JP2011195864A - Titanium based composite material, and method for producing the same - Google Patents

Titanium based composite material, and method for producing the same Download PDF

Info

Publication number
JP2011195864A
JP2011195864A JP2010061995A JP2010061995A JP2011195864A JP 2011195864 A JP2011195864 A JP 2011195864A JP 2010061995 A JP2010061995 A JP 2010061995A JP 2010061995 A JP2010061995 A JP 2010061995A JP 2011195864 A JP2011195864 A JP 2011195864A
Authority
JP
Japan
Prior art keywords
titanium
composite material
oxide particles
titanium oxide
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010061995A
Other languages
Japanese (ja)
Other versions
JP5709239B2 (en
Inventor
Katsuyoshi Kondo
勝義 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Technical Center Co Ltd
Original Assignee
Inoac Technical Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Technical Center Co Ltd filed Critical Inoac Technical Center Co Ltd
Priority to JP2010061995A priority Critical patent/JP5709239B2/en
Publication of JP2011195864A publication Critical patent/JP2011195864A/en
Application granted granted Critical
Publication of JP5709239B2 publication Critical patent/JP5709239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a titanium based composite material which exhibits high strength without remarkably reducing its high ductility without adding expensive elements and substances.SOLUTION: The titanium based composite material includes: a base of pure titanium or a titanium alloy; and titanium oxide particles dispersed into the base. The maximum particle diameter of the titanium oxide particles is ≤10 μm. The content of the titanium oxide particles is 0.3 to 1.8% based on a weight standard.

Description

この発明は、チタン基複合材料およびその製造方法に関するものである。   The present invention relates to a titanium-based composite material and a method for producing the same.

チタンは、鋼の約1/2の低比重を有する軽量素材であり、また耐腐食性や耐熱性に優れるといった特徴を有することから、軽量化ニーズが強い航空機や鉄道車両、二輪車や自動車などの部品や、家電製品や建築用部材に利用されている。また優れた耐腐食性の観点から、医療用素材としても利用されている。   Titanium is a lightweight material with a specific gravity about half that of steel, and it has the characteristics of excellent corrosion resistance and heat resistance, so it has strong needs for weight reduction such as aircraft, railway vehicles, motorcycles and automobiles. It is used for parts, home appliances and building materials. It is also used as a medical material from the viewpoint of excellent corrosion resistance.

しかしながら、チタンは、鉄鋼材料やアルミニウム合金と比較して、素材コストが高いために利用対象が限定されている。特に、チタン合金は、1000MPaを超える高い引張強さを有するものの、延性(破断伸び)が十分ではなく、また常温あるいは低温域での塑性加工性に乏しいといった課題がある。他方、純チタンは、常温にて25%を超える高い破断伸びを有しており、また低温域での塑性加工性にも優れるものの、引張強さが400〜600MPa程度と低い点が課題である。   However, since titanium has a higher material cost compared to steel materials and aluminum alloys, its application target is limited. In particular, a titanium alloy has a high tensile strength exceeding 1000 MPa, but has a problem that ductility (breaking elongation) is not sufficient and plastic workability is poor at room temperature or low temperature. On the other hand, pure titanium has a high elongation at break exceeding 25% at room temperature and is excellent in plastic workability in a low temperature range, but has a low tensile strength of about 400 to 600 MPa. .

高強度および高延性を有するチタン材料に関する従来技術について以下に記載する。いずれの従来技術においても、適正な元素を添加することでチタン材料の強度向上を図ることが基本的な考え方である。多くの場合、チタン素地中に酸素を固溶させることでチタン材料の高強度化を実現することが提案されている。   Prior art relating to titanium materials having high strength and high ductility will be described below. In any prior art, the basic idea is to improve the strength of the titanium material by adding an appropriate element. In many cases, it has been proposed to increase the strength of a titanium material by dissolving oxygen in the titanium substrate.

例えば、特開2002−285268号公報(チタン合金およびその製造方法)では、1.5〜6at%の酸素(O)および/または窒素(N)を含むことによりチタン材料の高強度化を図ることを開示している。酸素は出発原料粉末である純チタン粉末中に事前に含まれている。   For example, in Japanese Patent Laid-Open No. 2002-285268 (titanium alloy and manufacturing method thereof), the strength of the titanium material is increased by including 1.5 to 6 at% oxygen (O) and / or nitrogen (N). Is disclosed. Oxygen is previously contained in pure titanium powder, which is a starting material powder.

同様に、特許第3426605号公報(高強度・高延性チタン合金およびその製造方法)においても、酸素、窒素、鉄(Fe)を強化元素として含むことを開示しており、ここでも酸素がチタン素地中への固溶元素として強化作用を有している。   Similarly, Japanese Patent No. 3426605 (high strength / high ductility titanium alloy and method for producing the same) discloses that oxygen, nitrogen and iron (Fe) are contained as strengthening elements, and here again oxygen is a titanium substrate. It has a strengthening action as a solid solution element.

特開2009−127083号公報(チタン合金の製造方法)においては、純チタンをベースに窒素あるいは酸素の含有率を高めることで、比較的安価なスポンジチタンを原料としたチタン合金の強度を向上させる製法を提案している。ここでは、微細な酸化チタン粒子と純チタン(スポンジチタン)を混合して成形固化した後、真空アーク溶解することで、酸化チタンを分解してそこに含まれる酸素を純チタンに固溶させる方法を開示している。つまり、本製法によれば、添加する酸化チタン粒子は、アーク溶解の過程で純チタン中に溶解するため、凝固後のチタンインゴット中には酸化チタン粒子の状態として存在しない。   In JP 2009-127083 (a method for producing a titanium alloy), the strength of a titanium alloy using a relatively inexpensive sponge titanium as a raw material is improved by increasing the content of nitrogen or oxygen based on pure titanium. A manufacturing method is proposed. Here, fine titanium oxide particles and pure titanium (sponge titanium) are mixed and molded and solidified, and then vacuum arc melting is performed to decompose titanium oxide and dissolve oxygen contained therein in pure titanium. Is disclosed. That is, according to this manufacturing method, the titanium oxide particles to be added are dissolved in pure titanium in the course of arc melting, and therefore do not exist as titanium oxide particles in the solidified titanium ingot.

US7311873号公報(Process of Direct Powder Rolling of Blended Titanium Alloys, Titanium Matrix Composites, and Titanium Aluminides)においては、少なくとも1種類の元素を含むチタン合金粉末に、炭化物、窒化物、酸化物などの粒子を混合し、冷間圧延加工後に固相状態で焼結することでチタン基複合材料を作製する方法を提案している。ここでは、溶解工程を経由しないため、上記の添加粒子も溶解あるいは分解することなく、粒子の状態で存在する。   In US7311873 (Process of Direct Powder Rolling of Blended Titanium Alloys, Titanium Matrix Composites, and Titanium Aluminides), titanium alloy powder containing at least one element is mixed with particles of carbide, nitride, oxide or the like. A method for producing a titanium-based composite material by sintering in a solid state after cold rolling is proposed. Here, since it does not go through the dissolving step, the above-mentioned added particles are also present in the state of particles without being dissolved or decomposed.

特開2002−285268号公報JP 2002-285268 A 特許第3426605号公報Japanese Patent No. 3426605 特開2009−127083号公報JP 2009-127083 A US7311873号公報US7311873 Publication

チタンに対する高強度と高延性の両立と素材コストの低減に関する要求は極めて強いことから、これまでに様々な検討が行われてきた。特に、低コスト化の観点から、バナジウム、スカンジウム、ニオブなどの高価な元素ではなく、酸素といった比較的安価な元素による高強度化が従来技術として多く検討されてきた。これまでに開示されている先行技術において、酸素はチタン素地中に固溶することで強化作用を発現している。その結果、固溶によるチタン中の酸素含有量が増加するにつれて、チタンの延性が顕著に低下するといった課題がある。   Since the demands for both high strength and high ductility for titanium and reduction of material costs are extremely strong, various studies have been conducted so far. In particular, from the viewpoint of cost reduction, many attempts have been made to increase the strength by using relatively inexpensive elements such as oxygen instead of expensive elements such as vanadium, scandium, and niobium. In the prior art disclosed so far, oxygen exhibits a strengthening action by being dissolved in a titanium substrate. As a result, there is a problem that the ductility of titanium is significantly reduced as the oxygen content in titanium due to solid solution increases.

本発明は上記の課題を解決するためになされたものであり、その目的は、高価な元素や物質を添加せずに、高い延性を著しく低下させることなく、高強度を発現するチタン基複合材料を提供することである。   The present invention has been made to solve the above-mentioned problems, and its purpose is to add a titanium element composite material that exhibits high strength without significantly reducing high ductility without adding expensive elements or substances. Is to provide.

この発明に従ったチタン基複合材料は、純チタンまたはチタン合金の素地と、この素地中に分散した酸化チタン粒子とを備える。酸化チタン粒子の最大粒子径は10μm以下である。また、複合材料全体に対する酸化チタン粒子の含有量は、重量基準で0.3%〜1.8%である。  A titanium-based composite material according to the present invention includes a pure titanium or titanium alloy substrate and titanium oxide particles dispersed in the substrate. The maximum particle diameter of the titanium oxide particles is 10 μm or less. Moreover, content of the titanium oxide particles with respect to the whole composite material is 0.3% to 1.8% on a weight basis.

一つの実施形態では、チタン基複合材料は、さらに、重量基準で0.1%〜1%の炭素を含む。この炭素は、好ましくは、炭化チタニウムとして存在する。   In one embodiment, the titanium matrix composite further comprises 0.1% to 1% carbon by weight. This carbon is preferably present as titanium carbide.

この発明に従ったチタン基複合材料の製造方法は、純チタンまたはチタン合金からなる原料粉末に、最大粒子径が10μm以下で、複合材料全体に対する含有量が重量基準で0.3%〜1.8%となるように用意された酸化チタン粒子を混合する工程と、混合粉末を固相焼結して焼結体を作製する工程と、焼結体に対して熱間塑性加工を施す工程とを備える。   In the method for producing a titanium-based composite material according to the present invention, the raw material powder made of pure titanium or a titanium alloy has a maximum particle size of 10 μm or less and a content based on the weight of the composite material of 0.3% to 1. A step of mixing titanium oxide particles prepared to be 8%, a step of producing a sintered body by solid-phase sintering the mixed powder, and a step of subjecting the sintered body to hot plastic working Is provided.

一つの実施形態では、混合工程は、炭素粒子を重量基準で0.1%〜1%混合することを含む。好ましくは、炭素粒子は、カーボンブラック、アセチレンブラック、カーボンナノチューブおよびグラフェンからなる群から選ばれた少なくとも1種である。固相焼結工程は、好ましくは、真空雰囲気またはアルゴンガス雰囲気において行う。   In one embodiment, the mixing step includes mixing carbon particles from 0.1% to 1% by weight. Preferably, the carbon particles are at least one selected from the group consisting of carbon black, acetylene black, carbon nanotube, and graphene. The solid phase sintering step is preferably performed in a vacuum atmosphere or an argon gas atmosphere.

上記の特徴的な構成の作用効果または技術的意義については、以下の項目で説明する。   The operational effects or technical significance of the above characteristic configuration will be described in the following items.

チタン基複合材料に対するX線回折(XRD)による構造解析結果を示す図であり、(a)は、実施例2の表3に記載したチタン材料のなかでCNT添加量が0.27%の本発明例の試料に対する結果を示し、(b)は、酸化チタン粒子ならびにCNTを含まない純チタン粉末のみを焼結・熱間押出加工して得られた素材に対する結果を示している。It is a figure which shows the structural-analysis result by X-ray diffraction (XRD) with respect to a titanium matrix composite material, (a) is a thing with 0.27% of CNT addition amount in the titanium material described in Table 3 of Example 2. The result with respect to the sample of an invention example is shown, (b) has shown the result with respect to the raw material obtained by sintering and hot-extruding only the pure titanium powder which does not contain a titanium oxide particle and CNT.

本件発明の発明者は、適正な粒子径を有する安価な酸化チタン(TiO)粒子をチタン粉末に混合し、この混合粉末を成形して焼結し、さらにこの焼結体に対して押出加工、鍛造加工、圧延加工といった熱間塑性加工を施すことにより、結晶組織の緻密化を促進して、高強度および高延性を有するチタン材料を創製した。この方法によれば、溶解工程を含まないので、出発原料として添加した酸化チタン粒子は、チタン材料中においても分解することなく、TiO粒子として存在する。つまり、本発明者が提案するチタン材料は、先行技術で開示されているような酸素の固溶による強化ではなく、微細な酸化チタン粒子の分散強化によって高強度および高延性の両特性を維持している。 The inventor of the present invention mixes inexpensive titanium oxide (TiO 2 ) particles having an appropriate particle size with titanium powder, molds and sinters the mixed powder, and further extrudes the sintered body. By applying hot plastic processing such as forging and rolling, the densification of the crystal structure was promoted, and a titanium material having high strength and high ductility was created. According to this method, since the dissolution step is not included, the titanium oxide particles added as a starting material exist as TiO 2 particles without being decomposed in the titanium material. In other words, the titanium material proposed by the present inventor maintains both high strength and high ductility by dispersion strengthening of fine titanium oxide particles, not by strengthening by solid solution of oxygen as disclosed in the prior art. ing.

その結果、安価ながらも強度特性が十分でない純チタン粉末をベースに用いた場合でも、適正な粒子径を有する酸化チタン粒子を混合して分散することで、従来のチタン合金と同等の高い強度を得ることができ、しかも十分な延性を維持することが可能となる。勿論、チタン合金粉末を用いた場合も同様に、適正量の酸化チタン粒子を混合し、成形・固相焼結および熱間塑性加工を施すことで、延性を大幅に低下させることなく、更に高い強度を発現することが可能となる。   As a result, even when pure titanium powder that is inexpensive but has insufficient strength characteristics is used as a base, mixing titanium oxide particles with an appropriate particle size and dispersing them enables high strength equivalent to that of conventional titanium alloys. Can be obtained, and sufficient ductility can be maintained. Of course, when titanium alloy powder is used as well, by mixing a proper amount of titanium oxide particles and performing molding / solid phase sintering and hot plastic working, the ductility is further lowered without significantly decreasing. It becomes possible to express strength.

固相焼結工程は、原料のチタン粉末の酸化を抑制するために、真空雰囲気あるいはアルゴンガス雰囲気に管理する必要がある。また熱間塑性加工として、従来の押出加工、鍛造加工や圧延加工を適用することで、酸化チタン粒子分散チタン粉末焼結体の緻密化が図れる。   The solid phase sintering process needs to be controlled in a vacuum atmosphere or an argon gas atmosphere in order to suppress oxidation of the raw material titanium powder. Further, by applying a conventional extrusion process, forging process or rolling process as the hot plastic processing, the titanium oxide particle-dispersed titanium powder sintered body can be densified.

チタン素地中に分散する酸化物粒子として、本発明者は酸化チタン(TiO)を選定したが、これには2つの理由がある。例えば、酸化鉄(FeO、Fe)のように酸化チタンに比べて標準生成自由エネルギー値(通常は負の値を有する)の絶対値が小さい場合には、焼結過程においてチタンによって酸化鉄が還元分解されて鉄(Fe)となり、酸化物としての強化作用が発現しない。他方、アルミナ(Al)や酸化マグネシウム(MgO)、酸化カルシウム(CaO)のように酸化チタンに比べて標準生成自由エネルギー値(通常は負の値を有する)の絶対値が大きい場合、上記のような還元分解は生じないが、本発明者は、チタン素地との接触界面における整合性が良好でないことを実験的に確認しており、その結果、これらの酸化物粒子を添加することでチタン材の強度や延性の低下を招く。 The present inventor has selected titanium oxide (TiO 2 ) as the oxide particles dispersed in the titanium substrate. There are two reasons for this. For example, when the absolute value of the standard free energy of formation (usually having a negative value) is smaller than that of titanium oxide, such as iron oxide (FeO, Fe 2 O 3 ), it is oxidized by titanium during the sintering process. Iron is reduced and decomposed to iron (Fe), and the strengthening action as an oxide does not appear. On the other hand, when the absolute value of the standard free energy of formation (usually having a negative value) is larger than that of titanium oxide, such as alumina (Al 2 O 3 ), magnesium oxide (MgO), calcium oxide (CaO), Although the above reductive decomposition does not occur, the present inventor has experimentally confirmed that the consistency at the contact interface with the titanium substrate is not good, and as a result, adding these oxide particles This causes a decrease in the strength and ductility of the titanium material.

さらに、酸化チタン粒子の粒子径に関しても、適正な範囲があることを本発明者は見出した。具体的には、粒子径の最大値は10μm以下であり、より好ましくは、3μm以下である。酸化チタンの粒子径が10μmを越えると、チタン中に分散した際に材料欠陥となり、その部分に応力が集中することで強度と延性の低下が生じる。最小値に関しては、制限はないが、0.5μm程度を下回るような微細な酸化チタン粒子を用いる場合には、凝集を解消するためにチタン粉末との混合処理工程において、長時間混合処理や2段階の混合処理といった工夫が必要となる。このような混合処理を行うことで酸化チタン粒子の凝集現象は解消され、チタン素地中に均一に分散して強度向上に寄与する。   Furthermore, the present inventors have found that there is an appropriate range for the particle diameter of the titanium oxide particles. Specifically, the maximum value of the particle diameter is 10 μm or less, and more preferably 3 μm or less. When the particle diameter of titanium oxide exceeds 10 μm, it becomes a material defect when dispersed in titanium, and strength and ductility are reduced due to concentration of stress in the portion. The minimum value is not limited, but in the case of using fine titanium oxide particles smaller than about 0.5 μm, in order to eliminate aggregation, a long-time mixing process or 2 It is necessary to devise a mixing process in stages. By performing such a mixing treatment, the aggregation phenomenon of the titanium oxide particles is eliminated, and the titanium oxide particles are uniformly dispersed in the titanium base material, thereby contributing to the strength improvement.

酸化チタン粒子の添加量に関しては、混合粉末全体に対して重量基準で0.3%〜1.8%が適正範囲である。1.8%を超えると、チタン材料の強度は更に増大するが、延性が著しく低下するといった問題が生じる。他方、0.3%を下回る場合、強度向上に対して十分な効果が得られない。   Regarding the addition amount of titanium oxide particles, the appropriate range is 0.3% to 1.8% on a weight basis with respect to the entire mixed powder. If it exceeds 1.8%, the strength of the titanium material is further increased, but the problem is that the ductility is significantly reduced. On the other hand, when it is less than 0.3%, a sufficient effect for improving the strength cannot be obtained.

なお、上記の先行技術であるUS7311873号公報(Process of Direct Powder Rolling of Blended Titanium Alloys, Titanium Matrix Composites, and Titanium Aluminides)においては、分散粒子の一つとして酸化チタンを挙げているが、その添加量や粒子径がチタン材料の強度や延性に対して及ぼす影響については一切、記述されていない。   In addition, in the above-mentioned prior art US7311873 (Process of Direct Powder Rolling of Blended Titanium Alloys, Titanium Matrix Composites, and Titanium Aluminides), titanium oxide is cited as one of the dispersed particles. No mention is made of the influence of the particle size on the strength and ductility of the titanium material.

さらに、カーボンブラック、アセチレンブラック、カーボンナノチューブ、グラフェンなどの炭素粒子をチタン粉末および酸化チタン粒子と共に混合し、成形・固相焼結することで、微細な炭化チタニウム(TiC)を合成し、その分散強化によってチタン材料の強度は更に増加することができる。ただし、上記の炭素粒子の添加量は、重量基準で0.1%〜1%であることが望ましい。1%を超えると、TiC粒子の生成量が多くなるために、チタン材料の延性が低下すると共に、硬質なTiC粒子が多量に存在することでチタン素材の切削性が著しく低下する。一方、0.1%未満の添加では、顕著な強度向上の効果が得られない。なお、経済性の観点からは、カーボンブラックやアセチレンブラックを利用することが好ましい。他方、カーボンナノチューブやグラフェンを使用することで、これらの優れた力学特性をチタン材料に付与することができるため、カーボンブラックやアセチレンブラックを用いた場合よりも優れた強度特性を得ることができる。また、上記の炭素粒子を2種類以上、組み合わせて使用することも可能であり、その場合においても同様にTiC粒子を合成・分散することによりチタン材の強度が向上する。   In addition, carbon particles such as carbon black, acetylene black, carbon nanotubes, and graphene are mixed with titanium powder and titanium oxide particles, and then molded and solid-phase sintered to synthesize fine titanium carbide (TiC) and disperse it. By strengthening, the strength of the titanium material can be further increased. However, the amount of carbon particles added is desirably 0.1% to 1% on a weight basis. If it exceeds 1%, the amount of TiC particles generated increases, so that the ductility of the titanium material decreases, and the machinability of the titanium material significantly decreases due to the presence of a large amount of hard TiC particles. On the other hand, if the addition is less than 0.1%, a significant strength improvement effect cannot be obtained. From the viewpoint of economy, it is preferable to use carbon black or acetylene black. On the other hand, by using carbon nanotubes or graphene, these excellent mechanical properties can be imparted to the titanium material, so that strength properties superior to those using carbon black or acetylene black can be obtained. Moreover, it is also possible to use two or more types of the above carbon particles in combination, and even in that case, the strength of the titanium material is improved by synthesizing and dispersing the TiC particles.

ベース用純チタン原料粉末(平均粒子径87μm、純度;98.3%)と、分散粒子として2種類の酸化チタン粒子A(平均粒子径D50=0.45μm、最大粒子径Dmax=3.78μm)と酸化チタン粒子B(D50=18.23μm、最大粒子径Dmax=31.94μm)とを準備した。混合粉末全体に対して重量基準で酸化チタン粒子を0.2%〜2%添加した後、混合粉末をアルミナ製ポットにアルミナボールと共に投入し、真空脱気後にアルゴンガス置換を行い、回転式ボールミル装置を用いて回転数;90rpm、処理時間;1時間の混合処理を施した。   Pure titanium raw material powder for base (average particle diameter 87 μm, purity: 98.3%) and two types of titanium oxide particles A (average particle diameter D50 = 0.45 μm, maximum particle diameter Dmax = 3.78 μm) as dispersed particles And titanium oxide particles B (D50 = 18.23 μm, maximum particle diameter Dmax = 31.94 μm) were prepared. After adding 0.2% to 2% of titanium oxide particles based on the weight of the entire mixed powder, the mixed powder is put into an alumina pot together with alumina balls, and after vacuum degassing, argon gas replacement is performed. Using the apparatus, a mixing process was performed at a rotational speed of 90 rpm and a processing time of 1 hour.

上記の混合処理後の各混合粉末について、放電プラズマ焼結(SPS)装置を用いて、真空雰囲気中で温度;800℃、加圧力;30MPa、保持時間;30分の焼結処理を行い、相対密度が93〜96%の焼結体(直径;42mm、全長;40mm)を作製した。その後、赤外線ゴールドイメージ炉を用いて各焼結体に対してアルゴンガス雰囲気中で1000℃×10分間の加熱処理を施した後、直ちに熱間押出加工を施して直径7mmの押出棒材(押出比;36)を作製した。   About each mixed powder after said mixing process, using a discharge plasma sintering (SPS) apparatus, in a vacuum atmosphere, temperature; 800 degreeC, applied pressure; 30MPa, holding time; A sintered body having a density of 93 to 96% (diameter: 42 mm, full length: 40 mm) was produced. Thereafter, each sintered body was subjected to a heat treatment at 1000 ° C. for 10 minutes in an argon gas atmosphere using an infrared gold image furnace, and then immediately subjected to hot extrusion to an extruded bar having a diameter of 7 mm (extrusion) A ratio: 36) was produced.

上記のようにして得られた押出材から、引張試験片(平行部の直径;3.5mm、長さ;15mm)を機械加工により採取し、常温において引張試験(ひずみ速度;5×10−4/s)を行い、引張強さ、引張耐力および破断伸びをそれぞれ測定した。それらの結果を表1および表2に示す。 From the extruded material obtained as described above, a tensile test piece (parallel portion diameter: 3.5 mm, length: 15 mm) was sampled by machining, and a tensile test (strain rate; 5 × 10 −4 ) at room temperature. / S), and tensile strength, tensile strength, and elongation at break were measured. The results are shown in Tables 1 and 2.

Figure 2011195864
Figure 2011195864

Figure 2011195864
Figure 2011195864

まず、本願の請求項1で規定する最大粒子径の適正範囲を満足する酸化チタン粒子Aを用いた場合の測定結果を示す表1を参照する。酸化チタン粒子を添加していない試料(含有量:0%)に対して、酸化チタン粒子を1.75%まで添加した場合、材料の延性を示す破断伸びは急激に低下することなく、純チタンが有する高い延性を維持しており、しかも引張強さおよび引張耐力は増加している。特に、引張耐力に関しては、酸化チタン粒子を1.75%添加することで無添加チタン材に比べて2倍以上の高い値を示した。一方、酸化チタン粒子の添加量が2%に達すると、引張強さおよび引張耐力は共に増加するものの、破断伸びは13.5%にまで急激に低下した。   First, reference is made to Table 1 showing measurement results when using titanium oxide particles A satisfying the appropriate range of the maximum particle diameter defined in claim 1 of the present application. When titanium oxide particles are added up to 1.75% with respect to a sample to which titanium oxide particles are not added (content: 0%), the elongation at break showing the ductility of the material does not rapidly decrease, and pure titanium The high ductility of the material is maintained, and the tensile strength and tensile strength are increased. In particular, regarding the tensile strength, the addition of 1.75% titanium oxide particles showed a value more than twice as high as that of the additive-free titanium material. On the other hand, when the addition amount of titanium oxide particles reached 2%, both the tensile strength and the tensile strength increased, but the breaking elongation decreased rapidly to 13.5%.

次に、本願の請求項1で規定する最大粒子径の適正範囲を超える酸化チタン粒子Bを用いた場合の測定結果を示す表2を参照する。酸化チタン粒子Bの添加量が0.6%以上において、破断伸びの著しい低下と、それによる脆化によって引張強さおよび引張耐力も低下した。   Next, reference is made to Table 2 showing measurement results when titanium oxide particles B exceeding the appropriate range of the maximum particle diameter defined in claim 1 of the present application are used. When the added amount of the titanium oxide particles B was 0.6% or more, the tensile strength and the tensile strength were also lowered due to the remarkable decrease in elongation at break and the resulting embrittlement.

実施例1で用いた純チタン粉末と酸化チタン粒子Aの他に、多層カーボンナノチューブ(CNT、直径;11nm、全長;1〜3μm)を準備し、これらを混合した後、実施例1で記載した条件で焼結および押出加工して試料を作製した。なお、TiO粒子の添加量を1重量%とし、CNTについては表3に記載した範囲とした。 In addition to the pure titanium powder and titanium oxide particles A used in Example 1, multi-walled carbon nanotubes (CNT, diameter: 11 nm, total length: 1 to 3 μm) were prepared and mixed, and then described in Example 1. A sample was prepared by sintering and extruding under conditions. The amount of TiO 2 particles added was 1% by weight, and the CNT was in the range shown in Table 3.

Figure 2011195864
Figure 2011195864

カーボンナノチューブを1%までの範囲で添加することで、酸化チタン粒子Aを含むチタン基複合材料の引張強さおよび引張耐力は、更に向上している。例えば、0.89%のCNTを添加した場合、高強度と十分な延性を有することを確認した。一方、CNT添加量を1.22%とした場合、破断伸びは11.1%へと顕著に低下した。   By adding carbon nanotubes in the range of up to 1%, the tensile strength and tensile strength of the titanium-based composite material containing the titanium oxide particles A are further improved. For example, it was confirmed that when 0.89% CNT was added, it had high strength and sufficient ductility. On the other hand, when the CNT addition amount was 1.22%, the elongation at break was significantly reduced to 11.1%.

実施例2の表3に記載したチタン材料のなかでCNT添加量が0.27%の本発明による試料について、X線回折(XRD)による構造解析を行った結果を図1(a)に示す。比較として、酸化チタン粒子ならびにCNTを含まない純チタン粉末のみを焼結・熱間押出加工して得られた素材のXRDを同図(b)に併せて示す。本発明による試料では、酸化チタン(TiO)のピークが検出され、またCNTがチタンと反応して生成した炭化チタニウム(TiC)のピークも明瞭に観察される。一方、純チタン粉末のみを用いた試料(b)では、TiOおよびTiCのピークは検出されず、チタンの回折ピークのみが検出されることがわかる。このように本発明による試料では、炭素材料であるCNTを添加することで微細なTiCを生成し、これによる分散強化による強度向上効果が確認された。 FIG. 1A shows the result of structural analysis by X-ray diffraction (XRD) of the sample according to the present invention in which the CNT addition amount is 0.27% among the titanium materials described in Table 3 of Example 2. . As a comparison, the XRD of the raw material obtained by sintering and hot extrusion processing only of titanium oxide particles and pure titanium powder not containing CNT is also shown in FIG. In the sample according to the present invention, the peak of titanium oxide (TiO 2 ) is detected, and the peak of titanium carbide (TiC) produced by the reaction of CNT with titanium is also clearly observed. On the other hand, it can be seen that in the sample (b) using only pure titanium powder, the peaks of TiO 2 and TiC are not detected, but only the diffraction peak of titanium is detected. As described above, in the sample according to the present invention, fine TiC was generated by adding CNT as a carbon material, and the strength improvement effect due to dispersion strengthening was confirmed.

実施例1で用いた純チタン粉末と酸化チタン粒子Aの他に、カーボンブラック粒子(平均粒子径;70nm)を準備し、これらを混合した後、実施例1で記載した条件で焼結および押出加工して試料を作製した。なお、TiO粒子の添加量を1重量%とし、カーボンブラックについては表4に記載した範囲とした。 In addition to the pure titanium powder and titanium oxide particles A used in Example 1, carbon black particles (average particle size; 70 nm) were prepared, mixed, and then sintered and extruded under the conditions described in Example 1. A sample was prepared by processing. The amount of TiO 2 particles added was 1% by weight, and the carbon black was in the range shown in Table 4.

Figure 2011195864
Figure 2011195864

カーボンブラック粒子の添加量が1%までの範囲においては、著しい延性(破断伸び)の低下を伴うことなく、引張強さおよび引張耐力は向上する。しかし、1.34%のカーボンブラック粒子を添加した場合には、破断伸びは7.5%以下に低下した。   When the amount of carbon black particles added is in the range of up to 1%, the tensile strength and the tensile strength are improved without significantly decreasing ductility (breaking elongation). However, when 1.34% carbon black particles were added, the elongation at break decreased to 7.5% or less.

ベース用チタン合金粉末としてTi‐6.1wt%Al‐3.8wt%V(平均粒子径112μm)と、分散粒子である酸化チタン粒子C(平均粒子径D50=0.72μm、最大粒子径Dmax=4.25μm)を準備した。混合粉末全体に対して重量基準で酸化チタン粒子を0.3%〜2%添加した後、混合粉末をアルミナ製ポットにアルミナボールと共に投入し、真空脱気後にアルゴンガス置換を行い、回転式ボールミル装置を用いて回転数;90rpm、処理時間;1時間の混合処理を施した。得られた各混合粉末について、放電プラズマ焼結(SPS)装置を用いて、真空雰囲気中で温度;1000℃、加圧力;30MPa、保持時間;45分の焼結処理を行い、相対密度が93〜96%の焼結体(直径;40mm、全長;40mm)を作製した。赤外線ゴールドイメージ炉を用いて各焼結体をアルゴンガス雰囲気中で1080℃×10分間の加熱処理を施した後、直ちに熱間押出加工を施して直径8mmの押出棒材(押出比;25)を作製した。得られた押出材から引張試験片(平行部の直径;3.5mm、長さ;15mm)を機械加工により採取し、常温において引張試験(ひずみ速度;5×10−4/s)を行い、引張強さ・引張耐力・破断伸びをそれぞれ測定した。それらの結果を表5に示す。 Ti-6.1 wt% Al-3.8 wt% V (average particle diameter 112 μm) as the titanium alloy powder for the base and titanium oxide particles C (average particle diameter D50 = 0.72 μm, maximum particle diameter Dmax = 4.25 μm) was prepared. After adding 0.3% to 2% of titanium oxide particles based on the weight of the entire mixed powder, the mixed powder is put into an alumina pot together with alumina balls, and after vacuum degassing, argon gas replacement is performed. Using the apparatus, a mixing process was performed at a rotational speed of 90 rpm and a processing time of 1 hour. Each of the obtained mixed powders was sintered in a vacuum atmosphere using a discharge plasma sintering (SPS) apparatus at a temperature of 1000 ° C., a pressing force of 30 MPa, a holding time of 45 minutes, and a relative density of 93. ˜96% sintered body (diameter: 40 mm, full length: 40 mm) was produced. Each sintered compact was subjected to heat treatment at 1080 ° C. for 10 minutes in an argon gas atmosphere using an infrared gold image furnace, and then immediately subjected to hot extrusion to an extruded bar having a diameter of 8 mm (extrusion ratio; 25) Was made. From the obtained extruded material, a tensile test piece (parallel part diameter: 3.5 mm, length: 15 mm) was sampled by machining, and subjected to a tensile test (strain rate: 5 × 10 −4 / s) at room temperature. Tensile strength, tensile strength, and elongation at break were measured. The results are shown in Table 5.

Figure 2011195864
Figure 2011195864

チタン合金粉末を用いた場合においても、本発明が規定する最大粒子径の適正範囲を満足する酸化チタン粒子Cを用いた際、その添加量の増加に伴って引張強さおよび引張耐力は増大する。また、破断伸びに関しては、1.5重量%までの添加材では顕著な低下は見られないが、2重量%の添加においては、破断伸びが2.8%にまで減少した。   Even when the titanium alloy powder is used, when the titanium oxide particles C satisfying the appropriate range of the maximum particle diameter defined by the present invention are used, the tensile strength and the tensile strength increase with an increase in the addition amount. . In addition, with respect to the elongation at break, no significant reduction was observed with the additive up to 1.5% by weight, but with the addition of 2% by weight, the elongation at break decreased to 2.8%.

両性イオン界面活性剤を1.1重量%含む水溶液に、多層カーボンナノチューブ(CNT、直径;11nm、全長;1〜3μm)を重量基準で1%添加し、超音波振動攪拌機によってCNTを水溶液中で均一に分散した。このようにして得られたCNT分散水溶液中に、ベース用純チタン原料粉末(平均粒子径87μm、純度;98.3%)を浸漬し、10分間保持した後に水溶液から引き上げて、アルゴンガス雰囲気に管理した電気炉内で120℃にて水分を除去した。この状態ではCNTはチタン粉末表面に単分散状態で存在するが、両性イオン界面活性剤の固形皮膜も存在することから、続いて、真空雰囲気中で700℃にて2時間の熱処理を行った。これにより上記の固形皮膜は熱分解すると共に、CNTとチタンの反応によって炭化チタニウム(TiC)が生成し、このTiC粒子を介してCNTはチタン粉末表面で強固な結合状態を有する。このようにして得られたCNT被覆チタン粉末に対して、上記の酸化チタン粒子A(平均粒子径D50=0.45μm、最大粒子径Dmax=3.78μm)を添加・混合した。酸化チタン粒子の添加量は、混合粉末全体に対して重量基準で0.5%とした。この混合粉末をアルミナ製ポットにアルミナボールと共に投入し、真空脱気後にアルゴンガス置換を行い、回転式ボールミル装置を用いて回転数;90rpm、処理時間;1時間の混合処理を施した。得られた混合粉末について、放電プラズマ焼結(SPS)装置を用いて、真空雰囲気中で温度;900℃、加圧力;30MPa、保持時間;30分の焼結処理を行い、相対密度が95.2%の焼結体(直径;42mm、全長;35mm)を作製した。赤外線ゴールドイメージ炉を用いて焼結体をアルゴンガス雰囲気中で1000℃×10分間の加熱処理を施した後、直ちに熱間押出加工を施して直径7mmの押出棒材(押出比;36)を作製した。   Multiwalled carbon nanotubes (CNT, diameter: 11 nm, total length: 1 to 3 μm) are added to an aqueous solution containing 1.1% by weight of zwitterionic surfactant on a weight basis. Evenly dispersed. In the CNT-dispersed aqueous solution thus obtained, pure titanium raw material powder for base (average particle diameter 87 μm, purity; 98.3%) is immersed, held for 10 minutes, then pulled up from the aqueous solution, and placed in an argon gas atmosphere. Water was removed at 120 ° C. in a controlled electric furnace. In this state, CNT exists in a monodispersed state on the surface of the titanium powder, but a solid film of zwitterionic surfactant is also present. Subsequently, heat treatment was performed at 700 ° C. for 2 hours in a vacuum atmosphere. As a result, the solid coating is thermally decomposed, and titanium carbide (TiC) is generated by the reaction between CNT and titanium, and the CNT has a strong bonding state on the titanium powder surface through the TiC particles. The titanium oxide particles A (average particle diameter D50 = 0.45 μm, maximum particle diameter Dmax = 3.78 μm) were added to and mixed with the CNT-coated titanium powder thus obtained. The amount of titanium oxide particles added was 0.5% based on the weight of the entire mixed powder. This mixed powder was put into an alumina pot together with alumina balls, purged with argon gas after vacuum degassing, and mixed using a rotary ball mill apparatus at a rotational speed of 90 rpm and a processing time of 1 hour. The obtained mixed powder was sintered in a vacuum atmosphere using a discharge plasma sintering (SPS) apparatus at a temperature of 900 ° C., a pressing force of 30 MPa, a holding time of 30 minutes, and a relative density of 95.degree. A 2% sintered body (diameter: 42 mm, total length: 35 mm) was produced. The sintered compact was subjected to heat treatment at 1000 ° C. for 10 minutes in an argon gas atmosphere using an infrared gold image furnace, and then immediately subjected to hot extrusion to obtain an extruded rod having a diameter of 7 mm (extrusion ratio; 36). Produced.

なお、炭素分析の結果より、上記の押出材に含まれるCNT量は0.24重量%であった。得られた押出材から引張試験片(平行部の直径;3.5mm、長さ;15mm)を機械加工により採取し、常温において引張試験(ひずみ速度;5×10−4/s)を行い、引張強さ・引張耐力・破断伸びをそれぞれ測定した。 その結果、引張強さ:879MPa、引張耐力:723MPa、破断伸び:21.9%であった。表1に示した純チタン粉末のみを焼結・押出加工して得られた材料の引張強度特性と比較して、著しい強度の向上が認められ、また破断伸びに関しては顕著な低下はなく、十分な延性を有することを確認した。したがって、上記のような水溶液中にCNTが分散した水溶液を用いてCNTと酸化チタン粒子が分散したチタン粉末材料においても、本発明が規定する適正な酸化チタン粒子の大きさと添加量、およびCNTの添加量を満足することで、高強度・高延性を有するチタン材料を得ることができる。 From the result of carbon analysis, the amount of CNT contained in the extruded material was 0.24% by weight. From the obtained extruded material, a tensile test piece (parallel part diameter: 3.5 mm, length: 15 mm) was sampled by machining, and subjected to a tensile test (strain rate: 5 × 10 −4 / s) at room temperature. Tensile strength, tensile strength, and elongation at break were measured. As a result, the tensile strength was 879 MPa, the tensile strength was 723 MPa, and the elongation at break was 21.9%. Compared with the tensile strength characteristics of the material obtained by sintering and extruding only pure titanium powder shown in Table 1, significant improvement in strength was observed, and there was no significant decrease in breaking elongation. It was confirmed that it has a good ductility. Therefore, even in a titanium powder material in which CNT and titanium oxide particles are dispersed using an aqueous solution in which CNTs are dispersed in the aqueous solution as described above, an appropriate size and addition amount of titanium oxide particles defined by the present invention, and By satisfying the added amount, a titanium material having high strength and high ductility can be obtained.

以上、図面および表を参照して本発明の実施の形態を説明したが、本発明は、上記した実施の形態のものに限定されない。上記した実施の形態に対して、本発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings and a table | surface, this invention is not limited to the thing of above-described embodiment. Various modifications and variations can be made to the above-described embodiments within the same range or equivalent range as the present invention.

本発明は、航空機、鉄道車両、自動車用部品、家電製品素材、建築用構造部材、医療用素材など幅広い分野で使用可能なチタン基複合材料およびその製造方法として有利に利用され得る。
INDUSTRIAL APPLICABILITY The present invention can be advantageously used as a titanium-based composite material that can be used in a wide range of fields, such as aircraft, railway vehicles, automobile parts, household electrical appliance materials, architectural structural members, and medical materials, and a method for producing the same.

Claims (7)

純チタンまたはチタン合金の素地と、
前記素地中に分散した酸化チタン粒子とを備え、
前記酸化チタン粒子の最大粒子径は10μm以下であり、
前記酸化チタン粒子の含有量は、重量基準で0.3%〜1.8%である、チタン基複合材料。
A pure titanium or titanium alloy substrate;
Comprising titanium oxide particles dispersed in the substrate,
The maximum particle size of the titanium oxide particles is 10 μm or less,
The titanium-based composite material, wherein the content of the titanium oxide particles is 0.3% to 1.8% on a weight basis.
重量基準で0.1%〜1%の炭素を含む、請求項1に記載のチタン基複合材料。   The titanium-based composite material of claim 1 comprising 0.1% to 1% carbon by weight. 前記炭素は、炭化チタニウムとして存在する、請求項2に記載のチタン基複合材料。   The titanium-based composite material according to claim 2, wherein the carbon is present as titanium carbide. 純チタンまたはチタン合金からなる原料粉末に、最大粒子径が10μm以下で、複合材料全体に対する含有量が重量基準で0.3%〜1.8%となるように用意された酸化チタン粒子を混合する工程と、
前記混合粉末を固相焼結して焼結体を作製する工程と、
前記焼結体に対して熱間塑性加工を施す工程とを備える、チタン基複合材料の製造方法。
Mixing raw material powder made of pure titanium or titanium alloy with titanium oxide particles prepared so that the maximum particle size is 10 μm or less and the content with respect to the entire composite material is 0.3% to 1.8% by weight. And a process of
A step of solid-phase sintering the mixed powder to produce a sintered body;
And a step of subjecting the sintered body to hot plastic working.
前記混合工程は、炭素粒子を重量基準で0.1%〜1%混合することを含む、請求項4に記載のチタン基複合材料の製造方法。   The said mixing process is a manufacturing method of the titanium group composite material of Claim 4 including mixing 0.1%-1% of carbon particles on a weight basis. 前記炭素粒子は、カーボンブラック、アセチレンブラック、カーボンナノチューブおよびグラフェンからなる群から選ばれた少なくとも1種である、請求項5に記載のチタン基複合材料の製造方法。   The method for producing a titanium-based composite material according to claim 5, wherein the carbon particles are at least one selected from the group consisting of carbon black, acetylene black, carbon nanotubes, and graphene. 前記固相焼結工程は、真空雰囲気またはアルゴンガス雰囲気において行う、請求項4〜6のいずれか記載のチタン基複合材料の製造方法。
The method for producing a titanium-based composite material according to claim 4, wherein the solid-phase sintering step is performed in a vacuum atmosphere or an argon gas atmosphere.
JP2010061995A 2010-03-18 2010-03-18 Method for producing titanium matrix composite material and titanium matrix composite material produced by the method Active JP5709239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010061995A JP5709239B2 (en) 2010-03-18 2010-03-18 Method for producing titanium matrix composite material and titanium matrix composite material produced by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010061995A JP5709239B2 (en) 2010-03-18 2010-03-18 Method for producing titanium matrix composite material and titanium matrix composite material produced by the method

Publications (2)

Publication Number Publication Date
JP2011195864A true JP2011195864A (en) 2011-10-06
JP5709239B2 JP5709239B2 (en) 2015-04-30

Family

ID=44874454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010061995A Active JP5709239B2 (en) 2010-03-18 2010-03-18 Method for producing titanium matrix composite material and titanium matrix composite material produced by the method

Country Status (1)

Country Link
JP (1) JP5709239B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011152359A1 (en) * 2010-05-31 2013-08-01 東邦チタニウム株式会社 Titanium alloy composite powder containing ceramics and production method thereof, densified titanium alloy material using the same, and production method thereof
JP2019070186A (en) * 2017-10-10 2019-05-09 国立大学法人東北大学 Carbon metal composite molding and method for producing the same
JP2020063509A (en) * 2018-10-16 2020-04-23 武生特殊鋼材株式会社 Method for manufacturing titanium sintered base material
CN113386405A (en) * 2021-06-18 2021-09-14 西安稀有金属材料研究院有限公司 Preparation method of high-toughness layered titanium-based composite material
CN114951695A (en) * 2022-04-27 2022-08-30 北京科技大学 Preparation method of high-strength high-plasticity double-phase pure titanium
CN115301950A (en) * 2022-08-11 2022-11-08 西北工业大学 Preparation method of high-oxygen-content industrial pure titanium with accurately controlled oxygen content

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183145A (en) * 1987-01-22 1988-07-28 Sumitomo Electric Ind Ltd High hardness titanium-aluminum-vanadium alloy and its production
JPH0421730A (en) * 1989-10-24 1992-01-24 Nkk Corp Manufacture of powder-sintered titanium and powder-sintered titanium base alloy
JPH04224601A (en) * 1990-12-25 1992-08-13 Tokyo Yogyo Co Ltd Manufacture of titanium-based composite material
JP2000129414A (en) * 1998-10-29 2000-05-09 Toyota Motor Corp Production of particle reinforced type titanium alloy
JP2003268481A (en) * 2002-03-13 2003-09-25 National Institute Of Advanced Industrial & Technology Titanium composite material and implant using the same
WO2009054309A1 (en) * 2007-10-25 2009-04-30 National University Corporation Hokkaido University Composite metal material and process for production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183145A (en) * 1987-01-22 1988-07-28 Sumitomo Electric Ind Ltd High hardness titanium-aluminum-vanadium alloy and its production
JPH0421730A (en) * 1989-10-24 1992-01-24 Nkk Corp Manufacture of powder-sintered titanium and powder-sintered titanium base alloy
JPH04224601A (en) * 1990-12-25 1992-08-13 Tokyo Yogyo Co Ltd Manufacture of titanium-based composite material
JP2000129414A (en) * 1998-10-29 2000-05-09 Toyota Motor Corp Production of particle reinforced type titanium alloy
JP2003268481A (en) * 2002-03-13 2003-09-25 National Institute Of Advanced Industrial & Technology Titanium composite material and implant using the same
WO2009054309A1 (en) * 2007-10-25 2009-04-30 National University Corporation Hokkaido University Composite metal material and process for production thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011152359A1 (en) * 2010-05-31 2013-08-01 東邦チタニウム株式会社 Titanium alloy composite powder containing ceramics and production method thereof, densified titanium alloy material using the same, and production method thereof
JP5855565B2 (en) * 2010-05-31 2016-02-09 東邦チタニウム株式会社 Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same
JP2019070186A (en) * 2017-10-10 2019-05-09 国立大学法人東北大学 Carbon metal composite molding and method for producing the same
JP7233042B2 (en) 2017-10-10 2023-03-06 国立大学法人東北大学 Carbon-metal composite compact and method for producing the same
JP2020063509A (en) * 2018-10-16 2020-04-23 武生特殊鋼材株式会社 Method for manufacturing titanium sintered base material
CN113386405A (en) * 2021-06-18 2021-09-14 西安稀有金属材料研究院有限公司 Preparation method of high-toughness layered titanium-based composite material
CN114951695A (en) * 2022-04-27 2022-08-30 北京科技大学 Preparation method of high-strength high-plasticity double-phase pure titanium
CN115301950A (en) * 2022-08-11 2022-11-08 西北工业大学 Preparation method of high-oxygen-content industrial pure titanium with accurately controlled oxygen content

Also Published As

Publication number Publication date
JP5709239B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
Zhou et al. Progress in research on hybrid metal matrix composites
Guo et al. Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes
KR101337994B1 (en) Graphene/metal nanocomposite powder and method of manufacturing thereof
Duan et al. Effect of CNTs content on the microstructures and properties of CNTs/Cu composite by microwave sintering
Azarniya et al. Physicomechanical properties of spark plasma sintered carbon nanotube-reinforced metal matrix nanocomposites
Cao et al. Reinforcement with graphene nanoflakes in titanium matrix composites
JP5760278B2 (en) Titanium material and manufacturing method thereof
JP5709239B2 (en) Method for producing titanium matrix composite material and titanium matrix composite material produced by the method
Sethuram et al. Characterization of graphene reinforced Al-Sn nanocomposite produced by mechanical alloying and vacuum hot pressing
Taha et al. Effect of ZrO2 contents and ageing times on mechanical and electrical properties of Al–4.5 wt.% Cu nanocomposites prepared by mechanical alloying
KR101686973B1 (en) Method for processing homogeneously well dispersed carbon nanotube-aluminum composite powder by nano particles
KR20130028378A (en) Method for processing homogeneously well dispersed carbon nanotube-aluminum composite powder by nano particles
Okoro et al. A review of spark plasma sintering of carbon nanotubes reinforced titanium-based nanocomposites: fabrication, densification, and mechanical properties
KR20100096377A (en) Method for manufacturing carbon nano tube-alumium composition material
Vidyasagar et al. Improvement of mechanical properties of 2024 AA by reinforcing yttrium and processing through spark plasma sintering
Babu et al. Sintering behaviour of copper/carbon nanotube composites and their characterization
CN109848406B (en) Powder metallurgy preparation method of titanium-based composite material and product
Li et al. Effects of sintering parameters on the microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites
WO2017077922A1 (en) Oxygen-solid-soluted titanium sintered compact and method for producing same
KR20120035526A (en) Method for manufacturing nano-particle reinforced metal matrix composites and the metal matrix composite
KR101469317B1 (en) Method of fabricating metal base carbon nano composite
JP2020151768A (en) Method of manufacturing aluminum based clad material, and aluminum based clad material produced by the same
CN113174519B (en) Superfine vanadium particle reinforced fine-grain magnesium-based composite material and preparation method thereof
JP6901791B2 (en) Method for manufacturing billets for plastic working for manufacturing composite materials
CN110603111B (en) Hexagonal boron nitride nanosheet/metal nano composite powder and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150227

R150 Certificate of patent or registration of utility model

Ref document number: 5709239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250