KR20130060708A - Recycling method of photovoltaic waste facility - Google Patents

Recycling method of photovoltaic waste facility Download PDF

Info

Publication number
KR20130060708A
KR20130060708A KR20110126912A KR20110126912A KR20130060708A KR 20130060708 A KR20130060708 A KR 20130060708A KR 20110126912 A KR20110126912 A KR 20110126912A KR 20110126912 A KR20110126912 A KR 20110126912A KR 20130060708 A KR20130060708 A KR 20130060708A
Authority
KR
South Korea
Prior art keywords
waste
solar cell
crushed
recycling
facility
Prior art date
Application number
KR20110126912A
Other languages
Korean (ko)
Inventor
이강우
이재정
문동현
신형준
한규원
Original Assignee
(주)유성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)유성 filed Critical (주)유성
Priority to KR20110126912A priority Critical patent/KR20130060708A/en
Publication of KR20130060708A publication Critical patent/KR20130060708A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/14Separating or sorting of material, associated with crushing or disintegrating with more than one separator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/28Washing granular, powdered or lumpy materials; Wet separating by sink-float separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/06General arrangement of separating plant, e.g. flow sheets specially adapted for refuse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2201/00Codes relating to disintegrating devices adapted for specific materials
    • B02C2201/06Codes relating to disintegrating devices adapted for specific materials for garbage, waste or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/60Glass recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Abstract

PURPOSE: A recycling method for discarded facility of solar power generation is provided to be economical since the recycling of the individual equipment such as a solar cell module, an inverter, a frame, a storage battery, and a measuring instrument is done in an integrated manner. CONSTITUTION: A recycling method for discarded facility of solar power generation comprises the following steps. The waste which enables to melt is selected in a waste generation plant(S200). The waste is crushed(S300). Foreign substances including at least one kind selected in a group comprising plastics, irons, sand, and dusts are removed from the crushed waste(S400). The ground or crushed materials of a solar cell waste module are selected from the crushed waste and are separated into a tempered glass material part, a solar cell material part, and an EVA(Ethylene Vinyl Acetate) part(S500). A general waste and the ground or crushed materials of the solar cell material part are melted at 200-2000°C (S600). Materials are collected from the melted waste on the basis of classification(S700). The collected materials are purified(S800). [Reference numerals] (S100) Collecting step; (S200) First selection step; (S300) Crushing step; (S400) Second selection step; (S500) Separation step; (S600) Melting step; (S700) Recovery step; (S800) Purification step

Description

태양광 발전 폐설비 재활용 방법{Recycling method of photovoltaic waste facility}Recycling method of photovoltaic waste facility

본 발명은 사용종료된 태양광 발전 설비를 재활용하는 방법에 관한 것으로서, 더욱 상세하게는 태양광 발전 폐설비의 종류에 관계없이 부분적 또는 일괄적으로 폐설비를 재활용하는 방법에 관한 것이다.
The present invention relates to a method for recycling used solar power plants, and more particularly, to a method for recycling waste facilities partially or collectively regardless of the type of solar power waste facilities.

태양광 발전설비의 핵심을 이루는 태양광 모듈의 수명은 약 20년 내지 30년으로서 전세계적으로 폐기되는 태양광 모듈의 처리가 중요한 이슈로 부각되고 있다. 그러나, The lifespan of the photovoltaic module, which is the core of the photovoltaic facility, is about 20 to 30 years. Therefore, the disposal of photovoltaic modules that are disposed around the world is an important issue. But,

태양광 발전설비의 사용연한 등의 도과 등으로 폐기물화되는 설비들을 효율적으로 통합하여 재활용하는 기술은 아직 널리 연구되어 있지 않은 상태이다. The technology of efficiently integrating and recycling wastes into facilities such as the age of the photovoltaic power generation facilities has not been widely studied.

도 1에서와 같이 태양광 발전설비는 태양전지모듈, 인버터, 프레임, 축전지, 계측기 등의 개별 장치들로 이루어져 있으며, 최근에는 폐기되는 실리콘등의 재활용을 위해서 태양전지 모듈에 대한 재활용 기술은 비교적 활발히 연구가 이루어지고 있다.As shown in FIG. 1, the photovoltaic power generation facility is composed of individual devices such as a solar cell module, an inverter, a frame, a storage battery, a measuring instrument, and the like. In recent years, a recycling technology for a solar cell module is relatively active for recycling of discarded silicon. Research is being done.

한편, 태양전지모듈은 도 2에서와 같이 태양전지셀(10), 표면재(강화유리,30), 충진재(EVA, 20), 후면시트(40), 프레임(50)을 포함하여 이루어진다. Meanwhile, the solar cell module includes a solar cell 10, a surface material (tempered glass 30), a filler (EVA) 20, a back sheet 40, and a frame 50 as shown in FIG. 2.

이에 대한민국특허공보 출원번호 제2009-0089039호에는 태양전지 폐 모듈의 셀 회수방법을 개시하고 있다. 이에 따르면, 유기용매를 사용하여 강화유리가 파손된 태양전지 폐 모듈에서 먼저 강화유리만 회수하고 남겨진 EVA(Ethylene vinyl acetate)와 EVA에 붙어있는 태양전지 셀을 열처리하여 EVA만 효율적으로 제거하고 태양전지 셀을 회수 및 재생하는 태양전지 폐 모듈의 셀 회수방법에 관한 방법이 개시되어 있다. Accordingly, Korean Patent Application Publication No. 2009-0089039 discloses a cell recovery method of a solar cell waste module. According to this, first, only the tempered glass is recovered from the solar cell waste module in which the tempered glass is damaged by using an organic solvent, and the remaining EVA (Ethylene vinyl acetate) and the solar cell attached to the EVA are heat-treated to remove only the EVA efficiently and the solar cell A method related to a cell recovery method of a solar cell waste module for recovering and regenerating cells is disclosed.

또한 일본국 특허출원번호 제2008-062050호에는 태양전지 모듈의 해체 방법이 기재되어 있다. 이에는 태양전지 모듈을 알칼리를 용해한 유기용제에 침지하고 가열하는 공정을 포함하는 태양전지 모듈의 해체 방법에 관한 것이 기재되어 있다.In addition, Japanese Patent Application No. 2008-062050 describes a method of disassembling a solar cell module. This discloses a method for disassembling a solar cell module including the step of immersing and heating the solar cell module in an organic solvent in which alkali is dissolved.

그러나 종래 이러한 기술들은 태양광 발전 폐설비 중 특히 태양전지에 관한 재활용방법만을 제시하고 있어, 태양광 발전 폐설비를 통합적으로 재활용하는 방법은 제시하고 있지 않다. However, these technologies have only suggested recycling methods for solar cells, particularly solar cells, and do not suggest a method for integrating the solar waste facility.

즉 태양광 발전 설비는 발생특성상 단위 설비가 아니라 구성 설비 전체가 폐기되므나 종래의 기술로는 태양전지모듈만을 처리하게 되어 나머지 설비들은 재활용하기 위해서는 별도의 재활용 시설이 필요하게 되므로 태양광 발전 폐설비를 통합적으로 재활용하는 기술에 대한 연구가 필요하다. In other words, the photovoltaic power generation facility is not a unit facility, but the entire construction facility is discarded. However, the conventional technology only processes the solar cell module, and the remaining facilities require a separate recycling facility to recycle the solar power generation facility. There is a need for research on technologies for integrating recycled materials.

본 발명에 따른 태양광 발전 폐설비의 재활용 방법은 효율 저하, 지붕 교체, 파손, 기타의 이유로 폐기되는 태양광 발전 폐설비에서 나오는 단위장치들을 통합적으로 재활용할 수 있는 방법을 제공하는 것을 목적으로 한다. The recycling method of the photovoltaic waste facility according to the present invention aims to provide a method for integrating and recycling the unit devices from the photovoltaic waste facility that is disposed of due to efficiency degradation, roof replacement, breakage, or other reasons. .

본 발명의 일측면은 실리콘계 태양전지 폐모듈과 일반 폐설비를 포함하는 태양광 발전 폐설비를 재활용하는 방법으로서,One aspect of the present invention is a method for recycling solar power generation waste facilities, including silicon-based solar cell waste modules and general waste facilities,

상기 발전 폐설비를 수집하는 수집단계;A collection step of collecting the waste generating facility;

상기 발전 폐설비에서 용융 가능한 폐기물을 선별하는 1차 선별단계;A primary sorting step of sorting waste meltable in the power generation waste facility;

상기 폐기물을 파쇄하는 파쇄단계;A crushing step of crushing the waste;

상기 파쇄된 폐기물에서 파쇄물 내 존재하는 플라스틱류, 철류, 모래, 및 먼지로 이루어진 군에서 적어도 1종 이상을 포함하는 이물질을 선별하여 제거하는 2차 선별단계;A secondary sorting step of selecting and removing foreign substances including at least one or more kinds from the group consisting of plastics, irons, sands, and dust present in the crushed wastes in the crushed wastes;

상기 폐쇄물에서 태양전지 폐모듈의 분쇄물 또는 파쇄물을 선별하여 강화유리 재료부, 태양전지셀 재료부, 및 EVA부로 분리하는 분리단계;Separating step of separating the crushed or crushed product of the solar cell waste module from the closure to the tempered glass material portion, solar cell material portion, and EVA portion;

상기 일반 폐기물과 태양전지셀 재료부의 분쇄물 또는 파쇄물을 200~2000℃로 용융하는 용융단계;A melting step of melting the general waste and the pulverized or crushed material of the solar cell material part at 200 to 2000 ° C;

상기 용융된 폐기물에서 물질들을 종류별로 회수하는 회수단계; 및A recovery step of recovering materials from the molten waste by type; And

상기 회수된 물질을 정제하는 정제단계를 포함하는 것을 특징으로 한다. It characterized in that it comprises a purification step for purifying the recovered material.

이 때, 상기 일반 폐설비는 인버터, 프레임, 축전지, 및 계측기로 구성된 군에서 선택되는 적어도 하나의 설비를 포함한다. In this case, the general waste facility includes at least one facility selected from the group consisting of an inverter, a frame, a battery, and a measuring instrument.

또한, 상기 파쇄단계는 대상 폐기물에 따라 전단파쇄, 충격파쇄, 압축파쇄, 습식파쇄, 냉동파쇄로 구성되는 군에서 선택되는 적어도 하나 또는 다단의 파쇄방법을 포함한다. In addition, the shredding step includes at least one or multi-stage shredding method selected from the group consisting of shear crushing, impact crushing, compression crushing, wet crushing, freezing crushing according to the target waste.

이 때, 상기 2차 선별단계는 스크린 선별, 스토너, 전기 및 전자력 선별, 광학 선별로 구성된 군에서 선택되는 하나 또는 다단의 선별방법을 포함한다. At this time, the secondary screening step includes a screening, stoner, electric and electromagnetic force screening, one or a multi-stage screening method selected from the group consisting of optical screening.

또한, 상기 분리단계는 태양전지모듈 분쇄물 또는 파쇄물을 유기용매에 침지시켜 20~200℃로 가열하는 것이 바람직하다. In addition, the separation step is preferably immersed in the organic solvent pulverized or crushed solar cell module is heated to 20 ~ 200 ℃.

또한, 상기 용융단계는 0.1~10MPa 압력의 불활성 기체 분위기하에서 200~2000℃로 이루어지는 것이 바람직하다. In addition, the melting step is preferably made of 200 ~ 2000 ℃ in an inert gas atmosphere of 0.1 ~ 10MPa pressure.

또한, 상기 회수단계에서 실리콘, 구리, 납, 아연, 알루미늄, 카드뮴, 셀레늄, 갈륨, 인듐, 및델루륨으로 구성된 군에서 적어도 1개 이상의 물질을 회수하는 것이 바람직하다. In addition, it is preferable to recover at least one or more substances from the group consisting of silicon, copper, lead, zinc, aluminum, cadmium, selenium, gallium, indium, and delurium in the recovery step.

본 발명에 따른 태양광 발전 폐설비의 재활용방법은 종래 태양전지모듈등 개별장치에 대해서 부분적으로 재활용이 이루어지는 것에 비해, 태양전지모듈, 인버터, 프레임, 축전지, 계측기 등 개별장치들의 재활용이 통합적으로 이루어져서 경제적이고 효율적으로 재활용 설비를 운영할 수 있게 된다. Recycling method of waste solar facilities according to the present invention is compared to the partial recycling of individual devices such as conventional solar cell module, the integrated recycling of individual devices such as solar module, inverter, frame, storage battery, measuring instrument, etc. It is possible to operate recycling facilities economically and efficiently.

또한, 종래 태양전지모듈에만 집중되었던 재활용을 모든 개별 장치들로 확대하여 태양광 발전 폐설비의 재활용율을 높이는 효과가 있다. 이로써, 실리콘, 희유금속 및 유가금속등의 자원을 확보하고 환경규제물질을 효과적으로 처리할 수 있다.
In addition, it is possible to increase the recycling rate of the photovoltaic waste facility by expanding the recycling focused only on the conventional solar cell module to all individual devices. As a result, it is possible to secure resources such as silicon, rare metals and valuable metals, and to effectively treat environmental regulations.

도 1은 일반적인 태양광발전시스템 구성도.
도 2는 일반적인 실리콘계 태양전지모듈의 분해도.
도 3은 본 발명의 일측면에 따른 태양광 발전 폐설비 재활용방법을 설명하는 공정도.
1 is a schematic view of a general photovoltaic system.
Figure 2 is an exploded view of a typical silicon solar cell module.
Figure 3 is a process diagram illustrating a method for recycling solar power generation waste facilities according to an aspect of the present invention.

이하에서는 도면을 참조하면서 본 발명의 일측면에 따른 태양광 발전 폐설비 재활용방법의 일측면을 설명한다. 이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.Hereinafter, with reference to the drawings will be described one side of the photovoltaic waste recycling method according to an aspect of the present invention. Before describing the present invention in detail, it is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of the invention, which is defined solely by the appended claims. shall. All technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise stated.

본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한, 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 상용된 것은 아니다. Throughout the description and claims, unless the context requires otherwise, the word "comprise" is intended to include the stated article, step or group of articles, and steps; It is not meant to exclude an object, step or group of objects or a group of steps.

한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히, 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다.On the contrary, the various embodiments of the present invention can be combined with any other embodiments as long as there is no clear counterpoint. In particular, any feature that is indicated to be advantageous or advantageous may be combined with any other feature or feature that is indicated to be advantageous or advantageous.

본 실시예에서 태양광 발전 폐설비 재활용방법은 수집단계(S100), 1차 선별단계(S200), 파쇄단계(S300), 2차 선별단계(S400), 분리단계(S500), 용융단계(S600), 회수단계(S700), 및 정제단계(S800)를 포함하여 이루어진다. In the present embodiment, the method for recycling the photovoltaic waste facilities is a collection step (S100), a first sorting step (S200), a crushing step (S300), a second sorting step (S400), a separation step (S500), and a melting step (S600). ), A recovery step (S700), and a purification step (S800).

수집단계(S100)는 폐기되는 태양광 발전 폐설비를 수집하는 단계이다. 이 때, 수집 및 분리되는 폐설비는 태양전지 모듈을 필수적으로 포함하고, 인버터, 프레임, 축전지, 계측기등의 일반폐설비를 포함하나 이에 한정되는 것은 아니다. 즉, 본 명세서에서 일반폐설비란 태양광 발전 폐설비 중에서 태양전지 폐모듈을 제외한 나머지 폐장치를 포괄하는 용어로 사용된다.Collection step (S100) is a step of collecting the waste solar power generation facility. At this time, the waste equipment to be collected and separated essentially includes a solar cell module, and includes, but is not limited to, general waste equipment such as an inverter, a frame, a battery, and a measuring instrument. That is, in the present specification, the general waste facility is used as a term encompassing the remaining waste devices except the solar cell waste module among solar power waste facilities.

1차 선별단계(S200)는 폐설비를 분해하여 용융으로 재활용이 가능한 전선, 모터, 기판, 프레임, 반도체, 태양전지 모듈을 포함하는 재활용 가능 폐기물을 선별하는 것을 말한다. 수집과 선별은 현장에서 수집과 선별이 동시에 일어질 수 있거나 또는 수집과 선별이 다른 장소에서 이루어질 수 있다. The primary screening step (S200) refers to screening recyclable waste including wires, motors, substrates, frames, semiconductors, and solar cell modules that can be recycled by melting by dismantling waste equipment. Collection and screening may occur at the same time, on-site collection and screening, or at different locations.

파쇄단계(S300)는 전선, 모터, 기판, 프레임, 반도체, 태양전지 모듈을 포함하는 용융으로 재활용 가능한 폐기물을 통합적으로 파쇄하는 단계이다. 파쇄는 종래 널리 알려진 고형물 파쇄기를 이용하여 이루어질 수 있으며, 파쇄 후 폐기물들은 대략 10cm이하의 지름을 가지는 분쇄물 또는 파쇄물이 된다. Shredding step (S300) is a step of integrally shredding waste that can be recycled by melting including a wire, a motor, a substrate, a frame, a semiconductor, a solar cell module. Crushing can be accomplished using a conventionally known solid crusher, and after crushing, the wastes are crushed or crushed with a diameter of about 10 cm or less.

2차 선별단계(S400)는 파쇄물 내 존재하는 플라스틱류, 철류, 모래, 먼지를 포함하는 이물질을 선별하여 제거하는 단계이다. 플라스틱이나 이물질등이 분리단계나 용융단계로 들어갈 경우 분리 및 용융효율이 저하되고, 대기오염 등의 문제점이 발생하기 때문이다. 또한 철류는 그 자체로써 가치가 있으므로 선별하여 직접 재활용가능하기 때문이다. The secondary screening step (S400) is a step of removing and removing foreign substances including plastics, iron, sand, and dust present in the crushed material. If the plastic or foreign matter enters the separation step or the melting step, the separation and melting efficiency is lowered, and problems such as air pollution occurs. Iron is also valuable because it can be selected and directly recycled.

이 때, 선별은 분쇄물 또는 파쇄물의 물리적 성질에 따라 스크린 선별, 스토너, 전기 및 전자력 선별, 광학 선별 등의 방법들 중 하나 또는 다단의 선별방법을 이용한다. At this time, the screening uses one or multiple screening methods, such as screen screening, stoner, electric and electromagnetic screening, optical screening, etc., depending on the physical properties of the ground or crushed products.

분리단계(S500)는 태양전지 분쇄물 또는 파쇄물에서 강화유리 재료부, 태양전지셀 재료부, 및 EVA부를 분리하는 단계이다. 즉, 분쇄 및 파쇄단계에서 10cm이하로 분쇄 또는 파쇄된 태양전지 폐기물을 유기용매에 침지시켜 비중차에 의해서 강화유리 재료부와 태양전지셀 재료부 및 EVA 재료부를 분리하고, 다음으로 20~200℃에서 가열하거나 고주파를 조사하여 EVA 재료부를 녹임으로써 태양전지 셀 재료부를 획득한다. The separating step S500 is a step of separating the tempered glass material part, the solar cell material part, and the EVA part from the solar cell pulverized or crushed material. That is, in the crushing and crushing step, the crushed or shredded solar cell waste is immersed in an organic solvent to separate the tempered glass material part, the solar cell material part and the EVA material part by the specific gravity difference, and then 20 to 200 ° C. The solar cell material portion is obtained by melting the EVA material portion by heating at high frequency or by irradiating with high frequency.

이 때, 유기용매로는 트리클로로에틸렌, 테트라히드로푸란, 오르토-디클로로벤젠, 및 톨루엔에서 선택된 어느 하나의 용매를 사용할 수 있다. In this case, any solvent selected from trichloroethylene, tetrahydrofuran, ortho-dichlorobenzene, and toluene may be used as the organic solvent.

용융단계(S600)는 용융가능한 폐기물들을 통합적으로 용융시키는 단계이다. 분리단계에서 분리된 강화유리재료부, 태양전지 셀 재료부의 파쇄물과, 분쇄물 또는 파쇄물로 존재하는 각종의 모터, 기판, 프레임, 전선의 폐기물들을 혼합하여 용융시킨다. Melting step (S600) is a step of integrally melting the meltable waste. Shredded products of the tempered glass material part and solar cell material part separated in the separating step, and the waste of various motors, substrates, frames, wires present as a pulverized or crushed material is mixed and melted.

이 때, 가열은 가압된 상태의 환원성 분위기에서 이루어지는 것이 바람직한데, 가압시 사용하는 기체는 Ar, N2등의 불활성 기체가 사용되며, 가압 압력은 0.1~10MPa 가 바람직하며, 용융온도는 200~2000℃로 한다.At this time, the heating is preferably made in a pressurized reducing atmosphere, inert gas such as Ar, N 2 is used as the gas used for pressurization, the pressurization pressure is preferably 0.1 ~ 10MPa, the melting temperature is 200 ~ Let it be 2000 degreeC.

가압압력의 범위가 0.1MPa 미만인 경우 용융효율이 떨어지고 같은 양의 폐기물을 처리하기 위해서는 장치의 규모가 커져야 하는 문제점이 있고, 10MPa를 초과하는 경우 가압장치와 용융장치의 규모가 급격히 커지는 문제점이 있기 때문이다. 또한 용융온도는 200℃ 미만인 경우 재활용 대상 물질의 녹는점보다 낮아 용융되지 않는 문제점이 있고, 2000℃를 초과하는 경우 장치의 규모와 안전장치가 커지고 에너지측면과 운영측면에서 비경제적인 문제점이 있기 때문이다. If the pressure pressure range is less than 0.1MPa, there is a problem that the size of the apparatus must be large in order to reduce the melting efficiency and to treat the same amount of waste, and if the pressure exceeds 10MPa, the size of the pressurizing device and the melting device is rapidly increased. to be. In addition, the melting temperature is less than the melting point of the material to be recycled when the temperature is less than 200 ℃, there is a problem that does not melt, and if it exceeds 2000 ℃, the size and safety of the device is increased, and there is an uneconomical problem in terms of energy and operation. .

회수단계(S700)는 폐기물 내에서 실리콘, 구리, 납, 아연, 알루미늄, 카드뮴, 셀레늄, 갈륨, 인듐, 델루륨 등의 재료를 비중차에 의해 분리하거나 녹는점의 차이에 의해 분리하여 회수하는 단계이다. Recovery step (S700) is a step of separating and recovering materials such as silicon, copper, lead, zinc, aluminum, cadmium, selenium, gallium, indium, and delurium in the waste by specific gravity difference or by melting point difference. to be.

비중차에 의한 분리는 실리콘, 구리, 납, 아연, 알루미늄, 카드뮴, 셀레늄, 갈륨, 인듐, 델루륨 성분 등이 완전히 액화되는 온도로 가열한 후 비중에 따라 각 성분을 분리하는 것이고, 녹는점의 차이에 의한 분리는 가열하여 먼저 액화되는 성분부터 분리하는 것이다. Separation by specific gravity difference is to separate each component according to specific gravity after heating to the temperature where silicon, copper, lead, zinc, aluminum, cadmium, selenium, gallium, indium, and delulium are completely liquefied. Separation by difference is to separate from the component that is first liquefied by heating.

정제단계(S800)는 회수된 실리콘, 구리, 납, 아연, 알루미늄, 카드뮴, 셀레늄, 갈륨, 인듐, 델루륨 등을 성분을 고순도로 정제하는 단계이다. Purification step (S800) is a step of refining the components of the recovered silicon, copper, lead, zinc, aluminum, cadmium, selenium, gallium, indium, delurium and the like with high purity.

이 때, 실리콘은 용융된 실리콘을 도가니에 넣고, 도가니에 회전 냉각체를 넣어 회전시켜 회전냉각체 표면에 정제실리콘을 창출시켜 회수한다. At this time, the silicon is put into the crucible and the molten silicon is put into the crucible and rotated by rotating to create purified silicon on the surface of the rotary coolant to recover.

또한, 금속은 금속 폐기물에 전자 빔을 조사하여 용해한 후, 이 용해된 금속을 다시 응고시키는 방법으로 정제한다. 즉, 고진공 분위기 중에 배치된 수냉 도가니 중에 장전된 금속의 표면의 전역에 걸쳐 전자 빔을 조사하여, 금속을 전부 용해하고, 용해된 모재에 대해 전자 빔을 조사한 상태를 유지하면서 전자 빔의 출력을 서서히 약하게 함으로써, 용해된 금속의 용탕 저부로부터 전자 빔 조사측의 용탕 표면부를 향하여 용해된 상기 금속을 서서히 응고시킨다. In addition, the metal is purified by irradiating an electron beam to the metal waste to dissolve and then resolving the dissolved metal. That is, the electron beam is irradiated over the entire surface of the metal loaded in the water-cooled crucible disposed in a high vacuum atmosphere, so that the metal is completely dissolved, and the output of the electron beam is gradually decreased while maintaining the state in which the electron beam is irradiated to the dissolved base material. By weakening, the molten metal is gradually solidified from the molten metal bottom of the molten metal toward the molten surface portion on the electron beam irradiation side.

이 때, 용해된 금속의 응고를 소정의 비율까지 진행한 후, 미응고의 용탕부를 제거하여 금속을 정제한다. At this time, after solidification of the dissolved metal is advanced to a predetermined ratio, the unsolidified molten metal portion is removed to purify the metal.

대상금속을 정제하기 위해 용탕으로부터 응고를 하고 응고 덩어리로부터 불순물 농화부를 절단, 제거하여 정제된 대상금속을 취출한다. 이 때 대상금속의 순도를 더욱 높이기 위해 이온교환수지법, 전기화학적방법, 탈취방법, 전기분해법 등을 이용할 수 있다.In order to purify the target metal, solidification is carried out from the molten metal, and the impurity thickening portion is cut and removed from the solidified mass to extract the purified target metal. In this case, in order to further increase the purity of the target metal, ion exchange resin method, electrochemical method, deodorization method, electrolysis method and the like can be used.

본 발명은 상술한 실시예들에 한정되지 않으며, 본 발명이 속한 분야의 통상의 지식을 가진 자는 본 발명의 개념을 벗어나지 않고 변형이 가능하고 이러한 변형은 본 발명의 범위에 속한다. The present invention is not limited to the above-described embodiments, and those skilled in the art can make modifications without departing from the concept of the present invention, and such modifications are within the scope of the present invention.

전술한 발명에 대한 권리범위는 이하의 청구범위에서 정해지는 것으로서, 명세서 본문의 기재에 구속되지 않으며, 청구범위의 균등범위에 속하는 변형과 변경은 모두 본 발명의 범위에 속할 것이다.The scope of the present invention is defined by the following claims, and is not limited to the description of the specification, and all variations and modifications falling within the scope of the claims are included in the scope of the present invention.

10 : 태양전지 셀 20 : 표면재
30 : 충진재 40 : 후면시트
50 : 프레임
10: solar cell 20: surface material
30: Filler 40: Back Sheet
50: frame

Claims (7)

실리콘계 태양전지 폐모듈과 일반 폐설비를 포함하는 태양광 발전 폐설비를 재활용하는 방법으로서,
상기 발전 폐설비를 수집하는 수집단계;
상기 발전 폐설비에서 용융 가능한 폐기물을 선별하는 1차 선별단계;
상기 폐기물을 파쇄하는 파쇄단계;
상기 파쇄된 폐기물에서 파쇄물 내 존재하는 플라스틱류, 철류, 모래, 및 먼지로 이루어진 군에서 적어도 1종 이상을 포함하는 이물질을 선별하여 제거하는 2차 선별단계;
상기 폐쇄물에서 태양전지 폐모듈의 분쇄물 또는 파쇄물을 선별하여 강화유리 재료부, 태양전지셀 재료부, 및 EVA부로 분리하는 분리단계;
상기 일반 폐기물과 태양전지셀 재료부의 분쇄물 또는 파쇄물을 200~2000℃로 용융하는 용융단계;
상기 용융된 폐기물에서 물질들을 종류별로 회수하는 회수단계; 및
상기 회수된 물질을 정제하는 정제단계를 포함하는 태양광 발전 폐설비 재활용방법.
As a method of recycling solar power waste equipment including silicon solar cell waste module and general waste equipment,
A collection step of collecting the waste generating facility;
A primary sorting step of sorting waste meltable in the power generation waste facility;
A crushing step of crushing the waste;
A secondary sorting step of selecting and removing foreign substances including at least one or more kinds from the group consisting of plastics, irons, sands, and dust present in the crushed wastes in the crushed wastes;
Separating step of separating the crushed or crushed product of the solar cell waste module from the closure to the tempered glass material portion, solar cell material portion, and EVA portion;
A melting step of melting the general waste and the pulverized or crushed material of the solar cell material part at 200 to 2000 ° C;
A recovery step of recovering materials from the molten waste by type; And
Waste recycling method for a photovoltaic power generation facility comprising a purification step of purifying the recovered material.
제1항에 있어서,
상기 일반 폐설비는 인버터, 프레임, 축전지, 및 계측기로 구성된 군에서 선택되는 적어도 하나의 설비를 포함하는 태양광 발전 폐설비 재활용방법.
The method of claim 1,
The general waste facility recycling method for photovoltaic waste facilities including at least one device selected from the group consisting of an inverter, a frame, a battery, and a measuring instrument.
제2항에 있어서,
상기 파쇄단계는 대상 폐기물에 따라 전단파쇄, 충격파쇄, 압축파쇄, 습식파쇄, 냉동파쇄로 구성되는 군에서 선택되는 적어도 하나 또는 다단의 파쇄방법을 포함하는 태양광 발전 폐설비 재활용방법.
The method of claim 2,
The shredding step includes at least one or multiple stage shredding method selected from the group consisting of shear crushing, impact crushing, compression crushing, wet crushing, freezing crushing according to the target waste.
제2항에 있어서,
상기 2차 선별단계는 스크린 선별, 스토너, 전기 및 전자력 선별, 광학 선별로 구성된 군에서 선택되는 하나 또는 다단의 선별방법을 포함하는 태양광 발전 폐설비 재활용방법.
The method of claim 2,
The second sorting step is a screening, stoner, electrical and electromagnetic screening, photovoltaic waste recycling facility comprising a single or multi-stage sorting method selected from the group consisting of optical sorting.
제2항에 있어서,
상기 분리단계는 태양전지모듈 분쇄물 또는 파쇄물을 유기용매에 침지시켜 20~200℃로 가열하여 태양광 발전 폐설비 재활용방법.
The method of claim 2,
The separating step is a solar cell module recycling method by immersing the pulverized or crushed solar cell module in an organic solvent and heated to 20 ~ 200 ℃.
제2항에 있어서,
상기 용융단계는 0.1~10MPa 압력의 불활성 기체 분위기하에서 200~2000℃로 이루어지는 태양광 발전 폐설비 재활용방법.
The method of claim 2,
The melting step is a recycling method for photovoltaic waste facilities consisting of 200 ~ 2000 ℃ under an inert gas atmosphere of 0.1 ~ 10MPa pressure.
제2항에 있어서,
상기 회수단계에서 실리콘, 구리, 납, 아연, 알루미늄, 카드뮴, 셀레늄, 갈륨, 인듐, 및델루륨으로 구성된 군에서 적어도 1개 이상의 물질을 회수하는 태양광 발전 폐설비 재활용방법.
The method of claim 2,
Recycling method of solar power waste equipment to recover at least one or more substances from the group consisting of silicon, copper, lead, zinc, aluminum, cadmium, selenium, gallium, indium, and delurium in the recovery step.
KR20110126912A 2011-11-30 2011-11-30 Recycling method of photovoltaic waste facility KR20130060708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20110126912A KR20130060708A (en) 2011-11-30 2011-11-30 Recycling method of photovoltaic waste facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20110126912A KR20130060708A (en) 2011-11-30 2011-11-30 Recycling method of photovoltaic waste facility

Publications (1)

Publication Number Publication Date
KR20130060708A true KR20130060708A (en) 2013-06-10

Family

ID=48859090

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20110126912A KR20130060708A (en) 2011-11-30 2011-11-30 Recycling method of photovoltaic waste facility

Country Status (1)

Country Link
KR (1) KR20130060708A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105312303A (en) * 2015-04-21 2016-02-10 常州天合光能有限公司 No-damage recycling method for photovoltaic module
CN109000737A (en) * 2018-09-21 2018-12-14 国网辽宁省电力有限公司电力科学研究院 A kind of transmission line of electricity monitoring sensor solar energy-battery group test method
CN110743893A (en) * 2018-07-23 2020-02-04 荆门市格林美新材料有限公司 Method for recovering crystalline silicon photovoltaic material
KR20200063392A (en) 2018-11-27 2020-06-05 한국에너지기술연구원 Sorting apparatus and method for waste solar cells scrap
KR20200095749A (en) * 2019-02-01 2020-08-11 한국해양대학교 산학협력단 Recycling method for spent solar module using pyrometallurgy
KR20200141215A (en) 2019-06-10 2020-12-18 (주)에이피이씨 Eco recycling system of unusable solar module
KR20210083721A (en) 2019-12-27 2021-07-07 정문식 Waste solar module dismantling apparatus
CN113410338A (en) * 2021-06-18 2021-09-17 中南大学 Method for preparing copper-zinc-tin-sulfur-selenium film solar cell precursor by utilizing waste brass
KR20220048836A (en) * 2020-10-13 2022-04-20 홍국선 Recycling system for solar cell panel
KR20220124341A (en) 2021-03-03 2022-09-14 주식회사 우원테크 Waste solar module separation apparatus
CN115156265A (en) * 2022-07-08 2022-10-11 中国石油大学(华东) Waste photovoltaic module separation and recovery method based on low-toxicity chemical method
KR20230151867A (en) 2022-04-26 2023-11-02 주식회사 우원테크 Waste solar module separation device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105312303A (en) * 2015-04-21 2016-02-10 常州天合光能有限公司 No-damage recycling method for photovoltaic module
CN110743893A (en) * 2018-07-23 2020-02-04 荆门市格林美新材料有限公司 Method for recovering crystalline silicon photovoltaic material
CN109000737A (en) * 2018-09-21 2018-12-14 国网辽宁省电力有限公司电力科学研究院 A kind of transmission line of electricity monitoring sensor solar energy-battery group test method
KR20200063392A (en) 2018-11-27 2020-06-05 한국에너지기술연구원 Sorting apparatus and method for waste solar cells scrap
KR20200095749A (en) * 2019-02-01 2020-08-11 한국해양대학교 산학협력단 Recycling method for spent solar module using pyrometallurgy
KR20200141215A (en) 2019-06-10 2020-12-18 (주)에이피이씨 Eco recycling system of unusable solar module
KR20210083721A (en) 2019-12-27 2021-07-07 정문식 Waste solar module dismantling apparatus
KR20220048836A (en) * 2020-10-13 2022-04-20 홍국선 Recycling system for solar cell panel
KR20220124341A (en) 2021-03-03 2022-09-14 주식회사 우원테크 Waste solar module separation apparatus
CN113410338A (en) * 2021-06-18 2021-09-17 中南大学 Method for preparing copper-zinc-tin-sulfur-selenium film solar cell precursor by utilizing waste brass
CN113410338B (en) * 2021-06-18 2022-04-29 中南大学 Method for preparing copper-zinc-tin-sulfur-selenium film solar cell precursor by utilizing waste brass
KR20230151867A (en) 2022-04-26 2023-11-02 주식회사 우원테크 Waste solar module separation device
CN115156265A (en) * 2022-07-08 2022-10-11 中国石油大学(华东) Waste photovoltaic module separation and recovery method based on low-toxicity chemical method

Similar Documents

Publication Publication Date Title
KR20130060708A (en) Recycling method of photovoltaic waste facility
Xu et al. Global status of recycling waste solar panels: A review
Strachala et al. Methods for recycling photovoltaic modules and their impact on environment and raw material extraction.
Tao et al. Review on feasible recycling pathways and technologies of solar photovoltaic modules
CN101444784B (en) Method and device for high-efficiency recovery of waste circuit boards in vacuum
CN102544239B (en) Method and device for decomposing and recycling photovoltaic component
CN101423898B (en) Recovery method of waste circuit board
CN101417284B (en) Recovery method of waste circuit board value resource
CN106450560B (en) The recovery process and separator of positive material of waste lithium iron phosphate
Dias et al. Recycling crystalline silicon photovoltaic modules
CN110491969A (en) A kind of recovery method and device of crystalline silicon photovoltaic module
Sinha et al. End-of-life CdTe PV recycling with semiconductor refining
CN104183888A (en) Green method for recovery and disposal of waste lithium iron phosphate power battery
Klugmann-Radziemska Current trends in recycling of photovoltaic solar cells and modules waste/Recykling zużytych ogniw i modułów fotowoltaicznych-stan obecny
Olson et al. Current and future priorities for mass and material in silicon PV module recycling
WO2022123444A1 (en) Plastics and glass recovery from end-of-life photovoltaic panels
KR20220130157A (en) Metal Recovery Methods
Tembo et al. Current trends in silicon-based photovoltaic recycling: A technology, assessment, and policy review
WO2022071817A1 (en) Device for utilization of photovoltaic panels
Palaniappan et al. Recycling of Solar Panels
CN112620314A (en) Method for disassembling and sorting waste lithium ion battery monomer
JP4177674B2 (en) Automobile waste recycling method
KR20210083123A (en) Solar panel recycling system and method
Feng et al. A promising method for the liberation and separation of solar cells from damaged crystalline silicon photovoltaic modules
Cheema et al. Comprehensive review of the global trends and future perspectives for recycling of decommissioned photovoltaic panels

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application