KR20130000647A - Method for processing carbon nanotube-aluminum composite wire for electrical cable application and products produced thereby - Google Patents

Method for processing carbon nanotube-aluminum composite wire for electrical cable application and products produced thereby Download PDF

Info

Publication number
KR20130000647A
KR20130000647A KR1020110061300A KR20110061300A KR20130000647A KR 20130000647 A KR20130000647 A KR 20130000647A KR 1020110061300 A KR1020110061300 A KR 1020110061300A KR 20110061300 A KR20110061300 A KR 20110061300A KR 20130000647 A KR20130000647 A KR 20130000647A
Authority
KR
South Korea
Prior art keywords
aluminum
cnt
composite wire
powder
power
Prior art date
Application number
KR1020110061300A
Other languages
Korean (ko)
Inventor
권한상
김승민
Original Assignee
권한상
김승민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 권한상, 김승민 filed Critical 권한상
Priority to KR1020110061300A priority Critical patent/KR20130000647A/en
Publication of KR20130000647A publication Critical patent/KR20130000647A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/01Use of vibrations

Abstract

PURPOSE: A method for manufacturing complex wire rods for a power supply by using Al(aluminum) and CNT(carbon nanotubes) and a product manufactured with the same are provided to manufacture complex wire rods with simple equipment and reduced carbon emissions. CONSTITUTION: A method for manufacturing complex wire rods for a power supply by using Al and CNT comprises the steps of: mixing a power mixture comprising 0.2-30 wt.% of CNT and 99.8-70 wt.% of Al powder with a dispersion inducing agent at a volume ratio of 1:1 and irradiating the same with ultrasonic waves for 10-15 minutes to produce a dispersed mixture(100); heat-treating the dispersed mixture in an inert atmosphere at 400-500°C for 1-2 hours to completely remove the dispersion inducing agent and to obtain Al-CNT mixed powder(200); making the Al-CNT mixed powder into a bulk-type sintered body by using a spark plasma sintering machine(300); and extruding the sintered body through a hot extruder to obtain complex Al-CNT wire rods(400). [Reference numerals] (AA) Natural rubber; (BB) Al powder; (CC) Al-CNT powder; (DD) Pressure; (EE) Sintered body

Description

알루미늄 및 카본나노튜브를 이용한 전력용 복합 선재 제조방법 및 그것에 의해 제조된 제품{METHOD FOR PROCESSING CARBON NANOTUBE-ALUMINUM COMPOSITE WIRE FOR ELECTRICAL CABLE APPLICATION AND PRODUCTS PRODUCED THEREBY} METHOD FOR PROCESSING CARBON NANOTUBE-ALUMINUM COMPOSITE WIRE FOR ELECTRICAL CABLE APPLICATION AND PRODUCTS PRODUCED THEREBY}

본 발명은 알루미늄과 카본나노튜브를 이용한 전력용 복합 선재 제조방법에 관한 것으로, 더욱 상세하게는 일반 알루미늄 대비 인장강도는 약 400% 증가하고, 연신율은 유사하며, 중량은 약 30% 정도 더 경량화할 수 있는 특성을 지니는 알루미늄과 카본나노튜브 복합 선재 제조방법 및 그것에 의해 제조된 제품에 관한 것이다.
The present invention relates to a method for manufacturing a composite wire for power using aluminum and carbon nanotubes. More specifically, the tensile strength is increased about 400%, the elongation is similar, and the weight is about 30% lighter. The present invention relates to a method for producing aluminum and carbon nanotube composite wire rods and a product produced by the same.

일반적으로 전력용 와이어(이하, '선재'라고 함)는 대부분 구리(Cu)로 제조되어 왔으나, 특수용도와 목적을 위해 백금이나 은(Ag)재질의 선재도 사용되고 있으며, 알루미늄합금 재질을 이용하여 제조되기도 한다.In general, power wires (hereinafter referred to as 'wires') have been mostly made of copper (Cu), but wires of platinum or silver (Ag) materials are also used for special purposes and purposes, and are manufactured using aluminum alloy material. Sometimes.

알루미늄의 전기저항은 구리에 비해 1.6배, 중량은 약 0.3배, 인장강도는 약 0.55배로서, 가격이 저렴하고 가공성이 우수하며 내식성이 우수하고 가벼운 장점이 있으나, 알루미늄 선재가 구리 선재와 같은 효율을 갖기 위해서는 알루미늄 선재의 지름을 약 30%이상 크게 해야만 구리재 선재가 지니는 물성에 접근할 수 있다.The electrical resistance of aluminum is 1.6 times, weight about 0.3 times, and tensile strength about 0.55 times compared to copper, and it has the advantages of low price, excellent workability, excellent corrosion resistance and light weight, but aluminum wire is the same efficiency as copper wire. In order to have a diameter, the diameter of the aluminum wire should be increased to about 30% or more to access the properties of the copper wire.

이러한 배경으로 알루미늄계 선재는 주로 고압 송전용으로 주로 이용되고 있다.Against this background, aluminum wire is mainly used for high pressure transmission.

이외에도 강도를 보강한 알루미늄합금 선재나 선재속에 강선(Core)를 넣어 제조한 알루미늄재 선재들을 배전선이나 급전선용으로 일부 제품화가 시도되고 있으나 효율성은 그다지 높지 않은 실정이다.In addition, some products have been attempted to commercialize aluminum alloy wires reinforced with strength or aluminum wires with cores in wire rods for distribution lines or feeders, but their efficiency is not very high.

알루미늄계열의 전력용 선재는 전술한 바와 같은 다양한 장점들이 있음에도 불구하고 전력용 선재가 갖추어야 할 기계적, 물리적 성질을 갖추지 못해 활용도가 낮은 상황이다.Although aluminum-based power wires have various advantages as described above, they do not have the mechanical and physical properties that power wires should have, and thus have low utilization.

한편 카본나노튜브(Carbon Nanotube, 이하, 'CNT'라 함)의 개발에 따라 산업이나 공업분야에서 CNT를 다양하게 활용 및 응용이 시도되고 있다.Meanwhile, with the development of carbon nanotubes (hereinafter referred to as 'CNTs'), various applications and applications of CNTs have been attempted in the industrial and industrial fields.

CNT는 탄소 6개로 이루어진 육각 모양이 서로 연결되어 튜브형상을 이루고 있고, 전기전도도는 CNT의 순도에 따라 다소 차이가 있으나 대체로 구리와 비슷하고, 열전도율은 자연계에서 다이야몬드와 유사하며, 강도는 강철의 100배 정도 뛰어난 특징이 있다. CNT is hexagonal shape consisting of six carbons connected to each other to form a tube shape. Electrical conductivity is somewhat different depending on the purity of CNT, but is generally similar to copper, and thermal conductivity is similar to diamond in nature, and the strength of steel It is about 100 times better.

일 예로 탄소섬유는 1%만 변형시켜도 끊어지지만 CNT는 15%를 변형시켜도 견딜 수 있는 인장강도를 지니고 있다.For example, carbon fiber is broken by only 1% deformation, but CNT has tensile strength that can withstand 15% deformation.

CNT에 대해서는 이미 많은 연구에 의해 CNT는 기계적, 전기적, 화학적, 열적 특성이 매우 우수한 특성이 있다는 사실이 보고되고 있어 학계나 산업분야에서는 향후 차세대 복합재료 강화재로 크게 주목받고 있는 신물질이라 할 수 있다.Many studies on CNTs have reported that CNTs have excellent mechanical, electrical, chemical, and thermal properties, and thus they can be regarded as a new material that is attracting much attention as a next generation composite reinforcement material in academia and industry.

전술한 바와 같이 알루미늄이 지니고 있는 기계적 물리적 성질의 단점과 CNT에서 나타나는 기계적, 전기적, 화학적, 열적 특성의 장점을 결합하여 기계적 물리적 성질이 개질된 알루미늄계열의 소재를 제조할 수 있을 것으로 예측되는 바, 본 발명자에 의한 연구결과가 일정수준에 도달하여 그 결과를 본 명세서를 통해 제안하고자 한다.As described above, it is expected that the aluminum-based material having the modified mechanical and physical properties may be manufactured by combining the disadvantages of the mechanical and physical properties of aluminum with the advantages of the mechanical, electrical, chemical and thermal properties of CNTs. The results of the research by the inventors have reached a certain level, and the results are proposed through the present specification.

본 발명에 의해 제조된 제품은 특히 CNT와 알루미늄이 지니는 기계적, 물리적 성질의 장단점을 서로 보완하는 Al-CNT 복합 선재를 제조함으로써, 기존의 알루미늄선과 구리선에 비해 제조비용과 시공에 따른 제반비용을 현저히 낮출 수 있어 대체효과가 매우 우수할 것으로 예측된다.
In particular, the product manufactured by the present invention manufactures an Al-CNT composite wire that complements the advantages and disadvantages of the mechanical and physical properties of CNT and aluminum, thereby significantly reducing manufacturing and construction costs compared to conventional aluminum wire and copper wire. It can be lowered and the replacement effect is expected to be very good.

본 발명은 전술한 바와 같이 알루미늄재질이 지니는 기계적, 물리적 성질의장단점과, CNT가 지닌 장단점을 서로 보완적으로 상승시켜 고강도, 고경도, 고연성, 경량화 특성을 갖는 알루미늄 및 카본나노튜브를 이용한 전력용 복합 선재 제조방법 및 그것에 의해 제조된 제품을 제공하는데 주된 목적이 있다.
The present invention, as described above, the strengths and weaknesses of the mechanical and physical properties of the aluminum material, and the strengths and weaknesses of the CNT complementary to each other to increase the power using aluminum and carbon nanotubes having high strength, high hardness, high ductility, light weight characteristics It is a main object to provide a method for producing a composite wire rod for a product and a product produced by the same.

본 발명에 따른 알루미늄및 카본나노튜브를 이용한 전력용 복합 선재 제조방법의 구현수단은;Means for implementing a method for manufacturing a composite wire for power using aluminum and carbon nanotubes according to the present invention;

(ⅰ) CNT를 균일하게 알루미늄입자에 분산시키기 위해 CNT 0.2~30중량%와, 알루미늄분말 99.8~70중량%를 혼합한 분말 혼합물과 분산유도제를 1:1 체적비율로 혼합한 뒤 혼합물을 초음파로 10~15분동안 조사하여 분산 혼합물을 제조하는 단계와:(Iii) To disperse the CNTs uniformly in the aluminum particles, mix the powder mixture containing 0.2-30% by weight of CNT, 99.8-70% by weight of aluminum powder and the dispersant in a 1: 1 volume ratio, and then mix the mixture with ultrasonic waves. Irradiating for 10-15 minutes to produce a dispersion mixture:

(ⅱ) 상기 분산 혼합물에 포함된 분산유도제를 제거하기 위해 관상로에서 불활성 분위기로 400~500℃에서 1~2시간 열처리하여 분산유도제 성분을 완전히 제거하고, CNT 및 알루미늄 혼합분말을 제조하는 단계와;(Ii) a step of completely removing the dispersion inducing agent component by heat treatment at 400 to 500 ° C. for 1 to 2 hours in an inert atmosphere in a tubular furnace to remove the dispersion inducing agent contained in the dispersion mixture, and preparing a mixed powder of CNT and aluminum; ;

(ⅲ) 얻어진 알루미늄및 CNT 혼합분말을 스파크 플라즈마 소결기를 이용하여 벌크상의 소결체를 제조하는 단계 및:(Iii) producing a bulk sintered compact from the obtained aluminum and CNT mixed powder using a spark plasma sintering machine, and:

(ⅳ) 상기 소결체를 열간압출기로 압출하여 알루미늄-카본나노튜브 복합 선재를 제조하는 단계에 의해 구현할 수 있다.(Iii) by extruding the sintered body with a hot extruder to produce an aluminum-carbon nanotube composite wire.

상기한 분산유도제는 CNT가 알루미늄분말의 계면에 균질하게 분산되도록 하기 위한 것으로, 천연고무액, 페놀, 폴리머 또는 PP, PE, PVC 중에서 선택된 일종과 알코올 혹은 솔벤트 중에서 선택된 일종을 1:1 체적비로 혼합하여 제조할 수 있다.The dispersion inducing agent is to disperse the CNT homogeneously at the interface of the aluminum powder, and mixes one selected from natural rubber liquid, phenol, polymer or PP, PE, PVC and one selected from alcohol or solvent in a volume ratio of 1: 1. Can be prepared.

상기한 관상로내의 분위기를 불활성으로 조성함에 있어서는 아르곤 가스나 질소가스 또는 진공분위기 중 어느 하나는 선택적으로 적용할 수 있다. 본 발명에서는 예시적으로 아르곤 가스를 채용하였다.In making the above-mentioned atmosphere in the tubular furnace inert, any one of argon gas, nitrogen gas or vacuum atmosphere may be selectively applied. In the present invention, argon gas is employed as an example.

상기 소결기의 운전조건은 온도 280~650℃, 압력 50MPa, 홀딩시간 5~60분이 유용하다.The operating conditions of the sintering machine is useful temperature 280 ~ 650 ℃, pressure 50MPa, holding time 5 ~ 60 minutes.

상기 소결체의 열간압출기의 운전조건은 400~600℃, 압출비 10~40가 바람직하다.Operation conditions of the hot extruder of the sintered compact is preferably 400 ~ 600 ℃, extrusion ratio 10 ~ 40.

본 발명에 의하면, 소결체의 미세조직은 열간압출에 의해 소결시 압출방향으로 늘어나 수직방향으로는 1마이크로미터 크기를 지니고, 일반 알루미늄에 비해 인강장도는 약 400% 증가하고, 연신율은 비슷하며, 중량은 약 30% 정도 더 경량화된 특성을 갖는 전력용 알루미늄-카본나노튜브 복합 선재를 제조할 수 있다.According to the present invention, the microstructure of the sintered body is stretched in the extrusion direction during hot extrusion and has a size of 1 micrometer in the vertical direction, and the tensile strength is increased by about 400% compared to general aluminum, and the elongation is similar, and the weight is Silver can be produced for the power aluminum-carbon nanotube composite wire having a lighter weight of about 30%.

따라서, 본 발명에 의해 제조된 알루미늄-카본나노튜브 복합 선재는 전력 와이어가 요구하는 물리적, 기계적 성질을 충족함으로 알루미늄-카본나노튜브 복합 선재를 기존의 알루미늄 선재나 구리 선재를 대체할 경우 선재 제조와 시공에 따른 제반비용을 크게 절감할 수 있을 뿐만 아니라 간소한 설비로 용이하게 제조할 수 있고, 또한 제조공정에 의한 탄소배출량이 낮아 환경친화적인 특징이 있다.Therefore, the aluminum-carbon nanotube composite wire manufactured according to the present invention satisfies the physical and mechanical properties required by the power wire, and thus, when the aluminum-carbon nanotube composite wire replaces the existing aluminum wire or copper wire, Not only can greatly reduce the overall cost of construction, but also can be easily manufactured with a simple facility, and also has an environmentally friendly feature low carbon emissions by the manufacturing process.

또한 본 발명에 의해 제조된 알루미늄-카본나노튜브 소결물과 압출물은 고강도, 경량화 특성을 지니므로 전력용 선재 이외에도 자동차, 우주 항공, 항공기 등과 같은 다양한 분야에서 슈퍼 신소재로 매우 유용하게 활용될 수 있는 효과가 있다.
In addition, the aluminum-carbon nanotube sintered material and the extrudate manufactured by the present invention have high strength and light weight characteristics, and thus can be very useful as super new materials in various fields such as automobiles, aerospace, aircrafts, etc. in addition to power wires. It works.

도 1은 본 발명에 따른 알루미늄 및 카본나노튜브를 이용한 전력용 복합 선재 제조공정을 예시한 공정도이다.
도 2는 Al-CNT소결물의 횡방향과 종방향 단면을 현미경으로 촬영한 사진으로, (C)와 (D)는 고배율 FE-SEM로 촬영한 결정립과 결정립 계면 사진이다.
도 3은 알루미늄결정립 경계층의 TEM 현미경사진으로, 사진 (a)는 전체 결정립 계면을 촬영한 현미경사진이다.
도 4의 (a)사진은 광학 현미경사진이고, 도 4의 (b)사진은 FE-SEM의 Al-CNT 합성물의 단면 현미경사진이다.
도 5는 도 5의 그래프 중 아래로부터 위로 순차적으로 순수 CNT의 라만 그래프, 분리된 Al-CNT 혼합분말의 라만 그래프, 소결된 Al-CNT소결체의 라만 그래프, 압출된 Al-CNT 소결체의 라만 그래프이다.
도 6은 Al-CNT 합성물과 압출된 알루미늄 벌크의 응력-변형 곡선 그래프로, 그래프내에 삽입된 표본은 인장시험에 사용된 시편이다.
도 7은 압출된 Al-CNT 합성물의 TEM 현미경사진으로, 도 7의 (a)는 전체 결정립 계면의 현미경사진이고, 도 7의 (b)는 알루미늄매트릭스사이에 박힌 Al4C3 사진이다.
도 8은 인장시험 전,후의 Al-CNT 합성물 현미경사진으로, 도 8의 (a)는 인장시험 전 CNT의 오목부(흰색 화살표)이고, 도 8의 (b)는 인장시험 후 파단된 CNT연결부이다(흰색 화살표).
1 is a process diagram illustrating a process for manufacturing a composite wire for power using aluminum and carbon nanotubes according to the present invention.
Figure 2 is a photograph of the lateral and longitudinal cross-section of the Al-CNT sintered micrograph, (C) and (D) is a grain and grain interface photograph taken with a high magnification FE-SEM.
3 is a TEM micrograph of an aluminum grain boundary layer, and the photograph (a) is a micrograph of the entire grain boundary interface.
Figure 4 (a) is an optical micrograph, Figure 4 (b) is a cross-sectional photomicrograph of the Al-CNT composite of FE-SEM.
5 is a Raman graph of pure CNTs sequentially from the bottom of the graph of FIG. 5, a Raman graph of separated Al-CNT mixed powders, a Raman graph of sintered Al-CNT sintered compacts, and a Raman graph of an extruded Al-CNT sintered compact. .
6 is a stress-strain curve graph of an Al-CNT composite and extruded aluminum bulk, with the specimens inserted in the graph being specimens used for tensile testing.
7 is a TEM micrograph of the extruded Al-CNT composite, Figure 7 (a) is a micrograph of the whole grain interface, Figure 7 (b) is an Al4C3 picture embedded between the aluminum matrix.
8 is an Al-CNT composite photomicrograph before and after the tensile test, Figure 8 (a) is a concave portion (white arrow) of the CNT before the tensile test, Figure 8 (b) is a broken CNT connection after the tensile test (White arrow).

이하에서는 본 발명에 따른 알루미늄과 카본나노튜브를 이용한 전력용 복합 선재 제조방법에 대하여 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, a method for manufacturing a composite wire for power using aluminum and carbon nanotubes according to the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 사용된 CNT는 순도 99.5%, 직경과 길이는 각각 20㎚와 30㎛(대한민국 일진(주) 제조)이고, 알루미늄분말은 평균 입경 15.82㎛, 순도 99.8%(일본국, ECKA그래뉼제팬사 제조)를 채용하였으며, 또한 본 발명에서 사용된 소결기는 스파크플라즈마 소결기(일본 스미토모 코알 미닝사, 모델SPS-S515)를 사용하였고, 압출기는 일본국 시마츠사, 모델 UH-500kN를 사용하였다.CNTs used in the present invention are 99.5% pure, 20 nm and 30 μm in diameter and length, respectively (manufactured by ILJIN, Korea), and the aluminum powder has an average particle diameter of 15.82 μm and a purity of 99.8% (Japan, ECKA Granule Japan Co., Ltd.). Production), and the sintering machine used in the present invention used a spark plasma sintering machine (Sumitomo Koal Mining Co., Model SPS-S515), and the extruder Shimatsu Co., Ltd., model UH-500 kN in Japan.

일반적으로, 알루미늄 분말은 알루미늄 표면에 강한 산화입자 사이의 직접 접촉을 방지하기 때문에 소결성이 낮으며, 마이크로사이즈의 알루미늄입자는 나노사이즈의 CNT와 사이즈차이가 커서 분산이 어렵다. 또한 CNT는 강한 반데발스힘에 의해서 응집되기 쉬워 CNT를 알루미늄 입자에 균일하게 분산시키기 위해서 분산유도제가 요구된다.In general, aluminum powder has low sintering property because it prevents direct contact between strong oxide particles on the aluminum surface, and micro-size aluminum particles are difficult to disperse because they have a large size difference from nano-size CNTs. In addition, CNTs are agglomerated by strong van der Waals forces and require a dispersion inducing agent to uniformly disperse CNTs in aluminum particles.

분산유도제는 알코올이나 솔벤트중 어느 하나를 선택하여 천연고무액과 1:1로 혼합한 것이 바람직하다. 본 발명의 채용예로서는 솔벤트를 천연고무액과 1:1로 혼합한 분산용액을 분산유도제로 채용하였다.The dispersion inducing agent is preferably selected from alcohol or solvent and mixed 1: 1 with the natural rubber solution. As an employment example of the present invention, a dispersion solution in which a solvent is mixed with a natural rubber solution in a 1: 1 ratio is employed as a dispersion inducing agent.

도 1에 확인되는 바와 같이 CNT: 0.2~30중량%와, 알루미늄분말: 99.8~70중량%를 혼합한 Al-CNT 혼합물을 분산유도제와 1:1로 혼합하여 초음파를 10~15분동안 조사하여 분산 혼합물을 제조하는 단계(100)를 수행한다.As shown in FIG. 1, the Al-CNT mixture of CNT: 0.2-30% by weight and aluminum powder: 99.8-70% by weight was mixed 1: 1 with a dispersion induction agent to irradiate ultrasonic waves for 10-15 minutes. Step 100 of preparing the dispersion mixture is carried out.

CNT는 목적물의 형상에는 영향을 미치지 않으나 CNT함량이 적으면 목적물의 강도는 순수 알루미늄과 비슷하게 나타나므로 강화재로서 충분한 역활을 하지 못하고, 반대로 CNT를 많이 넣을수록 강도는 순수 알루미늄 대비 증가하지만 반대로 연신율이 떨어지는 결과를 초래한다.CNT does not affect the shape of the target, but if the CNT content is small, the strength of the target is similar to that of pure aluminum, so it does not play a sufficient role as a reinforcing material. On the contrary, as more CNTs are added, the strength is higher than that of pure aluminum. Results.

또한 CNT의 함량이 극단적으로 많아지면 오히려 분산이 어려워지고 결함으로 작용하여 기계적 물리적 특성을 떨어뜨리는 결과가 나타난다.In addition, when the content of CNT is extremely high, it becomes difficult to disperse and acts as a defect, resulting in deterioration of mechanical and physical properties.

따라서, 본 발명을 응용하여 다양한 용도로 활용될 수 있고 그에 따라 CNT함량은 증감될 수 있으나, 본 발명에서 제안하는 CNT의 함량은 본 발명에 의해 제조된 전력용 선재의 기계적, 물리적 성질이 기존 알루미늄 선재보다 우수하거나 구리 와 같거나 보다 더 우수한 수준을 목표로 연구되었다.Therefore, the present invention can be utilized for various purposes by applying the present invention and accordingly the CNT content can be increased or decreased, but the content of the CNT proposed in the present invention is that the mechanical and physical properties of the electric wire for power produced by the present invention is conventional aluminum The study was aimed at levels that are superior to, or at least as good as, copper.

상기한 분산유도제는 초음파 조사에 의해 가열되면서 알루미늄분말과 CNT의 유동성을 촉진시켜 양 물질이 서로 고르게 혼합된다.The dispersion induction agent is heated by ultrasonic irradiation to promote the fluidity of the aluminum powder and CNT, both materials are evenly mixed with each other.

상기한 바와 같은 Al-CNT 분산공정이 끝나면 분산된 Al-CNT 혼합물에 포함된 분산유도제를 제거하기 위해 관상로에서 불활성 분위기로 400~600℃로 1~2시간 열처리하여 분산유도제 성분을 완전히 제거하여 Al-CNT 혼합분말을 제조하는 공정(도 1의 참조번호 200 참조)을 수행한다.After the Al-CNT dispersion process as described above, to remove the dispersion inducing agent contained in the dispersed Al-CNT mixture by heat treatment at 400 ~ 600 ℃ for 1 to 2 hours in an inert atmosphere in a tubular furnace to completely remove the dispersion inducing agent components A process of preparing Al-CNT mixed powder is performed (see reference numeral 200 of FIG. 1).

얻어진 알루미늄 및 CNT 혼합분말을 스파크 플라즈마 소결기를 이용하여 벌크상의 소결체를 제조하는 공정(도 1의 참조번호 200 참조)을 수행한다.The obtained aluminum and CNT mixed powder is subjected to a process of producing a bulk sintered body using a spark plasma sintering machine (see reference numeral 200 in FIG. 1).

소결기의 운전조건은 온도 280~600℃, 압력 50MPa, 홀딩시간 5~60분이 유용하고, 특히 600℃에서 유용하다. The operating conditions of the sintering machine is useful for the temperature of 280 ~ 600 ℃, pressure 50MPa, holding time 5 ~ 60 minutes, especially at 600 ℃.

소결기에 의해 소결된 소결체를 열간압출기로 압출온도 400~500℃, 압출비 10~40 조건으로 압출하여 Al-CNT 복합 선재를 제조한다.The sintered body sintered by the sintering machine is extruded with a hot extruder at an extrusion temperature of 400 to 500 ° C. and an extrusion ratio of 10 to 40 to produce an Al-CNT composite wire.

상기한 바와 같은 제조공정별 작용효과를 설명한다.The operational effects for each manufacturing process as described above will be described.

도 2의 (a),(b)를 살펴보면 사진상에서 검은색 경계면이 관찰되고, 그 경계면의 두께가 대체로 고르게 나타나는 것을 볼 수 있는데 이는 알루미늄 결정립의 계면에 첨가된 CNT가 고르게 분산되었음을 보여준다.Looking at (a), (b) of Figure 2 it can be seen that the black interface is observed on the photo, the thickness of the interface is generally even, which shows that the CNT added to the interface of the aluminum grains evenly dispersed.

또한 소결 후 결정립 계면에서 CNT가 모두 발견되고, 소결 후에도 미세조직의 입자성장은 일어나지 않았는데, 이는 소결공정의 빠른 온도상승과 적용된 높은 압력 그리고 알루미늄입자 주위에 균일하게 분산되어 있는 CNT에 의한 효과에 기인하기 때문이다.In addition, all the CNTs were found at the grain boundary after sintering, and the microstructure grain growth did not occur even after sintering due to the rapid temperature rise of the sintering process, the high pressure applied, and the effect of CNTs uniformly dispersed around the aluminum particles. Because.

또한 소결체의 계면에는 CNT가 포함되어 있고 대부분의 계면의 두께는 도 2의 (d)에서 보는 바와 같이 약 200㎚로 균일함을 확인할 수 있다. In addition, CNT is included in the interface of the sintered body, and the thickness of most interfaces can be confirmed to be uniform at about 200 nm as shown in FIG.

결국 현미경 사진을 통해 균일한 계면의 두께분포와 CNT가 알루미늄입자 사이에 균일하게 분산되어 있음을 확인할 수 있다.As a result, it can be seen from the micrograph that the thickness distribution of the uniform interface and the CNT are uniformly dispersed between the aluminum particles.

도 3을 참조하면, 소결체의 계면 내부에서 CNT(도 3의 사진내 인용번호 3)가 확인되었고, 또한 CNT에 원래 포함된 것으로 보이는 카본블랙(도 3의 사진내 인용번호 4) 확인되었다. Referring to FIG. 3, CNTs (reference number 3 in the photo of FIG. 3) were identified inside the interface of the sintered body, and carbon black (reference number 4 in the photo of FIG. 3) that was originally included in the CNT was confirmed.

또한 도 3의 사진내에서 인용번호 2는 알루미늄결정립과 계면층사이에 분포된 알루미나이고, 인용번호 5는 흑연이며, 6은 Al4C3이고, 흰색 화살표는 파단된 알루미나 결정립의 계면도 관찰된다.In addition, in the photograph of FIG. 3, reference numeral 2 is alumina distributed between aluminum crystal grains and an interfacial layer, reference numeral 5 is graphite, 6 is Al 4 C 3, and white arrows also show an interface of broken alumina crystal grains.

또한 도 3의 (b)사진은 CNT와 알루미늄 매트릭스간의 계면을 촬영한 사진이고, 도 3의 (c)사진은 Al4C3을 촬영한 것으로, 왼쪽 사진은 HR-TEM 이미지이고, 오른쪽 사진은 탄화물 및 알루미늄 결정립사이의 인터페이스 패턴이 관찰된다.In addition, Figure 3 (b) is a photograph of the interface between the CNT and the aluminum matrix, Figure 3 (c) is a photograph of Al4C3, the left picture is HR-TEM image, the right picture is carbide and aluminum The interface pattern between grains is observed.

또한 계면 내부에서 나노사이즈의 미량의 알루미늄카바이드가 생성되어 있음이 확인되었는데, 이는 알루미늄과 CNT가 접촉하고 반응하여 생성된 결과로 판단된다. 일반적으로 알루미늄 입자는 상온에서도 알루미늄 산화막이 형성되고 이러한 이유로 인해서 순수 금속성분의 알루미늄은 CNT와 접촉하는 것이 불가능하다.In addition, it was confirmed that a small amount of nano-sized aluminum carbide is produced inside the interface, which is considered to be the result of the aluminum and CNT contact and reaction. In general, aluminum particles form an aluminum oxide film even at room temperature, and for this reason, pure metal aluminum cannot be contacted with CNTs.

그러나 도 3의 사진에서 알 수 있듯이, 스파크 플라즈마 소결 공정시 알루미늄입자 표면에 존재하는 알루미늄산화물층이 고온의 스파크 플라즈마에 의해서 부분적으로 파괴가 일어났고 이때 국부적으로 순수 알루미늄이 극미량 용융되어 흘러서 계면 내부로 침투되어 계면 내부에 존재하는 CNT와 접촉하여 반응을 일으켜 미량의 나노사이즈의 알루미늄카바이드를 생성한 것으로 판단된다. However, as can be seen in the photograph of FIG. 3, during the spark plasma sintering process, the aluminum oxide layer present on the surface of the aluminum particles was partially destroyed by the high temperature spark plasma, and at this time, a very small amount of pure aluminum melted and flowed into the interface. It is believed that a small amount of nano-sized aluminum carbide was generated by infiltration and contact with CNT present in the interface.

또한 본 실험에서 적용된 소결온도가 알루미늄의 융점보다 낮았지만 국부적으로 알루미늄의 액상이 생성된 것은 스파크 플라즈마 소결시는 소결온도가 일반적인 알루미늄융점보다 낮은 온도영역에서도 저항발열과 스파크 플라즈마에 의한 국부적 용융현상에 기인한 것으로 판단된다.In addition, although the sintering temperature applied in this experiment was lower than the melting point of aluminum, the liquid phase of aluminum was locally produced due to the resistance heating and the local melting phenomenon by the spark plasma even in the temperature range where the sintering temperature was lower than the general aluminum melting point. I think it was.

즉, 위와 같은 복합적인 이유로 인해서 제조된 소결체의 약 200nm 크기의 계면 내부에는 CNT, 카본블랙, 미량의 나노사이즈의 알루미늄카바이드 등이 포함되어 있다는 것을 알 수 있다. That is, it can be seen that the inside of the interface of about 200nm size of the manufactured sintered body for the above complex reasons includes CNT, carbon black, trace amount of nano-size aluminum carbide, and the like.

또한 일반적으로 알루미늄카바이드는 취성이 강하여 재료의 기계적 물성을 저하시킬 수 있는 요인으로 작용을 할 수 있지만 본 발명에 사용된 Al-CNT의 시스템에서는 오히려 알루미늄카바이드를 통한 화학적 결합이 생성되어 Al-CNT의 계면접착력을 증가시킬 것으로 판단된다. 또한 생성된 알루미늄카바이드는 미량의 나노사이즈 수준이므로 알루미늄카바이드의 특성인 취성은 재질적 특성에 별다른 영향을 미치지 못할 것으로 판단된다.In addition, aluminum carbide is generally brittle and may act as a factor that may lower the mechanical properties of the material, but in the system of Al-CNT used in the present invention, rather, chemical bonds are formed through aluminum carbide, It is expected to increase the interfacial adhesion. In addition, since the produced aluminum carbide is a trace level of nano-size, the brittle characteristic of aluminum carbide is not likely to affect the material properties.

도 4의 (a)와 (b)에서 소결체를 압출한 후의 미세조직을 보면 압출 방향으로 알루미늄기지와 CNT가 배향되어 있는 것을 알 수 있고, 압출방향의 수직방향으로 약 1마이크로미터의 크기로 등간격을 나타내고 있다. 이러한 등방향성의 미세조직은 무질서한 조직에 비해서 길이방향으로 강도와 전도성이 우수해지는 효과가 있다.The microstructure after extruding the sintered body in FIGS. 4A and 4B shows that the aluminum base and the CNT are oriented in the extrusion direction, and the size of about 1 micrometer in the vertical direction of the extrusion direction. The interval is shown. Such isotropic microstructure has an effect of excellent strength and conductivity in the longitudinal direction compared to disordered tissue.

특히 이러한 미세조직은 압출비의 조절에 의해서 입자크기를 더욱 더 조밀하고 조대하게 제어를 할 수 있어 제품의 용도에 따라 조절이 가능하다는 것을 예측할 수 있다.In particular, such a microstructure can be expected to be controlled according to the use of the product can be controlled more compactly and coarsely by controlling the extrusion ratio.

도 5에 도시된 바와 같이 CNT의 결함을 확인하기 위해서 라만분석을 실시하였다. 원료 CNT는 천연고무제거를 위해서 행한 열처리, 그리고 벌크화와 계면제어를 위한 소결과 최종제품을 만들기 위한 압출공정 후에도 결함율의 변화는 거의 없다는 것을 알 수 있다. 즉, 본 발명에 따른 단계별 공정에서는 CNT에 결함을 형성시키지 않고 건전하게 Al-CNT 복합 선재를 제조할 수 있다는 것을 알 수 있다.As shown in FIG. 5, Raman analysis was performed to identify defects in the CNTs. The raw material CNT shows little change in defect rate even after heat treatment for natural rubber removal, sintering for bulking and interfacial control, and extrusion process for final product. That is, in the step-by-step process according to the present invention it can be seen that the Al-CNT composite wire can be produced soundly without forming a defect in the CNT.

도 6에서 확인되는 바와 같이 열간압출에 의해 제조된 압출 선재는 순수 Al에 비해서 인장강도는 약 400% 증가하였고, 연신율은 알루미늄과 동일하거나 40% 줄어들었지만 조직은 완전 치밀화되었다. 또한 CNT의 함량 비율의 조정에 따라 순수 알루미늄대비 30%까지 중량을 경량화되었다.As shown in FIG. 6, the extruded wire rod manufactured by hot extrusion showed that the tensile strength increased by about 400% compared to pure Al, and the elongation was the same as or decreased by 40%, but the structure was completely densified. In addition, the weight was reduced by 30% compared to pure aluminum by adjusting the content ratio of CNT.

도 7의 압출된 제품의 내부 미세조직을 보면, 나노크기의 알루미늄카바이드가 계면과 알루미늄기지에 분포되어 있는 것을 볼 수 있는데, 이는 앞서 설명한 스파크 플라즈마 소결시에 생성된 것으로, 이러한 알루미늄카바이드를 통해서 알루미늄기지와 계면 내부에 있는 CNT가 효과적으로 결합이 이루어진 것으로 보여진다. Looking at the internal microstructure of the extruded product of Figure 7, it can be seen that the nano-sized aluminum carbide is distributed at the interface and the aluminum base, which is generated during the spark plasma sintering described above, the aluminum through the aluminum carbide The CNTs inside the matrix and the interface appear to be effectively bound.

또한 이러한 계면은 외부로부터 생성된 응력이 알루미늄기지에 가해졌을 때, 전파되어오는 응력이 알루미늄카바이드를 통해서 효과적으로 강화재인 CNT에 전달될 수 있어 결과적으로 재료의 파괴가 쉽게 일어나지 않게 하는 하중전달효과 역시 향상되는 것으로 예측할 수 있다.In addition, this interface also improves the load transfer effect when the stress generated from the outside is applied to the aluminum base, and the propagating stress can be effectively transferred to the CNT, which is a reinforcing material, through the aluminum carbide. Can be predicted.

도 8에서는 알루미늄에 CNT가 파단된 형태의 브릿지(도 8의 (b) 흰색 화살표)가 발견되는데, 이는 응력이 매우 효과적으로 전달되어 CNT가 강화재로서 역할을 충실히 수행하고 있음을 보여주는 것이라 할 수 있다. In FIG. 8, a bridge in which CNT is broken in aluminum is found ((b) white arrow of FIG. 8), which indicates that CNT plays a role as a reinforcing material because stress is transmitted very effectively.

이상에서 설명한 바와 같이 Al-CNT의 효과적인 분산을 위해서 천연고무를 함께 믹싱하였고 이후 열처리공정을 통해서 천연고무를 완전 제거하여 CNT가 균일하게 분산된 Al-CNT 혼합분말을 제조할 수 있다.As described above, in order to effectively disperse Al-CNT, natural rubber is mixed together, and then natural rubber is completely removed by heat treatment to prepare Al-CNT mixed powder in which CNTs are uniformly dispersed.

제조된 혼합분말을 스파크 플라즈마 소결하여 취급이 용이한 벌크상을 제조하고, 분말의 형상보다 표면적이 줄어들어 산화에 대한 문제점을 제거하였다 (일반적으로 입자가 작으면 작을수록 표면적이 커서 산화가 잘 일어남). The prepared powder was sintered by spark plasma to prepare an easy-to-handle bulk phase, and the surface area was reduced than that of the powder, thereby eliminating the problem of oxidation (in general, the smaller the particles, the larger the surface area and the better oxidation). .

특히 나노크기의 미량의 알루미늄카바이드는 Al-CNT를 화학적으로 결합시키는 매개체의 역할을 하여 일반적으로 문제점으로 지적되고 있는 Al-CNT의 접합계면 문제를 해결하는데 큰 기여를 하였다.In particular, nano-sized traces of aluminum carbide contributed to solving Al-CNT junction interface problem, which is generally pointed out as a mediator for chemically bonding Al-CNT.

소결체는 열간압출을 통해 소결시 형성된 미세조직 그대로 압출방향으로 인장된 미세조직(수직방향으로는 1마이크로미터 크기)을 지니고 순수 알루미늄 대비 인장강도는 약 400% 증가하고, 연신율은 거의 같은 Al-CNT 복합 선재를 제조할 수 있다.The sintered body has a microstructure formed during sintering through hot extrusion and has a microstructure stretched in the extrusion direction (1 micrometer in the vertical direction), and the tensile strength is increased by about 400% compared to pure aluminum, and the elongation is almost the same. Composite wire rods can be produced.

이상에서는 설명한 본 발명의 실시예는 본 발명의 이해를 돕기 위한 것일 뿐 당해 기술 분야에 통상의 지식을 가진 자라면 본 발명을 통해 다양한 변경이나 응용예를 실시할 수 있을 것이나, 이는 본 발명자가 의도하는 진정한 의미의 기술적 사상과 이하에서 정의하는 특허청구범위의 범주에 포함된다는 것을 미리 밝혀주는 바이다.The embodiments of the present invention described above are intended to help the understanding of the present invention, but those of ordinary skill in the art will be able to implement various changes or applications through the present invention, which is intended by the present inventors. It is to be clear that the scope of the claims is defined in the true spirit and the scope of the claims defined below.

100: 분산 혼합물 제조단계
200: 알루미늄 및 CNT 혼합분말 제조단계
300: 소결체 제조단계
400: Al-CNT복합 선재 제조단계
100: dispersing mixture manufacturing step
200: aluminum and CNT mixed powder manufacturing step
300: sintered body manufacturing step
400: Al-CNT composite wire manufacturing step

Claims (6)

(ⅰ) CNT를 균일하게 알루미늄입자에 분산시키기 위해 CNT 0.2~30중량%와, 알루미늄분말 99.8~70중량%를 혼합한 분말 혼합물과 분산유도제를 1:1 체적비율로 혼합한 뒤 혼합물을 초음파로 10~15분동안 조사하여 분산 혼합물을 제조하는 단계(100)와;
(ⅱ) 상기 분산 혼합물에 포함된 분산유도제를 제거하기 위해 관상로에서 불활성 분위기로 400~500℃에서 1~2시간 열처리하여 상기 분산유도제 성분을 완전히 제거하여 CNT 및 알루미늄 혼합분말을 제조하는 단계(200)와;
(ⅲ) 얻어진 알루미늄 및 CNT 혼합분말을 스파크 플라즈마 소결기를 이용하여 벌크상의 소결체를 제조하는 단계(300) 및:
(ⅳ) 상기 소결체를 열간압출기로 압출하여 알루미늄-카본나노튜브 복합 선재를 제조하는 단계(400)로 제조되는 것을 특징으로 하는 알루미늄과 카본나노튜브를 이용한 전력용 복합 선재 제조방법.
(Iii) To disperse the CNTs uniformly in the aluminum particles, mix the powder mixture containing 0.2-30% by weight of CNT, 99.8-70% by weight of aluminum powder and the dispersant in a 1: 1 volume ratio, and then mix the mixture with ultrasonic waves. Irradiating for 10-15 minutes to produce a dispersion mixture (100);
(Ii) preparing CNT and aluminum mixed powder by completely removing the dispersion inducing agent component by heat treatment at 400 to 500 ° C. for 1 to 2 hours in an inert atmosphere in a tubular furnace to remove the dispersion inducing agent contained in the dispersion mixture ( 200);
(Iii) preparing a bulk sintered compact from the obtained aluminum and CNT mixed powder using a spark plasma sintering apparatus (300);
(Iii) a step of extruding the sintered body with a hot extruder to produce an aluminum-carbon nanotube composite wire (400), the method of manufacturing a composite wire for power using aluminum and carbon nanotubes.
제1항에 있어서,
상기 분산유도제는 천연고무액, 페놀, 폴리머 또는 PP, PE, PVC 중에서 선택된 일종과, 알코올 혹은 솔벤트 중에서 선택된 일종을 1:1체적비로 혼합하여 제조한 것을 특징으로 하는 알루미늄과 카본나노튜브를 이용한 전력용 복합 선재 제조방법.
The method of claim 1,
The dispersion induction agent is a natural rubber solution, phenol, polymer, or one selected from PP, PE, PVC, and one selected from alcohol or solvent by mixing in a volumetric ratio, characterized in that the power using aluminum and carbon nanotubes Composite wire rod manufacturing method
제1항에 있어서,
상기 불활성 분위기는 아르곤가스 혹은 질소가스 혹은 진공조건 중 어느 하나를 선택하여 분위기를 조성하는 것으로 특징으로 하는 알루미늄과 카본나노튜브를 이용한 전력용 복합 선재 제조방법.
The method of claim 1,
The method for producing a composite wire rod for power using aluminum and carbon nanotubes, wherein the inert atmosphere is selected from argon gas, nitrogen gas, or vacuum conditions to create an atmosphere.
제1항에 있어서,
상기 소결기는 온도 280~650℃, 압력 50MPa, 홀딩시간 5~60분의 운전조건으로 운전하는 것을 특징으로 하는 알루미늄과 카본나노튜브를 이용한 전력용 복합 선재 제조방법.
The method of claim 1,
The sintering machine is a composite wire rod manufacturing method for power using aluminum and carbon nanotubes, characterized in that the operating conditions of operating temperature of 280 ~ 650 ℃, pressure 50MPa, holding time 5 ~ 60 minutes.
제1항에 있어서,
상기 열간압출기의 운전조건은 400~600℃, 압출비 10~40에서 운전하는 것을 특징으로 하는 알루미늄과 카본나노튜브를 이용한 전력용 복합 선재 제조방법.
The method of claim 1,
The operating conditions of the hot extruder is 400 ~ 600 ℃, an extrusion ratio of 10 to 40 characterized in that for operating the composite wire rod manufacturing method for power using aluminum and carbon nanotubes.
제1항에 따라 제조된 제품.A product made according to claim 1.
KR1020110061300A 2011-06-23 2011-06-23 Method for processing carbon nanotube-aluminum composite wire for electrical cable application and products produced thereby KR20130000647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110061300A KR20130000647A (en) 2011-06-23 2011-06-23 Method for processing carbon nanotube-aluminum composite wire for electrical cable application and products produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110061300A KR20130000647A (en) 2011-06-23 2011-06-23 Method for processing carbon nanotube-aluminum composite wire for electrical cable application and products produced thereby

Publications (1)

Publication Number Publication Date
KR20130000647A true KR20130000647A (en) 2013-01-03

Family

ID=47834083

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110061300A KR20130000647A (en) 2011-06-23 2011-06-23 Method for processing carbon nanotube-aluminum composite wire for electrical cable application and products produced thereby

Country Status (1)

Country Link
KR (1) KR20130000647A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101301624B1 (en) * 2013-07-05 2013-08-29 (주) 동양에이.케이코리아 Manufacturing method of including carbon aluminium or aluminium alloy extrusion and using included carbon aluminium or aluminium alloy extrusion
WO2014129695A1 (en) * 2013-02-19 2014-08-28 주식회사 대유신소재 Method for manufacturing composite of aluminum-fine carbon material with high heat-insulation and high strength and composite of aluminum-fine carbon material manufactured thereby
KR101879595B1 (en) * 2017-08-30 2018-07-18 국민대학교산학협력단 Complex material wire for transmission line and Manufacturing method thereof
KR101879594B1 (en) * 2016-12-20 2018-07-18 국민대학교산학협력단 Complex material wire for transmission line and Manufacturing method thereof
CN110129606A (en) * 2019-05-23 2019-08-16 昆明理工大学 A kind of preparation method of orientational alignment carbon nano-tube enhancing aluminum-base composite wire rod
WO2020196982A1 (en) * 2019-03-22 2020-10-01 부경대학교 산학협력단 Method for manufacturing aluminum-based clad frame member, and aluminum-based clad frame member manufactured using same
CN112823214A (en) * 2018-11-21 2021-05-18 昭和电工株式会社 Aluminum-carbon particle composite material and method for producing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129695A1 (en) * 2013-02-19 2014-08-28 주식회사 대유신소재 Method for manufacturing composite of aluminum-fine carbon material with high heat-insulation and high strength and composite of aluminum-fine carbon material manufactured thereby
KR101301624B1 (en) * 2013-07-05 2013-08-29 (주) 동양에이.케이코리아 Manufacturing method of including carbon aluminium or aluminium alloy extrusion and using included carbon aluminium or aluminium alloy extrusion
KR101879594B1 (en) * 2016-12-20 2018-07-18 국민대학교산학협력단 Complex material wire for transmission line and Manufacturing method thereof
KR101879595B1 (en) * 2017-08-30 2018-07-18 국민대학교산학협력단 Complex material wire for transmission line and Manufacturing method thereof
CN112823214A (en) * 2018-11-21 2021-05-18 昭和电工株式会社 Aluminum-carbon particle composite material and method for producing same
WO2020196982A1 (en) * 2019-03-22 2020-10-01 부경대학교 산학협력단 Method for manufacturing aluminum-based clad frame member, and aluminum-based clad frame member manufactured using same
KR20200112503A (en) * 2019-03-22 2020-10-05 부경대학교 산학협력단 Method for manufacturing an aluminum alloys clad section member, and an aluminum alloys clad section member manufactured by using the same
CN110129606A (en) * 2019-05-23 2019-08-16 昆明理工大学 A kind of preparation method of orientational alignment carbon nano-tube enhancing aluminum-base composite wire rod
CN110129606B (en) * 2019-05-23 2021-02-09 昆明理工大学 Preparation method of directionally arranged carbon nanotube reinforced aluminum-based composite wire

Similar Documents

Publication Publication Date Title
Zhou et al. Interfacial reaction induced efficient load transfer in few-layer graphene reinforced Al matrix composites for high-performance conductor
KR20130000647A (en) Method for processing carbon nanotube-aluminum composite wire for electrical cable application and products produced thereby
Azarniya et al. Physicomechanical properties of spark plasma sintered carbon nanotube-reinforced metal matrix nanocomposites
Kwon et al. Investigation of carbon nanotube reinforced aluminum matrix composite materials
JP4245514B2 (en) Carbon fiber composite material and method for producing the same, method for producing carbon fiber composite metal material, method for producing carbon fiber composite non-metal material
CN104619637B (en) Solid carbon product comprising CNT with and forming method thereof
US10633722B2 (en) Multi-phase covetic and methods of synthesis thereof
JP2007331005A (en) Method of manufacturing composite metal material and method of manufacturing composite metal molding
Gu et al. WC–Co particulate reinforcing Cu matrix composites produced by direct laser sintering
WO2015186423A1 (en) Aluminum-based composite material and manufacturing method therefor
KR101722582B1 (en) Method for processing Composite Wire for Electrical Cable using Carbon NanoTube - Aluminum Composite Powder
TW200925297A (en) Method of making magnesium matrix nanotube composite material
Zhang et al. Microstructure and properties of ultrafine-grained W-25 wt.% Cu composites doped with CNTs
CN107794396A (en) A kind of preparation method of Cu graphenes heteromers reinforced aluminum matrix composites
CN112359244A (en) High-strength high-conductivity graphene copper composite wire and preparation method thereof
JP2017082311A (en) Aluminum matrix composite material and method for producing the same
Nittala et al. Simultaneously improved electrical and mechanical performance of hot-extruded bulk scale aluminum-graphene wires
JP2011195864A (en) Titanium based composite material, and method for producing the same
CN113373355A (en) Multi-scale particle modified 7000 series alloy wire and preparation method thereof
Kwon et al. Effect of spark plasma sintering in fabricating carbon nanotube reinforced aluminum matrix composite materials
KR20230107316A (en) Aluminum-carbon metal matrix composite for busbar
Li et al. Particle morphology dependence of the mechanical and electrical properties in the in-situ graphene reinforced Cu matrix composites
Shaari et al. Thermal Conductivity of Copper Matrix Composites Reinforced with Multi-wall Carbon Nanotubes
Muhsan et al. Development of nanocomposites heat sink (MWCNTs/Cu) using powder injection moulding for electronic applications
KR101082388B1 (en) Method for manufacturing chassis and chassis manufactured by the method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application