KR20120107439A - 자체 보정 멀티-자기력계 플랫폼을 위한 시스템 및 방법 - Google Patents

자체 보정 멀티-자기력계 플랫폼을 위한 시스템 및 방법 Download PDF

Info

Publication number
KR20120107439A
KR20120107439A KR1020120028981A KR20120028981A KR20120107439A KR 20120107439 A KR20120107439 A KR 20120107439A KR 1020120028981 A KR1020120028981 A KR 1020120028981A KR 20120028981 A KR20120028981 A KR 20120028981A KR 20120107439 A KR20120107439 A KR 20120107439A
Authority
KR
South Korea
Prior art keywords
magnetic field
magnetometers
magnetometer
magnetic
perturbation
Prior art date
Application number
KR1020120028981A
Other languages
English (en)
Other versions
KR101485142B1 (ko
Inventor
마누엘 델 카스티요
스티브 말코스
Original Assignee
브로드콤 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 브로드콤 코포레이션 filed Critical 브로드콤 코포레이션
Publication of KR20120107439A publication Critical patent/KR20120107439A/ko
Application granted granted Critical
Publication of KR101485142B1 publication Critical patent/KR101485142B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/38Testing, calibrating, or compensating of compasses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/40Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for measuring magnetic field characteristics of the earth

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

멀티-자기력계 디바이스는 상응하는 지구 자기장 측정을 위해 이용되는 적어도 두개의 z축 정렬(aligned)되고 그리고 물리적으로 회전되는 3축 자기력계들을 포함한다. 자기장 측정량은 자기력계 보정을 위해 유저의 지원 및/또는 자기력계 움직임 없이 360도의 완전한 원을 따라 단일 직교 축의 회전 측정량을 측정하기 위해 이용된다. 멀티-자기력계 디바이스는 만약 자기 섭동들이 감지되지 않으면 자기장 측정량을 이용하여 그것의 자기 방위(magnetic heading)을 계산할 수 있다. 자기 섭동들이 감지될 때, 섭동 완화 프로세스는 수행될 것이다. 회전 측정량은 자기장 측정량을 선택적으로 결합함으로써 생성될 수 있다. 하드-아이런(hard-iron)성분들은 회전 측정량을 이용하여 결정되고 그리고 자기장 측정량으로부터 제거될 수 있다. 소프트-아이런 성분들은 하드-아이런 없는 자기장 측정량을 이용하여 결정될 수 있고, 그리고 하드-아이런 없는 자기장 측정량으로부터 제거될 수 있다. 결과적인 섭동 없는 자기장 측정량은 자기 방위(magnetic heading)를 계산하기 위해 이용될 수 있다.

Description

자체 보정 멀티-자기력계 플랫폼을 위한 시스템 및 방법 {METHOD AND SYSTEM FOR A SELF-CALIBRATED MULTI-MAGNETOMETER PLATFORM}
본 발명의 실시예들은 통신 시스템들에 관한 것이다. 보다 상세하게는 본 발명의 실시예들은 자체 보정 멀티-자기력계 플랫폼을 위한 시스템 및 방법에 관한 것이다.
자기력계들(Magnetometers)은 지구의 자기장(magnetic field)와 같은 다양한 자기장들의 세기와 방향(direction)을 측정하기 위해 사용되는 기구들이다. 지구의 자기장은 예를 들어, 이동 차량 또는 보행자의 방위(heading)를 결정하기 위해 사용되어질 수 있다. 예를 들면, 움직이는 보행자의 방위는 보행자의 경도축(longitudinal axis)과 자북(magnetic north)간에 형성되는 각도로서 정의된다. 자기력계들은 많은 다양한 형태들로 시행될 수 있다. 3축 자기력계(magnetometer triad)는 자기장의 모든 세 직교의(orthogonal) 성분들을 측정할 수 있는 자기력계이다. 3축 자기력계에 의해 제공되는 지구의 자기장의 판독들(readings)은 이동중에 있는 차량 또는 보행자의 방위를 계산하기 위해 이용될 수 있다. 자기력계들은 야외에서와 같은 깨끗한 자기 환경들에서는 매우 잘 동작할 수 있다. 그러나, 그들은 예를 들어, 옥내의 인공 시설에 의해 생산되는 자기 섭동들(perturbations)에 의해 강하게 영향을 받을 수 있다. 이러한 자기 섭동들은 자기력계들의 자기agnetic filed) 측정량으로부터 유도된 방위들(headings)에 영향을 줄 수 있다.
도면들과 관련하여 본 출원의 이하에서 제시되는 본 발명의 여러 측면들에 시스템의 비교를 통하여 당업자들은 통상적이고 종래의 접근법들의 추가적인 제한들과 단점들이 명확할 것이다.
본 발명은 자기 섭동으로부터의 자기력계 보정을 위해 유저의 지원 및/또는 자기력계 움직임 없이 자체 보정이 가능한 멀티-자기력계 플랫폼을 위한 시스템 및 방법을 제공한다.
실질적으로 적어도 하나의 도면들과 연계하여 보여진 및/또는 기술된 것과 같은 , 청구항들에서 더 완벽하게 제시된 것과 같은 자체 보정 멀티 자기력계 플랫폼을 위한 방법 및/또는 시스템.
일 측면에 따라서, 통신을 위한 방법은,
적어도 두개의 자기력계들을 포함하는 멀티-자기력계 디바이스에서, 상기 적어도 두개의 자기력계들은 XYZ 좌표 시스템에서 z축을 따라 정렬(align)되고 그리고 상기 XYZ 좌표 시스템에서 xy 평면상에서 물리적으로 증분하여 회전되는 상기 멀티-자기력계 디바이스;
상기 적어도 두개의 자기력계를 이용하여 상응하는 지구 자기장을 측정하는 단계;
유저의 지원(assistance) 및/또는 자기력계 움직임 없이 상기 지구 자기장의 측정량을 이용하여 360도의 완전한 원을 따라 단일의 직교 축의 회전을 측정하는 단계;및
상기 회전 측정량을 이용하여 상기 적어도 두개의 자기력계를 보정하는 단계;를 포함한다.
바람직하게는, 상기 방법은 결합된 측정량을 생성하기 위해 상기 적어도 두개의 자기력계들 중 각각에 관하여 상기 상응하는 지구 자기장 측정량을 결합하는 단계를 더 포함한다.
바람직하게는, 상기 방법은 상기 결합된 측정량의 크기를 섭동 한계 값(perturbation threshold value)과 비교하는 단계를 더 포함한다.
바람직하게는, 상기 방법은 상기 비교에 기반하여 상기 상응하는 지구 자기장의 측정량에서 자기 섭동들을 감지하는 단계를 더 포함한다.
바람직하게는, 상기 방법은 만약 상기 자기 섭동들이 감지되지 않으면 상기 결합된 자기장 측정량을 이용하여 상기 멀티-자기력계 디바이스를 위한 자기 방위(magnetic heading)를 결정하는 단계를 더 포함한다.
바람직하게는, 상기 방법은 만약 상기 자기 섭동들이 감지되면 상기 멀티-자기력계 디바이스내에서 섭동 완화 프로세스(perturbation mitigation process)를 트리거(trigger)하는 단계를 더 포함한다.
바람직하게는, 상기 방법은 상기 상응하는 자기장 측정량을 선택적으로 결합함으로써 상기 회전 측정량을 생성하는 단계를 더 포함한다.
바람직하게는, 상기 방법은
상기 회전 측정량을 이용하여 상기 감지된 자기 섭동들의 하드-아이런(hard-iron) 성분들을 결정하는 단계; 및
하드-아이런(hard-iron) 없는 자기장 측정량을 생성하기 위해 상기 상응하는 자기장 측정량으로부터 상기 결정된 하드-아이런 성분들을 제거하는 단계;를 더 포함한다.
바람직하게는, 상기 방법은
상기 하드-아이런(hard-iron) 없는 상응하는 지구 자기장 측정량을 이용하여 상기 감지된 자기 섭동들의 소프트-아이런(soft-iron) 성분들을 결정하는 단계; 및
섭동 없는 상응하는 지구 자기장 측정량을 생성하기 위해 상기 하드-아이런 없는 자기장 측정량으로부터 상기 결정된 소프트-아이런(soft-iron)을 제거하는 단계를 더 포함한다.
바람직하게는, 상기 방법은
상기 섭동 없는 상응하는 지구 자기장 측정량을 이용하여 상기 멀티-자기력계 디바이스를 위한 자기 방위를 계산하는 단계를 더 포함한다.
일 측면에 따라서, 통신을 위한 시스템이 제공되며, 상기 시스템은,
적어도 두개의 자기력계들을 포함하는 멀티-자기력계 디바이스에서 사용을 위한 하나 이상의 프로세서들 및/또는 회로들에서, 상기 적어도 두개의 자기력계들은 XYZ 좌표 시스템에서 z축을 따라 정렬(align)되고 그리고 상기 XYZ 좌표 시스템에서 xy 평면상에서 물리적으로 증분하여 회전되며;
상기 적어도 두개의 자기력계들을 이용하여 상응하는 지구의 자기장을 측정;
유저의 지원(assistance) 및/또는 자기력계 움직임 없이 상기 지구 자기장 측정량을 이용하여 360도의 완전한 원을 따라 단일의 직교 축의 회전을 측정;
상기 회전 측정량을 이용하여 상기 적어도 두개의 자기력계를 보정하도록 동작하는 상기 하나 이상의 프로세서들 및/또는 회로들을 포함한다.
바람직하게는.상기 하나 이상의 프로세서들 및/또는 회로들은 결합된 측정량을 생성하기 위해 상기 적어도 두개의 자기력계들 중 각각에 관하여 상기 상응하는 지구 자기장 측정량을 결합하도록 동작한다.
바람직하게는, 상기 하나 이상의 프로세서들 및/또는 회로들은 상기 결합된 측정량의 크기를 상기 섭동 한계 값과 비교하도록 동작한다.
바람직하게는,상기 하나 이상의 프로세서들 및/또는 회로들은 상기 비교에 기반하여 상기 상응하는 지구 자기장 측정량에서 자기 섭동들을 감지하도록 동작한다.
바람직하게는, 상기 하나 이상의 프로세서들 및/또는 회로들은 만약 상기 섭동들이 감지되지 않으면 상기 결합된 자기장 측정량을 이용하여 상기 멀티-자기력계 디바이스를 위한 자기 방위를 결정하도록 동작한다.
바람직하게는, 상기 하나 이상의 프로세서들 및/또는 회로들은 상기 자기 섭동들이 감지되면 상기 멀티-자기력계 디바이스 내에서 섭동 완화 프로세스를 트리거하도록 동작한다.
바람직하게는, 상기 하나 이상의 프로세서들 및/또는 회로들은 상기 상응하는 지구 자기장 측정량을 선택적으로 결합함으로써 상기 회전 측정량을 생성하도록 동작한다.
바람직하게는, 상기 하나 이상의 프로세서들 및/또는 회로들은 상기 회전 측정량을 이용하여 상기 감지된 자기 섭동들의 하드-아이런 성분들을 결정하고, 그리고 하드-아이런 없는 자기장 측정량을 생성하기 위해 상기 상응하는 지구 자기장 측정량으로부터 상기 결정된 하드-아이런 성분들을 제거하도록 동작한다.
바람직하게는, 상기 하나 이상의 프로세서들 및/또는 회로들은 상기 하드-아이런 없는 상응하는 지구 자기장 측정량을 이용하여 상기 감지된 자기 섭동들의 소프트-아이런 성분들을 결정하고, 그리고 섭동 없는 상응하는 지구 자기장 측정량을 생성하기 위해 상기 하드-아이런 없는 자기장 측정량으로부터 상기 결정된 소프트-아이런 성분들을 제거하도록 동작한다.
바람직하게는, 상기 하나 이상의 프로세서들 및/또는 회로들은 상기 섭동 없는 상응하는 지구 자기장 측정량을 이용하여 상기 멀티-자기력계 디바이스를 위한 자기 방위(magnetic heading)을 계산하도록 동작한다.
본 발명의 예시된 실시예의 세부사항들 뿐만 아니라 본 발명의 이런 그리고 다른 장점들, 측면들 그리고 새로운 특징들은 다음의 설명 그리고 도면들로부터 더 충분히 이해될 것이다.
본 발명의 멀티-자기력계 플랫폼을 위한 시스템 및 방법에 따르면, 별도의 유저의 도움이나 자기력계 자체의 움직임 없이 섭동에 의한 하드-아이런(hard-iron) 성분뿐만 아니라 소프트-아이런 성분이 제거된 자체 보정된 자기장 측정량에 의해 자기 방위를 계산할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 따른, 멀티-자기력계 디바이스의 물리적으로 움직이는 자기력계들 없이 자기장 측정량을 자체 보정하도록 동작하는 대표적인 멀티-자기력계 디바이스를 예시하는 도면이다.
도 2는 본 발명의 실시예에 따른, 멀티-자기력계 디바이스의 물리적으로 움직이는 자기력계들 없이 자체-보정 자기장 측정량을 위한 멀티-자기력계 플랫폼에서 실행되는 대표적인 신호 흐름을 예시하는 도면이다.
도 3은 본 발명의 실시예에 따른 유저의 지원 및/또는 자기력계 이동 없이 멀티-자기력계 플랫폼에서 회전 양을 생성하도록 실행할 수 있는 대표적인 과정들을 예시하는 흐름도이다.
도 4 는 본 발명의 실시예에 따른, 유저의 지원 및/또는 자기력계 이동없이 결정되는 회전 측정량을 이용하여 멀티-자기력계 플랫폼에서 자기 섭동들을 감지하도록 실행될 수 있는 대표적인 과정들을 예시하는 흐름도이다.
도 5 는 본 발명의 실시예에 따른, 유저 지원 및/또는 자기력계 이동없이 자기장 측정량을 멀티-자기력계에서 자동으로 보정하도록 실행될 수 있는 대표적인 과정들을 예시하는 흐름도이다.
본 발명의 실시예들은 자체 보정 멀티 자기력계 플랫폼을 위한 방법 및 시스템에서 찾을 수 있을 것이다. 본 발명의 다양한 실시예들에서, 멀티 자기력계 디바이스 또는 플랫폼은 XYZ 좌표 시스템에서 z축을 따라 정렬되고(aligned), XYZ 좌표 시스템의 xy 평면에서 물리적으로 증분하여 회전되는 적어도 두개의 3축(triads) 자기력계들을 포함한다. 적어도 두개의 물리적으로 회전되는 3축 자기력계들은 상응하는(corresponding) 지구 자기장를 측정하기 위해서 사용될 수 있다. 360도의 완전한 원을 따라 한 직교축의 회전 측정량은 유저의 지원 및 자기력계의 이동없이 물리적으로 회전된 자기력계들로부터의 자기장(magnetic field) 측정량을 이용하여 가져올 수 있다. 물리적으로 회전되는 자기력계들은 회전 측정량을 이용하여 자동적으로 보정될 수 있다. 자기력계 디바이스는 자기 섭동 측정을 위하여 물리적으로 회전된 자기력계들로부터의 자기장(magnetic field) 측정량을 결합할 수 있다. 결합된 자기장 측정량은 자기 섭동이 측정되지 않는다면 멀티 자기력계 디바이스의 자기 방위(magnetic heading)를 계산하기 위해 이용될 수 있다. 자기 섭동들의 측정에 기반하여 멀티 자기력계 디바이스는 자기장 측정량의 섭동 완화(mitigation) 프로세스를 자동적으로 시작할 수 있다. 회전 측정량(rotation measurements)은 물리적으로 회전되는 자기력계들로부터의 자기장 측정량(magnetic field measurements)을 선택적으로 결합으로써 생성될 수 있다. 섭동 완화 프로세스(perturbation mitigation process)는 회전 측정량을 이용한 측정된 자기 섭동들의 하드-아이런(hard-iron) 성분들(components)을 결정할 수 있다. 결정된 하드-아이런(hard-iron) 성분들은 하드-아이런(hard-iron) 없는(free) 자기장 측정량, 측정된 자기장 섭동들의 소프트-아이런(soft-iron)을 결정하기 위해 사용될 수 있는,을 형성하기 위하여 물리적으로 회전된 자기력계들로부터의 자기장 측정량에서 제거될 수 있다. 멀티 자기력계 디바이스는 섭동 없는(free) 자기장 측정량을 형성하기 위해 하드-아이런(hard-iron) 없는(free) 자기장 측정량으로부터의 결정된 소프트 아이런 (soft iron) 요소들을 제거할 수 있다. 섭동 프리 자기장 측정량 (perturbation free magnetic field measurements)은 멀티 자기력계(multi-magnetometer) 디바이스를 위한 자기 방위(magnetic heading)를 계산하기 위해 이용될 수 있다.
도 1은 본 발명의 실시예에 따른, 멀티-자기력계 디바이스의 물리적으로 움직이는 자기력계들 없이 자기장 측정량을 자체 보정하도록 동작하는 대표적인 멀티-자기력계 디바이스를 예시하는 도면이다.도 1을 참조하여, 호스트 프로세서(120), 복수개의 자기력계들(112 -116) 그리고 메모리(130)을 포함하는 멀티 자기력계 디바이스(100)이 도시되어 있다. 멀티-자기력계 디바이스(100)은, 예를들면, 셀룰러폰 같은 휴대용 디바이스(hand-held device) 또는 미디어 플레이어와 같은 다른 무선 통신 디바이스에 위치할 수 있다.
자기력계(112)같은 자기력계는 지구의 자기장 같은 다양한 자기장들의 크기를 측정하도록 동작할 수 있는 적절한 로직, 회로 및/또는 코드를 포함할 수 있다. 자기장 측정량(magnetic field measurements)은 스칼라 측정량인 반면 자기장 그 자체는 벡터이다. 실행에 따라서, 자기력계(112)는 멀티-자기력계 디바이스(100)의 외부에 마운트(mount)될 수 있거나, 또는 멀티-자기력계 내부에 통합될 수 있다. 자기력계(112)는 멀티-자기력계 디바이스(100)의 자기 방위(magnetic heading)(또는 자기 방위각(magnetic azimuth)로 불림)를 계산하기 위하여 프로세서(120)에 자기장 측정량을 제공할 수 있다. 자기력계(112)는 다양한 방식으로 시행되거나 구성될 수 있다.예를 들어, 자기력계(112)는 자기장들의 세 개의 직교 성분들을 측정하기 위하여 XYZ 좌표 시스템에서 x,y,그리고 z축과 같은 3축(tri-axis)(triad)를 이용할 수 있다. 3축 실행을 가진 자기력계(112)는 3축 자기력계(triad)로 언급된다. 본 발명의 대표적인 실시예는, 3축 자기력계들(112-116)은 z축을 따라 정렬될 수 있고, 하나와 다른것 간에 xy 면에서 30도 같이 소정 증분만큼 물리적으로 회전될 수 있다. 이것에 관하여, 한 자기력계 축은 전체 360도 방위각(azimuth)을 따라 예를 들어 30도 소정 증분될 수 있다. 본 발명의 대표적인 실시예로서, 물리적으로 회전되는 3축 자기력계들(112-116)의 자기장 측정량은 유저의 지원 및/또는 물리적으로 움직이는 하나의 자기력계 없이 하나의 자기력계 회전 측정량을 시뮬레이션하기 위해 이용될 수 있다.
호스트 프로세서(120)은 3축 자기력계들(112-116)으로부터 수신된 신호를 처리하도록 동작할 수 있는 적절한 로직, 회로 및/또는 코드를 포함할 수 있다.수신된 신호들은 지구의 자기장 측정량과 같은 다양한 자기장 측정량을 포함할 수 있다. 본 발명의 대표적인 실시예로서 3축 자기력계들(112-116)이 z축을 따라 정렬되고, 하나와 다른것 간에 xy면에서 예를 들어 30도 증분되어 물리적으로 회전되는 경우에, 호스트 프로세서(120)은 자기 섭동 감지 수행을 위해 물리적으로 회전된 3축 자기력계들(112-116)로부터의 자기장 측정량을 결합할 수 있다. 이것과 관련하여 호스트 프로세서(120)는 결합된 자기장 측정량의 크기와 섭동 한계 값을 비교하도록 동작할 수 있다.결합된 자기장 측정량의 크기중 어느것도 섭동 한계 값보다 크지 않은 경우에, 호스트 프로세서는 거기에는 자기 섭동(magnetic perturbations)이 없다고 결정할 수 있다. 결합된 자기장 측정량의 크기중 하나 이상이 섭동 한계 값보다 큰 경우에, 호스트 프로세서(120)는 자기 섭동(magnetic perturbations)의 감지를 선언할 수 있다. 본 발명의 대표적인 실시예로서, 호스트 프로세서(120)은 물리적으로 회전되는 3축 자기력계들(112-116)으로부터의 자기장측정량에 관한 섭동 완화 프로세스의 시작을 위해 보정 유닛(122)을 자동으로 트리거(trigger)하거나 신호할 수 있다. 감지된 자기 섭동들의 자기 섭동 성분들은 섭동 없는 자기장 측정량을 제공하기 위해 섭동 완화 프로세스를 통해 자기장 측정량으로부터 제거될 수 있다. 호스트 프로세서(120)는 멀티-자기력계 디바이스(100)를 위한 자기 방위(자기 방위각)을 계산 또는 측정에 섭동 없는 자기장 측정량을 처리하기 위한 자기 방위 필터(124)를 이용할 수 있다.
보정 유닛(122)는 3축 자기력계들(112-116)로부터의 자기장 측정량에 자동 섭동 완화 프로세스를 수행하도록 동작할 수 있는 적절한 로직, 회로, 및/또는 코드를 포함할 수 있다. 본 발명의 다양한 실시예에서, 보정 유닛(122)은 360도의 완전한 원을 따라 단일의 직교 축의 회전 측정량을 시뮬레이션하거나 형성하기 위해 물리적으로 회전되는 3축 자기력계들(112-116)로부터의 자기장 측정량을 이용할 수 있다. 이것과 관련하여, 360도의 완전한 원을 따라 단일의 직교 축의 30도 회전 측정량과 같은 회전 측정량은 각기 다른 순간에 다른 물리적으로 회전되는 3축 자기력계들(112-116)에 의해 얻어진 자기장 측정량을 선택함으로써 시뮬레이션 될 수 있다. 예를 들어, 물리적으로 회전되는 3축 자기력계(112)에 의해 현재 순간
Figure pat00001
에 얻어진 자기장 측정량, 물리적으로 회전되는 3축 자기력계(114)에 의해
Figure pat00002
인 순간에 얻어진 자기장 측정량, 그리고 물리적으로 회전되는 3축 자기력계(114)에 의해
Figure pat00003
인 순간에 자기장의 측정량이 360도의 완전한 원을 따라 단일의 직교축의
Figure pat00004
,
Figure pat00005
,
Figure pat00006
순간들에 회전 측정량을 시뮬레이션하거나 형성하기 위해 선택될 수 있다. 본 발명이 대표적인 실시예로서, 보정 유닛(122)는 감지된 자기 섭동들의 하드-아이런(hard iron) 성분을 결정하거나 계산하기 위해 시뮬레이션된 회전 측정량을 이용할 수 있다. 보정 유닛(122)은 하드-아이런(hard iron) 없는 자기장 측정량을 형성하기 위해 결합된 자기장 측정량으로부터 결정된 하드-아이런(hard iron)성분들을 제거할 수 있다. 보정 유닛(122)는 감지된 자기 섭동들의 소프트-아이런(soft iron)를 결정하거나 또는 계산하기 위해 하드-아이런(hard iron) 없는 자기장 측정량을 이용할 수 있다. 보정 유닛(122)은 섭동 없는 자기장 측정량을 형성하기 위해 하드-아이런(hard iron)없는 자기장 측정량으로부터 결정된 소프트-아이런(soft iron) 성분들을 제거할 수 있다. 보정 유닛(122)은 자기 방위 필터(124)에 섭동 없는 자기장을 제공할 수 있다.
자기 방위 필터(124)는 멀티-자기력계 디바이스(100)를 위한 자기 방위(자기 방위각)을 계산하거나 또는 추정하도록 동작할 수 있는 적절한 로직, 회로 및/또는 코드를 포함할 수 있다. 이것과 관련하여 자기 섭동이 감지되는 않는 경우에, 자기 방위 필터(124)는 멀티-자기력계 디바이스(100)을 위한 자기 방위를 계산하거나 또는 추정하기 위해 물리적으로 회전되는 3축 자기력계들(112-116)로부터 직접 자기장 측정량을 이용할 수 있다. 섭동이 감지되지 않는 경우에 자기 방위 필터(124)는 멀티-자기력계 디바이스(100)을 위한 자기 방위를 계산하거나 추정하기 위해 보정 유닛(122)으로부터 공급된 섭동 없는 자기장 측정량을 이용할 수 있다. 칼만 필터링(Kalman filtering)같은 다양한 알고리즘들이 자기 방위를 계산하거나 추정하기 위해 자기 방위 필터(124)에 의해 이용될 수 있다.
메모리(130)은 프로세서(120) 및/또는 다른 관련 컴포넌트 유닛,예를 들어 보정 유닛(122) 그리고 자기 방위 필터(124)와 같은,에 의해 이용될 수 있는 실행가능한 명령어들 그리고 데이터 같은 정보를 저장하도록 동작할 수 있는 로직, 회로, 인터페이스들 및/또는 코드를 포함할 수 있다. 메모리(130)는 RAM, ROM, 플래쉬 메모리 및/또는 다른 적합한 전자 데이터 스토리지(storage)와 같은 적은 레이턴시(latency) 비휘발성 메모리를 포함할 수 있다.
대표적인 동작으로, 멀티-자기력계 디바이스(100)는 자기력계(112-116),멀티-자기력계 디바이스(100)위에 마운트될 수 있고 또는 멀티-자기력계 디바이스(100)내부에 결합될 수 있는,를 이용한 지구 자기장 측정량 같은 다양한 자기장 측정량을 수집하도록 동작할 수 있다. XYZ 좌표 시스템과 관련하여, 3축 자기력계들(112-116)은 z축을 따라 정렬 될 수 있고, 하나와 다른것 간에 예를 들어, 30도 증분으로 xy평면에서 물리적으로 회전될 수 있다. 물리적으로 회전되는 3축 자기력계들(112-116)로부터의 자기장 측정량은 멀티-자기력계 디바이스(100)을 위한 자기 방위를 계산하기 위해 호스트 프로세서(120)에 의해 이용될 수 있다. 이것과 관련하여 멀티-자기력계 디바이스(100)은 자기 섭동 감지 수행을 위해 물리적으로 회전되는 자기력계들(112-116)로부터의 자기장 측정량을 결합하도록 동작할 수 있다. 결합된 자기장 측정량의 크기가 자기 섭동들을 감지하기 위해 이용될 수 있다. 자기 섭동이 감지되지 않는 경우에, 물리적으로 회전되는 자기력계들(112-116)으로부터의 자기장 측정량은 멀티-자기력계 디바이스(100)을 위한 자기 방위를 추정 또는 계산하기 위해 자기 방위 필터(124)에 직접 포워딩될 수 있다. 섭동들이 감지되는 경우에, 보정 유닛(122)는 물리적으로 회전되는 자기력계들(112-116)으로부터의 자기장 측정량에 섭동 완화 프로세스를 시작하기 위해 자동으로 트리거 될 수 있다. 이것과 관련하여, 보정 유닛(122)은 360도의 완전한 원을 따라 단일의 직교 축의 회전 측정량을 시뮬레이션하거나 형성하기 위해 물리적으로 회전되는 3축 자기력계들(112-116)로부터 자기장 측정량을 선택할 수 있다. 보정 유닛(122)는 감지된 자기 섭동들의 하드-아이런(hard-iron) 성분들을 결정하기 위해 시뮬레이션된 회전 측정량을 이용할 수 있다. 보정 유닛(122)은 물리적으로 회전되는 자기력계들(112-116)로부터의 자기장 측정량으로부터 결정된 하드-아이런 성분들을 제거함으로써 하드-아이런 없는 자기장 측정량을 생성할 수 있다. 감지된 자기 섭동들의 소프트-아이런(soft-iron) 성분들은 하드-아이런 없는 자기장 측정량을 이용하여 결정될 수 있다. 보정 유닛(122)는 하드-아이런(hard-iron) 없는 자기장 측정량으로부터 결정된 소프트-아이런 성분들을 제거할 수 있다. 보정 유닛(122)는 결과적인 섭동 없는 자기장 측정량을 자기 방위 필터(124)에 제공할 수 있다. 자기 방위 필터(124)는 섭동 없는 자기장 측정량을 이용하여 멀티-자기력계 디바이스(100)을 위한 자기 방위를 추정할 수 있다.
도 2는 본 발명의 실시예에 따른, 멀티-자기력계 디바이스의 물리적으로 움직이는 자기력계들 없이 자체-보정 자기장 측정량을 위한 멀티-자기력계 플랫폼에 에서 실행되는 대표적인 신호 흐름을 예시하는 도면이다.도 2와 관련하여 멀티-자기력계 디바이스(100)와 같은 자체-보정된 멀티-자기력계 플랫폼에 신호 흐름(200)을 보여주는 것이다. 3축 자기력계들(112-116)은 z축을 따라 정렬(aligned)되고 그리고 하나와 다른것간에 xy 평면에서 예를 들어 30도 같이 소정의 증분으로 물리적으로 회전될 수 있다. 물리적으로 회전되는 3축 자기력계들(112-116)은 멀티-자기력계 디바이스(100)을 위한 지구의 자기장을 측정하기 위해 이용될 수 있다. 적어도 두개의 물리적으로 회전되는 3축 자기력계들(112-116)은 멀티-자기력계 디바이스(100)을 위한 지구 자기장 측정량을 획득하기 위해 이용되거나 또는 가능하게 할 수 있다. 물리적으로 회전되는 3축 자기력계들(112-116)으로부터의 자기장 측정량을 보정하기 위해 이용될 수 있는 자체-보정 프로세스는 step 210, 물리적으로 회전되는 3축 자기력계들(112-116)이 호스트 프로세서(120)에 상응하는 자기장 측정량을 제공하기 위해 이용될 수 있는 곳,에서 시작할 수 있다. 호스트 프로세서(120)는 멀티-자기력계 디바이스(100)를 위한 결합된 자기장 측정량을 형성하기 위해 물리적으로 회전되는 3축 자기력계들(112-116)으로부터 수신된 자기장 측정량을 결합할 수 있다. Step 220에서, 호스트 프로세서(120)은 결합된 자기장 측정량의 크기를 섭동 한계 값(threshold value)와 비교함으로써 자기 섭동 감지를 수행할 수 있다. 자기 섭동들의 감지에 근거하여 호스트 프로세서(120)은 자기 섭동 완화 프로세스를 위한 보정 유닛(122)에 신호를 보내거나 자동적으로 트리거(trigger)할 수 있다. step230에서, 보정 유닛(122)은 예를 들어, 물리적으로 회전되는 3축 자기력계들(112-116)으로부터의 자기장 측정량의 보정을 시작하기 위해 섭동 완화 소프트 웨어 또는 애플리케이션을 이용하거나 또는 실행할 수 있다. 이것과 관련하여, 보정 유닛(122)은 물리적으로 회전되는 3축 자기력계들(112-116)으로부터의 자기장 측정량을 이용하는 360도의 완전한 원을 따라 단일의 직교 축의 회전 측정량을 먼저 생성할 수 있다. 보정 유닛(122)는 전체 360도의 방위각(azimuth)를 포함하기 위해서 물리적으로 회전되는 3축 자기력계들(112-116)의 개별 축의 모든 가능한 직교 쌍들(pairs)을 선택할 수 있다. 이것과 관련하여, 보정 유닛(122)은 360도의 완전한 원을 따라 단일의 직교 축의 회전 측정량을 시뮬레이션하기 위해 상이한 물리적으로 회전되는 3축 자기력계들(112-116)에 의해 서로 다른 순간에 얻어진 자기장 측정량을 선택할 수 있다. 보정 유닛(122)은 시뮬레이션된 회전 측정량을 이용한 감지된 자기 섭동들의 하드-아이런(hard-iron) 성분들을 결정할 수 있다. 결정된 하드-아이런 성분들은 물리적으로 회전되는 3축 자기력계들(112-116)에 대한 결합된 자기장 측정량으로부터 제거될 수 있다. 결론적인 하드-아이런 없는 자기장 측정량은 감지된 자기 섭동들의 소프트-아이런(soft iron)을 결정하기 위해 보정 유닛(122)에 의해 이용될 수 있다. 보정 유닛(122)은 멀티-자기력계 디바이스(100)을 위한 섭동 없는 또는 클린(clean) 자기장 측정량을 형성하기 위해 하드-아이런 없는 자기장 측정량으로부터 결정된 소프트-아이런 성분을 제거할 수 있다. 보정 유닛(122)는 자기 방위 필터(124)에 섭동 없는 자기장 측정량을 제공할 수 있다. step 240에서, 자기 방위 필터(124)는 멀티-자기력계 디바이스(100)을 위한 자기 방위를 계산 또는 추정하기 위해 섭동 없는 자기장 측정량을 이용할 수 있다.
step220에서, 섭동이 감지되지 않는 경우에 대표적인 프로세스는 step 250, 호스트 프로세서(120)는 물리적으로 회전되는 3축 자기력계들(112-116)에 대한 결합된 자기장 측정량을 자기 방위 필터(124)에 직접 포워드 할 수 있다. 대표적인 프로세스는 멀티-자기력계 디바이스(100)을 위한 자기 방위를 계산하기 위한 step 240에서 진행될 수 있다.
도 3은 본 발명의 실시예에 따른 유저의 지원 및/또는 자기력계 이동 없이 멀티-자기력계 플랫폼에서 회전 측정량을 생성하도록 실행할 수 있는 대표적인 과정들을 예시하는 흐름도이다. 도 3을 참조하여, 복수개의 3축 자기력계들(112-116)이 단일의 멀티-자기력계 디바이스(100)에 마운트되는 것을 가정한다. 3축 자기력계들(112-116)은 z축을 따라 정렬(align) 될 수 있고, 하나와 다른것 간에 예를들어, 30도 같은 소정의 증분으로 xy 평면(plane)상에서 물리적으로 회전할 수 있다. step 302에서, 복수개의 물리적으로 회전되는 자기력계들(112-116) 중 적어도 두개가 지구의 자기장을 측정하기 위해 이용될 수 있다. step 304에서, 호스트 프로세서(120)는 전체 360도를 포함하는 회전되는 3축 자기력계들의 개별 축 중 모든 가능한 직교축 쌍을 선택함으로써 복수개의 물리적으로 회전되는 3축 자기력계들(112-116)의 자기장 측정량을 선택적으로 결합할 수 있다. step 306에서 호스트 프로세서(120)는 선택적으로 결합한 자기장 측정량을 이용하여 회전 측정량을 생성 또는 시뮬레이션 할 수 있다. step 308에서, 호스트 프로세서(120)는 보정 유닛(122)에서 시행되는 섭동 완화 알고리즘(perturbation mitigation algorithm)에 회전 측정량을 입력 또는 제공할 수 있다.
도 4 는 본 발명의 실시예에 따른, 유저의 지원 및/또는 자기력계 이동없이 결정되는 회전 측정량을 이용하여 멀티-자기력계 플랫폼에서 자기 섭동들을 감지하도록 실행될 수 있는 대표적인 과정들을 예시하는 흐름도이다. 도 4를 참조하여, 복수개의 3축 자기력계들(112-116)은 단일의 멀티-자기력계 디바이스(100)위에 마운트(mount)된다. 3축 자기력계들(112-116)은 z축을 따라 정렬(align) 될 수 있고, 하나와 다른것 간에 예를들어, 30도 같은 소정의 증분으로 xy 평면(plane)상에서 물리적으로 회전할 수 있다. 복수개의 물리적으로 회전되는 자기력계들(112-116) 중 적어도 두개가 지구의 자기장을 측정하기 위해 이용될 수 있다. step 402에서, 호스트 프로세서(120)는 섭동 감지를 위한 섭동 한계 값을 선택 또는 결정하도록 동작할 수 있다.
step404에서, 호스트 프로세서(120)는 선택된 섭동 한계 값과 회전 측정량의 크기를 비교하도록 동작할 수 있다. 회전 측정량은 유저의 지원 및/또는 자기력계 이동없이 복수개의 물리적으로 회전되는 자기력계들(112-116) 중 적어도 두개로부터 공급되는 자기장 측정량 (magnetic filed measurements)을 이용하여 유도될 수 있다. step 406에서, 회전 측정량의 하나 이상의 크기가 선택된 섭동 한계 값보다 큰 경우에, step 408에서 호스트 프로세서(120)는 자기 섭동들이 선택된 섭동 한계값에 대하여 감지된 것을 선언할 수 있다. step 410에서, 호스트 프로세서(120)는 복수개의 물리적으로 회전되는 자기력계들(112-116) 중 적어도 두개로부터 자기장 측정량을 보정하는 섭동 완화 프로세스를 시작하기 위해 보정 유닛(122)를 자동적으로 트리거(trigger)할 수 있다. step 406에서, 회전 측정량의 크기들의 어느것도 선택된 섭동 한계 값보다 크지 않은 경우에, 그러면 step412에서, 호스트 프로세서(120)는 복수개의 물리적으로 회전되는 자기력계들(112-116) 중 적어도 두개로부터의 자기장 측정량이 섭동이 없는(free)것을 선언 할 수 있다.
도 5 는 본 발명의 실시예에 따른, 유저 지원 및/또는 자기력계 이동없이 자기장 측정량을 멀티-자기력계에서 자동으로 보정하도록 실행될 수 있는 대표적인 과정들을 예시하는 흐름도이다. 도 5를 참조하여, 복수개의 3축 자기력계들(112-116)은 단일의 멀티-자기력계 디바이스(100)위에 마운트(mount)된다. 3축 자기력계들(112-116)은 z축을 따라 정렬(align) 될 수 있고, 하나와 다른것 간에 예를들어, 30도 같은 소정의 증분으로 xy 평면(plane)상에서 물리적으로 회전할 수 있다. 복수개의 물리적으로 회전되는 자기력계들(112-116) 중 적어도 두개가 지구의 자기장을 측정하기 위해 이용될 수 있다. step 502에서, 자기 섭동들에 기반하여, 보정 유닛(122)은 물리적으로 회전되는 자기력계들(112-116)로부터 자기장 측정량에 섭동 완화 프로세스를 시작하기 위해 트리거를 수신 또는 신호를 받을 수 있다. step 503에서, 보정 유닛(122)은 복수개의 물리적으로 회전되는 자기력계들로부터 선택적으로 자기장 측정량을 결합함으로써 완전한 원의 360도를 따라 단일 직교 축의 회전 측정량을 생성 또는 시뮬레이션할 수 있다. 예를 들어, 보정 유닛(122)은 물리적으로 회전되는 3축 자기력계(112)에 의해 현재 순간
Figure pat00007
에 얻어진 자기장 측정량, 물리적으로 회전되는 3축 자기력계(114)에 의해
Figure pat00008
인 순간에 얻어진 자기장 측정량, 그리고 물리적으로 회전되는 3축 자기력계(114)에 의해
Figure pat00009
인 순간에 자기장의 측정량을 결합할 수 있고, 360도의 완전한 원을 따라 단일의 직교축의
Figure pat00010
,
Figure pat00011
,
Figure pat00012
순간들에 회전 측정량을 시뮬레이션하거나 형성하기 위해 선택할 수 있다. step504에서, 보정 유닛(122)는 회전 측정량을 이용하여 감지된 자기 섭동들의 하드-아이런(hard-iron)을 결정하도록 동작할 수 있다. step506에서, 보정 유닛(122)는 하드-아이런(hard-iron) 없는 자기장 측정량을 생성하기 위해 물리적으로 회전되는 자기력계들(112-116)으로부터의 자기장 측정량에서 결정된 하드-아이런(hard-iron) 성분들을 제거할 수 있다. step 508에서, 보정 유닛(122)는 하드-아이런(hard-iron) 없는 자기장 측정량을 이용하여 결정된 자기 섭동들의 소프트-아이런(soft-iron) 성분들을 결정하도록 동작할 수 있다. step 510에서, 보정 유닛(122)는 멀티 자기력계 디바이스(100)을 위한 섭동 없는 자기장 측정량을 생성하기 위해 하드-아이런(hard-iron) 없는 자기장 측정량으로부터 결정된 소프트-아이런(soft-iron) 성분들을 제거하도록 동작할 수 있다. step 512에서, 자기 방위 필터(124)는 멀티-자기력계 디바이스(100)을 위한 자기 방위를 결정 또는 추정하기 위해 섭동 없는 자기장 측정량을 이용할 수 있다.
자체-보정 멀티-자기력계 플랫폼, 3축 자기력계들(112-116)와 같은 적어도 두개의 자기력계들을 포함하는 멀티-자기력계 디바이스(100)와 같은 멀티-자기력계 디바이스,을 위한 방법 및 시스템의 다양한 대표적인 측면들. 3축 자기력계들(112-116)은 XYZ축 시스템에서, z축을 따라 정렬 될 수 있고, xy 평면에서 30도와 같이 소정의 또는 동적으로 변화하는 증분에서 물리적으로 회전할 수 있다. 물리적으로 회전되는 3축 자기력계들(112-116)중 적어도 두개는 상응하는 지구의 자기장을 측정하기 위해 이용될 수 있다. 호스트 프로세서(120)는 유저의 지원 및/또는 자기력계 이동없이 물리적으로 회전되는 자기력계들(112-116)에 의해 수집된 상응하는 자기장 측정량을 이용하여 360도의 완전한 원을 따라 단일의 직교 축의 회전 측정량을 측정 또는 생성하도록 동작할 수 있다. 호스트 프로세서(120)는 회전 측정량을 이용하여 물리적으로 회전되는 3축 자기력계들(112-116)을 보정하도록 동작할 수 있다. 본 발명의 실시예에 따른, 호스트 프로세서(120)는 멀티-자기력계 디바이스(100)을 위한 결합된 측정량을 생성하기 위해 물리적으로 회전되는 3축 자기력계들(112-116)으로부터의 자기장 측정량을 결합하도록 동작할 수 있다. 예를 들어, 최소 자승 결합(least-square combining), 최대 또는 최소율 결합(MRC) 및/또는 산술 평균 결합(arithmetic average combining)과 같은 다양한 알고리즘이 자기장 측정량을 결합하기 위해 이용될 수 있다. 결합된 측정량의 크기는 물리적으로 회전되는 3축 자기력계들(112-116)으로부터의 자기장 측정량에 자기 섭동을 감지하기 위해서 섭동 한계(perturbation threshold)와 비교될 수 있다. 결합된 측정량의 하나 이상의 크기가 섭동 한계 값보다 크지 않을 경우에, 호스트 프로세서(120)는 자기장 측정량은 섭동이 없는 것을 선언할 수 있다. 호스트 프로세서(120)는 멀티-자기력계 디바이스(100)을 위한 자기 방위(magnetic heading)을 계산하기 위해 자기 방위 필터(124)에 물리적으로 회전되는 3축 자기력계들(112-116)으로부터의 결합된 자기장 측정량을 직접 포워드 할 수 있다. 결합된 측정량의 하나 이상의 크기가 섭동 한계값보다 큰 경우에, 호스트 프로세서(120)는 자기 섭동들의 감지를 선언할 수 있다. 이러한 경우에, 호스트 프로세서(120)는 물리적으로 회전되는 3축 자기력계들(112-116)으로부터의 자기장 측정량에 섭동 완화 프로세스를 시작하기 위해 보정 유닛(122)를 트리거 또는 신호를 보낼수 있다. 보정 유닛(122)은 회전 측정량을 생성 또는 시뮬레이션하기 위해 물리적으로 회전되는 3축 자기력계들(112-116)으로부터의 자기장 측정량을 선택적으로 결합함으로써 섭동 완화 프로세스를 시작할 수 있다. 이와 관련하여, 다른 물리적으로 회전되는 3축 자기력계들(112-116)에 의해 다른 순간들에 얻어진 자기장 측정량은 회전 측정량을 생성하기 위해 결합하도록 선택될 수 있다. 예를 들어, 물리적으로 회전되는 3축 자기력계(112)에 의해 현재 순간
Figure pat00013
에 얻어진 자기장 측정량, 물리적으로 회전되는 3축 자기력계(114)에 의해
Figure pat00014
인 순간에 얻어진 자기장 측정량, 그리고 물리적으로 회전되는 3축 자기력계(114)에 의해
Figure pat00015
인 순간에 자기장의 측정량은 360도의 완전한 원을 따라 단일의 직교축의 ,
Figure pat00017
,
Figure pat00018
순간들에 회전 측정량을 시뮬레이션하거나 형성하기 위해 선택될 수 있다. 보정 유닛(122)는 회전 측정량을 이용하여 감지된 자기 섭동의 하드-아이런(hard-iron) 성분들을 결정할 수 있다. 결정된 하드-아이런(hard-iron) 성분들은 하드-아이런(hard-iron) 없는 자기장 측정량을 생성하기 위해 물리적으로 회전되는 3축 자기력계들(112-116)으로부터의 자기장 측정량에서 제거될 수 있다. 호스트 프로세서(120)는 감지된 자기 섭동들의 소프트-아이런(soft-iron) 성분들을 결정하기 위해 하드-아이런(hard-iron) 없는 자기장 측정량을 이용할 수 있다. 결정된 소프트-아이런(soft-iron) 성분들은 섭동 없는 자기장 측정량을 생성하기 위해 하드-아이런(hard-iron) 없는 자기장 측정량으로부터 제거될 수 있다. 보정 유닛(122)는 멀티-자기력계 디바이스(100)의 자기 방위를 계산하기 위해 자기 방위 필터(124)에 섭동 없는 자기장 측정량을 제공할 수 있다.
본 발명의 다른 실시예들은 그위에 저장되는 기계 코드 및/또는 기계 및/또는 컴퓨터에 의해 실행가능한 적어도 하나의 코드 세션을 가지는 컴퓨터 프로그램을 가지며, 그것에 의해 자체-보정 멀티-자기력계 플랫폼을 위한 명세서에서 기술된 단계를 수행하는 기계 및/또는 컴퓨터를 야기하는 비-일시적인(non-transitory) 컴퓨터 판독가능한 매체 및/또는 저장 매체, 및/또는 비-일시적인 기계 판독가능한 매체 및/또는 저장 매체를 제공할 수 있다.
따라서,본 발명은 하드웨어, 소프트웨어 또는 하드웨어와 소프트웨어의 결합에 의해 실현될 수 있다.본 발명은 집중화 방식의 적어도 하나의 컴퓨터 시스템 또는 서로 다른 요소들이 몇개의 연결된 컴퓨터 시스템들로 분산된 분산 형태로 실현될 수 있다. 명세서에서 기술된 방법들을 수행하기 위해 개조된 어떤 종류의 컴퓨터 시스템 또는 다른 장치들이 적당하다. 하드웨어와 소프트웨어의 전형적인 조합은 명세서에서 기술된 방법을 수행하기 위한 컴퓨터 시스템을 제어하는 컴퓨터 프로그램, 로드되고(loaded) 그리고 실행될때,을 가진 범용의 컴퓨터 시스템 일 수 있다.
본 발명은 명세서에서 기술된 방법들의 수행을 가능하게 하는 모든 특징들을 포함하는 그리고 컴퓨터 시스템에 로드되었(loaded)을때 이러한 방법들을 수행할 수 있는 컴퓨터 프로그램 제품에 또한 내장될 수 있다. 본 발명 내용에서 컴퓨터 프로그램은 시스템이 직접 또는 a) 다른 언어, 코드 또는 표기로의 전환 b) 다른 자료 형태로 재생산의 어느것 또는 양자 후에 특정 기능을 수행하는 정보 처리 능력을 가지도록 의도된 어느 표현, 어느 언어, 코드 또는 명령들의 셋(set)을 의미한다.
본 발명은 어떤 실시예들을 참조로써 기술하였지만, 이것은 다양한 변화들이 만들어 질 수 있고 그리고 본 발명의 범위내에서 등가물들이 대체될 수 있는것이 당업자들에의해 이해될 것이다. 또한 많은 변형들이 본 발명의 범위내에서 본 발명의 사상에 특정 상황 또는 내용을 개조하기 위해 만들어 질 수 있다.따라서, 본 발명은 개시된 특정 실시예에 한정되지 않고, 본 발명은 첨부된 청구항의 범위에 해당하는 모든 실시예를 포함하는것으로 의도된다.

Claims (15)

  1. 통신을 위한 방법에 있어서,
    적어도 두개의 자기력계들을 포함하는 멀티-자기력계 디바이스에서, 상기 적어도 두개의 자기력계들은 XYZ 좌표 시스템에서 z축을 따라 정렬(align)되고 그리고 상기 XYZ 좌표 시스템에서 xy 평면상에서 물리적으로 증분하여 회전되는 상기 멀티-자기력계 디바이스;
    상기 적어도 두개의 자기력계를 이용하여 상응하는 지구 자기장을 측정하는 단계;
    유저의 지원(assistance) 및/또는 자기력계 움직임 없이 상기 지구 자기장의 측정량을 이용하여 360도의 완전한 원을 따라 단일의 직교 축의 회전을 측정하는 단계;
    상기 회전 측정량을 이용하여 상기 적어도 두개의 자기력계를 보정하는 단계;를 포함하는, 통신을 위한 방법.
  2. 청구항 1에 있어서, 결합된 측정량을 생성하기 위해 상기 적어도 두개의 자기력계들 중 각각에 관하여 상기 상응하는 지구 자기장 측정량을 결합하는 단계를 포함하는, 통신을 위한 방법.
  3. 청구항 1에 있어서, 상기 결합된 측정량의 크기를 섭동 한계 값(perturbation threshold value)과 비교하는 단계를 포함하는, 통신을 위한 방법.
  4. 청구항 3에 있어서, 상기 비교에 기반하여 상기 상응하는 지구 자기장의 측정량에서 자기 섭동들을 감지하는 단계를 포함하는, 통신을 위한 방법.
  5. 청구항 4 에서 있어서, 만약 상기 자기 섭동들이 감지되지 않으면 상기 결합된 자기장 측정량을 이용하여 상기 멀티-자기력계 디바이스를 위한 자기 방위(magnetic heading)를 결정하는 단계를 포함하는, 통신을 위한 방법.
  6. 청구항 4에 있어서, 만약 상기 자기 섭동들이 감지되면 상기 멀티-자기력계 디바이스내에서 섭동 완화 프로세스(perturbation mitigation process)를 트리거(trigger)하는 단계를 포함하는, 통신을 위한 방법.
  7. 청구항 6에 있어서, 상기 상응하는 자기장 측정량을 선택적으로 결합함으로써 상기 회전 측정량을 생성하는 단계를 포함하는, 통신을 위한 방법.
  8. 청구항 7에 있어서,
    상기 회전 측정량을 이용하여 상기 감지된 자기 섭동들의 하드-아이런(hard-iron) 성분들을 결정하는 단계; 및
    하드-아이런(hard-iron) 없는 자기장 측정량을 생성하기 위해 상기 상응하는 지구 자기장 측정량으로부터 상기 결정된 하드-아이런 성분들을 제거하는 단계;를 포함하는, 통신을 위한 방법.
  9. 청구항 8에 있어서,
    상기 하드-아이런(hard-iron) 없는 상응하는 지구 자기장 측정량을 이용하여 상기 감지된 자기 섭동들의 소프트-아이런(soft-iron) 성분들을 결정하는 단계; 및
    섭동 없는 상응하는 지구 자기장 측정량을 생성하기 위해 상기 하드-아이런 없는 자기장 측정량으로부터 상기 결정된 소프트-아이런(soft-iron)을 제거하는 단계를 포함하는, 통신을 위한 방법.
  10. 청구항 9에 있어서,
    상기 섭동 없는 상응하는 지구 자기장 측정량을 이용하여 상기 멀티-자기력계 디바이스를 위한 자기 방위를 계산하는 단계를 포함하는, 통신을 위한 방법.
  11. 통신을 위한 시스템에 있어서,
    적어도 두개의 자기력계들을 포함하는 멀티-자기력계 디바이스에서 사용을 위한 하나 이상의 프로세서들 및/또는 회로들에서, 상기 적어도 두개의 자기력계들은 XYZ 좌표 시스템에서 z축을 따라 정렬(align)되고 그리고 상기 XYZ 좌표 시스템에서 xy 평면상에서 물리적으로 증분하여 회전되며;
    상기 적어도 두개의 자기력계들을 이용하여 상응하는 지구의 자기장을 측정;
    유저의 지원(assistance) 및/또는 자기력계 움직임 없이 상기 지구 자기장 측정량을 이용하여 360도의 완전한 원을 따라 단일의 직교 축의 회전을 측정;
    상기 회전 측정량을 이용하여 상기 적어도 두개의 자기력계를 보정하도록 동작하는 상기 하나 이상의 프로세서들 및/또는 회로들을 포함하는, 통신을 위한 시스템.
  12. 청구항 11에 있어서,
    상기 하나 이상의 프로세서들 및/또는 회로들은 결합된 측정량을 생성하기 위해 상기 적어도 두개의 자기력계들 중 각각에 관하여 상기 상응하는 지구 자기장 측정량을 결합하도록 동작하는, 통신을 위한 시스템.
  13. 청구항 12에 있어서,
    상기 하나 이상의 프로세서들 및/또는 회로들은 상기 결합된 측정량의 크기를 상기 섭동 한계 값과 비교하도록 동작하는, 통신을 위한 시스템.
  14. 청구항 13에 있어서,
    상기 하나 이상의 프로세서들 및/또는 회로들은 상기 비교에 기반하여 상기 상응하는 지구 자기장 측정량에서 자기 섭동들을 감지하도록 동작하는, 통신을 위한 시스템.
  15. 청구항 14에 있어서,
    상기 하나 이상의 프로세서들 및/또는 회로들은 만약 상기 섭동들이 감지되지 않으면 상기 결합된 자기장 측정량을 이용하여 상기 멀티-자기력계 디바이스를 위한 자기 방위를 결정하도록 동작하는, 통신을 위한 시스템.
KR20120028981A 2011-03-21 2012-03-21 자체 보정 멀티-자기력계 플랫폼을 위한 시스템 및 방법 KR101485142B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/053,126 US8838403B2 (en) 2011-03-21 2011-03-21 Method and system for a self-calibrated multi-magnetometer platform
US13/053,126 2011-03-21

Publications (2)

Publication Number Publication Date
KR20120107439A true KR20120107439A (ko) 2012-10-02
KR101485142B1 KR101485142B1 (ko) 2015-01-28

Family

ID=45655092

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20120028981A KR101485142B1 (ko) 2011-03-21 2012-03-21 자체 보정 멀티-자기력계 플랫폼을 위한 시스템 및 방법

Country Status (5)

Country Link
US (1) US8838403B2 (ko)
EP (1) EP2503285A3 (ko)
KR (1) KR101485142B1 (ko)
CN (1) CN102879010B (ko)
TW (1) TWI559020B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036046A (ko) * 2014-09-26 2017-03-31 인텔 코포레이션 전자 디바이스용 이중 자력계를 사용하는 가상 자이로스코프

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2959598A4 (en) * 2013-02-20 2016-12-14 Nokia Technologies Oy ACCESSORIES DETECTION
CN103278860B (zh) * 2013-05-06 2015-10-28 国家***第二海洋研究所 一种深海三分量磁力仪的现场自校正方法
GB2524802B (en) * 2014-04-03 2018-11-07 Nokia Technologies Oy A magnetometer apparatus and associated methods
US9804288B2 (en) 2014-05-16 2017-10-31 Baker Hughes, A Ge Company, Llc Real-time, limited orientation sensor auto-calibration
US9816814B2 (en) * 2014-06-25 2017-11-14 Intel Corporation Magnetometer unit for electronic devices
WO2016131127A1 (en) * 2015-02-19 2016-08-25 Aeryon Labs Inc. Systems and processes for calibrating unmanned aerial vehicles
US10352725B2 (en) 2015-06-18 2019-07-16 Sharp Laboratories Of America, Inc. Sensor calibration method and system
CN108290640B (zh) * 2015-11-19 2021-12-28 深圳市大疆创新科技有限公司 一种检测磁场干扰的方法、设备及***
CN107728629B (zh) * 2017-09-19 2021-06-29 富平县韦加无人机科技有限公司 无人机磁异常检测***及方法
CN110986923B (zh) * 2019-11-28 2023-06-13 北京自动化控制设备研究所 一种地磁航向误差修正方法
CN113109751B (zh) * 2021-04-15 2021-11-30 中国科学院地质与地球物理研究所 一种矢量磁强计在轨实时标校***及方法
KR20230069775A (ko) 2021-11-12 2023-05-19 삼성전자주식회사 자력계 교정 방법 및 이를 수행하는 자력계 교정 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885302B2 (en) * 2002-07-31 2005-04-26 Itron Electricity Metering, Inc. Magnetic field sensing for tamper identification
EP1605232A3 (en) * 2004-06-11 2010-12-29 Yamaha Corporation Method and apparatus for measuring magnetic offset of geomagnetic sensor and portable electronic apparatus
WO2006035505A1 (ja) * 2004-09-29 2006-04-06 C & N Inc 磁気センサの制御方法、制御装置、および携帯端末装置
CN1303501C (zh) * 2004-09-30 2007-03-07 清华大学 ***的互动信息感知方法及嵌入手机的智能游戏平台
WO2007114236A1 (ja) * 2006-03-30 2007-10-11 Kyocera Corporation 携帯電子機器及び地磁気センサ較正方法
JP4538071B2 (ja) * 2006-05-09 2010-09-08 アルプス電気株式会社 キャリブレーションプログラム及び電子コンパス
JP5012252B2 (ja) * 2007-06-25 2012-08-29 ヤマハ株式会社 磁気データ処理装置、方法およびプログラム
WO2012068359A2 (en) * 2010-11-17 2012-05-24 Hillcrest Laboratories, Inc. Apparatuses and methods for magnetometer alignment calibration without prior knowledge of the local magnetic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036046A (ko) * 2014-09-26 2017-03-31 인텔 코포레이션 전자 디바이스용 이중 자력계를 사용하는 가상 자이로스코프

Also Published As

Publication number Publication date
CN102879010A (zh) 2013-01-16
US20120245875A1 (en) 2012-09-27
US8838403B2 (en) 2014-09-16
EP2503285A3 (en) 2015-05-06
TW201300810A (zh) 2013-01-01
CN102879010B (zh) 2016-12-07
TWI559020B (zh) 2016-11-21
EP2503285A2 (en) 2012-09-26
KR101485142B1 (ko) 2015-01-28

Similar Documents

Publication Publication Date Title
KR20120107439A (ko) 자체 보정 멀티-자기력계 플랫폼을 위한 시스템 및 방법
AU2020205220B2 (en) IMU calibration
CN107003144B (zh) 基于扩展卡尔曼滤波器的自动磁强计校准
KR100533106B1 (ko) 지자계 센서의 자세 오차 보상장치 및 방법
EP2660561B1 (en) Geomagnetic device
EP2482033B1 (en) Geomagnetism detection device
WO2008122904A2 (en) Auto-calibration of orientation sensing system
JP5706576B2 (ja) オフセット推定装置、オフセット推定方法、オフセット推定プログラムおよび情報処理装置
CN105910593B (zh) 一种校准终端的地磁传感器的方法及装置
KR101698682B1 (ko) 지자기 센서의 출력값을 보정하는 방법 및 장치
TW201428297A (zh) 使用磁力儀及加速度儀之角速度估計
KR20140025319A (ko) 근 자기장의 동적 추적 및 보상을 위한 장치 및 방법
KR101503046B1 (ko) 다축 감지 장치 및 이의 교정 방법
US20150260543A1 (en) Background calibration
JP5070428B2 (ja) 電子コンパス及び方位測定方法
CN108088431B (zh) 一种自校正电子罗盘及其校正方法
CN106931965B (zh) 一种确定终端姿态的方法及装置
JP5374422B2 (ja) 磁界検知装置
JP2011185868A (ja) 方位検知装置
CN109186635A (zh) 三轴陀螺仪的零点校准方法及***
KR20100020387A (ko) 다족보행기구의 자세 측정 장치 및 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee