 통하여 이의 결과를 도 6과 표1에 나타내었다.The purified BNNTs of the second supernatant obtained above were analyzed by Raman analysis, and the results are shown in FIG. 6 and Table 1.

도 6과 표 1에서 정리한 라만분석을 보면 원시료인 정제전 BNNTs에 비하여 상기 산화 폴리에틸렌 왁스(oxidized polyethylene wax)를 이용한 정제방법에 의해 얻은 BNNTs(Oxi-PE 왁스 상등액)의 중심 피크가 증가하였고 반치폭(full width at half maximum, FWHM)은 크게 감소하였다. 이러한 결과를 통해 상기에서 산화 폴리에틸렌 왁스(oxidized polyethylene wax)를 이용한 정제방법에 의해 얻은 BNNTs는 원시료인 정제전 BNNTs에 비해 정제되었음을 알 수 있다. The Raman analysis shown in FIG. 6 and Table 1 showed that the center peak of the BNNTs (Oxi-PE wax supernatant) obtained by the purification using the oxidized polyethylene wax was higher than that of the raw BNNTs before the purification The full width at half maximum (FWHM) decreased significantly. These results indicate that the BNNTs obtained by the purification using the oxidized polyethylene wax were purified compared to the raw BNNTs before the purification.

항목Item 중심피크(cm-1)The center peak (cm -1 ) 반치폭(cm-1)Half width (cm -1 ) 원시료(정제전 BNNTs)Raw sample (BNNTs before purification) 1360.51360.5 32.532.5 amine-PEGamine-PEG 1차 상등액First supernatant 1361.21361.2 22.122.1 2차 상등액Secondary supernatant 1364.51364.5 21.421.4 OPAOPA 2차 상등액Secondary supernatant 1364.31364.3 22.922.9 Oxi-PE 왁스Oxi-PE wax 2차 상등액Secondary supernatant 1365.31365.3 21.221.2

상술한 바와 같이 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
Although described with reference to the preferred embodiment of the present invention as described above, those skilled in the art various modifications and variations of the present invention without departing from the spirit and scope of the invention described in the claims below I can understand that you can.

본 발명에 의해 정제 및 표면처리된 질화붕소나노튜브는 정제 및 표면 처리되지 않은 원시료인 질화붕소나노튜브에 비해 정제되었음을 알 수 있었다.It was found that the boron nitride nanotubes purified and surface-treated according to the present invention were purified compared to the purified and surface-treated boron nitride nanotubes.

본 발명에 의해 정제 및 표면처리된 질화붕소나노튜브는 고분자 분산성 및 젖음성이 향상되어 전기절연 방열소재, 내산화성 고온용 고분자 복합재, 고강도 복합재, 고온용 금속복합재, 수소저장매체, 중성자 차폐재 등의 다양한 분야에 대해 산업적 응용 가능성이 있다. The boron nitride nanotubes purified and surface-treated according to the present invention have improved dispersibility and wettability of polymer, and thus can be used for various purposes such as an electric insulating material, an oxidation resistant high temperature polymer composite material, a high strength composite material, a high temperature metal composite material, a hydrogen storage medium and a neutron shielding material There is a possibility of industrial application for various fields.

Claims (10)

질화붕소나노튜브(BNNTs)를 고분자와 혼합한 후 환원 분위기하에서 결합시켜 혼합물을 얻는 단계;
상기 혼합물을 원심분리하여 상등액과 침전물을 분리하여 상등액을 얻는 단계;를 포함하는 질화붕소나노튜브의 정제 및 표면처리 방법
Mixing boron nitride nanotubes (BNNTs) with a polymer and bonding the mixture in a reducing atmosphere to obtain a mixture;
Purifying and surface treatment method of boron nitride nanotubes comprising the step of centrifuging the supernatant and the precipitate to separate the supernatant;
제1항에 있어서,
질화붕소나노튜브(BNNTs)와 고분자의 혼합은 BNNTs를 BNNTs 중량 대비 1∼20배의 고분자와 0∼200℃에서 1∼84시간 동안 질소(N), 헬륨(He), 네온(Ne), 아르곤(Ar) 중에서 선택된 어느 하나 이상의 환원 분위기 하에서 혼합시키며 이를 상온으로 냉각시키는 것을 특징으로 하는 질화붕소나노튜브의 정제 및 표면처리방법.
The method of claim 1,
The mixture of boron nitride nanotubes (BNNTs) and polymers is used to convert BNNTs into polymers 1 to 20 times the weight of BNNTs and nitrogen (N), helium (He), neon (Ne) and argon for 1 to 84 hours at 0 to 200 ° C. A method for purifying and surface treating boron nitride nanotubes, which is mixed under one or more reducing atmospheres selected from (Ar) and cooled to room temperature.
제1항에 있어서,
질화붕소나노튜브(BNNTs)와 고분자의 결합시 BNNTs의 분산을 위해 20∼40kHz로 1∼30분 동안 초음파 처리를 추가적으로 실시하는 것을 특징으로 하는 질화붕소나노튜브의 정제 및 표면처리 방법.
The method of claim 1,
A method for the purification and surface treatment of boron nitride nanotubes, characterized in that an additional sonication is carried out at 20 to 40 kHz for 1 to 30 minutes to disperse BNNTs when the polymer is bonded to boron nanotubes (BNNTs).
제1항에 있어서,
원심분리는 2×g∼20,000×g 조건으로 10초∼30분 동안 실시하는 것을 특징으로 하는 질화붕소나노튜브의 정제 및 표면처리 방법.
The method of claim 1,
Wherein the centrifugation is carried out at 2 x g to 20,000 x g for 10 seconds to 30 minutes.
제1항에 있어서,
고분자는 중량평균분자량(weight-average molecular weight, MW)이 100∼100,000인 양말단이 아민(amine)으로 처리된 폴리에틸렌글리콜-아민(amine-PEG), 양말단이 아민(amine)으로 처리된 폴리에틸렌-아민(amine-PE), 폴리프로필렌-아민(amine-PE), 양말단이 아민(amine)으로 처리된 폴리부텐-아민(amine-PB) 중에서 선택된 어느 하나인 것을 특징으로 하는 질화붕소나노튜브의 정제 및 표면처리 방법.
The method of claim 1,
The polymer is polyethylene glycol-amine (amine-PEG) in which the sock end with a weight-average molecular weight (MW) of 100 to 100,000 is treated with amine, and the sock end is treated with amine. Boron nitride nanotubes, characterized in that any one selected from amine-amine, polypropylene-amine, amine-treated polybutene-amine (amine-PB) treated with amine; Purification and surface treatment methods.
제1항에 있어서,
고분자는 중량평균분자량(MW)이 100∼100,000인 폴리옥시프로필렌디아민(polyoxypropylenediamine, OPA)인 것을 특징으로 하는 질화붕소나노튜브의 정제 및 표면처리 방법.
The method of claim 1,
Polymer is a method of purifying and surface treatment of boron nitride nanotubes, characterized in that the weight average molecular weight (MW) is 100 to 100,000 polyoxypropylenediamine (OPA).
제1항에 있어서,
고분자는 산화도가 1∼30인 산화 폴리에틸렌 왁스(oxidized polyethylene wax, Oxi-PE 왁스), 산화 폴리프로필렌 왁스(oxidized polypropylene wax), 산화 폴리부텐 왁스(oxidized polybutene wax) 중에서 선택된 어느 하나인 것을 특징으로 하는 질화붕소나노튜브의 정제 및 표면처리 방법.
The method of claim 1,
The polymer is any one selected from oxidized polyethylene wax (Oxi-PE wax), oxidized polypropylene wax (oxidized polypropylene wax), oxidized polybutene wax (oxidized polybutene wax) having an oxidation degree of 1 to 30 Purification and surface treatment method of boron nitride nanotubes.
제1항에 있어서,
혼합물을 원심분리하여 상등액과 침전물을 분리 후 얻은 상등액에 용매를 첨가한 다음 20∼40kHz로 5∼15분 동안 초음파 처리 후 2×g∼20,000×g 조건으로 10초∼30분 동안 2∼9회 원심분리를 실시하는 단계를 추가로 더 포함하는 것을 특징으로 하는 질화붕소나노튜브의 정제 및 표면처리 방법.
The method of claim 1,
The mixture was centrifuged to separate the supernatant and the precipitate, and then the solvent was added to the supernatant obtained by sonication at 20 to 40 kHz for 5 to 15 minutes, and then 2 to 9 times for 10 seconds to 30 minutes at 2 × g to 20,000 × g conditions. Purifying and surface treatment method of the boron nitride nanotubes further comprising the step of performing a centrifugation.
제8항에 있어서,
용매는 상등액 중량 대비 1∼20배량인 증류수(distilled water, 蒸溜水), 에탄올(ethanol), 자일렌(xylene) 중에서 선택된 어느 하나인 것을 특징으로 하는 질화붕소나노튜브의 정제 및 표면처리 방법.
9. The method of claim 8,
The solvent is a method of purifying and surface treatment of boron nitride nanotubes, characterized in that any one selected from distilled water (distilled water, 에탄올 水), ethanol (xylene) is 1 to 20 times the weight of the supernatant.
청구항 제1항 내지 제9항 중에서 선택된 어느 한 항의 방법에 의해 정제한 질화붕소나노튜브.A boron nitride nanotube purified by the method of any one of claims 1 to 9.
KR1020120018434A 2012-02-23 2012-02-23 In-situ purification and surface treatment method of boron nitride nanotubes KR101429559B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120018434A KR101429559B1 (en) 2012-02-23 2012-02-23 In-situ purification and surface treatment method of boron nitride nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120018434A KR101429559B1 (en) 2012-02-23 2012-02-23 In-situ purification and surface treatment method of boron nitride nanotubes

Publications (2)

Publication Number Publication Date
KR20130097253A true KR20130097253A (en) 2013-09-03
KR101429559B1 KR101429559B1 (en) 2014-08-14

Family

ID=49449670

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120018434A KR101429559B1 (en) 2012-02-23 2012-02-23 In-situ purification and surface treatment method of boron nitride nanotubes

Country Status (1)

Country Link
KR (1) KR101429559B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190125151A (en) * 2018-04-27 2019-11-06 내일테크놀로지 주식회사 Surface-modified boron nitride structure and method of manufacturing thereby
KR20210047085A (en) * 2019-10-21 2021-04-29 한국과학기술연구원 A purifying method of boron nitride nanotubes
KR102280280B1 (en) * 2021-02-24 2021-07-21 레이져라이팅(주) Painting Composition having heat dissipation and LED Lamp Device by employing the same
WO2021206196A1 (en) * 2020-04-07 2021-10-14 주식회사 한솔케미칼 Nanoparticle mass purification system and nanoparticle mass purification method using same
KR20220128856A (en) * 2021-03-15 2022-09-22 한국과학기술연구원 Method for purifying crude BNNTs and composition for purified BNNTs
WO2022211205A1 (en) * 2021-03-30 2022-10-06 한국과학기술연구원 Bnnt purification apparatus and method and purified bnnt product
US11847262B2 (en) 2017-11-13 2023-12-19 Ck Materials Lab Co., Ltd. Apparatus and method for providing haptic control signal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102285802B1 (en) * 2021-05-14 2021-08-05 주식회사 케이알 Painting Composition having heat dissipation and LED Lamp Device by employing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670100B2 (en) * 2006-03-01 2011-04-13 独立行政法人物質・材料研究機構 Method for purifying boron nitride nanotubes
KR101082932B1 (en) 2009-05-14 2011-11-11 주식회사 엑사이엔씨 method for manufacturing metal coated carbon nano tube and metal coated carbon nano tube manufactured by the method
JP5477702B2 (en) * 2009-11-10 2014-04-23 独立行政法人物質・材料研究機構 Boron nitride nanotube derivative, dispersion thereof, and method for producing boron nitride nanotube derivative

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11847262B2 (en) 2017-11-13 2023-12-19 Ck Materials Lab Co., Ltd. Apparatus and method for providing haptic control signal
KR20190125151A (en) * 2018-04-27 2019-11-06 내일테크놀로지 주식회사 Surface-modified boron nitride structure and method of manufacturing thereby
KR20210047085A (en) * 2019-10-21 2021-04-29 한국과학기술연구원 A purifying method of boron nitride nanotubes
WO2021206196A1 (en) * 2020-04-07 2021-10-14 주식회사 한솔케미칼 Nanoparticle mass purification system and nanoparticle mass purification method using same
KR20210124826A (en) * 2020-04-07 2021-10-15 주식회사 한솔케미칼 System for massive purificating nanoparticles and massive purification method using the same
KR102280280B1 (en) * 2021-02-24 2021-07-21 레이져라이팅(주) Painting Composition having heat dissipation and LED Lamp Device by employing the same
KR20220128856A (en) * 2021-03-15 2022-09-22 한국과학기술연구원 Method for purifying crude BNNTs and composition for purified BNNTs
WO2022211205A1 (en) * 2021-03-30 2022-10-06 한국과학기술연구원 Bnnt purification apparatus and method and purified bnnt product
KR20220135538A (en) * 2021-03-30 2022-10-07 한국과학기술연구원 Apparatus and Method for purifying crude BNNTs

Also Published As

Publication number Publication date
KR101429559B1 (en) 2014-08-14

Similar Documents

Publication Publication Date Title
KR101429559B1 (en) In-situ purification and surface treatment method of boron nitride nanotubes
Grassi et al. A facile and ecofriendly functionalization of multiwalled carbon nanotubes by an old mesoionic compound
KR20170093826A (en) Methods of making graphene quantum dots from various carbon sources
US9487402B2 (en) Production method for the boron nitride nanotubes
TWI500577B (en) Preparation process of trisilylamine
Khan et al. Reinforcement effect of acid modified nanodiamond in epoxy matrix for enhanced mechanical and electromagnetic properties
CN103881091A (en) Preparation method of polyimide containing carborane structure
Jimeno et al. Effects of amine molecular structure on carbon nanotubes functionalization
Zhou et al. Raman scattering and thermogravimetric analysis of iodine-doped multiwall carbon nanotubes
JPH0776589A (en) Removal of siloxane from solution in solvent used in production of trimethoxysilane by reacting metallic silicon with methanol
Wang et al. Multiwalled boron nitride nanotubes: growth, properties, and applications
Cao et al. Pressureless consolidation of boron nitride fiber ceramics via a chemical bonding approach
CN103803513B (en) Preparation method of boron nitride nanotube
JP4670100B2 (en) Method for purifying boron nitride nanotubes
Pełech et al. Removal of metal particles from carbon nanotubes using conventional and microwave methods
Yoo et al. Thermal transfer improvement in polyvinyl alcohol films by mixing with boron nitride nanotubes synthesized using a radio-frequency inductively coupled thermal plasma
Naeimi et al. Solubilization of multi walled carbon nanotubes under a facile and mild condition
Ma et al. Preparation of a functional reduced graphene oxide and carbon nanotube hybrid and its reinforcement effects on the properties of polyimide composites
Liu et al. Clean Synthesis and Formation Mechanisms of High‐Purity Silicon for Solar Cells by the Carbothermic Reduction of SiC with SiO2
KR102618648B1 (en) Method for manufacturing boron nitride nanotube
Li et al. Synthesis and characterization of 3C and 2H-SiC nanocrystals starting from SiO2, C2H5OH and metallic Mg
US11479716B2 (en) Light-modulating material, light-modulating film, and light-modulating laminate
JP2002538062A (en) Production of high purity lithium tetrafluoroborate
Faridi et al. Novel heat-resistant and soluble poly (amide–ether)/zinc oxide nanocomposites: synthesis, characterization and computational study
Balaji et al. Influence of graphene oxide on thermal, electrical, and morphological properties of new achiral polyimide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
FPAY Annual fee payment

Payment date: 20180711

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190724

Year of fee payment: 6