KR20120126498A - 신규한 유기염료 및 이를 포함하는 염료감응 태양전지 - Google Patents

신규한 유기염료 및 이를 포함하는 염료감응 태양전지 Download PDF

Info

Publication number
KR20120126498A
KR20120126498A KR1020110044342A KR20110044342A KR20120126498A KR 20120126498 A KR20120126498 A KR 20120126498A KR 1020110044342 A KR1020110044342 A KR 1020110044342A KR 20110044342 A KR20110044342 A KR 20110044342A KR 20120126498 A KR20120126498 A KR 20120126498A
Authority
KR
South Korea
Prior art keywords
dye
group
solar cell
sensitized solar
formula
Prior art date
Application number
KR1020110044342A
Other languages
English (en)
Inventor
조효정
심교승
성시준
김대환
김효정
강진규
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Priority to KR1020110044342A priority Critical patent/KR20120126498A/ko
Publication of KR20120126498A publication Critical patent/KR20120126498A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • C07D279/22[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B15/00Acridine dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

본 발명에 따른 유기염료는 하나의 전자공여체(electron donor)에 다른 전해질과의 재결합 방지용 기능성기를 도입하여 전자의 흐름성을 향상시키는 것을 특징으로 하며, -COOH 그룹을 포함하는 2개의 전자수용체(electron acceptor)를 도입함으로써 금속 산화물에 염료의 흡착량이 증가되어 Jsc(단락 광전류 밀도)를 증가시키기 때문에 광전 변환 효율을 향상시킬 수 있다.

Description

신규한 유기염료 및 이를 포함하는 염료감응 태양전지{NOVEL ORGANIC DYES AND A DYE-SENSITIZED SOLAR CELL COMPRISING THE ORGANIC DYES}
본 발명은 신규한 염료감응 태양전지용 유기염료 및 이의 제조방법에 관한 것으로, 종래의 염료보다 흡광도를 높이고, 향상된 Jsc(단락 광전류 밀도) 및 광전 변환 효율을 나타내어 태양전지의 효율을 크게 향상시킬 수 있다.
태양전지는 다른 에너지원과 달리 자원이 무한하고 환경 친화적인 에너지원으로서, 실리콘 태양전지, 염료감응 태양전지 등이 알려져 있다.
실리콘 태양전지는 제작비용이 상당히 고가라서 실용화가 곤란하고, 전지 효율을 개선하는데 많은 어려움이 따른다. 이에 비해 염료감응 태양전지는 기존의 실리콘계 태양전지에 비해 제조단가가 현저하게 낮기 때문에 기존의 비정질 실리콘 태양전지를 대체할 수 있는 가능성이 있다. 염료감응 태양전지는 가시광선의 빛에너지를 흡수하여 전자-홀 쌍(electron-hole pair)을 생성하는 메커니즘이며, 감광성 염료 분자 및 생성된 전자를 전달하는 전이 금속 산화물을 주된 구성 재료로 하는 광전기화학적 태양 전지이다.
현재 염료감응 태양전지의 실용화 된 염료로는 루테늄 금속 염료가 알려져 있는데, 이러한 루테늄 염료는 고가의 제조단가, 낮은 흡광계수 뿐만 아니라, 환경친화적 측면에서 문제가 되고 있다. 최근 이러한 문제점을 해결하기 위해 금속을 쓰지 않는 유기염료의 개발에 대한 연구가 중점적으로 이루어지고 있다.
일반적으로 금속 착체를 사용하지 않는 유기염료는 전자공여체(electron donor)와 전자수용체(electron acceptor)를 π-결합으로 연결한 구조로 합성되며, 전자공여체는 방향족아민 유도체가 사용되고, 전자수용체는 2-시아노아크릴산이 가장 많이 사용되며, π-결합체로는 티오펜 또는 페닐기를 사용하며 이 π-결합체의 길이 및 조건에 따라 장파장 또는 단파장 스펙트럼을 조절할 수 있다.
일반적으로 유기염료는 루테늄 금속 염료에 비해 낮은 광전환효율, 화학적 불안정성, 금속산화물과의 흡착력 부족 등으로 많은 개선의 여지가 있다. 따라서 루테늄 금속 염료를 대체할 수 있는 값싸고 효율이 높은 유기염료의 개발이 필요한 실정이다.
상기 종래기술의 문제점을 해결하기 위하여, 본 발명은 금속산화물에 염료의 흡착량 향상을 위하여 2개의 전자수용체(electron acceptor)을 도입하여 광전 변환 효율을 검토하였으며, 뿐만 아니라 하나의 전자공여체(electron donor)에 전해질과의 재결합 방지용 기능성기를 도입하여 전자의 흐름성을 향상시켜 높은 광전 변환 효율을 나타내는 것을 확인함으로써 본 발명을 완성하였다.
이에, 본 발명의 목적은 광전 효율을 향상시키기 위하여 분자 내에 전자 공여체 및 다양한 기능성기와 2개 이상의 전자 수용체 관능기를 지닌 유기염료를 합성하고, 합성된 화합물의 DSSC에서의 성능을 평가하여 염료감응태양전지용으로 적용하기에 적합한 유기 염료를 제공하는 것에 있다.
본 발명의 일 실시예에 따르면, 하기 화학식 1 또는 2로 표시되는 화합물 및 이들의 조합으로 이루어진 군에서 선택되는 물질을 포함하는 염료감응태양전지용 염료를 제공한다.
Figure pat00001
Figure pat00002
상기 화학식 1 및 2에서 X는 치환 또는 치환되지 않은 방향족 탄화수소기(group)이고, Z는 치환 또는 치환되지 않은 헤테로고리기(group)이고, A는 선형 또는 헤테로고리기(group)로서 수소결합이 가능한 산성기(-COOH)를 포함하는 기(group)로 선택될 수 있다.
구체적으로는 상기 X는 벤젠, 나프탈렌, 안트라센, 페난트렌 및 이들의 유도체로 이루어지는 군에서 선택되는 치환 또는 치환되지 않은 방향족 탄화수소기일 수 있다.
더욱, 구체적으로는 상기 X는 탄소수 1 내지 12의 알킬기 및 비닐기를 포함하는 방향족 화합물; 및 탄소수 1 내지 12의 알킬기를 포함하는 페닐기;로 이루어지는 군에서 선택되는 방향족 탄화수소기일 수 있다.
구체적으로는 상기 Z는 티오펜, 퓨란, 피롤 및 이들의 유도체로 이루어지는 군에서 선택되고, 상기 A는 2-시아노아크릴산, 로다닌-3-아세트산 및 이들의 유도체로 이루어지는 군에서 선택될 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1 또는 2는 하기 화학식 3 또는 4로 표시되는 화합물 일 수 있다.
Figure pat00003
Figure pat00004
상기 화학식 3 및 화학식 4에서, R은 탄소수 1 내지 12의 알킬기 또는 비닐기이고,
Y는 황(S), 산소(O) 또는 질소(N)이고,
A는
Figure pat00005
또는
Figure pat00006
이고,
m 및 n은 각각 1 내지 3의 정수이고,
여기서, n이 2 또는 3인 경우 임의적으로 비닐기로 연결될 수 있다.
더욱 바람직하게는, 상기 염료는 하기 화학식 5 내지 화학식 12의 구조를 갖는 화합물 및 이들의 조합으로 이루어진 군에서 선택되는 것을 포함하는 염료감응태양전지용 염료이다:
Figure pat00007
Figure pat00008
Figure pat00009
Figure pat00010
Figure pat00011
Figure pat00012
Figure pat00013
Figure pat00014
상기 화학식 5 내지 화학식 12에서 m과 n은 각각 1 내지 3의 정수이다.
가장 바람직하게는 상기 염료는 하기 구조식 중 어느 하나의 구조를 갖는 화합물 및 이들의 조합으로 이루어진 화합물을 포함할 수 있다:
Figure pat00015
,
Figure pat00016
.
또한 본 발명의 다른 측면에 따르면, 상기 염료를 포함하는 것을 특징으로 하는 염료감응태양전지가 제공된다.
이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본 발명의 범위를 한정하고자 하는 것은 아니다.
본 발명에서는 분자 내 연결기를 포함하는 다양한 기능성기를 도입하여 유기염료의 회합 거동을 방지할 뿐만 아니라, TiO2에 천이된 전자와 전해질과의 재조합( recombination)을 방지하는 방지층(blocking layer)으로서의 기능을 수행함으로써 높은 Jsc(단락 광전류 밀도) 광전변환 효율을 극대화할 수 있다.
도 1은 본 발명에 이용되는 화합물 13과 14의 DMF용액 내의 흡수 스펙트럼이다.
도 2는 본 발명의 실시예에 따른 염료감응태양전지의 전류-전압 곡선이다.
도 3은 본 발명의 실시예에 따른 염료감응태양전지의 단위파장에서의 광전변환효율을 나타내는 IPCE 데이터이다.
실시예 1. 염료의 합성
Figure pat00017

상기 반응식에 따라 2가지 염료를 합성하였다. 각 단계의 산물에 대하여 NMR (varian, 300MHz)을 이용하여 구조를 분석하였고, 염료의 산화 환원 특성은 사이클릭 볼타메트리(cyclic voltammety, Model:CV-BAS-Epsilon)를 사용하여 조사하였으며, 전해질 용액으로 건조된 (dried) 다이메틸폼아마이드(DMF)를 사용하였고, 전해질로서는 0.1M의 테트라 부틸 암모늄 플루오르포스페이트(TBAPF6)를 사용하였다. Ag/AgCl 및 Pt 와이어(직경 0.5mm) 전극을 각각 기준전극 및 상대전극으로 사용하였다. 스캔 속도는 100 mV/s이었다. 제작된 소자의 효율을 측정하기 위해서 81160 300W solar Simulator(Oriel)를 사용하여 100 mW/cm2에서 측정하였다. 또한 염료감응태양전지에 대한 단위파장에서의 광전변환효율(IPCE, incident photon to current efficiency, Peccell technology, model:PEC-L11)을 측정하였다.
10- 페닐 -10H- 페노시아진 (1):
페노시아진(3.29g, 13.75mmol), 1-아이오도벤젠(3g, 16.5mmol)과 소듐터트부톡사이드(1.04g, 5.5mmol)를 톨루엔 100 mL에 충분히 용해시킨다. 트리터트부틸포스핀(8g, 20.63mmol)과 Pd2(dba)3(0.5g, 0.55mmol)을 첨가한 후 질소 분위기하 상온에서 충분히 용해시킨 후, 120℃에서 환류 교반시킨다. 반응이 종결되면 물과 CHCl3을 1:1로 섞은 용매에 워크-업(work-up)을 진행한다. 워크-업 과정을 거친 유기층을 추출법을 이용해 분리 후, 감압 하에서 용매를 제거한다. 용매를 제거한 후 메탄올로 여러 번 재결정의 과정을 통하여 연한 노란색의 고체 생성물(2.2g, 48%)을 얻었다. 1H NMR (300MHz, CDCl3) : δ 7.42-7.39 (d, J=7.2Hz, 2H), 7.29-7.26 (t, J=7.5Hz, 2H), 7.01-6.98 (d, J=8.7Hz, 2H), 6.82 (m, 4H), 6.20 (m, 3H).
3,7- 다이브로모 -10- 페닐 -10H- 페노시아진 (2):
10-페닐-10H-페노시아진(1.5g, 5.45mmol)을 아세트산 10mL에 용해시킨 뒤, 0℃에서 브롬수(1.91g, 12mmol)를 천천히 적하시킨 후 12시간 동안 교반한다. 반응이 종결되면 물에 포화시킨 수산화나트륨을 사용하여 적정한다. 적정이 끝난 후, 물과 클로로포름을 1:1로 섞은 용매에 워크-업을 진행한다. 워크-업 과정을 거친 유기층을 추출법을 이용해 분리 후, 감압 하에서 용매를 제거한다. 용매를 제거한 후 메탄올과 디클로로메탄를 이용하여 여러번의 재결정 과정을 통하여 적색 고체 생성물(1.5g, 63.6%)을 얻었다. 1H NMR (300MHz, CDCl3) : δ 7.42-7.39 (d, J=7.8Hz, 2H), 7.22-7.19 (d, J=7.8Hz, 2H), 7.08 (s, 2H), 6.91-6.88 (d, J=8.4Hz, 2H), 6.02-5.99 (dd, J=8.4Hz, 3H).
10- 페닐 -3,7-d 다이 (티오펜-2-일)-10H- 페노시아진 (3):
질소 분위기에서 3,7-다이브로모-10-페닐-10H-페노시아진(0.95g,2.1mmol), 트리부틸-티오펜-2-일-스테인(2.03g, 5.4mmol) 및 PdCl2(PPh3)2 (0.1g, 0.13mmol)을 건조(dried) 테트라하이드로 퓨란 50mL에 용해시켜 70℃에서 환류시키면서 24시간 동안 교반한다. 반응이 종결되면 물과 클로로포름을 1:1로 섞은 용매에 워크-업을 진행한다. 워크-업 과정을 거친 유기층을 추출법을 이용해 분리 후, 감압 하에서 용매를 제거한다. 용매를 제거한 후 컬럼크로마토그래피(클로로포름 : 헥산, 1:3)를 이용하여 노란색 고체 생성물(0.75g, 81.5%)을 얻었다. 1H NMR (300MHz, CDCl3) : δ 7.42-7.39 (d, J=7.8Hz, 2H), 7.22-7.19 (d, J=7.8Hz, 2H), 7.114 (m, 4H), 7.10 (t, J=4.3Hz, 2H), 7.08 (s, 2H), 6.91-6.88 (d, J=8.4Hz, 2H), 6.02-5.99 (dd, J=8.4Hz, 3H).
5,5'-(10- 페닐 -10H- 페노시아진 -3,7-다일) 다이티오펜 -2- 카르바알데히드 (4):
10-페닐-3,7-d 다이(티오펜-2-일)-10H-페노시아진 (0.72g, 1.6mmol)을 1,2-다이클로로에탄 15 mL에 용해시킨 뒤 다이메틸폼아마이드 (0.3g, 4.09mmol)를 첨가하고 포스포러스 옥시클로라이드(0.62g, 4.09mmol)를 0℃에서 천천히 적하시켜 8시간 동안 환류 교반한다. 반응이 종결되면 물과 클로로포름을 1:1로 섞은 용매에 워크-업을 진행한다. 워크-업 과정을 거친 유기층을 추출법을 이용해 분리 후, 감압 하에서 용매를 제거한다. 용매를 제거한 후 컬럼크로마토그래피 (에틸아세테이트:헥산, 1:3)를 이용하여 주황색 고체 생성물(0.5g, 63.2%)을 얻었다.1H NMR (300MHz, CDCl3) : δ 9.85 (s, 2H), 7.69-7.68 (d, J=3.9Hz, 4H), 7.53 (S, 2H), 7.45-7.44 (d, J=7.8Hz, 2H), 7.13-7.11 (d, J=8.4Hz, 4H), 6.18-6.15 (dd, J=8.7Hz, 3H).
화합물 13:
5,5'-(10-페닐-10H-페노시아진-3,7-다일) 다이티오펜-2-카르바 알데히드 (0.4g, 0.807mmol)와 2-시아노아세테이트(0.34g, 3.99mmol)와 피페리딘을 넣고 아세토니트릴 20 mL에 용해시킨 후 6시간 동안 환류 교반한다. 반응 종결 후 반응기 내에서 생성된 고체를 필터 과정을 거쳐 검붉은색의 고체 생성물(0.45g, 88.5%)을 얻었다. 1H NMR (300MHz, DMSO) : δ 8.67 (s, 2H), 8.30 (s, 2H), 7.89-7.88 (d, J=3.3Hz, 2H), 7.64-7.63 (d, J=3.3Hz, 2H), 7.60-7.58 (d, J=7.8Hz, 2H), 7.53 (s, 2H), 7.44-7.41 (d, J=7.8Hz, 2H), 7.35-7.33 (d, J=8.4Hz, 2H), 6.20-6.17 (dd, J=8.7Hz, 3H).
10-(4- 헥실벤젠 )-10H- 페노시아진 (5) :
페노시아진 (1.57g, 7.87mmol), 1-브로모-4-n-헥실-벤젠 (1.86g,6.57mmol)과 소듐터트부톡사이드 (1.75g, 9.2mmol)를 톨루엔 20 mL에 충분히 용해시킨다. 트리터트부틸포스핀 (0.208 g, 0.78mmol)과 Pd2(dba)3 (0.2g, 0.22mmol)을 첨가한 후 질소 분위기하 상온에서 충분히 용해시킨 후, 120℃에서 환류 교반 시킨다. 반응이 종결되면 물과 클로로포름을 1:1로 섞은 용매에 워크-업을 진행한다. 워크-업 과정을 거친 유기층을 추출법을 이용해 분리 후, 감압 하에서 용매를 제거한다. 용매를 제거한 후 메탄올로 여러번 재결정의 과정을 통하여 연한 노란색의 고체 생성물(1.5g, 64%)을 얻었다. 1H NMR (300MHz, CDCl3) : δ 7.40-7.26 (m, 4H), 7.01-6.99 (d, J=6.9Hz, 2H), 6.83 (m, 4H), 6.19 (m, 2H), 2.73-2.68 (t, J=7.8Hz, 2H), 1.71-1.65 (t, J=6.3Hz, 2H), 1.36-1.26 (m, 4H), 0.93-0.83 (m, 5H).
3,7- 브로모 -10-(4- 헥실페닐 )-10H- 페노시아진 (6) :
10-(4-헥실벤젠)-10H-페노시아진 (0.7g, 2mmol)을 아세트산 10 mL에 용해시킨 뒤, 0℃에서 브롬수 (0.68g, 4.28mmol)을 천천히 적하시킨 후 12시간 동안 교반한다. 반응이 종결되면 물에 포화시킨 수산화나트륨을 사용하여 적정한다. 적정이 끝난 후, 물과 클로로포름을 1:1로 섞은 용매에 워크-업을 진행한다. 워크-업 과정을 거친 유기층을 추출법을 이용해 분리 후, 감압 하에서 용매를 제거한다. 용매를 제거한 후 메탄올과 디클로로메탄를 이용하여 여러번의 재결정 과정을 통하여 적색 고체 생성물(1.0g, 97%)을 얻었다. 1H NMR (300MHz, DMSO) : δ 7.50-7.18 (d, J=7.8Hz, 2H), 7.33-7.27 (m, 4H), 7.11-7.07 (dd, J=2.1Hz, 2H), 6.0 (d, J=8.7Hz, 2H), 2.71-2.66 (t, J=7.8Hz, 2H), 1.64 (m, 2H), 1.32 (m, 6H), 0.88 (m, 3H).
10-(4- 헥실페닐 )-3,7-디(티오펜-2-일)-10H- 페노시아진 (7) :
질소 분위기 하에서 3,7-3,7-브로모-10-(4-헥실페닐)-10H-페노시아진(1.5g,2.8mmol)과 트리부틸-티오펜-2-일-스테인 (2.38g, 6.37mmol)과, PdCl2(PPh3)2 (0.12g, 0.17mmol)을 건조(dried) 테트라하이드로퓨란 50 mL에 용해시켜 70℃에서 환류 교반 시키면서 24시간 동안 교반한다. 반응이 종결되면 물과 CHCl3을 1:1로 섞은 용매에 워크-업을 진행한다. 워크-업 과정을 거친 유기층을 추출법을 이용해 분리 후, 감압 하에서 용매를 제거한다. 용매를 제거한 후 컬럼크로마토그래피 (클로로포름 : 헥산, 1:3)를 이용하여 노란색 고체 생성물(1.42g, 95%)을 얻었다. 1H NMR (300MHz, DMSO) : δ 7.54-7.47 (dd, J=8.1Hz, 4H), 7.40-7.32 (m, 6H), 7.20 (d, J=2.1Hz, 2H), 7.12-7.09 (d, J=3.9Hz, 2H), 6.14-6.11 (d, J=8.7Hz, 2H), 2.76-2.71 (t, J=7.8Hz, 2H), 1.69-1.67 (m, 2H), 1.36 (m, 6H), 0.94 (m, 3H).
5,5'-(10-(4- 헥실페닐 )-10H- 페노시아진 -3,7- 디일 ) 다이티오펜 -2- 카르바알데히 드 (8) :
10-(4-헥실페닐)-3,7-디(티오펜-2-일)-10H-페노시아진 (1.3g, 2.48mmol)을 1,2-다이클로로에탄 15 mL에 용해시킨 뒤 다이메틸폼아마이드 (0.453g, 6.19mmol)를 첨가하고 포스포러스 옥시클로라이드(1.0g, 6.52mmol)를 0℃에서 천천히 적하시켜 8시간 동안 환류 교반한다. 반응이 종결되면 물과 클로로포름을 1:1로 섞은 용매에 워크-업을 진행한다. 워크-업 과정을 거친 유기층을 추출법을 이용해 분리 후, 감압 하에서 용매를 제거한다. 용매를 제거한 후 컬럼크로마토그래피 (에틸아세테이트:헥산, 1:3)를 이용하여 주황색 고체 생성물(1.0g, 69.6%)을 얻었다. 1H NMR (300MHz, DMSO) : δ 9.88 (s, 2H), 7.44 (m, 2H), 7.34 (m, 4H), 7.19-7.17 (m, 6H), 5.93-5.90 (d, J=8.4Hz, 2H), 2.76-2.71 (t, J=7.8Hz, 2H), 1.69-1.67 (m, 2H), 1.36 (m, 6H), 0.94 (m, 3H).
화합물 14 :
5,5'-(10-(4-헥실페닐)-10H-페노시아진-3,7-디일)다이티오펜-2-카르바알데히드 (1.2g, 2.0mmol)과 2-시아노아크릴산(cyanoacrylic acid) (0.9g, 10.3mmol)과 피페리딘(piperidine)을 아세토니트릴(acetonitrile) 20 mL에 용해시킨 후 6시간 동안 환류 교반한다. 반응 종결 후 반응기 내에서 생성된 고체를 필터 과정을 거쳐 검붉은색의 고체 생성물(0.6g, 42.3%)을 얻었다. 1H NMR (300MHz, DMSO) : δ 8.41 (s, 2H), 8.23 (s, 2H), 7.84 (m, 2H), 7.58 (d, J=3.9Hz, 2H), 7.55-7.48 (dd, J=7.8Hz, 4H), 7.40 (d, J=7.8Hz, 2H), 7.31-7.28 (d, J=8.4Hz, 2H), 6.13-6.10 (d, J=7.8Hz, 2H).
실시예 2. 염료감응 태양전지의 제조
초음파를 이용하여 전도성 글래스 기판(FTO; TEC8, Pilkington, 8 Ω/㎠, Thickness of 2.3 ㎜)을 에탄올에서 세정하였다. 상용화된 TiO2 페이스트(20 nm, solarnonix)를 준비하여 닥터 블레이드를 이용하여 미리 세정된 글래스 기판에 준비된 TiO2 페이스트를 코팅하고, 500℃에서 30분 동안 소성하였다. 소성된 TiO2 페이스트층의 두께를 Alpha-step IQ surface profiler(KLA Tencor)로 측정하였다. 또다른 TiO2 페이스트를 산란층으로서 이용하기 위하여 250 nm 크기의 TiO2 입자를 이용하여 상기 소성층을 재코팅한 후, 500℃에서 30분 동안 소성하였다. 준비된 TiO2 필름을 70℃에서 30분 동안 0.04 M TiCl4 수용액에 담구었다. 염료 흡착을 위하여, 어닐링된 TiO2 전극을 50℃에서 3시간 동안 0.3 mM 염료 용액에 담구었다. 2-프로판올에 용해된 0.7 mM H2PtCl6 용액으로 제작한 것을 400℃에서 20분간의 열적 환원을 통해 Pt 반대 전극을 준비하였다.염료 흡착된 TiO2 전극과 Pt 반대 전극을 결합제로서 60㎛-thick Surlyn (Dupont 1702)를 이용하여 조립하였다. 반대 전극 상의 천공홀을 통해 액체 전해질을 도입하였다. 전해질은 아세토니트릴/발레로니트릴(85:15)에 용해된 3-프로필-1-메틸-이미다졸리윰 아이오다이드(PMII, 0.7M), 리튬 아이오다이드(LiI, 0.2M), 요오드(I2, 0.05M), t-부틸피리딘(TBP, 0.5M)으로 구성되었다.
Figure pat00018
상기 표에서 ε은 몰흡광계수, Eox 는 산화전위, E0 -O는 흡광 및 발광 스펙트럼의 교차점의 전압을 나타낸다. HOMO(eV)=-4.5-(Eonset-E( Ferrocene ))식을 이용하여 염료의 산화 및 환원 준위를 계산하였다 흡수 스펙트럼은 디메틸 포름 아마이드(DMF)로 용액에서 측정되었다.
Figure pat00019
상기 표 2에서 N719는 종래 염료감응태양전지에서 사용되는 루테늄계 염료로 하기와 같은 구조를 갖는다.
Figure pat00020
상기 표 2에서, Jsc는 단락 광전류 밀도(short-circuit photocurrent density), Voc는 개방 전압(opencircuit photovoltage), ff는 충전 인자(fill factor), η는 전체 광변환효율을 나타낸다. 이때, 염료감응태양전지의 성능은 0.24 cm2의 작업면적으로 측정되었다.
본 발명의 실시예에 따른 유기화합물 (화합물 13, 화합물 14)을 이용한 경우 루테늄계 염료를 이용한 경우에 근접하는 우수한 광전변환효율을 얻을 수 있음을 확인할 수 있었다.
이상에서 본 발명의 바람직한 실시예에 대해 도시하고 설명하였으나, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위기재의 범위 내에 있게 된다.

Claims (8)

  1. 하기 화학식 1 또는 2로 표시되는 화합물 및 이들의 조합으로 이루어진 군에서 선택되는 물질을 포함하는 염료감응태양전지용 염료:
    [화학식 1]
    Figure pat00021

    [화학식 2]
    Figure pat00022

    상기 화학식 1 및 화학식 2에서,
    X는 치환 또는 치환되지 않은 방향족 탄화수소기이고,
    Z는 치환 또는 치환되지 않은 헤테로고리기이고,
    A는 선형 또는 헤테로고리기로서 수소결합이 가능한 산성기(-COOH)를 포함하는 기임.
  2. 제 1항에 있어서,
    상기 X는 벤젠, 나프탈렌, 안트라센, 페난트렌 및 이들의 유도체로 이루어지는 군에서 선택되는 치환 또는 치환되지 않은 방향족 탄화수소기인 것을 특징으로 하는 염료감응태양전지용 염료.
  3. 제 1항에 있어서,
    상기 X는 탄소수 1 내지 12의 알킬기 및 비닐기를 포함하는 방향족 화합물; 및 탄소수 1 내지 12의 알킬기를 포함하는 페닐기;로 이루어지는 군에서 선택되는 방향족 탄화수소기임을 특징으로 하는 염료감응태양전지용 염료.
  4. 제 1항에 있어서,
    상기 Z는 티오펜, 퓨란, 피롤 및 이들의 유도체로 이루어지는 군에서 선택되고,
    상기 A는 2-시아노아크릴산, 로다닌-3-아세트산 및 이들의 유도체로 이루어지는 군에서 선택됨을 특징으로 하는 염료감응태양전지용 염료.
  5. 제 1항에 있어서,
    상기 화학식 1과 화학식 2는 하기 화학식 3 또는 화학식 4로 표시되는 유도체를 포함하는 염료감응태양전지용 염료:
    [화학식 3]
    Figure pat00023

    [화학식 4]
    Figure pat00024

    상기 화학식 3 및 화학식 4에서,
    R은 탄소수 1 내지 12의 알킬기 또는 비닐기이고,
    Y는 황(S), 산소(O) 또는 질소(N)이고,
    A는
    Figure pat00025
    또는
    Figure pat00026
    이고,
    m 및 n은 각각 1 내지 3의 정수이고,
    여기서, n이 2 또는 3인 경우 임의적으로 비닐기로 연결될 수 있음.
  6. 제 5항에 있어서,
    상기 염료는 하기 화학식 5 내지 화학식 12의 구조를 갖는 화합물 및 이들의 조합으로 이루어진 군에서 선택되는 물질을 포함하는 염료감응태양전지용 염료:
    [화학식 5]
    Figure pat00027

    [화학식 6]
    Figure pat00028

    [화학식 7]
    Figure pat00029

    [화학식 8]
    Figure pat00030

    [화학식 9]
    Figure pat00031

    [화학식 10]
    Figure pat00032

    [화학식 11]
    Figure pat00033

    [화학식 12]
    Figure pat00034

    여기서, 상기 화학식 5 내지 화학식 12에서 m과 n은 각각 1 내지 3의 정수임.
  7. 제 6항에 있어서,
    상기 염료는 하기 구조식 중 어느 하나의 구조를 갖는 화합물 및 이들의 조합으로 이루어진 화합물을 포함하는 염료감응태양전지용 염료:
    Figure pat00035
    Figure pat00036
    .
  8. 상기 제1항 내지 제 7항 중 어느 한 항에 따른 염료감응태양전지용 염료를 포함하는 염료감응태양전지 소자.
KR1020110044342A 2011-05-12 2011-05-12 신규한 유기염료 및 이를 포함하는 염료감응 태양전지 KR20120126498A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110044342A KR20120126498A (ko) 2011-05-12 2011-05-12 신규한 유기염료 및 이를 포함하는 염료감응 태양전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110044342A KR20120126498A (ko) 2011-05-12 2011-05-12 신규한 유기염료 및 이를 포함하는 염료감응 태양전지

Publications (1)

Publication Number Publication Date
KR20120126498A true KR20120126498A (ko) 2012-11-21

Family

ID=47511813

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110044342A KR20120126498A (ko) 2011-05-12 2011-05-12 신규한 유기염료 및 이를 포함하는 염료감응 태양전지

Country Status (1)

Country Link
KR (1) KR20120126498A (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101504526B1 (ko) * 2013-03-28 2015-03-23 재단법인대구경북과학기술원 신규한 유기염료 및 이를 포함하는 염료감응 태양전지
KR20150086881A (ko) * 2014-01-21 2015-07-29 재단법인대구경북과학기술원 염료감응 태양전지 및 이에 사용되는 유기염료
CN105949814A (zh) * 2016-05-06 2016-09-21 南京邮电大学 一类吩噻嗪衍生物、制备方法及其在染料敏化太阳能电池中的应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101504526B1 (ko) * 2013-03-28 2015-03-23 재단법인대구경북과학기술원 신규한 유기염료 및 이를 포함하는 염료감응 태양전지
KR20150086881A (ko) * 2014-01-21 2015-07-29 재단법인대구경북과학기술원 염료감응 태양전지 및 이에 사용되는 유기염료
CN105949814A (zh) * 2016-05-06 2016-09-21 南京邮电大学 一类吩噻嗪衍生物、制备方法及其在染料敏化太阳能电池中的应用

Similar Documents

Publication Publication Date Title
Tan et al. Highly efficient and stable organic sensitizers with duplex starburst triphenylamine and carbazole donors for liquid and quasi-solid-state dye-sensitized solar cells
JP5940089B2 (ja) ナフタリンモノイミド誘導体、及び当該誘導体を、太陽電池及び光検出器における光増感剤として用いる使用
Yang et al. Efficient and stable organic DSSC sensitizers bearing quinacridone and furan moieties as a planar π-spacer
KR100969675B1 (ko) 신규한 엔-아릴카바졸 잔기-함유 유기염료 및 이의제조방법
JP5138371B2 (ja) 色素増感光電変換素子
Dessì et al. Thiazolo [5, 4-d] thiazole-based organic sensitizers with strong visible light absorption for transparent, efficient and stable dye-sensitized solar cells
El-Shishtawy et al. Influence of redox electrolyte on the device performance of phenothiazine based dye sensitized solar cells
KR20160039606A (ko) 염료 감응 태양 전지용 대형 유기 상대 음이온을 갖는 메틴 염료
KR20100136929A (ko) 신규한 유기염료 및 이의 제조방법
Qian et al. Triazatruxene-based organic dyes containing a rhodanine-3-acetic acid acceptor for dye-sensitized solar cells
Cheng et al. Organic dyes containing indolodithienopyrrole unit for dye-sensitized solar cells
Bodedla et al. Functional tuning of phenothiazine-based dyes by a benzimidazole auxiliary chromophore: an account of optical and photovoltaic studies
Singh et al. Fluorene-based organic dyes containing acetylene linkage for dye-sensitized solar cells
Maglione et al. Tuning optical absorption in pyran derivatives for DSSC
Qian et al. Indeno [1, 2-b] indole-based organic dyes with different acceptor groups for dye-sensitized solar cells
Chiu et al. A new series of azobenzene-bridged metal-free organic dyes and application on DSSC
Willinger et al. Synthesis, spectral, electrochemical and photovoltaic properties of novel heteroleptic polypyridyl ruthenium (II) donor-antenna dyes
Michaleviciute et al. Star-shaped carbazole derivative based efficient solid-state dye sensitized solar cell
Yu et al. Influence of different electron acceptors in organic sensitizers on the performance of dye-sensitized solar cells
Liang et al. New organic photosensitizers incorporating carbazole and dimethylarylamine moieties for dye-sensitized solar cells
Prakash et al. Facile synthesis of β-functionalized “push-pull” Zn (II) porphyrins for DSSC applications
Ma et al. Impact of π-conjugation configurations on the photovoltaic performance of the quinoxaline-based organic dyes
Lim et al. Organic sensitizers possessing carbazole donor and indeno [1, 2-b] thiophene spacer for efficient dye sensitized solar cells
KR20100136931A (ko) 신규한 유기염료 및 이의 제조방법
KR20120126498A (ko) 신규한 유기염료 및 이를 포함하는 염료감응 태양전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application