KR20130044964A - Method of continuous mass manufacturing of nanoflake using electrochemical reaction with ultrasonic wave irradiation - Google Patents

Method of continuous mass manufacturing of nanoflake using electrochemical reaction with ultrasonic wave irradiation Download PDF

Info

Publication number
KR20130044964A
KR20130044964A KR1020110109356A KR20110109356A KR20130044964A KR 20130044964 A KR20130044964 A KR 20130044964A KR 1020110109356 A KR1020110109356 A KR 1020110109356A KR 20110109356 A KR20110109356 A KR 20110109356A KR 20130044964 A KR20130044964 A KR 20130044964A
Authority
KR
South Korea
Prior art keywords
flakes
mass production
nanoflakes
nano
continuous mass
Prior art date
Application number
KR1020110109356A
Other languages
Korean (ko)
Other versions
KR101282741B1 (en
Inventor
장대익
이수근
황성호
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Priority to KR1020110109356A priority Critical patent/KR101282741B1/en
Publication of KR20130044964A publication Critical patent/KR20130044964A/en
Application granted granted Critical
Publication of KR101282741B1 publication Critical patent/KR101282741B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Abstract

PURPOSE: A method for continuous mass production of nanoflakes using an ultrasound-electrochemical method is provided to mass produce nanoflakes with enhanced dispersion capability and physical chemical performance at a low cost through a continuous complex processes of expansion/exfoliation/ ultrasound deintercalation using a electrochemical reaction and ultrasound. CONSTITUTION: A method for continuous mass production of nanoflakes using an ultrasound-electrochemical method comprises the following steps: stabilizing a surface by dipping a material with a laminating structure which is formed on an interlayer insertion and a counter electrode, and measuring voltage with an open circuit; and applying ultrasound with a frequency of 10-50 kHz and an output of 50-500 W. The method for continuous mass production of the nanoflakes comprises exfoliation, deintercalation, and dispersion in a single process. The laminating structured material is one selected from a group including graphite, carbon fiber, muscovitum, and highly oriented pyrolytic graphite(HOPG). The interlayer insertion is one selected from a group comprised of H2SO4, HNO3, and HCl. The nanoflakes have an average thickness of 0.04-50 nanometers and an average diameter of 500 nanometers-50 micrometers. [Reference numerals] (AA) Graphite; (BB) Dotted line: Transfer signals(data); (CC) Continuous line: Transfer electric power(electrical)

Description

초음파―전기화학적 방법을 이용한 나노박편의 연속적 대량 생산방법{Method of continuous mass manufacturing of nanoflake using electrochemical reaction with ultrasonic wave irradiation}Method of continuous mass manufacturing of nanoflake using electrochemical reaction with ultrasonic wave irradiation

본 발명은 황산용액 하에서 전위차의 변화를 통해 이온의 층간삽입 및 팽창을 유도하는 동시에, 초음파를 통해 박리율을 높임으로써 단일공정을 통해 나노박편을 얻을 수 있는, 초음파-전기화학적 방법을 이용한 나노박편의 연속적 대량 생산방법에 관한 것이다.The present invention induces intercalation and swelling of ions through the change of potential difference under sulfuric acid solution, and at the same time, it is possible to obtain nano flakes through a single process by increasing the peel rate through ultrasound, nano flakes using ultrasonic electro-chemical method To a continuous method of mass production.

미국특허 제6,872,330호는 나노 물질을 제조하는 방법에 관한 것으로서, 적층 화합물 내로 이온을 층간삽입하고, 박리시켜 그래핀과 유사한 박편을 제조하고, 이어서 초음파 처리를 통해 나노관, 나노시트 등의 형태로 변경하는 방법을 제공하고 있다. U. S. Patent No. 6,872, 330 relates to a method for manufacturing nanomaterials, which intercalates ions into a lamination compound and exfoliates to form graphene-like flakes, which are then ultrasonically treated in the form of nanotubes, nanosheets, and the like. It provides a way to change it.

예를 들어, 첫 번째 단계에서 층간 삽입된 그래파이트를 제조하기 위하여 칼륨(K)의 존재 하에서 그래파이트를 가열함으로써 칼륨이 층간 삽입된 탄소박편을 합성한다. 이후 에탄올 용액 내에서의 탄소나노물질이 포함된 에탄올 분산액을 제조한 후 초음파 처리를 함으로써, 탄소나노튜브 등 다양한 형태의 탄소소재가 형성된다. For example, in the first step, potassium intercalated carbon flakes are synthesized by heating graphite in the presence of potassium (K) to produce intercalated graphite. Thereafter, an ethanol dispersion containing carbon nanomaterial in the ethanol solution is prepared, and then ultrasonically treated to form various carbon materials such as carbon nanotubes.

하지만, 이렇게 온도 충격을 이용해 탄소박편을 제조하는 방법은 층간삽입을 위해 사용되는 칼륨이 공기 노출에 매우 취약한 단점을 가지고 있어 생산 공정에서 취급에 어려움이 있으며, 세정단계가 추가되어야 하는 문제점을 가지고 있다.However, this method of producing carbon flakes using a temperature shock has a disadvantage that potassium used for intercalation is very vulnerable to air exposure, which makes it difficult to handle in the production process and requires a cleaning step to be added. .

한편, 전기화학적인 방법을 이용해 그래핀을 제조하는 방법에 대해 보고하였으나(Ching-Yuan Su, Ang-Yu Lu, Yanping Xu, Fu-Rong Chen, Andrei N. Khlobystov, and Lain-Jong Li, High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation, ACS Nano, 2011, 5 (3), pp 2332), 이러한 기술은 그래파이트 파우더를 유기바인더를 이용해 고정하여 사용함으로써 반응물 내 유기물이 혼재함으로써 소재의 성능을 저하시키는 문제가 있으며, 이와 동시에 팽창과 박리가 연속적으로 이루어지지 않으므로, 대용량 연속반응에 한계가 있었다.On the other hand, it has been reported how to produce graphene using an electrochemical method (Ching-Yuan Su, Ang-Yu Lu, Yanping Xu, Fu-Rong Chen, Andrei N. Khlobystov, and Lain-Jong Li, High- Quality Thin Graphene Films from Fast Electrochemical Exfoliation, ACS Nano, 2011, 5 (3), pp 2332), This technique is used to fix graphite powder with an organic binder, which causes the organic matter in the reactants to be mixed, thereby reducing the performance of the material. At the same time, since the expansion and peeling is not made continuously, there was a limit to the large capacity continuous reaction.

특히, 종래 그래핀 제조공정은 전기화학적 방법을 이용하여 소재를 팽창시키는 단계, Hummers 방법을 이용하여 그래파이트 파우더를 산화시키는 단계, 및 히드라진 용액 내에서 그래핀을 초음파를 이용하여 박리 및 환원하는 단계로 구성되며, 상기 3가지의 단위공정이 불연속적으로 수행되어 전체공정을 이루게 되므로 대용량 연속반응에 한계가 있었다.In particular, the conventional graphene manufacturing process includes the steps of expanding the material using an electrochemical method, oxidizing the graphite powder using the Hummers method, and peeling and reducing the graphene using ultrasonic waves in the hydrazine solution. Since the three unit processes are discontinuously performed to form the whole process, there was a limit to the large-scale continuous reaction.

이에, 본 발명의 목적은 전기화학적 반응과 초음파를 이용하여 팽창/박리/초음파탈리 공정이 교대로 이루어지는 연속 복합공정을 이용해 분산 성능이 뛰어나며, 물리화학적 성능이 우수한 나노박편을 저비용으로 대용량 생산할 수 있는 생산방법을 제공하는 데에 있다.Accordingly, an object of the present invention is to provide a large-capacity low-cost production of nano-flakes having excellent dispersion performance by using a continuous compound process consisting of alternating expansion / peeling / ultrasonic stripping process using an electrochemical reaction and ultrasonic waves. To provide a production method.

상기 목적을 달성하기 위하여, 본 발명은 층간삽입물에 적층구조로 형성된 재료 및 상대전극을 담그고, 개회로 전압(OCV)을 측정하여 표면을 안정화 시킨 후, 10~50 kHz의 주파수 및 50~500 W의 출력으로 초음파를 인가하여 박리, 탈리 및 분산을 단일공정으로 수행하는 것을 특징으로 하는, 초음파-전기화학적 방법을 이용한 나노박편의 연속적 대량 생산방법을 제공한다. In order to achieve the above object, the present invention immersed the material and the counter electrode formed in a laminated structure in the interlayer insert, and stabilizes the surface by measuring the open circuit voltage (OCV), the frequency of 10-50 kHz and 50-500 W It provides a continuous mass production method of nano-flakes using the ultrasonic electro-chemical method, characterized in that the separation, desorption and dispersion are performed in a single process by applying ultrasonic waves to the output of.

이때, 초음파 주파수나 출력이 상기 범위를 벗어나면 나노박편이 생산되지 않거나 생산된 나노박편의 크기가 작아지는 문제가 야기될 수 있다.At this time, when the ultrasonic frequency or output is out of the above range, the nano flakes may not be produced or the size of the produced nano flakes may be reduced.

상기 적층구조로 형성된 재료로는 그래파이트, 탄소화이버, 운모 및 고배향성 열분해 흑연(highly oriented pyrolytic graphite, HOPG)으로 이루어진 군에서 선택된 어느 하나일 수 있으며, 바람직하게는 그래파이트일 수 있다.The material formed of the laminated structure may be any one selected from the group consisting of graphite, carbon fiber, mica, and highly oriented pyrolytic graphite (HOPG), and preferably graphite.

상기 층간삽입물로는 H2SO4, HNO3 및 HCl로 이루어진 군에서 선택된 어느 하나일 수 있으며, 바람직하게는 H2SO4일 수 있다.The interlayer insert may be any one selected from the group consisting of H 2 SO 4 , HNO 3 and HCl, preferably H 2 SO 4 .

상기 상대전극은 사용가능한 어떠한 전극이라고 상관없지만, 일례로 Pt 전극을 사용할 수 있다.The counter electrode may be any electrode that can be used, but a Pt electrode may be used as an example.

본 발명에 따라 생산된 나노박편의 평균 두께는 0.04 nm 내지 50 nm 이며, 폭과 길이를 포함한 평균 직경은 500 nm 내지 50 ㎛ 인 것이 바람직하다.The average thickness of the nano flakes produced according to the present invention is 0.04 nm to 50 nm, the average diameter including the width and length is preferably 500 nm to 50 ㎛.

아크법이나 기상반응법을 이용하여 제조되는 탄소나노박편은 기타 고가의 공정장비가 요구되나, 본 발명에 따른 초음파인가 전기화학적 생산방법은 전술한 방법과 비교해 제조단가가 월등히 저렴할 뿐 아니라, 대용량 합성이 가능하다. 또한 탄소나노박편의 분리 및 탈리(표면안정화공정) 공정이 CSTR(연속교반반응) 형태로 동시에 진행되므로 타 전기화학적 제조방법에 비해 생산성이 매우 우수하다. 또한 전기화학적 방법을 기반으로 한 본 발명에 따른 생산방법은 소재 합성을 위해 사용되는 에너지의 감소를 통해 탄소배출량 절감에 기여하며, 합성시 사용되는 각종 화학제품의 소모량을 줄이는 부수적인 효과도 얻을 수 있다.Carbon nano flakes manufactured by using the arc method or the gas phase reaction method require other expensive processing equipment, but the ultrasonically applied electrochemical production method according to the present invention is much cheaper than the above-described method, and is manufactured at a large capacity. This is possible. In addition, since the separation and desorption (surface stabilization process) process of carbon nano flakes proceeds simultaneously in the form of CSTR (continuous stirring reaction), the productivity is very excellent compared to other electrochemical manufacturing methods. In addition, the production method according to the present invention based on the electrochemical method contributes to the reduction of carbon emissions through the reduction of energy used for material synthesis, and can also obtain the side effect of reducing the consumption of various chemical products used in the synthesis. have.

도 1은 본 발명에 따른 초음파 전기화학적 방법으로 제조하는 복합연속반응장치의 도면이다.
도 2는 본 발명의 실시예를 통해 얻은 탄소나노소재의 반응완료 직후 사진을 나타낸 것이다.
도 3은 본 발명의 실시예를 통해 얻은 탄소나노소재의 주사전자현미경 사진을 나타낸 것이다.
1 is a diagram of a composite continuous reaction apparatus manufactured by the ultrasonic electrochemical method according to the present invention.
Figure 2 shows a photograph immediately after completion of the reaction of the carbon nanomaterial obtained through an embodiment of the present invention.
Figure 3 shows a scanning electron micrograph of the carbon nano material obtained through an embodiment of the present invention.

본 발명에 따른 나노박편의 연속적 대량 생산방법은, 그래파이트를 전해산화환원의 연속반응을 통해 팽창된 탄소 나노박편을 제조한 다음 팽창된 탄소 나노박편을 박리/탈리시키는 것을 포함하고, 여기에서 박리/탈리 단계는 초음파처리 시간, 주기 그리고 에너지량에 따라 결정되며, 이렇게 생산된 탄소 나노박편은 약 0.04 nm 내지 약 50 nm의 두께 및 약 500 nm 내지 약 50 ㎛의 길이 및 폭을 갖는다.The continuous mass production method of the nano flakes according to the present invention includes preparing expanded carbon nano flakes through a continuous reaction of electrolytic redox, and then peeling / desorbing the expanded carbon nano flakes, wherein the delamination / The desorption step is determined according to the sonication time, period and energy amount, and the carbon nanoflakes thus produced have a thickness of about 0.04 nm to about 50 nm and a length and width of about 500 nm to about 50 μm.

보다 상세하게는, 상기 나노박편의 연속적 대량 생산방법은, 그래파이트 전극과 황산용액, 전기화학반응에 안정한 상대전극으로 구성한 3전극 반응을 준비하는 단계; 산화-환원이 교대로 이루어짐으로써 탄소나노박편의 전기적 특성 결정 및 팽창/박리 과정이 이루어지는 단계; 초음파 에너지를 이용하여 박리된 탄소나노박편을 탈리하는 단계; 및 생성된 탄소나노박편을 세정하여 분산하는 단계를 포함한다.More specifically, the continuous mass production method of the nano-flakes, preparing a three-electrode reaction consisting of a graphite electrode, a sulfuric acid solution, a counter electrode stable to the electrochemical reaction; Oxidation-reduction is performed alternately to determine the electrical properties of the carbon nano-flakes and the expansion / peeling process; Desorbing the peeled carbon nano flakes using ultrasonic energy; And washing and dispersing the produced carbon nanoflakes.

이하, 바람직한 실시예를 들어 본 발명에 따른 나노박편의 연속적 대량 생산방법에 대해 더욱 구체적으로 설명하지만, 본 발명은 탄소나노 소재 뿐 아니라 타 층간구성물의 박리를 통한 소재 제조에 폭넓게 적용될 수 있다. 또한 본 발명의 실시예들은 여러 가지로 변형될 수 있으며, 본 발명의 범위가 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with respect to the continuous mass production method of the nano-flakes according to the present invention, the present invention can be widely applied to the production of materials through the peeling of other interlayer components as well as carbon nanomaterials. In addition, embodiments of the present invention may be modified in various ways, the scope of the present invention is not limited by the embodiments.

<실시예> <Examples>

도 1을 참조하면, 우선 탄소나노박편의 분리/탈리과정이 연속적으로 이루어질 수 있도록 하기 위해 초음파 발생장치를 반응조에 설치하였다. 또한, 탄소소재 층간삽입을 유도할수 있는 환경을 조성함과 동시에, 전해산화/환원반응에서 전자의 원활한 이동을 위한 전해질 역할을 수행하는 황산(H2SO4) 용액에 그래파이트를 담구었다.Referring to FIG. 1, first, an ultrasonic wave generator was installed in a reaction tank so that the separation / desorption process of carbon nanoflakes could be continuously performed. In addition, the graphite was immersed in a sulfuric acid (H 2 SO 4 ) solution that serves as an electrolyte for the smooth movement of electrons in the electrolytic oxidation / reduction reaction while creating an environment that can induce intercalation of carbon material.

이를 상술하면, H2SO4 (Conc.) 4.5 g을 초순수를 이용해 100 mL로 고정한 전해질 용액에 그래파이트 막대와 Pt 전극을 담그고 60분간 OCV(Open curcit voltage)를 측정하여 표면을 안정화시킨 후 OCV 기준 1V 전압을 29분간, 10V 전압을 1분간, 그리고 1분간 250W의 출력으로 초음파를 인가하는 단계가 연속적으로 이루어지도록 하였다.In detail, the graphite rod and Pt electrode were immersed in an electrolyte solution of 4.5 g of H 2 SO 4 (Conc.) At 100 mL using ultrapure water, and the surface was stabilized by measuring open curcit voltage (OCV) for 60 minutes. The steps of applying ultrasonic waves at an output of 250 W for 1 minute and a 10 V voltage for 1 minute and 1 minute were performed continuously.

이후 얻어진 탄소나노박편은 0.1 ㎛ 기공을 가진 무기멤브레인을 이용하여 수집하고, 잔여 이온을 제거하기 위해 초순수를 이용하여 중성 pH에 도달할 때까지 세정한 후 진공오븐에서 건조하여 0.7087g의 탄소나노박편을 얻을 수 있었다. 수분이 제거된 시료를 DMF 용액에 초음파를 이용해 분산하여 보관하였다.The obtained carbon nano flakes were collected using an inorganic membrane having 0.1 μm pores, and washed with ultrapure water until neutral pH was reached in order to remove residual ions, and then dried in a vacuum oven to obtain 0.7087 g of carbon nano flakes. Could get The sample from which moisture was removed was stored by dispersing it in ultrasonic waves in a DMF solution.

<비교예><Comparative Example>

탄소 소재 층간삽입을 유도할 수 있는 환경을 조성함과 동시에, 전해산화/환원반응에서 전자의 원활한 이동을 위한 전해질을 주입하는 역할을 수행하기 위해 황산(H2SO4) 용액에 그래파이트 막대를 담구었다.The graphite rod is immersed in sulfuric acid (H 2 SO 4 ) solution to create an environment that can induce intercalation of carbon materials and to inject electrolyte for smooth movement of electrons in electrolytic oxidation / reduction reactions. It was.

이를 상술하면, H2SO4 (Conc.) 4.5 g을 초순수를 이용해 100 mL로 고정한 전해질 용액에 그래파이트 막대와 Pt 전극을 담그고 60분간 OCV(Open curcit voltage)를 측정하여 표면을 안정화 시킨 후 OCV 기준 1V 전압을 29분간, 10V 전압을 1분간 인가하는 단계가 연속적으로 이루어지도록 하였다.Specifically, 4.5 g of H 2 SO 4 (Conc.) Was immersed in an electrolyte solution fixed in 100 mL using ultrapure water, and the surface was stabilized by measuring the open curcit voltage (OCV) for 60 minutes after measuring the graphite rod and the Pt electrode. The steps of applying the 1V voltage for 29 minutes and the 10V voltage for 1 minute were performed continuously.

이후 얻어진 탄소나노박편은 0.1 ㎛ 기공을 가진 무기 멤브레인을 이용하여 수집하고, 잔여 이온을 제거하기 위해 초순수를 이용하여 중성 pH에 도달할 때까지 세정 한 후 진공오븐에서 건조하여 0.1423 g의 탄소나노박편을 얻을 수 있었다. 수분이 제거된 시료를 DMF 용액에 초음파를 이용해 분산하여 보관하였다.
The obtained carbon nanoflakes were collected using an inorganic membrane having 0.1 μm pores, and washed with ultrapure water until neutral pH was reached to remove residual ions, and then dried in a vacuum oven to remove 0.1423 g of carbon nanoflakes. Could get The sample from which moisture was removed was stored by dispersing it in ultrasonic waves in a DMF solution.

따라서, 본 발명에 따라 생산된 탄소나노박편은 종래의 방법인 칼륨을 이용한 층간삽입/박리에 비해 공정이 단순하며, 종래의 전해산화환원반응만을 이용한 방법과 비교하여 수율이 중량 대비 5배(실시예:비교예 = 0.7087g:0.1423g) 정도 향상되었음을 확인하였다.
Accordingly, the carbon nano flakes produced according to the present invention have a simpler process compared to the intercalation / peeling using potassium, which is a conventional method, and yields 5 times compared to the conventional method using only electrolytic redox reactions. Example: Comparative Example = 0.7087g: 0.1423g) was confirmed to improve.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims (5)

층간삽입물에 적층구조로 형성된 재료 및 상대전극을 담그고, 개회로 전압(OCV)을 측정하여 표면을 안정화 시킨 후, 10~50kHz의 주파수 및 50~500W의 출력으로 초음파를 인가하여 박리, 탈리 및 분산을 단일공정으로 수행하는 것을 특징으로 하는, 초음파-전기화학적 방법을 이용한 나노박편의 연속적 대량 생산방법. Immerse the material and counter electrode formed in the laminated structure in the interlayer insert, measure the open circuit voltage (OCV) to stabilize the surface, and then apply ultrasonic waves at a frequency of 10 to 50 kHz and an output of 50 to 500 W to peel, detach and disperse. Continuous mass production method of nano-flakes using the ultrasonic electro-chemical method, characterized in that carried out in a single process. 청구항 1에 있어서, 상기 적층구조로 형성된 재료는 그래파이트, 탄소화이버, 운모 및 고배향성 열분해 흑연(highly oriented pyrolytic graphite, HOPG)으로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 초음파-전기화학적 방법을 이용한 나노박편의 연속적 대량 생산방법. The ultrasonic-electrochemical method according to claim 1, wherein the material formed of the laminated structure is any one selected from the group consisting of graphite, carbon fiber, mica, and highly oriented pyrolytic graphite (HOPG). Continuous mass production method of the used nano flakes. 청구항 1 또는 청구항 2에 있어서, 상기 층간삽입물은 H2SO4, HNO3 및 HCl로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 초음파-전기화학적 방법을 이용한 나노박편의 연속적 대량 생산방법. The method of claim 1 or 2, wherein the interlayer insert is any one selected from the group consisting of H 2 SO 4 , HNO 3 and HCl, continuous mass production method of nano-flakes using the ultrasonic electro-chemical method. 청구항 1 또는 청구항 2에 있어서, 상기 나노박편의 평균 두께는 0.04 nm 내지 50 nm 인 것을 특징으로 하는, 초음파-전기화학적 방법을 이용한 나노박편의 연속적 대량 생산방법. The method of claim 1 or 2, wherein the average thickness of the nano-flakes is characterized in that from 0.04 nm to 50 nm, continuous mass production method of nano-flakes using the ultrasonic electro-chemical method. 청구항 1 또는 청구항 2에 있어서, 상기 나노박편의 평균 직경은 500 nm 내지 50 ㎛ 인 것을 특징으로 하는, 초음파-전기화학적 방법을 이용한 나노박편의 연속적 대량 생산방법. The method of claim 1 or 2, wherein the average diameter of the nano-flakes is characterized in that 500 nm to 50 ㎛, continuous mass production method of nano-flakes using the ultrasonic electro-chemical method.
KR1020110109356A 2011-10-25 2011-10-25 Method of continuous mass manufacturing of nanoflake using electrochemical reaction with ultrasonic wave irradiation KR101282741B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110109356A KR101282741B1 (en) 2011-10-25 2011-10-25 Method of continuous mass manufacturing of nanoflake using electrochemical reaction with ultrasonic wave irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110109356A KR101282741B1 (en) 2011-10-25 2011-10-25 Method of continuous mass manufacturing of nanoflake using electrochemical reaction with ultrasonic wave irradiation

Publications (2)

Publication Number Publication Date
KR20130044964A true KR20130044964A (en) 2013-05-03
KR101282741B1 KR101282741B1 (en) 2013-07-26

Family

ID=48657260

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110109356A KR101282741B1 (en) 2011-10-25 2011-10-25 Method of continuous mass manufacturing of nanoflake using electrochemical reaction with ultrasonic wave irradiation

Country Status (1)

Country Link
KR (1) KR101282741B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU173850U1 (en) * 2017-03-24 2017-09-14 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" DEVICE FOR ELECTROCHEMICAL PROCESSING OF GRAPHITE NANOPLATES
CN113753870A (en) * 2021-09-30 2021-12-07 海南大学 GeP nanosheet negative electrode for lithium ion battery and ultrasonic-assisted rapid stripping preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7175535B2 (en) * 2018-09-07 2022-11-21 ドリーム ファクトリー カンパニー リミテッド Method for producing graphene quantum dots

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU173850U1 (en) * 2017-03-24 2017-09-14 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" DEVICE FOR ELECTROCHEMICAL PROCESSING OF GRAPHITE NANOPLATES
CN113753870A (en) * 2021-09-30 2021-12-07 海南大学 GeP nanosheet negative electrode for lithium ion battery and ultrasonic-assisted rapid stripping preparation method thereof

Also Published As

Publication number Publication date
KR101282741B1 (en) 2013-07-26

Similar Documents

Publication Publication Date Title
Min et al. One-pot hydrothermal synthesis of reduced graphene oxide/Ni (OH) 2 films on nickel foam for high performance supercapacitors
Yu et al. Electrochemical exfoliation of graphite and production of functional graphene
Gürsu et al. One-step electrochemical preparation of graphene-coated pencil graphite electrodes by cyclic voltammetry and their application in vanadium redox batteries
Wang et al. Green mass synthesis of graphene oxide and its MnO2 composite for high performance supercapacitor
Lai et al. Preparation of supercapacitor electrodes through selection of graphene surface functionalities
Song et al. Controlled partial-exfoliation of graphite foil and integration with MnO 2 nanosheets for electrochemical capacitors
Wen et al. Self-supported binder-free carbon fibers/MnO2 electrodes derived from disposable bamboo chopsticks for high-performance supercapacitors
Perera et al. Manganese oxide nanorod–graphene/vanadium oxide nanowire–graphene binder-free paper electrodes for metal oxide hybrid supercapacitors
Saroja et al. Facile synthesis of heteroatom doped and undoped graphene quantum dots as active materials for reversible lithium and sodium ions storage
Ye et al. Producing large-area, foldable graphene paper from graphite oxide suspensions by in-situ chemical reduction process
Li et al. Progress of research on the preparation of graphene oxide via electrochemical approaches
Gürsu et al. Cyclic voltammetric preparation of graphene-coated electrodes for positive electrode materials of vanadium redox flow battery
Liu et al. Electrochemically reduced graphene oxide with porous structure as a binder-free electrode for high-rate supercapacitors
Rashed et al. Two steps synthesis approach of MnO2/graphene nanoplates/graphite composite electrode for supercapacitor application
Hou et al. Environment-friendly preparation of exfoliated graphite and functional graphite sheets
JP6283508B2 (en) Exfoliated graphite dispersion and method for producing exfoliated graphite
Shen et al. Structural evolution of functionalized graphene sheets during solvothermal reduction
Wang et al. Scalable and controlled creation of nanoholes in graphene by microwave-assisted chemical etching for improved electrochemical properties
Zhao et al. Boosting the performance of flexible in-plane micro-supercapacitors by engineering MoS2 nanoparticles embedded in laser-induced graphene
Fang et al. Recent advances in green, safe, and fast production of graphene oxide via electrochemical approaches
Raj et al. Sonoelectrochemical exfoliation of graphene in various electrolytic environments and their structural and electrochemical properties
Seo et al. Sustainable process for all-carbon electrodes: Horticultural doping of natural-resource-derived nano-carbons for high-performance supercapacitors
El Ghazaly et al. Ultrafast, one-step, salt-solution-based acoustic synthesis of Ti3C2 MXene
Zhang et al. In situ modified mesoporous MXene film with excellent oxidation resistance for high-performance supercapacitor
KR101282741B1 (en) Method of continuous mass manufacturing of nanoflake using electrochemical reaction with ultrasonic wave irradiation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160628

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170628

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190701

Year of fee payment: 7