KR20120136492A - Lane keep assistance system using torgue vectoring and method thereof - Google Patents

Lane keep assistance system using torgue vectoring and method thereof Download PDF

Info

Publication number
KR20120136492A
KR20120136492A KR1020110055461A KR20110055461A KR20120136492A KR 20120136492 A KR20120136492 A KR 20120136492A KR 1020110055461 A KR1020110055461 A KR 1020110055461A KR 20110055461 A KR20110055461 A KR 20110055461A KR 20120136492 A KR20120136492 A KR 20120136492A
Authority
KR
South Korea
Prior art keywords
lane
vehicle
torque
intervention
control
Prior art date
Application number
KR1020110055461A
Other languages
Korean (ko)
Inventor
윤재민
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020110055461A priority Critical patent/KR20120136492A/en
Publication of KR20120136492A publication Critical patent/KR20120136492A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/114Yaw movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/1323Moment of inertia of the vehicle body
    • B60W2040/1346Moment of inertia of the vehicle body about the yaw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/40Torque distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/10Path keeping
    • B60Y2300/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/303Speed sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

PURPOSE: Lane keeping assisting system and method by torque vectoring are provided to prevent the resistance of a driver by the steering torque opposing the intention of the driver. CONSTITUTION: A lane keeping assisting system by torque vectoring includes an image input unit, a sensor unit, a controller, and a vectoring driving unit. A lane keeping assisting method comprises the following steps: inputting external image information of a vehicle(S1); detecting the lane departure degree of the vehicle based on the horizontal displacement and the progressing reentering angle(S2); calculating the torque distribution amount of torque vectoring(S3); determining the intervention of the lane control using the torque vectoring(S4); and dividing torque vectoring driving force by the torque distribution amount(S5). [Reference numerals] (AA) Start; (B1) Detecting departure degree from reference lane based on horizontal change; (B2) Detecting departure degree based on vehicle driving angle; (CC) Calculating departure degree from lane; (D1) Calculating required yaw rate for preventing departure from lane; (D2) Calculating required steering angle for determining control intervention; (D3) Calculating required yaw moment for applying required yaw rate; (D4) Adjusting required yaw moment by curvature of road; (D5) Calculating torque division of torque vectoring for obtaining required yaw moment; (D6) Adjusting torque division based on steering torque; (EE) Calculating torque division for torque vectoring; (F1) Detecting turn-signal(by decision of driver for changing lanes); (F2) Inputting turn-signal; (F3) Determining intervention of control using required steering angle; (F4) Intervention of control; (GG,JJ) Yes; (HH,II) No; (KK) Determining control intervention; (S1) Inputting image information; (S5) Dividing torque vectoring driving force

Description

토크벡터링을 이용한 차선유지보조시스템 및 그 차선유지보조방법{LANE KEEP ASSISTANCE SYSTEM USING TORGUE VECTORING AND METHOD THEREOF}Lane Keeping Assistance System Using Torque Vectoring, and Lane Keeping Assisting Method {LANE KEEP ASSISTANCE SYSTEM USING TORGUE VECTORING AND METHOD THEREOF}

본 발명은 차선유지보조시스템 및 그 차선유지보조방법에 관한 것으로, 보다 상세하게는 좌우 바퀴의 적절한 구동력 배분을 통해 차량의 차선 유지를 보조할 수 있는 토크벡터링을 이용한 차선유지보조시스템 및 그 차선유지보조방법에 관한 것이다.The present invention relates to a lane maintenance assistant system and a lane maintenance assistant method, and more particularly, a lane maintenance assistant system and a lane maintenance using torque vectoring, which can assist in maintaining a vehicle lane by appropriately distributing driving force of left and right wheels. It is about assisting method.

일반적으로, 차선유지보조시스템(LKAS, Lane Keeping Assist System)은 전방 주행차선을 감지하는 영상센서를 통해 주행차선을 인식하고, 인식한 주행차선에 대해 운전자 차량의 차선이탈이 예상될 때 보조 조향토크를 발생하여 차량이 차선을 이탈하지 않도록 보조하는 예방 안전시스템이다.In general, the Lane Keeping Assist System (LKAS) recognizes a driving lane through an image sensor detecting a forward driving lane, and assists steering torque when a lane of the driver vehicle is expected to be departed from the recognized driving lane. It is a preventive safety system that assists the vehicle not to leave the lane by generating a.

종래 차선유지보조시스템은 전방 주행차선을 인식하는 영상센서(Image Sensor), 운전자의 조향 상태를 감지하는 조향각 센서(SAS; Steering Angle Sensor), 차량의 주행상태를 판단하고 보조 조향토크를 제어하는 컨트롤러(System ECU), 보조조향 토크를 발생시키는 조향액츄에이터(Steering Actuator)로 구성된다.Conventional lane maintenance assistance system includes an image sensor (Recognition of the front driving lane), a steering angle sensor (SAS) for detecting the steering state of the driver, a controller for determining the driving state of the vehicle and controlling the auxiliary steering torque (System ECU) and a steering actuator (Steering Actuator) for generating an auxiliary steering torque.

그러나 이러한 종래 기술의 경우, 차선을 침범할 가능성이 있는 상황이 되면, 조향계는 운전자의 의도와 반하는 조향 토크를 운전자의 손에 직접 느끼게 함으로써, 운전자로 하여금 거부감을 발생시키고, 연산 오류 등의 이유로 과도한 조향 토크가 가해지게 되면, 차량 거동이 매우 위험해 질 수 있다는 등의 문제가 있었다.However, in the case of such a prior art, when the situation is likely to invade the lane, the steering system feels steering torque directly against the driver's intention, causing the driver to generate a sense of rejection and for reasons such as arithmetic errors. When excessive steering torque is applied, there is a problem that vehicle behavior can be very dangerous.

이러한 문제점을 해결하기 위한 본 발명의 목적은, 주행차선에 대해 운전자 차량의 차선이탈이 예상되는 경우, 토크벡터링의 구동력 배분을 통해 차량의 주행 안전성을 구현할 수 있는 토크벡터링을 이용한 차선유지보조시스템 및 그 차선유지보조방법을 제공하는 것이다.An object of the present invention for solving the above problems is, lane prediction assistance system using torque vectoring that can realize the driving safety of the vehicle by distributing the driving force of the torque vectoring when the lane departure of the driver vehicle is expected to the driving lane and It provides a lane maintenance assistance method.

상기 목적을 달성하기 위해 본 발명에 따른 토크벡터링을 이용한 차선유지보조시스템은, 차량의 외부 영상 정보를 입력하는 단계와, 차량의 횡변위와 진행 요각을 측정하여 차량의 차선 이탈 정도를 검출하는 단계와, 검출된 차선 이탈 정도에 따라 토크벡터링의 토크 배분량을 검출하는 단계와, 상기 토크벡터링을 통한 차선제어의 개입 여부를 판단하는 단계와, 상기 차선제어의 개입이 판단되면 상기 검출된 토크 배분량에 따라 토크벡터링 구동력을 배분하는 단계를 포함한다. In order to achieve the above object, a lane maintenance assistant system using torque vectoring includes: inputting external image information of a vehicle, detecting a vehicle lane departure by measuring a lateral displacement and a traveling yaw angle of the vehicle; Detecting a torque distribution amount of the torque vectoring according to the detected lane departure degree, determining whether the lane control is intervened through the torque vectoring; and if the intervention of the lane control is determined, the detected torque distribution amount is determined. And distributing the torque vectoring driving force.

바람직하게, 상기 토크벡터링 구동력을 배분하는 단계는, 차량의 선회 외측 바퀴에 구동력을 증가시키고, 차량의 선회 내측 바퀴에 구동력을 감소시키며, 차량이 선회하는 방향으로 요모멘트를 증가시키는 것을 특징으로 한다.Preferably, the step of distributing the torque vectoring driving force may include increasing driving force on the turning outer wheel of the vehicle, reducing driving force on the turning inner wheel of the vehicle, and increasing yaw moment in the direction in which the vehicle turns. .

바람직하게, 상기 차선제어의 개입 여부를 판단하는 단계는, 차량의 방향을 지시하기 위한 턴시그널이 작동되지 않은 상태에서 요구 조향각이 일정 값보다 크면, 상기 토크벡터링을 통한 차선제어의 개입이 이루어지는 것으로 판단한다.Preferably, the step of determining whether the lane control is involved, if the required steering angle is greater than a predetermined value when the turn signal for indicating the direction of the vehicle is not operated, the intervention of the lane control through the torque vectoring is performed. To judge.

바람직하게, 상기 차선제어의 개입 여부를 판단하는 단계는, 상기 요구 조향각(δreg)이 17deg 이상인 경우 제어 개입 시작 시점으로 판단하여 차선제어의 개입을 시작하고, 개입 시작후 상기 요구 조향각(δreg)이 14deg 이하인 경우 제어 개입 해제 시점으로 판단하여 차선제어의 개입을 해제한다.Preferably, the step of determining whether the lane control intervention is involved, when the requested steering angle (δ reg ) is 17deg or more, it is determined that the control intervention start time starts the intervention of the lane control, and after the start of the intervention the requested steering angle (δ reg) ) Is less than or equal to 14 deg, it is determined that the control intervention is released and the intervention of the lane control is released.

바람직하게, 상기 토크 배분량을 검출하는 단계는, 차량의 차선 이탈을 방지하기 위한 요구 요레이트를 연산하고, 상기 차선제어의 개입을 판정하기 위한 요구 조향각을 연산하고, 요구 요레이트로부터 요구 요모멘트를 연산하고, 요구 요모멘트로부터 토크벡터링의 토크 배분량을 연산한다.Preferably, the detecting torque distribution amount may include calculating a required yaw rate for preventing lane departure of the vehicle, calculating a required steering angle for determining the intervention of the lane control, and requesting yaw moment from the required yaw rate. Is calculated and torque distribution of torque vectoring is calculated from the required yaw moment.

본 발명에 따른 토크벡터링을 이용한 차선유지보조시스템은, 차선의 영상 정보를 입력하기 위한 영상 입력부와, 차량의 조향각, 차속 및 요레이트를 측정하기 위한 센서부와, 상기 영상 정보와 차량의 횡변위와 진행 요각을 통해 차량의 차선 이탈 정도를 검출하고, 검출된 차선 이탈 정도에 따라 토크벡터링의 토크 배분량을 검출하며, 검출된 토크 배분량에 따라 토크벡터링 구동력을 배분하는 제어부와, 상기 제어부에 따른 토크벡터링 구동력의 배분시 차량의 선회 외측 바퀴에 구동력을 증가시키고, 차량의 선회 내측 바퀴에 구동력을 감소시키며, 차량이 선회하는 방향으로 요모멘트를 증가시키는 벡터링 구동부를 포함한다.The lane maintenance assistant system using torque vectoring according to the present invention includes an image input unit for inputting image information of a lane, a sensor unit for measuring a steering angle, a vehicle speed, and a yaw rate of the vehicle, A control unit for detecting a lane departure of the vehicle through a traveling angle, detecting a torque distribution of torque vectoring according to the detected lane departure, and distributing a torque vectoring driving force according to the detected torque distribution; It includes a vectoring drive unit for increasing the driving force to the turning outer wheel of the vehicle when the torque vectoring driving force is distributed, reducing the driving force to the turning inner wheel of the vehicle, and increasing the yaw moment in the direction in which the vehicle turns.

바람직하게, 상기 제어부는 차량의 방향을 지시하기 위한 턴시그널이 작동되지 않은 상태에서 요구 조향각이 일정 값보다 큰 경우, 상기 토크벡터링을 통한 차선제어에 개입한다.Preferably, the control unit intervenes in the lane control through the torque vectoring when the required steering angle is larger than a predetermined value when the turn signal for indicating the direction of the vehicle is not operated.

바람직하게, 상기 제어부는 요구 조향각(δreg)이 17deg 이상인 경우 제어 개입 시작 시점으로 판단하여 차선제어의 개입을 시작하고, 개입 시작후 요구 조향각(δreg)이 14deg 이하인 경우 제어 개입 해제 시점으로 판단하여 차선제어의 개입을 해제한다.Preferably, the control unit determines to start the control intervention when the requested steering angle δ reg is 17 deg or more, and starts the intervention of the lane control, and determines the control intervention release point when the requested steering angle δ reg is 14 deg or less after the intervention is started. Release the lane control intervention.

본 발명에 의하면, 다음과 같은 현저한 효과가 구현될 수 있다.According to the present invention, the following remarkable effects can be realized.

첫째, 본 발명은 차량의 차선 유지시 운전자의 의도와 상반된 조향 토크를 가하지 않는 대신, 토크벡터링의 구동력 배분을 통해 차량의 주행 안전성을 구현함으로써, 운전자의 의도와 상반된 조향 토크에 대한 운전자의 거부감을 방지할 수 있다는 이점이 있다.First, the present invention does not apply steering torque contrary to the driver's intention when maintaining the lane of the vehicle, and implements driving safety of the vehicle by distributing the driving force of the torque vectoring, so that the driver's rejection of the steering torque contradicts the driver's intention. There is an advantage that it can prevent.

둘째, 본 발명은 토크벡터링의 기능에 비전 기능을 추가함으로써, 차량 거동의 민첩성 및 안정성을 향상시켜 사용 편의를 확대할 수 있다는 이점이 있다.Second, the present invention has the advantage that the convenience of use can be expanded by improving the agility and stability of the vehicle behavior by adding the vision function to the function of torque vectoring.

도 1은 종래에 따른 차선유지보조시스템의 제어에 따른 차량의 차선유지 상태를 도시한 상태도.
도 2a는 본 발명에 따른 차선유지보조시스템을 도시한 구성도.
도 2b는 본 발명에 따른 토크벡터링을 이용한 차선유지보조시스템의 제어에 따른 차량의 차선유지 상태를 도시한 상태도.
도 3a 내지 도 3b는 본 발명에 따른 차선유지보조시스템의 이탈 위험도를 도시한 개념도.
도 4는 본 발명에 따른 차선유지보조시스템의 제어 개입 시점 및 제어 개입 해제 시점을 도시한 개념도.
도 5는 본 발명에 따른 차선유지보조방법을 도시한 블록도.
도 6은 본 발명에 따른 차선유지보조방법의 제어에 의해 차량의 차선유지 상태를 도시한 상태도
1 is a state diagram showing a lane maintenance state of a vehicle under the control of the lane keeping assistance system according to the related art.
Figure 2a is a block diagram showing a lane maintenance assistant system according to the present invention.
Figure 2b is a state diagram showing a lane maintenance state of the vehicle under the control of the lane maintenance assistant system using torque vectoring according to the present invention.
3A to 3B are conceptual views illustrating a departure risk of the lane keeping assistance system according to the present invention.
4 is a conceptual diagram illustrating a control intervention point and a control intervention release point of the lane keeping assistance system according to the present invention;
5 is a block diagram illustrating a lane keeping assisting method according to the present invention;
6 is a state diagram showing a lane maintenance state of the vehicle under the control of the lane keeping assistance method according to the present invention;

우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략하기로 한다.In the drawings, the same reference numerals are used to designate the same or similar components throughout the drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

첨부된 도면에 의거하여 본 발명의 실시예를 상세히 설명하기로 한다.Embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2a는 본 발명에 따른 차선유지보조시스템을 나타낸 도면이고, 도 2b는 본 발명에 따른 토크벡터링을 이용한 차선유지보조시스템의 제어에 따른 차량의 차선유지 상태를 나타낸 도면이고, 도 3a 내지 도 3b는 본 발명에 따른 차선유지보조시스템의 이탈 위험도를 나타낸 도면이다.Figure 2a is a view showing a lane maintenance assistant system according to the present invention, Figure 2b is a view showing a lane maintenance state of the vehicle under the control of the lane maintenance assistant system using torque vectoring according to the present invention, Figures 3a to 3b Is a view showing the departure risk of the lane maintenance assistance system according to the present invention.

도 2a 내지 도 2b에 도시된 바와 같이, 본 발명에 따른 차선유지보조시스템은, 차량의 차선 침범이 우려되는 경우, 차량의 좌우측 바퀴간에 적절한 구동력을 배분함으로써, 주행 상황에 능동적으로 대처할 수 있도록 한다. As shown in Figures 2a to 2b, the lane keeping assistance system according to the present invention, when the lane invasion of the vehicle is concerned, by appropriately distributing the appropriate driving force between the left and right wheels of the vehicle, it is possible to actively cope with the driving situation .

이를 구현하기 위한 차선유지보조시스템은, 영상 입력부(100)와, 차량의 동적 특정 변수값을 측정하는 센서부(200)와, 측정된 정보를 이용하여 토크벡터링의 토크 배분량을 연산하는 제어부(300)와, 연산된 토크 배분량에 따라 바퀴에 구동력을 제공하는 벡터링 구동부(400)를 포함하여 구성된다.Lane maintenance assistance system for implementing this, the image input unit 100, the sensor unit 200 for measuring the dynamic specific variable value of the vehicle, the control unit for calculating the torque distribution of the torque vectoring using the measured information ( 300 and a vectoring drive unit 400 for providing a driving force to the wheel according to the calculated torque distribution.

구체적으로, 영상 입력부(100)는 차량의 외부 영상을 촬영하고, 이에 대한 정보를 생성한다. 예컨대, 촬영된 외부 정보를 통해 측정지점의 이탈각, 이탈거리, 차선 곡선 및 차선 정보를 측정한다. In detail, the image input unit 100 photographs an external image of the vehicle and generates information about the image. For example, the departure angle, the departure distance, the lane curve and the lane information of the measurement point are measured using the captured external information.

여기서, 측정된 차선 정보는 이탈 위험도를 정의하는데 적용될 수 있다. 예를 들어, 도 3a 내지 도 3b에 도시된 바와 같이, 차로 중심선의 양측에 이탈 위험 해지선이 형성되고, 이탈 위험 해지선 외측에 이탈 위험 발생선이 형성되며, 이탈 위험 발생선의 외측에 왼쪽 차선 또는 오른쪽 차선이 위치된다.Here, the measured lane information may be applied to define the departure risk. For example, as illustrated in FIGS. 3A to 3B, a departure risk release line is formed at both sides of the lane center line, a departure risk generation line is formed outside the departure risk release line, and a left lane is outside the departure risk generation line. Or the right lane is located.

센서부(200)는 차량의 조향각(ψ), 속도(V) 및 요레이트(δ) 등을 측정하기 위한 각종 센서류로 구성되어, 차량의 차선유지에 필요한 차량의 동적 특정 변수값을 측정한다. The sensor unit 200 is composed of various sensors for measuring the steering angle (ψ), the speed (V), the yaw rate (δ), etc. of the vehicle, and measures a dynamic specific variable value of the vehicle required for lane keeping of the vehicle.

제어부(300)는 상술한 영상 정보, 차량의 횡변위 및 진행 요각을 통해, 차량의 차선 이탈 정도를 검출하고, 검출된 차선 이탈 정도에 따라 토크벡터링의 토크 배분량을 검출하며, 검출된 토크 배분량에 따라 토크벡터링 구동력을 배분한다. The control unit 300 detects the lane departure of the vehicle, detects the torque distribution of the torque vectoring according to the detected lane departure, and detects the torque distribution through the above-described image information, the lateral displacement of the vehicle, and the moving yaw angle. The torque vectoring driving force is distributed accordingly.

예컨대, 먼저, 차량의 횡변위 상대 요각(yaw angle)을 통해, 예상 이탈량과 필요 요레이트(yaw rate)를 연산한다. 그리고 필요 요레이트와 실제 요레이트의 차이로 요구 요레이트를 산출하고, 제어 개입 시점의 판단을 위한 요구 조향각을 연산한다. 이후, 요구 요레이트를 구현하기 위한 요구 요모멘트를 산출하고, 이 요구 요모멘트를 구현하기 위한 토크벡터링의 구동력 배분량을 연산한다.For example, first, the estimated deviation amount and the required yaw rate are calculated through the relative yaw angle of the vehicle. The required yaw rate is calculated by the difference between the required yaw rate and the actual yaw rate, and the required steering angle for the determination of the control intervention point is calculated. Then, the required yaw moment for implementing the required yaw rate is calculated, and the driving force distribution amount of torque vectoring for implementing the required yaw moment is calculated.

여기서, 이들 필요 요레이트, 요구 요레이트, 요구 조향각, 요구 요모멘트 및 구동력 배분량을 구하는 연산식은, 통상의 토크벡터링(Torgue Vectoring) 시스템 및 차선 유지 보조 시스템(Lane Keeping Assist System)에서 적용되는 연산식과 동일하므로, 이에 대한 구체적인 설명은 생략하기로 한다. 다만, 이들 연산식을 이용하여 차량의 차선유지를 구현한 실시예를 살펴보면 다음과 같다.Here, the calculation formulas for calculating the required yaw rate, the required yaw rate, the required steering angle, the required yaw moment, and the driving force distribution amount are the calculations applied in the conventional Torque Vectoring system and Lane Keeping Assist System. Since it is the same as the formula, a detailed description thereof will be omitted. However, an embodiment of implementing lane keeping of a vehicle using these equations is as follows.

[실시예 1]Example 1

본 실시예에서는, 직선 도로에서 턴시그널을 켜지 않은 상태에서, 차량을 시속 80Km/h로 주행 중이고, 운전자가 고속도로 주행 중에 전방 주시를 소홀히 하여 우측으로 5deg 정도 틀어진 채 주행을 하는 경우를 가정하였다. In the present embodiment, it is assumed that the vehicle is traveling at 80 km / h per hour while the turn signal is not turned on on a straight road, and the driver is driving with 5 deg turned to the right while neglecting the front gaze while driving on the highway.

먼저, 차량의 차선 이탈 정도와 진행 요각을 검출한다. 이때, 차량은 차로 중심선으로부터 0.4m 떨어져 있고, 진행 요각(ψ)은 3deg로 검출되었다. 그리고, 토크벡터링의 구동력 배분량을 연산하기 위해, 먼저, 아래의 연산식 1과 같이, 필요 요레이트(

Figure pat00001
)를 계산하였다.First, the lane departure degree of the vehicle and the traveling yaw angle are detected. At this time, the vehicle was 0.4m away from the center line of the road, and the traveling yaw angle ψ was detected as 3deg. Then, in order to calculate the driving force distribution amount of the torque vectoring, first, the required yaw rate (
Figure pat00001
) Was calculated.

<연산식 1><Calculation Formula 1>

Figure pat00002
Figure pat00002

(TP: 예측 시간, dvehicle:차로 중심선으로부터 차량 거리, ψ: 진행 요각, V: 주행속도,

Figure pat00003
:필요 요레이트)(T P : estimated time, d vehicle : vehicle distance from the center line of the lane, ψ: traveling angle, V: driving speed,
Figure pat00003
: Need yorate)

그리고, 아래의 연산식 2와 같이, 계산된 필요 요레이트와 실제 요레이트의 차이를 통해 요구 요레이트(

Figure pat00004
)를 연산한 후, 이 요구 요레이트를 이용하여 요구 조향각을 연산함으로써, 차선제어의 개입 여부를 판단하는 판단 근거로 이용한다. 이때, 실제 요레이트(
Figure pat00005
)는 0, 조향기어비(R)은 18, 휠베이스(L)는 2.7m로 각각 가정한다.Then, as shown in Equation 2 below, the required yaw rate (
Figure pat00004
), And then the required steering angle is calculated using this request yaw rate, and used as a judgment basis for judging whether the lane control is involved. In this case, the actual yaw rate (
Figure pat00005
) Is 0, steering gear ratio R is 18, wheelbase L is 2.7m.

<연산식 2><Calculation Formula 2>

Figure pat00006
Figure pat00006

Figure pat00007
Figure pat00007

(

Figure pat00008
:요구 요레이트, δreg:요구 조향각,
Figure pat00009
:필요 요레이트,
Figure pat00010
: 실제 요레이트, V: 주행속도, R:조향기어비, L:휠베이스(윤거))(
Figure pat00008
: Required yaw rate, δ reg : required steering angle,
Figure pat00009
A: need urine rate,
Figure pat00010
: Actual yaw rate, V: Travel speed, R: Steering gear ratio, L: Wheelbase

계속해서, 아래의 연산식 3과 같이, 필요 요레이트와 실제 요레이트를 이용하여 요구 요모멘트를 연산하고, 아래의 연산식 4와 같이, 토크벡터링의 구동력 토크를 계산한다. 이때, 튜닝을 통해 결정되는 비례상수 KP는 200으로 가정하고, dtread 는 1.6m, rtire.는 0.33m로 가정한다. Subsequently, the required yaw rate is calculated using the required yaw rate and the actual yaw rate as shown in Equation 3 below, and the driving force torque of the torque vectoring is calculated as shown in Equation 4 below. At this time, it is assumed that the proportional constant K P determined through tuning is 200, d tread is 1.6m, and r tire . Is 0.33m.

<연산식 3><Calculation Formula 3>

Figure pat00011
Figure pat00011

(MZ , REQ:요구 요모멘트, KP:비례상수,

Figure pat00012
:필요 요레이트,
Figure pat00013
: 실제 요레이트)(M Z , REQ : required yaw moment, K P : proportional constant,
Figure pat00012
A: need urine rate,
Figure pat00013
: Actual yaw rate)

<연산식 4><Equation 4>

Figure pat00014
Figure pat00014

(Ttv:구동력 토크, MZ , REQ:요구 요모멘트, dtread:거리, rtire:바퀴)(T tv : driving torque, M Z , REQ : demand moment, d tread : distance, r tire : wheel)

이와 같이, 토크벡터링의 구동력 토크를 검출하게 되면, 제어부(300)는 토크벡터링을 통한 차선제어의 개입여부를 판단하게 된다. As such, when the driving force torque of the torque vectoring is detected, the controller 300 determines whether the lane control is involved through the torque vectoring.

즉, 사용자가 턴시그널을 작동하지 않은 경우와, 상기에서 연산된 요구 조향각이 일정 값보다 큰 경우를 모두 만족하면, 제어부(300)는 토크벡터링을 통한 차선제어에 개입한다. That is, when the user does not operate the turn signal and the case where the calculated steering angle calculated above is greater than a predetermined value, the controller 300 intervenes in lane control through torque vectoring.

도 4는 본 발명에 따른 차선유지보조시스템의 제어 개입 시점 및 제어 개입 해제 시점을 나타낸 도면이다.4 is a diagram illustrating a control intervention time and a control intervention release time of the lane keeping assistance system according to the present invention.

도 4에 도시된 바와 같이, 본 실시예에서, 제어부(300)는 요구 조향각(δreg)이 17deg 이상인 경우, 제어 개입 시작 시점으로 판단하여 차선제어의 개입을 시작하고, 개입 시작후 요구 조향각(δreg)이 14deg 이하인 경우, 제어 개입 해제 시점으로 판단하여 차선제어의 개입을 해제한다. 이와 같이, 제어부(300)에 의해 차선제어의 개입이 결정되면, 벡터링 구동부(400)를 통한 차량의 선회제어가 구현된다.As shown in FIG. 4, in the present embodiment, when the requested steering angle δ reg is 17 deg or more, the controller 300 determines that the control intervention starts and starts the intervention of the lane control, and after the start of the intervention, the required steering angle ( If δ reg ) is less than or equal to 14 deg, it is determined that the control intervention is released and release of the lane control intervention. As such, when the intervention of the lane control is determined by the controller 300, the turning control of the vehicle through the vectoring driver 400 is implemented.

벡터링 구동부(400)는 모터의 구동시 다판클러치(미도시)를 압착시키는 정도에 따라 좌,우측 바퀴에 전달되는 토크 구동력을 조절하는 구성으로, 제어부(300)에 따른 토크벡터링 구동력의 배분시, 차량의 선회 외측 바퀴에 구동력을 증가시키고, 차량의 선회 내측 바퀴에 구동력을 감소시키며, 차량이 선회하는 방향으로 요모멘트를 증가시킨다.
The vectoring drive unit 400 is configured to adjust the torque driving force transmitted to the left and right wheels according to the degree of compressing the multi-plate clutch (not shown) during the driving of the motor, when distributing the torque vectoring driving force according to the controller 300, The driving force is increased on the turning outer wheel of the vehicle, the driving force is reduced on the turning inner wheel of the vehicle, and the yaw moment is increased in the direction in which the vehicle turns.

도 5는 본 발명에 따른 차선유지보조방법의 블록도를 나타낸 도면이고, 도 6은 본 발명에 따른 차선유지보조방법의 제어에 의해 차량의 차선유지 상태를 나타낸 도면이다.FIG. 5 is a block diagram of a lane keeping assistance method according to the present invention, and FIG. 6 is a diagram showing a lane keeping state of a vehicle under the control of a lane keeping assistance method according to the present invention.

한편, 도 5 내지 도 6에 도시된 바와 같이, 본 발명에 따른 토크벡터링을 이용한 차선유지보조방법은, 차선의 영상 정보를 입력하는 단계(S1)와, 차량의 차선 이탈 정도를 검출하는 단계(S2)와, 토크 배분량을 검출하는 단계(S3)와, 차선제어의 개입 여부를 판단하는 단계(S4)와, 토크벡터링 구동력을 배분하는 단계(S5)를 포함한다.On the other hand, as shown in Figures 5 to 6, the lane maintenance assistant method using torque vectoring according to the present invention, the step of inputting the image information of the lane (S1) and the step of detecting the lane departure of the vehicle ( S2), detecting the torque distribution amount (S3), determining whether the lane control is intervened (S4), and distributing the torque vectoring driving force (S5).

먼저, 차선의 영상 정보를 입력하는 단계(S1)는, 카메라와 같은 외부 인식장비를 통해 차량의 외부 영상을 촬영하고, 이에 대한 정보를 생성한다. 이때, 촬영된 외부 정보를 통해 측정지점의 이탈각, 이탈거리 및 차선 곡선, 차선의 정보가 측정될 수 있다.First, in step S1 of inputting image information of a lane, an external image of a vehicle is photographed through an external recognition device such as a camera, and information about the same is generated. At this time, the departure angle, the departure distance and the lane curve of the measuring point, the information of the lane may be measured through the captured external information.

차선 이탈 정도를 검출하는 단계(S2)는, 영상 입력부 및 센서부를 통해, 차량의 횡변위와 진행 요각을 측정하여 차량의 차선 이탈 정도를 검출한다.In the detecting of the lane departure degree (S2), the lateral displacement and the traveling yaw angle of the vehicle are measured through the image input unit and the sensor unit to detect the lane departure degree of the vehicle.

토크 배분량을 검출하는 단계(S3)는, 검출된 차선 이탈 정도에 따라, 토크벡터링의 토크 배분량을 검출한다. 즉, 필요 요레이트와 실제 요레이트를 이용하여 차량의 차선 이탈을 방지하기 위한 요구 요레이트를 연산하고, 이 요구 요레이트를 이용하여 차선제어의 개입을 판정하기 위한 요구 조향각을 연산하고, 요구 요레이트로부터 요구 요모멘트를 연산하고, 요구 요모멘트로부터 토크벡터링의 토크 배분량을 연산한다.In the step S3 of detecting the torque distribution amount, the torque distribution amount of the torque vectoring is detected according to the detected lane departure degree. That is, the required yaw rate is calculated using the required yaw rate and the actual yaw rate to calculate the required yaw rate for preventing lane departure of the vehicle, and the required yaw rate is used to calculate the required steering angle for judging the intervention of the lane control. The required yaw moment is calculated from the rate, and the torque distribution of torque vectoring is calculated from the required yaw moment.

차선제어의 개입 여부를 판단하는 단계(S4)는, 턴시그널의 작동 여부와, 요구 조향각의 일정 값 초과 여부를 판단하여, 토크벡터링을 통한 차선제어의 개입 여부를 결정한다. 예컨대, 차량의 방향을 지시하기 위한 턴시그널이 작동되지 않은 상태에서 요구 조향각이 일정 값보다 크면, 토크벡터링을 통한 차선제어의 개입을 구현하는 것이다. 본 실시예에서 요구 조향각의 일정 값 초과 여부를 판단은, 요구 조향각이 17deg 이상이면 차선제어의 개입을 시작하고, 개입 시작 후 요구 조향각이 14deg 이하이면 차선제어의 개입을 해제한다.In the step S4 of determining whether the lane control is intervened, it is determined whether the turn signal is operated and whether the required steering angle exceeds a predetermined value, thereby determining whether the lane control is intervened through torque vectoring. For example, when the required steering angle is larger than a predetermined value in a state in which the turn signal for indicating the direction of the vehicle is not operated, intervention of lane control through torque vectoring is implemented. In the present embodiment, it is determined whether the required steering angle exceeds a predetermined value, if the required steering angle is 17 deg or more, the intervention of the lane control is started, and if the required steering angle is 14 deg or less after the start of the intervention, the intervention of the lane control is released.

토크벡터링 구동력을 배분하는 단계(S5)는, 차선제어의 개입이 결정되면 검출된 토크 배분량에 따라, 적절한 차선유지가 이루어지도록 토크벡터링 구동력을 배분한다. 즉, 차량의 선회 외측 바퀴에 구동력을 증가시키고, 차량의 선회 내측 바퀴에 구동력을 감소시키며, 차량이 선회하는 방향으로 요모멘트를 증가시킨다.In the step S5 of distributing the torque vectoring driving force, when the intervention of the lane control is determined, the torque vectoring driving force is distributed so as to maintain the proper lane according to the detected torque distribution amount. That is, the driving force is increased on the turning outer wheel of the vehicle, the driving force is reduced on the turning inner wheel of the vehicle, and the yaw moment is increased in the direction in which the vehicle turns.

상술한 바와 같이, 본 발명은 차량의 차선 유지시 운전자의 의도와 상반된 조향 토크를 가하지 않는 대신, 토크벡터링의 구동력 배분을 통해 차량의 주행 안전성을 구현함으로써, 운전자의 의도와 상반된 조향 토크에 대한 운전자의 거부감을 방지하고, 차량 거동의 민첩성 및 안정성을 향상시킬 수 있는 등의 우수한 장점을 갖는다.As described above, the present invention implements driving safety of the vehicle by distributing driving force of torque vectoring, instead of applying steering torque contrary to the driver's intention, while maintaining the lane of the vehicle, thereby providing a driver with respect to the steering torque contrary to the driver's intention. It has excellent advantages such as preventing the rejection of the vehicle, and improving the agility and stability of the vehicle behavior.

상기에서 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.Although the present invention has been described in detail using the preferred embodiments, the scope of the present invention is not limited to the specific embodiments, and should be interpreted by the appended claims. It will also be appreciated that many modifications and variations will be apparent to those skilled in the art without departing from the scope of the present invention.

100 :영상 입력부 200 :센서부
300 :제어부 400 :벡터링 구동부
100: video input 200: sensor
300: control unit 400: vectoring drive unit

Claims (8)

차량의 외부 영상 정보를 입력하는 단계;
차량의 횡변위와 진행 요각을 측정하여 차량의 차선 이탈 정도를 검출하는 단계;
검출된 차선 이탈 정도에 따라 토크벡터링의 토크 배분량을 검출하는 단계;
상기 토크벡터링을 통한 차선제어의 개입 여부를 판단하는 단계; 및
상기 차선제어의 개입이 판단되면 상기 검출된 토크 배분량에 따라 토크벡터링 구동력을 배분하는 단계를 포함하는 것을 특징으로 하는 토크벡터링을 이용한 차선유지보조방법.
Inputting external image information of the vehicle;
Detecting a lane departure of the vehicle by measuring a lateral displacement of the vehicle and a traveling yaw angle;
Detecting a torque distribution of torque vectoring according to the detected lane departure degree;
Determining whether to intervene in lane control through the torque vectoring; And
And distributing the torque vectoring driving force according to the detected torque distribution amount, if the intervention of the lane control is determined.
청구항 1에 있어서,
상기 토크벡터링 구동력을 배분하는 단계는, 차량의 선회 외측 바퀴에 구동력을 증가시키고, 차량의 선회 내측 바퀴에 구동력을 감소시키며, 차량이 선회하는 방향으로 요모멘트를 증가시키는 것을 특징으로 하는 토크벡터링을 이용한 차선유지보조방법.
The method according to claim 1,
Distributing the torque vectoring driving force may include: increasing the driving force to the turning outer wheel of the vehicle, reducing the driving force to the turning inner wheel of the vehicle, and increasing the yaw moment in the direction in which the vehicle turns; Lane maintenance assistance method.
청구항 1에 있어서,
상기 차선제어의 개입 여부를 판단하는 단계는, 차량의 방향을 지시하기 위한 턴시그널이 작동되지 않은 상태에서 요구 조향각이 일정 값보다 크면, 상기 토크벡터링을 통한 차선제어의 개입이 이루어지는 것으로 판단하는 것을 특징으로 하는 토크벡터링을 이용한 차선유지보조방법.
The method according to claim 1,
The determining of whether the lane control is involved may include determining that intervention of the lane control through the torque vectoring is performed when the required steering angle is greater than a predetermined value when the turn signal for indicating the direction of the vehicle is not operated. Lane maintenance assistance method using torque vectoring.
청구항 3에 있어서,
상기 차선제어의 개입 여부를 판단하는 단계는, 요구 조향각(δreg)이 17deg 이상인 경우 제어 개입 시작 시점으로 판단하여 차선제어의 개입을 시작하고, 개입 시작후 요구 조향각(δreg)이 14deg 이하인 경우 제어 개입 해제 시점으로 판단하여 차선제어의 개입을 해제하는 것을 특징으로 하는 토크벡터링을 이용한 차선유지보조방법.
The method according to claim 3,
The determining of whether the lane control intervention is required may include: when the required steering angle δ reg is 17 deg or more, judging as the start of the control intervention and starting the lane control intervention, and when the requested steering angle δ reg is 14 deg or less. Lane maintenance assistance method using torque vectoring, characterized in that to release the intervention of the lane control by determining the control intervention release time.
청구항 1에 있어서,
상기 토크 배분량을 검출하는 단계는, 차량의 차선 이탈을 방지하기 위한 요구 요레이트를 연산하고, 상기 차선제어의 개입을 판정하기 위한 요구 조향각을 연산하고, 요구 요레이트로부터 요구 요모멘트를 연산하고, 요구 요모멘트로부터 토크벡터링의 토크 배분량을 연산하는 것을 특징으로 하는 토크벡터링을 이용한 차선유지보조방법.
The method according to claim 1,
The detecting torque distribution may include calculating a request yaw rate for preventing lane departure of the vehicle, calculating a request steering angle for determining the intervention of the lane control, calculating a required yaw moment from the request yaw rate, and And maintaining the torque distribution of the torque vectoring from the required yaw moment.
차선의 영상 정보를 입력하기 위한 영상 입력부(100);
차량의 조향각, 차속 및 요레이트를 측정하기 위한 센서부(200);
상기 영상 정보와 차량의 횡변위와 진행 요각을 통해 차량의 차선 이탈 정도를 검출하고, 검출된 차선 이탈 정도에 따라 토크벡터링의 토크 배분량을 검출하며, 검출된 토크 배분량에 따라 토크벡터링 구동력을 배분하는 제어부(300); 및
상기 제어부(300)에 따른 토크벡터링 구동력의 배분시, 차량의 선회 외측 바퀴에 구동력을 증가시키고, 차량의 선회 내측 바퀴에 구동력을 감소시키며, 차량이 선회하는 방향으로 요모멘트를 증가시키는 벡터링 구동부(400)를 포함하는 것을 특징으로 하는 토크벡터링을 이용한 차선유지보조시스템.
An image input unit 100 for inputting image information of lanes;
A sensor unit 200 for measuring a steering angle, vehicle speed, and yaw rate of the vehicle;
Detects the lane departure of the vehicle through the image information and the lateral displacement of the vehicle and the traveling yaw angle, detects the torque distribution of the torque vectoring according to the detected lane departure, and distributes the torque vectoring driving force according to the detected torque distribution. A control unit 300; And
When the torque vectoring driving force is distributed according to the control unit 300, the driving force is increased on the outer wheels of the vehicle, the driving force is reduced on the inner wheels of the vehicle, and the vectoring driver increases the yaw moment in the direction in which the vehicle is turning ( Lane maintenance assistance system using torque vectoring, characterized in that it comprises a 400).
청구항 6에 있어서,
상기 제어부(300)는 차량의 방향을 지시하기 위한 턴시그널이 작동되지 않은 상태에서 요구 조향각이 일정 값보다 큰 경우, 상기 토크벡터링을 통한 차선제어에 개입하는 것을 특징으로 하는 토크벡터링을 이용한 차선유지보조시스템.
The method of claim 6,
The control unit 300 maintains a lane using torque vectoring when the required steering angle is greater than a predetermined value when the turn signal for indicating the direction of the vehicle is not operated. Auxiliary system.
청구항 7에 있어서,
상기 제어부(300)는 요구 조향각(δreg)이 17deg 이상인 경우 제어 개입 시작 시점으로 판단하여 차선제어의 개입을 시작하고, 개입 시작후 요구 조향각(δreg)이 14deg 이하인 경우 제어 개입 해제 시점으로 판단하여 차선제어의 개입을 해제하는 것을 특징으로 하는 토크벡터링을 이용한 차선유지보조시스템.
The method of claim 7,
The control unit 300 determines the start of the control intervention when the requested steering angle δ reg is 17 deg or more and starts the control of the lane, and determines the time to release the control intervention when the required steering angle δ reg is 14 deg or less after the start of the intervention. Lane maintenance assistance system using torque vectoring, characterized in that for releasing the intervention of the lane control.
KR1020110055461A 2011-06-09 2011-06-09 Lane keep assistance system using torgue vectoring and method thereof KR20120136492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110055461A KR20120136492A (en) 2011-06-09 2011-06-09 Lane keep assistance system using torgue vectoring and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110055461A KR20120136492A (en) 2011-06-09 2011-06-09 Lane keep assistance system using torgue vectoring and method thereof

Publications (1)

Publication Number Publication Date
KR20120136492A true KR20120136492A (en) 2012-12-20

Family

ID=47903857

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110055461A KR20120136492A (en) 2011-06-09 2011-06-09 Lane keep assistance system using torgue vectoring and method thereof

Country Status (1)

Country Link
KR (1) KR20120136492A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502510B1 (en) * 2013-11-26 2015-03-13 현대모비스 주식회사 Apparatus and method for controlling lane keeping of vehicle
KR20180041971A (en) 2016-10-17 2018-04-25 현대자동차주식회사 Method for Active Control of Chassis Integration System and Vehicle thereof
KR101859402B1 (en) * 2017-12-14 2018-05-18 주식회사 딥스 The object tracking and lane changing vehicles detection method between linked cameras in tunnel
KR20180068743A (en) 2016-12-14 2018-06-22 현대자동차주식회사 Method of Torque Vectoring Control including Turn Acceleration and Vehicle thereof
JP2018167732A (en) * 2017-03-30 2018-11-01 株式会社Subaru Vehicle travel control device
GB2562281A (en) * 2017-05-11 2018-11-14 Arrival Ltd Method and apparatus for controlling a vehicle
US11772648B2 (en) 2021-02-26 2023-10-03 R.H. Sheppard Co. Inc. Lane keep assistance based on rate of departure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502510B1 (en) * 2013-11-26 2015-03-13 현대모비스 주식회사 Apparatus and method for controlling lane keeping of vehicle
US9889848B2 (en) 2013-11-26 2018-02-13 Hyundai Mobis Co., Ltd. Apparatus and method for controlling lane keeping of vehicle
KR20180041971A (en) 2016-10-17 2018-04-25 현대자동차주식회사 Method for Active Control of Chassis Integration System and Vehicle thereof
KR20180068743A (en) 2016-12-14 2018-06-22 현대자동차주식회사 Method of Torque Vectoring Control including Turn Acceleration and Vehicle thereof
JP2018167732A (en) * 2017-03-30 2018-11-01 株式会社Subaru Vehicle travel control device
GB2562281A (en) * 2017-05-11 2018-11-14 Arrival Ltd Method and apparatus for controlling a vehicle
GB2562281B (en) * 2017-05-11 2022-06-22 Arrival Ltd Method and apparatus for controlling a vehicle
KR101859402B1 (en) * 2017-12-14 2018-05-18 주식회사 딥스 The object tracking and lane changing vehicles detection method between linked cameras in tunnel
US11772648B2 (en) 2021-02-26 2023-10-03 R.H. Sheppard Co. Inc. Lane keep assistance based on rate of departure

Similar Documents

Publication Publication Date Title
US20200023843A1 (en) Vehicular lane centering system
KR20120136492A (en) Lane keep assistance system using torgue vectoring and method thereof
JP5798658B1 (en) Vehicle lane departure prevention control device
WO2015012291A1 (en) Lane keeping assist device
KR101675586B1 (en) Method, control device and system for determining a profile depth of a profile of a tyre
US20170057494A1 (en) Apparatus and method for controlling vehicle
US9610976B2 (en) Lane departure prevention control system for vehicle
US11548487B2 (en) Lane departure prevention system of vehicle
JP6185482B2 (en) Vehicle travel control device
US8718870B2 (en) Vehicle control system and control device
JP5358978B2 (en) Vehicle travel control apparatus and method
JP6327701B2 (en) Vehicle lane departure prevention control device
KR101573550B1 (en) Method for setting control time of Lane Keeping Assist System
KR20110125282A (en) Lane keeping control method
JP2009280102A (en) Steering controlling device for vehicle with four-wheeled steering mechanism
KR101241621B1 (en) Lane keeping assist system considering driver&#39;s range of view and steering tendency by speed
JP6317972B2 (en) Vehicle lane departure prevention control device
JP2013082319A (en) Travel controller for vehicle
JP2016011059A (en) Lane keeping support system
JP6338417B2 (en) Vehicle lane departure prevention control device
JP6068185B2 (en) Vehicle driving support device
JP5900309B2 (en) Lane maintenance support device
JP6599706B2 (en) Steering support control device
KR101364391B1 (en) Steer assist drive method and system using parking aid sensors
JP2009248685A (en) Driving assist device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application