KR20130045974A - Method of charging lithium sulfur battery - Google Patents

Method of charging lithium sulfur battery Download PDF

Info

Publication number
KR20130045974A
KR20130045974A KR1020110110240A KR20110110240A KR20130045974A KR 20130045974 A KR20130045974 A KR 20130045974A KR 1020110110240 A KR1020110110240 A KR 1020110110240A KR 20110110240 A KR20110110240 A KR 20110110240A KR 20130045974 A KR20130045974 A KR 20130045974A
Authority
KR
South Korea
Prior art keywords
charging
voltage
constant current
battery
lithium sulfur
Prior art date
Application number
KR1020110110240A
Other languages
Korean (ko)
Inventor
손삼익
진대건
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020110110240A priority Critical patent/KR20130045974A/en
Publication of KR20130045974A publication Critical patent/KR20130045974A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: A method for charging a lithium sulfur battery is provided to reduce the charging time by combining a constant current and voltage charging modes, thereby improving the discharging capacity and energy efficiency. CONSTITUTION: A method for charging a lithium sulfur battery comprises a constant current-charging step of rapidly charging a battery to a specific voltage by a constant current; a constant voltage-charging step of charging the battery while maintaining an increased battery voltage in the constant current-charging step. The current of the constant current charging step is 0.2-0.3 C. The charging method comprises a step of pre-charging the battery with 0.05-0.10 C, before the constant current-charging step. [Reference numerals] (AA) Voltage[V]; (BB) Comparative example_primary charge; (CC) Comparative example_secondary charge; (DD) Example_primary charge; (EE) Example_secondary charge; (FF) Charging capacity[mAh/g]

Description

리튬황 전지의 충전 방법 {METHOD OF CHARGING LITHIUM SULFUR BATTERY}Charging method of lithium sulfur battery {METHOD OF CHARGING LITHIUM SULFUR BATTERY}

본 발명은 리튬황 전지의 충전 방법에 관한 것으로, 더욱 상세하게는 리튬황 전지의 충전시 정전류 및 정전압 충전모드를 병행하여 사용함으로써 방전용량 및 에너지 효율을 증가시킬 수 있는 리튬황 전지의 충전 방법에 관한 것이다.
The present invention relates to a charging method of a lithium sulfur battery, and more particularly, to a charging method of a lithium sulfur battery capable of increasing discharge capacity and energy efficiency by using a constant current and a constant voltage charging mode in parallel. It is about.

리튬황 전지는 황-황 결합(Sulfur-Sulfur bond)을 가지는 황 계열 화합물을 양극 활물질로 사용하고, 리튬과 같은 알카리 금속을 음극 활물질로 사용하는 이차 전지로서, 환원 반응시(방전시) S-S 결합이 끊어지면서 S의 산화수가 감소하고, 산화 반응시(충전시) S의 산화수가 증가하면서 S-S 결합이 다시 형성되는 산화-환원 반응을 이용하여 전기적 에너지를 저장 및 생성한다.Lithium sulfur battery is a secondary battery using a sulfur-based compound having a sulfur-sulfur bond as a positive electrode active material, and an alkali metal such as lithium as a negative electrode active material, SS bond during the reduction reaction (discharge) This breakage reduces the oxidation number of S, and stores and generates electrical energy using an oxidation-reduction reaction in which the SS bond is formed again as the oxidation number of S increases during the oxidation reaction (at the time of charging).

이러한 리튬황 전지는 충전 및 방전, 혹은 방치되어 있을 때에도 폴리설파이드 셔틀 메커니즘에 의한 자가방전반응이 일어난다.Such lithium sulfur batteries have a self-discharge reaction by a polysulfide shuttle mechanism even when charged and discharged or left unattended.

도 1을 참조하면, 실선으로 표시된 화살표를 따라서 일어나는 반응(Li2S -> Li2S4 -> Li2S8 -> S8)이 리튬황 전지의 충전시 기대되는 반응이나, 실제로는 리튬황 전지의 충전시 PS shuttle 이라고 표시되어 있는 화살표를 따라 원치않는 자가방전반응(Li2S <-> Li2S4 <-> Li2S8)이 일어나게 된다.Referring to FIG. 1, the reactions (Li 2 S-> Li 2 S 4- > Li 2 S 8- > S 8 ) occurring along the arrows indicated by solid lines are expected reactions of charging a lithium sulfur battery, but in reality, lithium When charging the sulfur battery, an unwanted self-discharge reaction (Li 2 S <-> Li 2 S 4 <-> Li 2 S 8 ) occurs along the arrow marked PS shuttle.

또한, 리튬황 전지의 충전시 유황양극의 본래 상태인 S8로 변환되는 화학반응이 일어나지 않아 2번째 방전부터는 방전용량이 급격하게 감소하게 된다.In addition, when the lithium sulfur battery is charged, a chemical reaction that is converted to S 8 , which is the original state of the sulfur anode, does not occur, and thus the discharge capacity is drastically reduced from the second discharge.

도 2를 참조하여 리튬황 전지의 방전 메커니즘을 살펴보면, 리튬황 전지는 ①,②,③구간의 반응을 순차적으로 나타내며 방전한다. 구체적으로, ①구간의 반응은 S8 -> Li2S8 이고, ②구간의 반응은 Li2S8 -> Li2S4 이며, ③구간의 반응은 Li2S4 -> Li2S 이다. 리튬황 전지의 충전 메커니즘은 이러한 ①,②,③구간의 반응들이 역순으로 일어난다.Looking at the discharge mechanism of the lithium sulfur battery with reference to Figure 2, the lithium sulfur battery discharges by sequentially showing the reaction of the ①, ②, ③ section. Specifically, the reaction of section 1 is S 8- > Li 2 S 8 , the reaction of section 2 is Li 2 S 8- > Li 2 S 4 , and the reaction of section 3 is Li 2 S 4- > Li 2 S. . The charging mechanism of the lithium sulfur battery is the reaction of the ①, ②, ③ section in the reverse order.

종래 기술에 따른 리튬황 전지의 충전 방법은 리튬황 전지의 충전시 정전류(constant current, CC) 충전모드를 적용하여 씨-레이트(C-rate) 0.05~0.10 C 정도의 속도로 2.50~2.80V 정도까지 충전한다. The charging method of the lithium sulfur battery according to the prior art is about 2.50 ~ 2.80V at a rate of about 0.05 ~ 0.10 C C-rate by applying a constant current (CC) charging mode when charging the lithium sulfur battery Charge until.

그러나, 상기와 같은 종래의 방법으로 충전하는 경우, 리튬황 전지의 자가방전반응으로 인하여 도 2와 같이 어느 수준 이상에서 전압이 더이상 증가하지 못하고 계속해서 충전반응이 일어나게 되며, 이에 충전반응을 일정전압 혹은 목표전압(혹은 만충전압)에 도달함을 통해 중단하지 못하고 시간 제한 또는 용량 제한으로 강제 종료하게 된다.However, when charging by the conventional method as described above, due to the self-discharge reaction of the lithium sulfur battery, the voltage does not increase any more than a certain level as shown in FIG. Alternatively, the target voltage (or full voltage) cannot be reached and forced termination occurs due to time limit or capacity limit.

전압이 더이상 증가하지 못하고 계속해서 충전이 일어나게 되는 반응은 도 2의 ②구간에서 일어나는 반응( Li2S8 -> Li2S4 )으로서, 반복적으로 계속 일어나는 ②구간의 충전반응을 강제로 끝내게 될 경우 ①구간의 반응( S8 -> Li2S8 )이 발생하지 않게 된다.The reaction that the voltage is no longer increased and the charging occurs continuously is the reaction occurring in section ② of FIG. 2 (Li 2 S 8- > Li 2 S 4 ), and the charging reaction of the section ② repeatedly occurring continuously is forcibly terminated. In the case of ① section reaction (S 8- > Li 2 S 8 ) does not occur.

이와 같은 종래의 리튬황 전지의 충전 방법은 크게 두 가지의 문제점이 있다. 첫째로, 도 2의 ②구간에서와 같은 충전반응이 계속해서 일어나기 때문에 충전에 대한 방전비율(쿨롱 효율)이 매우 낮게 형성되어 에너지 손실이 크게 발생하게 된다. 둘째로, Li2S8 -> S8 로 변환되는 반응이 일어나지 않게 되어 도 3과 같이 2번째 방전시에는 ①구간의 방전이 제대로 일어나지 않게 되고, 2번째 방전 이후에도 계속 ②,③구간의 방전만 일어나게 된다.
The conventional charging method of the lithium sulfur battery has two problems. First, since the charging reaction continues as in section ② of FIG. 2, the discharge ratio (coulomb efficiency) for charging is very low, resulting in large energy loss. Secondly, the reaction of converting Li 2 S 8- > S 8 does not occur. As shown in FIG. 3, the discharge of the ① section does not occur properly at the second discharge, and only after the second discharge, the discharge of the ② and ③ sections is continued. Get up.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 정전류 및 정전압 충전방식을 병행하여 충전시 단계별로 충전방식을 변경하고 정전류 충전모드에서 종래 대비 고속 충전을 수행함으로써 충전시간을 단축하고 방전용량 및 에너지 효율을 증가시킬 수 있는 리튬황 전지의 충전 방법을 제공하는데 그 목적이 있다.
The present invention has been made to solve the above problems, by changing the charging method step by step at the time of charging in parallel with the constant current and constant voltage charging method, by reducing the charging time and discharge capacity by performing a fast charge compared to the conventional in the constant current charging mode And it is an object to provide a charging method of a lithium sulfur battery that can increase the energy efficiency.

상기한 목적을 달성하기 위해 본 발명은, 정전류로 일정 전압까지 고속 충전하는 정전류 충전단계; 상기 정전류 충전단계에서 상승된 전지전압을 그대로 유지하면서 충전하는 정전압 충전단계;를 포함하는 것을 특징으로 하는 리튬황 전지의 충전 방법을 제공한다.The present invention to achieve the above object, the constant current charging step of fast charging to a constant voltage with a constant current; It provides a charging method of a lithium sulfur battery comprising a; constant voltage charging step of charging while maintaining the battery voltage rise in the constant current charging step as it is.

바람직하게, 상기 정전류 충전단계에서는 0.2 ~ 0.3 C의 고속 정전류로 충전하는 것을 특징으로 한다.Preferably, the constant current charging step is characterized in that the charging at a high speed constant current of 0.2 ~ 0.3 C.

또한 바람직하게, 상기 정전류 충전단계 전에 0.05 ~ 0.10 C의 저속 정전류로 선충전하는 것을 특징으로 한다.
Also preferably, the battery is precharged at a low speed constant current of 0.05 to 0.10 C before the constant current charging step.

본 발명에 따른 리튬황 전지의 충전 방법은 다음과 같은 효과를 얻을 수 있다.The charging method of the lithium sulfur battery according to the present invention can obtain the following effects.

1. 씨-레이트 0.2 ~ 0.3 C의 고속 정전류를 사용하여 충전하므로 종래 대비 충전시간이 단축된다.1. The C-rate is charged using a high-speed constant current of 0.2 ~ 0.3 C, thereby reducing the charging time compared to the conventional method.

2. Li2S8 -> S8 로의 최종 충전반응이 일어나게 되어 충전 중 자가방전반응이 일어나는 시간을 줄일 수 있으며, 이에 충전에 대한 방전 비율(쿨롱 효율)이 높아지고 에너지 효율이 증가하게 된다.2. The final charging reaction from Li 2 S 8- > S 8 occurs to reduce the time for self-discharge reaction during charging, which increases the discharge ratio (coulombic efficiency) for charging and increases energy efficiency.

3. 종래의 리튬황 전지 충전 방법에 의한 충전시 최종 충전반응인 Li2S8 -> S8 로 변환되는 화학반응이 일어나지 않아 방전용량이 두번째 사이클부터 급격하게 감소하는 반면, 본 발명의 충전 방법에 의한 충전시에는 Li2S8 -> S8 로 변환되는 최종 충전반응이 일어나면서 전지전압을 만충전압(혹은 최대충전전압)까지 충전 및 상승시킬 수 있으며, 이에 S8 -> Li2S8 의 방전반응이 일어나게 되어 이에 의한 방전용량이 증가된다.
3. When charging by the conventional lithium sulfur battery charging method does not occur a chemical reaction that is converted to Li 2 S 8- > S 8 which is the final charging reaction, while the discharge capacity is rapidly reduced from the second cycle, while the charging method of the present invention When charging by, the final charging reaction that is converted into Li 2 S 8- > S 8 occurs, and the battery voltage can be charged and raised to the full voltage (or the maximum charging voltage), and S 8- > Li 2 S 8 Discharge reaction occurs, thereby increasing the discharge capacity.

도 1은 일반적인 리튬황 전지의 충전 메카니즘을 나타낸 개략도
도 2는 리튬황 전지의 충방전 곡선을 나타낸 도면
도 3은 종래의 리튬황 전지의 방전 곡선을 나타낸 도면
도 4는 본 발명에 따른 방법 및 종래 기술에 따른 방법에 의해 충전된 리튬황 전지의 방전용량을 비교하여 나타낸 도면
1 is a schematic view showing a charging mechanism of a typical lithium sulfur battery
2 is a view showing a charge and discharge curve of a lithium sulfur battery
3 is a view showing a discharge curve of a conventional lithium sulfur battery
Figure 4 is a view showing a comparison of the discharge capacity of the lithium sulfur battery charged by the method according to the invention and the method according to the prior art

본 발명은 리튬황 전지의 충전 방법에 관한 것으로, 단순히 정전류 충전모드만을 사용하는 것이 아니라 정전류-정전압 충전모드를 병행하여 충전시 단계별로 충전방식을 변화시킴으로써 전지의 소재 및/또는 시스템의 변경없이 간단하게 에너지 효율을 증가시킬 수 있으며, 또한 종래 대비 고속 충전으로 충전시간을 단축하되 완충전이 이루어지도록 한다.The present invention relates to a charging method of a lithium sulfur battery, and is not simply using a constant current charging mode, but is simple without changing the material and / or system of the battery by changing the charging method step by step when charging in parallel with the constant current-constant voltage charging mode. It is possible to increase the energy efficiency, and also to shorten the charging time by the fast charging compared to the conventional to ensure that the charge is made.

잘 알려진 바와 같이, 리튬황 전지는 충전 중에도 계속해서 폴리설파이드 셔틀 메커니즘에 의한 자가방전반응이 일어나 충전이 일정 수준으로 진행된 후에는 충전속도와 자가방전속도가 균형을 이루면서 전압이 더이상 상승되지 않아 만충전압(혹은 최대충전전압)에 도달하지 못함으로 충전중단시점이 명확하지 않게 되고, 이로 인하여 충전시간이 연장되고 에너지 효율이 저하된다.As is well known, lithium sulfur batteries continue to undergo self-discharge reactions by the polysulfide shuttle mechanism during charging, and after charging progresses to a certain level, the charging speed and the self-discharging speed are balanced and the voltage does not increase any more. (Or the maximum charging voltage) is not reached, the charging stop time is not clear, thereby extending the charging time and decrease the energy efficiency.

보통의 리튬 이온 및 리튬 이차 전지의 경우, 충전이 빠르게 진행되면 과전압 현상으로 인해 충전전압이 전체적으로 급격히 상승하게 되어 완충전이 이루어지지 않는 문제가 발생하게 된다.In the case of ordinary lithium ion and lithium secondary batteries, when charging proceeds rapidly, the charging voltage is rapidly increased as a whole due to an overvoltage phenomenon, which causes a problem that charging is not performed.

반면, 리튬황 전지의 경우, 충전속도를 약간만 빠르게 함으로써 자가방전반응(혹은 자가방전속도)이 충전반응(혹은 충전속도)과 균형을 이루게 되는 문제(충전반응이 계속적으로 일어남)를 개선할 수 있으며, 이로써 전지전압을 만충전압(혹은 최대충전전압)에 도달시켜 방전용량 및 에너지 효율을 증가시킬 수 있게 된다.On the other hand, in the case of lithium sulfur battery, the charging speed is slightly increased to improve the problem of self-discharge reaction (or self-discharge rate) being balanced with the charging reaction (or charging speed) (the charge reaction continues to occur). As a result, the battery voltage can be reached to the full voltage (or the maximum charge voltage) to increase the discharge capacity and energy efficiency.

이하, 본 발명에 대하여 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명에 따른 리튬황 전지의 충전 방법은 리튬황 전지의 충전에 있어 정전류 및 정전압 충전방식을 병행하여 충전단계별로 충전방식을 변경시킴에 특징이 있다.The charging method of the lithium sulfur battery according to the present invention is characterized by changing the charging method for each charging step in parallel with the constant current and constant voltage charging method in charging the lithium sulfur battery.

즉, 본 발명에 따른 리튬황 전지의 충전 방법은 크게 정전류 충전단계와 정전압 충전단계로 진행된다.That is, the charging method of the lithium sulfur battery according to the present invention proceeds largely into a constant current charging step and a constant voltage charging step.

먼저, 정전류 충전모드를 사용하여 전지전압을 정전류로 충전하여 일정 전압까지 상승시킨다.First, the battery voltage is charged with a constant current by using the constant current charging mode to increase to a constant voltage.

이때, 종래와 같이 씨-레이트(C-rate) 0.05 ~ 0.10 C의 느린 속도로 충전하여 전지전압을 상승시키는 것이 아니라, 씨-레이트 0.2 ~ 0.3 C의 다소 높은 속도로 고속 충전하여 전지전압을 상승시킨다.At this time, the battery voltage is not increased by charging at a slow rate of C-rate of 0.05 to 0.10 C as in the prior art, but the battery voltage is increased by fast charging at a somewhat higher rate of C-rate of 0.2 to 0.3 C. Let's do it.

여기서, 씨-레이트(C-rate)는 커런트 레이트(Current rate)로서, 방전 또는 충전 전류를 전지의 정격용량 값으로 나눈 값이다.Here, the C-rate is a current rate, which is a value obtained by dividing the discharge or charge current by the value of the rated capacity of the battery.

C-rate(C) = 충방전 전류 / 정격용량 값C-rate (C) = charge / discharge current / rated capacity value

그러나, 전지전압을 0.2 ~ 0.3 C의 고속 정전류 충전에 의해 일정 전압 혹은 만충전압까지 상승시키더라도 리튬황 전지가 완전히 충전되지는 못한다.However, even when the battery voltage is raised to a constant voltage or a full voltage by a fast constant current charging of 0.2 to 0.3 C, the lithium sulfur battery is not fully charged.

이에 정전류 충전 후 정전압 충전을 수행함으로써 양극의 본래 상태인 S8로의 마지막 충전반응이 일어나게 하여 리튬황 전지를 완전히 충전시킨다.By performing constant voltage charging after constant current charging, the final charging reaction to the original state of the positive electrode S 8 occurs to fully charge the lithium sulfur battery.

정전류 충전시 전류를 일정하게 유지하며 충전하여 전지전압을 일정전압까지 상승시킨 반면, 정전압 충전시에는 전지전압을 일정하게 유지하도록 전지 충전을 수행한다.During constant current charging, the battery voltage is increased to a constant voltage by keeping the current constant while charging, while the battery is charged to maintain the battery voltage constant during the constant voltage charging.

즉, 전지전압이 정전류 충전에 의해 일정 전압까지 상승되면, 상승된 전지전압이 상승 또는 하강되지 않도록 정전압 충전모드를 사용하여 전지전압이 일정하게 유지되도록 충전시킨다.That is, when the battery voltage is raised to a constant voltage by constant current charging, the battery voltage is charged to be kept constant by using the constant voltage charging mode so that the increased battery voltage does not rise or fall.

전지의 정전압 충전시, 앞선 정전류 충전에 의해 상승된 전지전압을 일정하게 유지하기 위하여 충전전류를 점차 감소시키면서 충전을 진행하도록 한다.In the constant voltage charging of the battery, charging is performed while gradually decreasing the charging current in order to maintain a constant battery voltage raised by the constant current charging.

전술한 바와 같이, 통상 리튬황 전지는 충전 및 방전시에는 물론, 방치시에도 폴리설파이드 셔틀 메커니즘에 의해 자가방전반응이 일어나므로 충전을 수행하지 않으면 전지전압이 감소하게 된다. 이에 충전전류를 서서히 감소시키면서 충전을 수행하여 전지전압을 상승 또는 하강시키지 않고 일정하게 유지시킨다.As described above, since the self-discharge reaction occurs by the polysulfide shuttle mechanism in the lithium sulfur battery, as well as during charging and discharging, the battery voltage is reduced unless charging is performed. The charging is performed while gradually decreasing the charging current to maintain a constant voltage without increasing or decreasing the battery voltage.

그리고, 정전류 충전시에는 전지전압을 전지의 만충전압(혹은 최대충전전압)까지 상승시키도록 한다.In addition, during constant current charging, the battery voltage is increased to the full charge voltage (or the maximum charge voltage) of the battery.

이와 같이 정전류 충전 후 정전압 충전을 수행함으로써 0.2 ~ 0.3 C의 고속 정전류 충전만으로는 부족한 충전용량을 보충하여 충전할 수 있고, 양극의 본래 상태인 S8로의 최종 충전반응이 일어나게 되어, 종래의 충전 방법을 사용할 시 두번째 방전부터는 일어나지 않았던 S8 -> Li2S8 의 방전반응이 일어나게 되며, 이에 의한 방전용량의 증가효과를 얻을 수 있다.In this way, by performing constant voltage charging after constant current charging, it is possible to replenish the charging capacity which is insufficient by only the high speed constant current charging of 0.2 to 0.3 C, and the final charging reaction to the original state of the positive electrode S 8 occurs. S 8 did not occur Since the second discharge during use -> the discharge reaction of Li 2 S 8, and take place, it is possible to obtain an increase in the discharge capacity caused by this effect.

즉, 정전압 충전시, 정전류 충전으로 상승시킨 높은 전지전압을 그대로 유지시켜 충전함에 따라 종래 방법에 의한 충전시 거의 일어나지 않던 Li2S8 -> S8 의 최종 충전반응이 강제로 일어나게 되고, 이에 의해 두번째 방전 및 그 이후의 방전시 방전용량의 증가효과를 얻을 수 있다.That is, during constant voltage charging, the final charging reaction of Li 2 S 8- > S 8 , which rarely occurs during the charging by the conventional method, is forced by maintaining the high battery voltage raised by the constant current charging as it is. An increase effect of the discharge capacity can be obtained during the second discharge and subsequent discharges.

이와 같이 본 발명은 전지전압을 일정전압까지 정전류로 고속 충전하여 상승시키고, 전지전압이 일정전압에 도달하게 되면 충전전류를 점차 감소시키며 충전을 수행하여 일정전압으로 상승된 전지전압을 그대로 유지하도록 충전함으로써 전지를 완충전하게 된다.As described above, the present invention rapidly increases the battery voltage by a constant current to a constant voltage at a high speed, and gradually increases the battery current when the battery voltage reaches a constant voltage, and performs charging to maintain the battery voltage elevated to a constant voltage as it is. As a result, the battery is fully charged.

한편, 본 발명에 따른 리튬황 전지의 충전 방법은 상기 정전류 충전단계 전에 씨-레이트 0.05 ~ 0.10 C의 속도로 일정 시간 동안 선충전하는 선충전단계를 포함할 수 있다.On the other hand, the charging method of the lithium sulfur battery according to the present invention may include a precharge step of precharging for a predetermined time at a rate of the c-rate 0.05 ~ 0.10 C before the constant current charging step.

다시 말해, 본 발명의 충전 방법은 정전류 충전시 고속 충전에 의한 충전 손실을 줄이기 위하여, 정전류 충전단계 전에 정전류 충전시보다 느린 0.05 ~ 0.10 C의 속도로 선충전한 후, 충전속도를 높여 정전류 충전단계를 진행한다.In other words, in the charging method of the present invention, in order to reduce the charging loss due to the fast charging during the constant current charging, after the precharge at a speed of 0.05 ~ 0.10 C slower than the constant current charging step before the constant current charging step, the charging speed is increased to increase the constant current charging step Proceed.

구체적으로 설명하면, 본 발명에 따른 리튬황 전지의 충전 방법은 전류를 일정하게 유지하며 0.05 ~ 0.10 C의 충전속도로 충분한 시간 동안 선충전한 후, 충전속도를 높여 0.2 ~ 0.3 C의 속도로 전지전압을 상승시킨 다음, 정전압 충전을 통해 전지전압을 유지하며 충전을 수행하는 3단계의 충전 메카니즘으로 진행될 수 있다.Specifically, the charging method of the lithium sulfur battery according to the present invention maintains a constant current and precharges for a sufficient time at a charging speed of 0.05 ~ 0.10 C, and then increases the charging speed of the battery at a speed of 0.2 ~ 0.3 C After the voltage is raised, the charging may be performed in a three-step charging mechanism that performs charging while maintaining the battery voltage through constant voltage charging.

즉, 본 발명의 리튬황 전지 충전 방법은 0.05 ~ 0.10 C의 저속 정전류로 선충전하는 선충전단계, 0.2 ~ 0.3 C의 고속 정전류로 충전하여 전지전압을 일정 전압까지 상승시키는 정전류 충전단계, 전지전압을 앞서 상승된 일정 전압으로 유지하면서 충전을 수행하는 정전압 충전단계로 이루어질 수 있다.That is, the lithium sulfur battery charging method of the present invention is a precharge step of precharging at a low speed constant current of 0.05 ~ 0.10 C, a constant current charging step of raising the battery voltage to a constant voltage by charging at a high speed constant current of 0.2 ~ 0.3 C, the battery voltage before It may be a constant voltage charging step of performing charging while maintaining the elevated constant voltage.

이와 같은 3단계의 충전 메카니즘은 앞서 설명한 2단계의 충전 메카니즘과 같이 충전 시간을 단축하는 효과를 얻을 수는 없지만, 정전류 충전시 고속의 충전속도에 의한 충전 손실을 감소시킬 수 있고, 또한 S8로의 최종 충전반응이 일어나게 하여 두번째 사이클 이후의 방전용량을 증가시키는 효과를 동등하게 얻을 수 있다.
Such a three-stage charging mechanism does not achieve the effect of shortening the charging time like the two-stage charging mechanism described above, but can reduce the charging loss due to the high charging speed during constant current charging, and also to S 8 . The effect of increasing the discharge capacity after the second cycle can be obtained equally by causing the final charging reaction to occur.

이하, 본 발명의 충전 방법을 사용하여 충전한 전지 셀의 실시예를 제시하나, 하기의 실시예는 본 발명을 더욱 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, an embodiment of a battery cell charged using the charging method of the present invention, but the following examples are provided only for better understanding of the present invention, and the present invention is not limited thereto.

하기 실시예의 리튬황 전지 셀로는 다음과 같은 재료를 사용하여 제작한 것을 사용하였다.The lithium sulfur battery cell of the following Example used the thing produced using the following material.

음극으로는 통상의 리튬 메탈을 이용한 전극을 사용하고, 양극으로는 유황분말의 활물질, 기상 합성 탄소섬유의 도전재, PVdF-HFP(poly(vinylidene fluoride)-hexafluoro propylene) 폴리머의 결착재를 함유한 합재 및 집전체를 사용하였으며, 분리막으로는 폴리에틸렌(polyethylene: PE) 재질의 분리막, 전해질로는 TEGDME (tetraethyl glycoldimethylether) 와 Diox.(dioxine)를 5:5의 부피비로 혼합한 용매에 1몰의 LiTFSI 염이 용해된 것을 사용하였다.
As a cathode, an electrode using a conventional lithium metal is used, and an anode contains an active material of sulfur powder, a conductive material of gaseous synthetic carbon fiber, and a binder of PVdF-HFP (poly (vinylidene fluoride) -hexafluoro propylene) polymer. A mixture and a current collector were used, and a separator of polyethylene (PE) material was used as the separator and 1 mol of LiTFSI in a solvent in which TEGDME (tetraethyl glycoldimethylether) and Diox. (Dioxine) were mixed at a volume ratio of 5: 5. The dissolved salts were used.

[실시예][Example]

상기와 같은 조건으로 제작된 리튬황 전지 셀을 씨-레이트 0.2 C의 정전류로 2.65V까지 충전한 후, 셀 전압을 2.65V로 2시간 동안 그대로 유지시키며 충전하였다.
After the lithium sulfur battery cell manufactured under the conditions described above was charged to 2.65V with a constant current of c-rate 0.2 C, the cell voltage was charged while being maintained at 2.65V for 2 hours.

[비교예][Comparative Example]

상기와 같은 조건으로 제작된 리튬황 전지 셀을 씨-레이트 0.05 C의 정전류로 2.65V까지 충전하였다.
The lithium sulfur battery cell produced under the conditions described above was charged to 2.65V with a constant current of c-rate 0.05 C.

상기 실시예 및 비교예와 같은 조건으로 충전한 리튬황 전지 셀에 대하여 동일한 조건 하에서 충방전 실험을 실시하였다. Charge and discharge experiments were carried out under the same conditions for the lithium sulfur battery cells charged under the same conditions as the Examples and Comparative Examples.

그 결과, 상기 비교예의 조건으로 충전한 리튬황 전지 셀은 충전시간이 약 20시간 걸린데 비하여, 실시예의 조건으로 충전한 리튬황 전지 셀은 약 8시간으로 감소됨을 확인하였다. 또한, 비교예의 조건으로 충전한 리튬황 전지 셀 대비, 실시예의 조건으로 충전한 리튬황 전지 셀은 두번째 방전시 S8 -> Li2S8 의 화학반응이 일어나는 초기 방전구간에서의 방전용량이 약 50mAh/g 이 더 발생함을 확인하였다(도 4 참조).
As a result, it was confirmed that the lithium sulfur battery cell charged under the conditions of the comparative example takes about 20 hours, whereas the lithium sulfur battery cell charged under the conditions of the Example was reduced to about 8 hours. In addition, comparison is conducted under conditions to charge the lithium-sulfur battery cells contrast, the embodiment criteria Rechargeable lithium sulfur battery cells are second discharge when S 8 to - the discharge capacity at> initial discharge section the chemical reaction of Li 2 S 8 occurs about It was confirmed that more 50 mAh / g was generated (see Figure 4).

이와 같이 본 발명에 따른 리튬황 전지의 충전 방법은 고속의 정전류 충전방식으로 일정 전압까지 전지전압을 상승시킨 후, 점차로 충전전류를 감소시켜서 일정 전압까지 상승된 전지전압을 유지하며 충전을 수행함으로써, 종래 대비 충전시간이 단축되고, Li2S8 -> S8 로의 마지막 충전반응이 일어나게 되어 두번째 방전부터 방전용량 및 에너지 효율이 증가되는 효과를 얻을 수 있다.
As described above, in the charging method of the lithium sulfur battery according to the present invention, the battery voltage is increased to a predetermined voltage by a high speed constant current charging method, and then the charging current is gradually decreased to maintain the battery voltage raised to the predetermined voltage, thereby performing charging. Compared to the conventional charging time is shortened, the last charging reaction occurs in Li 2 S 8- > S 8 can be obtained the effect of increasing the discharge capacity and energy efficiency from the second discharge.

Claims (3)

정전류로 일정 전압까지 고속 충전하는 정전류 충전단계;
상기 정전류 충전단계에서 상승된 전지전압을 그대로 유지하면서 충전하는 정전압 충전단계;
를 포함하는 것을 특징으로 하는 리튬황 전지의 충전 방법.
A constant current charging step of fast charging to a constant voltage with a constant current;
A constant voltage charging step of charging while maintaining the battery voltage raised in the constant current charging step as it is;
Charging method of a lithium sulfur battery comprising a.
청구항 1에 있어서,
상기 정전류 충전단계에서는 0.2 ~ 0.3 C의 고속 정전류로 충전하는 것을 특징으로 하는 리튬황 전지의 충전 방법.
The method according to claim 1,
In the constant current charging step, the charging method of the lithium sulfur battery, characterized in that the charging at a high speed constant current of 0.2 ~ 0.3 C.
청구항 1에 있어서,
상기 정전류 충전단계 전에 0.05 ~ 0.10 C의 저속 정전류로 선충전하는 것을 특징으로 하는 리튬황 전지의 충전 방법.
The method according to claim 1,
Charging method of a lithium sulfur battery, characterized in that the pre-charge at a low speed constant current of 0.05 ~ 0.10 C before the constant current charging step.
KR1020110110240A 2011-10-27 2011-10-27 Method of charging lithium sulfur battery KR20130045974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110110240A KR20130045974A (en) 2011-10-27 2011-10-27 Method of charging lithium sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110110240A KR20130045974A (en) 2011-10-27 2011-10-27 Method of charging lithium sulfur battery

Publications (1)

Publication Number Publication Date
KR20130045974A true KR20130045974A (en) 2013-05-07

Family

ID=48657773

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110110240A KR20130045974A (en) 2011-10-27 2011-10-27 Method of charging lithium sulfur battery

Country Status (1)

Country Link
KR (1) KR20130045974A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898831A (en) * 2017-04-17 2017-06-27 西南大学 In the method at sulfenyl, seleno anode surface construction stable, solid interface
KR20190033706A (en) * 2017-09-22 2019-04-01 주식회사 엘지화학 Method for improving a lifetime of lithium-sulfur battery
CN111052492A (en) * 2017-09-01 2020-04-21 株式会社Lg化学 Method for improving life characteristics and charging speed of lithium-sulfur secondary battery
CN112928352A (en) * 2021-02-10 2021-06-08 中国科学院金属研究所 Step charging technology of lithium-sulfur battery
CN113241482A (en) * 2021-02-10 2021-08-10 中国科学院金属研究所 Charging technology of lithium-sulfur battery
US11646457B2 (en) 2017-07-26 2023-05-09 Lg Energy Solution, Ltd. Method for improving lifetime of lithium-sulfur battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898831A (en) * 2017-04-17 2017-06-27 西南大学 In the method at sulfenyl, seleno anode surface construction stable, solid interface
US11646457B2 (en) 2017-07-26 2023-05-09 Lg Energy Solution, Ltd. Method for improving lifetime of lithium-sulfur battery
CN111052492A (en) * 2017-09-01 2020-04-21 株式会社Lg化学 Method for improving life characteristics and charging speed of lithium-sulfur secondary battery
EP3651260A4 (en) * 2017-09-01 2020-08-26 LG Chem, Ltd. Method for improving life properties and charging speed of lithium-sulfur secondary battery
JP2020529187A (en) * 2017-09-01 2020-10-01 エルジー・ケム・リミテッド How to improve the life characteristics and charging speed of lithium-sulfur secondary batteries
US11489209B2 (en) 2017-09-01 2022-11-01 Lg Energy Solution, Ltd. Method for improving life properties and charging speed of lithium-sulfur secondary battery
CN111052492B (en) * 2017-09-01 2024-03-19 株式会社Lg新能源 Method for improving life characteristics and charging speed of lithium-sulfur secondary battery
KR20190033706A (en) * 2017-09-22 2019-04-01 주식회사 엘지화학 Method for improving a lifetime of lithium-sulfur battery
CN112928352A (en) * 2021-02-10 2021-06-08 中国科学院金属研究所 Step charging technology of lithium-sulfur battery
CN113241482A (en) * 2021-02-10 2021-08-10 中国科学院金属研究所 Charging technology of lithium-sulfur battery

Similar Documents

Publication Publication Date Title
US9793736B2 (en) Fast charging method for battery
US10164456B2 (en) Method for charging a lithium ion battery
EP2905831B1 (en) Cathode additive for high-capacity lithium secondary battery
KR20130045974A (en) Method of charging lithium sulfur battery
TWI635643B (en) A method of cycling a lithium-sulphur cell
CN107706471A (en) Lithium secondary battery charging method
CN108417893B (en) Lithium-sulfur electrolyte with high cycling stability
CN110313099B (en) Method and apparatus for charging a battery
TW201503463A (en) A method of charging a lithium-sulphur cell
CN103904378A (en) Charge-discharge method of lithium battery module
CA2903947C (en) A method of charging a lithium-sulphur cell
CN101964431B (en) Multi-stage constant-voltage charging method of lithium secondary battery
WO2024040756A1 (en) Active material, positive electrode material, positive electrode, battery, battery apparatus, and method
JP2008113545A (en) Discharge control unit
KR100396490B1 (en) A method for recharging lithium-sulfur batteries
CN202503084U (en) Balance type external lithium ion battery device
CN115275407B (en) Charging method of nickel-zinc battery
TWI827205B (en) Dual-cation metal battery and charging and discharging method thereof
CN111710886B (en) Method for prolonging service life of metal-air battery
WO2023185148A1 (en) Electrochemical apparatus and control method therefor, and electronic device and storage medium
CN117790950A (en) Lithium ion battery cell and formation and capacity-dividing method thereof
KR100303537B1 (en) Lithium ion secondary battery
KR20150034038A (en) Lithium secondary battery with improved efficiency and a method of making the same
KR20150045785A (en) Anode active material for lithium secondary battery and Lithium secondary battery comprising the same
CN202503083U (en) Intelligent balanced type lithium ion battery device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application