KR20120009668A - Preparation method for cis-based compound thin film by using rapid thermal processing and preparation method for thin film solarcell manufactured by using the cis-based compound thin film - Google Patents

Preparation method for cis-based compound thin film by using rapid thermal processing and preparation method for thin film solarcell manufactured by using the cis-based compound thin film Download PDF

Info

Publication number
KR20120009668A
KR20120009668A KR1020100069933A KR20100069933A KR20120009668A KR 20120009668 A KR20120009668 A KR 20120009668A KR 1020100069933 A KR1020100069933 A KR 1020100069933A KR 20100069933 A KR20100069933 A KR 20100069933A KR 20120009668 A KR20120009668 A KR 20120009668A
Authority
KR
South Korea
Prior art keywords
thin film
cis
heat treatment
treatment process
compound thin
Prior art date
Application number
KR1020100069933A
Other languages
Korean (ko)
Other versions
KR101137434B1 (en
Inventor
안세진
윤재호
곽지혜
조아라
윤경훈
신기식
안승규
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020100069933A priority Critical patent/KR101137434B1/en
Publication of KR20120009668A publication Critical patent/KR20120009668A/en
Application granted granted Critical
Publication of KR101137434B1 publication Critical patent/KR101137434B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A method for manufacturing a CIS based compound thin film using a rapid thermal process and a method for manufacturing a thin film solar cell using the CIS based compound thin film are provided to improve the efficiency of a light absorbing layer by increasing the crystallization of the CIS based compound thin film. CONSTITUTION: A CIS based compound thin film is formed on a substrate. A thermal selenization process of the CIS based compound thin film is performed by using a rapid thermal process. The CIS based compound thin film includes a CIS compound thin film, a CIGS compound thin film, or CZTS compound thin film. Se vapor is produced by heating Se metal. Se is vacuously deposited on the CIS based compound thin film.

Description

급속열처리 공정을 사용한 CIS계 화합물 박막의 제조방법 및 상기 CIS계 화합물 박막을 이용한 박막 태양전지의 제조방법{PREPARATION METHOD FOR CIS-BASED COMPOUND THIN FILM BY USING RAPID THERMAL PROCESSING AND PREPARATION METHOD FOR THIN FILM SOLARCELL MANUFACTURED BY USING THE CIS-BASED COMPOUND THIN FILM}Method of manufacturing CIS-based compound thin film using rapid heat treatment process and method of manufacturing thin-film solar cell using the CIS-based compound thin film USING THE CIS-BASED COMPOUND THIN FILM}

본 발명은 급속열처리 공정을 사용한 CIS계 화합물 박막의 제조방법 및 상기 CIS계 화합물 박막을 이용한 박막형 태양전지의 제조방법에 관한 것으로서, 보다 상세하게는 비진공 코팅법으로 CIS 화합물 나노분말, CIGS 화합물 나노분말 또는 CZTS 화합물 나노분말을 포함한 슬러리를 코팅하여 CIS계 화합물 박막을 형성한 후, 셀렌화 열처리 공정에서 급속열처리 공정(Rapid Thermal Processing; RTP)을 이용하여 CIS계 화합물 박막을 제조하는 방법 및 상기 CIS계 화합물 박막을 이용한 박막형 태양전지의 제조방법에 관한 것이다.
The present invention relates to a method for manufacturing a CIS compound thin film using a rapid heat treatment process and to a method for manufacturing a thin film solar cell using the CIS compound thin film. More specifically, a CIS compound nano powder and a CIGS compound nano by a non-vacuum coating method. After coating a slurry including powder or CZTS compound nanopowder to form a CIS-based compound thin film, a method of manufacturing a CIS-based compound thin film using Rapid Thermal Processing (RTP) in a selenization heat treatment process and the CIS It relates to a method for manufacturing a thin film solar cell using a compound thin film.

최근 심각한 환경오염 문제와 화석 에너지 고갈로 차세대 청정에너지 개발에 대한 중요성이 증대되고 있다. 그 중에서도 태양전지는 태양 에너지를 직접 전기 에너지로 전환시키는 장치로서, 공해가 적고, 자원이 무한적이며 반영구적인 수명을 가지고 있어 미래 에너지 문제를 해결할 수 있는 에너지원으로 기대되고 있다.Recently, the importance of developing the next generation of clean energy is increasing due to severe environmental pollution and depletion of fossil energy. Among them, the solar cell is a device that directly converts solar energy into electrical energy, and is expected to be an energy source capable of solving future energy problems due to its low pollution, infinite resources, and a semi-permanent lifetime.

태양전지는 광흡수층으로 사용되는 물질에 따라서 다양한 종류로 구분되며, 현재 가장 많이 사용되는 것은 실리콘을 이용한 실리콘 태양전지이다. 그러나 최근 실리콘의 공급부족으로 가격이 급등하면서 박막형 태양전지에 대한 관심이 증가하고 있다. 박막형 태양전지는 얇은 두께로 제작되므로 재료의 소모량이 적고, 무게가 가볍기 때문에 활용범위가 넓다. 이러한 박막형 태양전지의 재료로는 비정질 실리콘과 CdTe, CIS 또는 CIGS에 대한 연구가 활발하게 진행되고 있다.Solar cells are classified into various types according to materials used as light absorption layers, and at present, the most commonly used are silicon solar cells using silicon. However, as prices have soared recently due to a shortage of silicon, interest in thin-film solar cells is increasing. Thin-film solar cells are manufactured with a thin thickness, so the materials are consumed less and the weight is lighter, so the application range is wide. Research into amorphous silicon, CdTe, CIS, or CIGS is actively conducted as a material for such thin film solar cells.

CIS 박막 또는 CIGS 박막은 Ⅰ-Ⅲ-Ⅵ 화합물 반도체 중의 하나이며, 실험실적으로 만든 박막 태양전지 중에서 가장 높은 변환효율(약 19.9%)을 기록하고 있다. 특히 10 마이크론 이하의 두께로 제작이 가능하고, 장시간 사용시에도 안정적인 특성을 가지고 있어, 실리콘을 대체할 수 있는 저가의 고효율 태양전지로 기대되고 있다.The CIS thin film or CIGS thin film is one of the I-III-VI compound semiconductors and has the highest conversion efficiency (about 19.9%) among laboratory thin film solar cells. In particular, it can be manufactured to a thickness of less than 10 microns, and has a stable characteristic even in the long-term use, it is expected to be a low-cost high-efficiency solar cell that can replace silicon.

특히 CIS 박막은 직접 천이형 반도체로서 박막화가 가능하고 밴드갭이 1.04 eV로 비교적 광변환에 적합하며, 광흡수 계수가 알려진 태양전지 재료 중 큰 값을 나타내는 재료이다.In particular, CIS thin film is a direct transition semiconductor that can be thinned and has a band gap of 1.04 eV, which is relatively suitable for light conversion, and exhibits a large value among solar cell materials with known light absorption coefficients.

CIGS 박막은 CIS 박막의 낮은 개방전압을 개선하기 위하여 In의 일부를 Ga으로 대체하거나 Se를 S로 대체하여 개발된 재료이다.CIGS thin film is developed by replacing part of In with Ga or Se by S to improve low open voltage of CIS thin film.

CIGS계 박막 태양전지는 수 마이크론 두께의 박막으로 태양전지를 만드는데, 그 제조방법으로는 크게 진공에서의 증착을 이용하는 방법과, 비진공에서 전구체 물질을 도포한 후에 이를 열처리하는 방법이 있다. 그 중, 진공 증착에 의한 방법은 고효율의 흡수층을 제조할 수 있는 장점이 있는 반면에, 대면적의 흡수층 제조 시에 균일성이 떨어지고 고가의 장비를 이용하여야 하며 사용되는 재료의 20?50%의 손실로 인하여 제조단가가 높다는 단점을 가지고 있다. 반면에, 전구체 물질을 도포한 후 고온 열처리하는 방법은 공정 단가를 낮출 수 있으며 대면적을 균일하게 제조할 수 있으나, 흡수층 효율이 낮다는 단점을 가지고 있다.CIGS-based thin film solar cell is a solar cell made of a thin film of several microns thick, the manufacturing method is largely a method using a vacuum deposition, and a method of applying a precursor material in a non-vacuum and heat treatment. Among them, the method of vacuum deposition has the advantage of manufacturing a highly efficient absorbing layer, while in the manufacturing of a large area absorbent layer, it is inferior in uniformity and requires the use of expensive equipment. Due to the loss, the manufacturing cost is high. On the other hand, the method of applying a precursor material and then high temperature heat treatment can lower the cost of the process and uniformly prepare a large area, but has a disadvantage of low absorption layer efficiency.

비진공에서 전구체 물질을 도포하여 형성된 CIGS 박막은 기공이 많고 치밀화되지 못한 특성을 나타내기 때문에 셀렌화 열처리 공정을 수행한다. 기존의 셀렌화 열처리 공정에서는 유독 기체인 셀렌화수소(H2Se)를 사용함에 따라 안정성의 문제에 의해 안전설비를 갖추기 위해 엄청난 양의 시설비가 전제되어야 하고 장시간 열처리하여야 하기 때문에 CIGS 광흡수층의 단가가 상승하는 단점이 있다. 또한, Se 금속을 가열하여 Se 증기를 공급하며 고온 열처리하는 셀렌화 열처리 공정도 셀렌화수소를 이용한 공정보다 안전하지만 일반적으로 30분 이상의 장시간동안 열처리를 수행하여야 한다.The CIGS thin film formed by applying the precursor material in the non-vacuum is subjected to selenization heat treatment process because it has a lot of pores and has not been compacted. In the conventional selenization heat treatment process, due to the use of toxic gas hydrogen selenide (H 2 Se), the cost of the CIGS light absorbing layer has to be enormous amount of facility cost and long time heat treatment for safety facilities due to stability problems. There is a drawback to rising. In addition, the selenization heat treatment process in which the Se metal is heated to supply Se vapor and subjected to high temperature heat treatment is also safer than the process using hydrogen selenide.

본 발명자들은 비진공 코팅법을 사용하여 CIS계 화합물 박막을 제조하기 위한 방법에 대해 예의 연구를 거듭한 결과, 비진공에서 전구체 물질을 도포하여 형성된 CIS계 화합물 박막위에 일정 두께 이상의 Se 층을 증착한 후 이를 고온에서 급속열처리 공정을 수행하면 단시간 내에 CIS계 화합물 박막의 결정성을 높여 치밀화함으로써 광흡수층의 효율을 향상시키면서도 제조단가를 낮출 수 있다는 것을 알게 되어 본 발명을 완성하기에 이르렀다.
The present inventors have diligently studied a method for manufacturing a CIS compound thin film by using a non-vacuum coating method, and as a result, a Se layer having a predetermined thickness or more deposited on a CIS compound thin film formed by applying a precursor material in a non-vacuum After the rapid heat treatment process at a high temperature, it was found that the manufacturing cost can be reduced while improving the efficiency of the light absorption layer by increasing the crystallinity of the CIS compound thin film in a short time, thereby achieving the present invention.

본 발명의 목적은 비진공 코팅법을 사용하여 제조 단가가 낮으며, 치밀한 구조를 갖는 CIS계 화합물 박막의 제조방법을 제공하는 데 있다.An object of the present invention is to provide a method for producing a CIS compound thin film having a low manufacturing cost and a compact structure by using a non-vacuum coating method.

본 발명의 다른 목적은 셀렌화 열처리 공정에서 급속열처리 공정을 사용함으로써 열처리량(thermal budget)을 줄일 수 있으며, 안정성이 우수한 셀렌화 열처리 공정을 수행할 수 있는 CIS계 화합물 박막의 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a method for producing a CIS compound thin film that can reduce the thermal budget by using a rapid heat treatment process in the selenization heat treatment process, and can perform a selenization heat treatment process with excellent stability. There is.

본 발명의 또 다른 목적은 제조 단가가 낮으며, CIS계 화합물 박막의 결정성을 높여 치밀화함으로써 광흡수층의 효율을 향상시킨 CIS계 박막 태양전지를 제공할 수 있다.
Still another object of the present invention is to provide a CIS-based thin film solar cell having low manufacturing cost and improving the efficiency of the light absorption layer by densifying by increasing the crystallinity of the CIS-based compound thin film.

상기 목적을 달성하기 위하여, 본 발명은,In order to achieve the above object,

비진공 코팅법을 이용한 CIS계 화합물 박막의 제조방법으로, 기판 상에 형성된 CIS계 화합물 박막에 대해 급속열처리 공정을 사용하여 셀렌화 열처리 공정을 수행하는 것을 특징으로 하는, 급속열처리 공정에 의한 CIS계 박막의 제조방법을 제공한다.CIS-based compound thin film manufacturing method using a non-vacuum coating method, CIS-based compound thin film formed on a substrate by the rapid heat treatment process characterized in that the selenization heat treatment process, CIS system by the rapid heat treatment process It provides a method for producing a thin film.

본 발명에서 상기 CIS계 화합물 박막은 CIS 화합물 박막, CIGS 화합물 박막 또는 CZTS 화합물 박막일 수 있다.In the present invention, the CIS-based compound thin film may be a CIS compound thin film, a CIGS compound thin film, or a CZTS compound thin film.

본 발명의 일 실시형태에 있어서, 상기 급속열처리 공정을 사용한 셀렌화 열처리 공정은 Se 금속을 가열하여 Se 증기를 발생시켜 상기 CIS계 화합물 박막 상에 Se를 진공 증착시킨 후 급속 열처리하여 수행될 수 있다.In one embodiment of the present invention, the selenization heat treatment process using the rapid heat treatment process may be performed by heating Se metal to generate Se vapor to vacuum deposit Se on the CIS compound thin film, and then rapidly heat treatment. .

본 발명의 다른 실시형태에 있어서, 상기 급속열처리 공정을 사용한 셀렌화 열처리 공정은 셀레늄 화합물 및 바인더를 알코올 용매에 용해시켜 셀레늄 전구체 용액을 제조하여 이를 상기 CIS계 화합물 박막 상에 코팅하여 도포한 후 급속열처리하여 수행될 수 있다.In another embodiment of the present invention, the selenization heat treatment process using the rapid heat treatment process is prepared by dissolving a selenium compound and a binder in an alcohol solvent to prepare a selenium precursor solution, which is coated on the CIS compound thin film and then applied It may be carried out by heat treatment.

상기 급속열처리 공정은 Se이 증착된 CIS계 화합물 박막을 챔버에 장착한 후, 600?700℃에서 1?5분 동안 수행되는 것이 바람직하다.The rapid heat treatment process is preferably carried out for 1 to 5 minutes at 600 ~ 700 ℃ after mounting the Se-deposited CIS compound thin film in the chamber.

또한 본 발명은 CIS계 화합물 박막을 광흡수층으로 포함하는 박막 태양전지의 제조방법으로, 상기 CIS계 화합물 박막은 비진공 코팅법으로 코팅된 후, 급속열처리 공정을 사용한 셀렌화 열처리 공정을 수행하여 제조되는 것을 특징으로 하는 CIS계 박막 태양전지의 제조방법을 제공한다.
In another aspect, the present invention is a method for manufacturing a thin film solar cell comprising a CIS-based compound thin film as a light absorption layer, the CIS-based compound thin film is coated by a non-vacuum coating method, and then manufactured by performing a selenization heat treatment process using a rapid heat treatment process It provides a method for manufacturing a CIS-based thin film solar cell, characterized in that.

본 발명은 셀렌화 열처리 공정의 열처리량을 줄일 수 있으며, 안정성이 우수한 셀렌화 열처리 공정을 수행할 수 있는 CIS계 화합물 박막의 제조방법을 제공함으로써 제조단가가 낮으며 고밀도를 갖는 CIS계 화합물 박막을 제조할 수 있다. 또한, 본 발명에 따라 CIS계 화합물 박막의 결정성을 높여 치밀화함으로써 광흡수층의 효율을 향상시킨 CIS계 박막 태양전지를 제공할 수 있다.
The present invention can reduce the amount of heat treatment in the selenization heat treatment process, and provides a method for producing a CIS compound thin film capable of performing the selenization heat treatment process with excellent stability, thereby lowering the manufacturing cost and producing a CIS compound thin film having high density. It can manufacture. In addition, according to the present invention, it is possible to provide a CIS-based thin film solar cell in which the crystallinity of the CIS-based compound thin film is increased and densified to improve the efficiency of the light absorption layer.

도 1은 본 발명의 실시예 1에서 급속 열처리 공정을 수행하기 전 CIGS 화합물 박막의 측단면에 대해 촬영한 주사전자현미경 사진이다.
도 2는 본 발명의 실시예 1에서 급속 열처리 공정을 수행한 후 CIGS 화합물 박막의 측단면에 대해 촬영한 주사전자현미경 사진이다.
1 is a scanning electron micrograph taken on the side cross-section of the CIGS compound thin film before the rapid heat treatment process in Example 1 of the present invention.
2 is a scanning electron micrograph taken on the side cross-section of the CIGS compound thin film after the rapid heat treatment process in Example 1 of the present invention.

이하 본 발명에 따른 급속열처리 공정을 사용한 CIS계 화합물 박막의 제조방법을 구체적으로 설명한다.
Hereinafter, a method for preparing a CIS compound thin film using the rapid heat treatment process according to the present invention will be described in detail.

우선, 기판 상에 CIS계 화합물 박막을 형성한다. First, a CIS compound thin film is formed on a substrate.

본 발명에서 CIS계 화합물 박막은 CIS 화합물 박막, CIGS 화합물 박막 또는 CZTS 화합물 박막을 의미한다.In the present invention, the CIS compound thin film means a CIS compound thin film, a CIGS compound thin film, or a CZTS compound thin film.

상기 CIS계 화합물 박막을 형성하기 위하여 CIS계 화합물 나노입자를 제조한 후 CIS계 화합물 슬러리를 제조한다.In order to form the CIS-based compound thin film, after preparing the CIS-based compound nanoparticles, a CIS-based compound slurry is prepared.

본 발명에서 "CIS계 화합물"이란 IB-IIIA-VIA족 화합물 반도체인 Cu-In-Se를 기본으로 하는 Cu-In-S, Cu-Ga-S, Cu-Ga-Se 등의 3원계 화합물, Cu-In-Ga-Se 등의 4원계 화합물, Cu-In-Ga-Se-(S,Se), Cu-In-Al-Ga-(S,Se), Cu-In-Al-Ga-Se-S 등의 5-6원 화합물을 포함하는 용어로 사용하였다. 보다 넓게는 상기 CIS계 화합물에서 In, Ga, Al 등의 IIIA족 원소 전부를 IIB족 원소(Zn 등) + IVA족 원소(Sn 등)로 치환한 Cu-Zn-Sn-(Se,S)와 일부만 치환한 Cu-In-Ga-Zn-Sn-(Se,S) 등을 포함하는 CZTS계 화합물을 포함하는 것으로 정의한다. In the present invention, "CIS-based compound" is a ternary compound such as Cu-In-S, Cu-Ga-S, Cu-Ga-Se based on Cu-In-Se which is an IB-IIIA-VIA compound semiconductor, Quaternary compounds such as Cu-In-Ga-Se, Cu-In-Ga-Se- (S, Se), Cu-In-Al-Ga- (S, Se), Cu-In-Al-Ga-Se -S It used for the term containing 5-6 membered compounds, such as these. More broadly, Cu-Zn-Sn- (Se, S), in which all Group IIIA elements such as In, Ga, and Al are substituted with Group IIB elements (Zn, etc.) + Group IVA elements (Sn, etc.) in the CIS compound, It is defined to include a CZTS-based compound including Cu-In-Ga-Zn-Sn- (Se, S) and the like which are partially substituted.

상술한 CIS계 화합물을 사용하여 제조되는 CIS계 화합물 나노입자는 저온 콜로이달 방법, 용매열합성법, 마이크로웨이법 등 본 발명이 속하는 기술분야에서 알려진 방법에 따라 제조될 수 있다.The CIS-based compound nanoparticles prepared using the above-described CIS-based compound may be prepared according to methods known in the art, such as low temperature colloidal method, solvent thermal synthesis method, microwave method, and the like.

다음으로, 제조한 CIS계 화합물 나노입자 및 바인더를 용매에 용해시켜 CIS계 화합물 슬러리를 제조한다.Next, the prepared CIS compound nanoparticles and the binder are dissolved in a solvent to prepare a CIS compound slurry.

본 발명에서 CIS계 화합물 슬러리를 제조하기 위한 용매로는 메탄올, 에탄올, 펜탄올, 프로판올, 부탄올 등의 알코올계 용매를 사용할 수 있다.Alcohol solvents such as methanol, ethanol, pentanol, propanol and butanol may be used as a solvent for preparing the CIS compound slurry in the present invention.

상기 바인더로는 에틸렌글리콜, 프로필렌글리콜, 에틸셀룰로오스, 폴리비닐피롤리돈 등을 사용할 수 있으며, CIS계 화합물 슬러리의 농도 조절을 위해 바인더의 양을 조절할 수 있다.Ethylene glycol, propylene glycol, ethyl cellulose, polyvinylpyrrolidone, etc. may be used as the binder, and the amount of the binder may be adjusted to control the concentration of the CIS compound slurry.

상기 CIS계 화합물 슬러리는 CIS계 화합물 나노입자 20?30 중량부, 용매 80?100 중량부 및 바인더 20?30 중량부를 포함하여 제조될 수 있다.The CIS-based compound slurry may be prepared including 20-30 parts by weight of CIS-based compound nanoparticles, 80-100 parts by weight of a solvent, and 20-30 parts by weight of a binder.

상술한 바와 같이 CIS계 화합물 나노입자 및 바인더를 용매에 혼합한 후 초음파 처리를 통해 잘 분산된 상태의 CIS계 화합물 슬러리를 제조할 수 있다.As described above, the CIS-based compound slurry may be prepared in a well dispersed state by mixing the CIS-based compound nanoparticles and the binder with a solvent.

다음으로, 상기 CIS계 화합물 슬러리를 기판 상에 코팅하여 CIS계 화합물 박막을 형성한다.Next, the CIS-based compound slurry is coated on a substrate to form a CIS-based compound thin film.

본 발명에서는 CIS계 화합물 박막을 형성하기 위하여 비진공 코팅법을 사용한다. 비진공 코팅법으로는 본 발명이 속하는 기술분야에서 잘 알려진 비진공 코팅법, 예를 들어, 스프레이법, 초음파 스프레이법, 스핀코팅법, 닥터블레이드법, 스크린 인쇄법, 잉크젯 프린팅법 등을 사용할 수 있다. 이와 같이 본 발명은 비진공 코팅법에 의해 CIS계 화합물 박막을 형성함으로써 제조 단가를 낮출 수 있다.In the present invention, a non-vacuum coating method is used to form a CIS compound thin film. As the non-vacuum coating method, a non-vacuum coating method well known in the art, for example, a spray method, an ultrasonic spray method, a spin coating method, a doctor blade method, a screen printing method, an inkjet printing method, or the like can be used. have. As described above, the present invention can reduce the manufacturing cost by forming the CIS compound thin film by the non-vacuum coating method.

상기 CIS계 화합물 슬러리를 비진공 하에서 코팅하여 CIS계 화합물 박막을 형성한 후에는 알코올 용매와 바인더를 제거하기 위한 건조 과정을 더 수행할 수 있으며, 이러한 코팅 및 건조 과정을 2?3회 반복하여 목적하는 두께의 CIS계 화합물 박막을 형성할 수 있다. After the CIS-based compound slurry is coated under non-vacuum to form a CIS-based compound thin film, a drying process for removing an alcohol solvent and a binder may be further performed, and the coating and drying process may be repeated two or three times. A thin CIS compound thin film can be formed.

이후, CIS계 화합물 박막 상에 Se을 도포하기 위한 공정을 수행한다. Thereafter, a process for applying Se on the CIS compound thin film is performed.

본 발명의 일 실시형태에 있어서, CIS계 화합물 박막 상에 Se을 증착하기 위한 공정은 Se 금속을 가열하여 Se 증기를 발생시켜 상기 CIS계 화합물 박막 상에 Se를 진공 증착시켜 수행될 수 있다.In one embodiment of the present invention, the process for depositing Se on the CIS-based compound thin film may be performed by heating Se metal to generate Se vapor to vacuum deposit Se on the CIS-based compound thin film.

본 발명의 다른 실시형태에 있어서, CIS계 화합물 박막 상에 Se을 증착하기 위한 공정은 셀레늄 화합물 및 바인더를 알코올 용매에 용해시켜 셀레늄 전구체 용액을 제조하여 이를 상기 CIS계 화합물 박막 상에 닥터블레이드법, 스프레이법 등의 비진공 코팅법을 이용하여 증착시켜 수행될 수 있다.In another embodiment of the present invention, the process for depositing Se on the CIS-based compound thin film is prepared by dissolving a selenium compound and a binder in an alcohol solvent to prepare a selenium precursor solution, which is a doctor blade method on the CIS-based compound thin film, It may be carried out by vapor deposition using a non-vacuum coating method such as a spray method.

상기 셀레늄 화합물로는 SeO2, SeCl4, 셀레노우레아 등을 사용할 수 있으나, 이에 제한되지 않는다.The selenium compound may be SeO 2 , SeCl 4 , selenourea, etc., but is not limited thereto.

상기 바인더로는 에틸렌글리콜, 프로필렌글리콜, 에틸셀룰로오스, 폴리비닐피롤리돈 등을 사용할 수 있다.Ethylene glycol, propylene glycol, ethyl cellulose, polyvinylpyrrolidone, etc. may be used as the binder.

본 발명에서 용매로는 메탄올, 에탄올, 펜탄올, 프로판올, 부탄올 등의 알코올계 용매를 사용할 수 있다.In the present invention, as the solvent, alcohol solvents such as methanol, ethanol, pentanol, propanol and butanol may be used.

상기 CIS계 화합물 박막 상에 Se은 4?5 ㎛의 두께로 증착되는 것이 바람직하다.Se is preferably deposited to a thickness of 4 ~ 5 ㎛ on the CIS compound thin film.

상술한 바와 같이 본 발명에서의 셀렌화 열처리 공정에서는 유독 기체인 셀렌화수소를 사용하지 않아 셀렌화수소를 사용한 종래의 셀렌화 열처리 공정의 안정성 문제를 해결할 수 있다.As described above, in the selenization heat treatment process of the present invention, it is possible to solve the stability problem of the conventional selenization heat treatment process using hydrogen selenide without using hydrogen selenide as a toxic gas.

이후 CIS계 화합물 박막에 대해 열처리 공정을 수행한다. 본 발명에서는 CIS계 화합물 박막에 대한 셀렌화 열처리 공정시 급속열처리 공정(Rapid Thermal Processing; RTP)을 사용하는 것을 특징으로 한다. 본 발명에서는 셀렌화 열처리 공정시 급속열처리 공정을 이용하여 열처리량을 줄일 수 있다.Thereafter, heat treatment is performed on the CIS compound thin film. In the present invention, a rapid thermal processing (RTP) is used in the selenization heat treatment process for the CIS compound thin film. In the present invention, the amount of heat treatment can be reduced by using a rapid heat treatment process during the selenization heat treatment process.

상기 급속열처리 공정은 Se이 증착된 CIS계 화합물 박막을 챔버에 장착한 후, 600?700℃에서 1?5분 동안 수행되는 것이 바람직하다.The rapid heat treatment process is preferably carried out for 1 to 5 minutes at 600 ~ 700 ℃ after mounting the Se-deposited CIS compound thin film in the chamber.

본 발명의 일 실시형태에 있어서, 상기 급속열처리 공정은 Se이 증착된 CIS계 화합물 박막을 챔버에 장착한 후, 진공 펌프를 이용하여 기저압력을 10-6 torr까지 낮추고 비활성 가스를 이용하여 작동압력을 10-3 torr로 조절한 후 수행될 수 있다.In one embodiment of the present invention, the rapid heat treatment process is equipped with a Se-deposited CIS-based compound thin film in the chamber, using a vacuum pump to lower the base pressure to 10 -6 torr and operating pressure using an inert gas It can be carried out after adjusting to 10 -3 torr.

또한, 본 발명은 CIS계 화합물 박막을 광흡수층으로 포함하는 박막 태양전지의 제조방법으로, 상기 CIS계 화합물 박막은 비진공 코팅법으로 코팅된 후, 급속열처리 공정을 사용한 셀렌화 열처리 공정을 수행하여 제조되는 것을 특징으로 하는 CIS계 박막 태양전지의 제조방법을 제공한다.In addition, the present invention is a method of manufacturing a thin film solar cell comprising a CIS-based compound thin film as a light absorption layer, the CIS-based compound thin film is coated by a non-vacuum coating method, and then subjected to selenization heat treatment process using a rapid heat treatment process It provides a method for producing a CIS-based thin film solar cell, characterized in that the manufacturing.

본 발명의 CIS계 박막 태양전지의 제조방법에서 CIS계 화합물 박막에 대한 급속열처리 공정을 사용한 셀렌화 열처리 공정은 상술한 바와 동일하게 수행될 수 있다.In the manufacturing method of the CIS-based thin film solar cell of the present invention, the selenization heat treatment process using the rapid heat treatment process for the CIS-based compound thin film may be performed in the same manner as described above.

본 발명에 따라 제조된 CIS계 박막 태양전지는 제조 단가가 낮으면서도, CIS계 화합물 박막의 결정성을 높여 치밀화함으로써 광흡수층의 효율이 높다. The CIS-based thin film solar cell manufactured according to the present invention has a low manufacturing cost, and increases the crystallinity of the CIS-based compound thin film and densifies it, thereby increasing the efficiency of the light absorbing layer.

또한 본 발명은 CIS계 화합물 박막을 광흡수층으로서 포함하는 박막 태양전지의 제조방법으로서, 상기 CIS계 화합물 박막은 기판 상에 비진공 코팅법으로 형성된 CIS계 화합물 박막에 대해 급속열처리 공정을 사용하여 셀렌화 열처리 공정을 수행하는 단계를 포함하여 이루어지는 것을 특징으로 하는 박막 태양전지의 제조방법을 제공한다.
In another aspect, the present invention is a method for manufacturing a thin film solar cell comprising a CIS-based compound thin film as a light absorption layer, the CIS-based compound thin film is selenium using a rapid heat treatment process for the CIS-based compound thin film formed by a non-vacuum coating method on the substrate It provides a method for manufacturing a thin film solar cell comprising the step of performing a heat treatment process.

이하, 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail.

글로브 박스 내에서 CuI 0.343 g, InI3 0.674 g, GaI3 0.207 g을 증류된 피리딘 용매 30 ㎖와 혼합하고 이를 80 ℃의 핫 플레이트 위에서 약 10 분간 교반하였다. 약 10 분간의 교반 후 불투명하던 용액이 투명해지는 것을 확인하였다. 이러한 Cu, In, Ga 혼합물을 증류된 메탄올 20 ㎖ 안에 녹아있는 Na2Se 0.478 g와 혼합시켰다. 이는 원자비로 Cu : In : Ga : Se = 0.9 : 0.68 : 0.23 : 1.91에 해당하며, 그 후 메탄올/피리딘 혼합물을 0℃ 아이스 배스 안에서 기계적으로 교반하면서 60분 동안 반응시켜 CIGS 나노 입자를 합성하였다. 합성된 CIGS 콜로이드를 4000 rpm으로 약 30 분간 원심분리 후 5 분간 초음파 처리를 하고 증류된 메탄올로 세척하였고 이러한 과정을 반복하여 생산물안의 부산물 및 피리딘을 완전히 제거하여 고순도의 CIGS 화합물 나노입자를 합성하였다.CuI 0.343 g, InI 3 in glove box 0.674 g, GaI 3 0.207 g was mixed with 30 ml of distilled pyridine solvent and stirred for about 10 minutes on a hot plate at 80 ° C. After stirring for about 10 minutes, it was confirmed that the opaque solution became transparent. This Cu, In, Ga mixture was mixed with 0.478 g of Na 2 Se dissolved in 20 ml of distilled methanol. This corresponds to Cu: In: Ga: Se = 0.9: 0.68: 0.23: 1.91 in atomic ratio, after which the methanol / pyridine mixture was reacted for 60 minutes with mechanical stirring in an ice bath at 0 ° C to synthesize CIGS nanoparticles. . The synthesized CIGS colloid was centrifuged at 4000 rpm for about 30 minutes, sonicated for 5 minutes and washed with distilled methanol. This process was repeated to completely remove by-products and pyridine in the product to synthesize high purity CIGS compound nanoparticles.

이와 같이 제조된 CIGS 화합물 나노입자 0.3 g 및 프로필렌글리콜 0.3 g을 메탄올 1.2 g에 용해시킨 후 초음파 처리를 60분간 수행하여 CIGS 화합물 슬러리를 제조하였다. 이후 제조한 CIGS 화합물 슬러리를 유리기판 상에 닥터 블레이드법을 사용하여 코팅한 후, 알코올 용매와 바인더를 제거하기 위해 핫플레이트(hot plate) 상에서 60℃에서 5분 동안 건조하고, 180℃에서 2분 동안 건조하였다. 이러한 코팅-건조 공정을 3회 반복하여 기판 상에 CIGS 화합물 박막을 형성하였다. 이후 제조된 CIGS 화합물 박막을 두께가 3 mm인 Se shot이 장착되어 있는 진공 기화기 내에 배치한 후 진공펌프를 이용하여 기저압력을 10-6 torr로 조절하였고 이후 가열하여 Se 증기를 발생시켜 CIGS 화합물 박막 상에 4㎛의 두께로 Se을 증착시켰고, 셀렌화 열처리 공정을 수행하기 전에 CIGS 화합물 박막의 측면에 대해 주사전자현미경 사진을 촬영하여 도 1에 나타내었다. 이후 Se이 증착된 CIGS 화합물 박막을 급속열처리 장치의 챔버에 장착한 후, 진공 펌프를 이용하여 기저압력을 10-6 torr까지 낮추고 비활성 가스를 이용하여 작동압력을 10-3 torr로 조절하였고, 챔버를 가동하여 기판온도가 1분 이내에 700℃에 이르게 한 후 700℃에서 1분 동안 유지한 후 자연 냉각시켜 열처리 과정을 수행하였다. 이와 같이 셀렌화 열처리 공정을 수행한 CIGS 화합물 박막의 측면에 대해 주사전자현미경 사진을 촬영하여 도 2에 나타내었다.The CIGS compound slurry was prepared by dissolving 0.3 g of the CIGS compound nanoparticles prepared in this way and 0.3 g of propylene glycol in 1.2 g of methanol, followed by ultrasonic treatment for 60 minutes. The CIGS compound slurry was then coated on a glass substrate using a doctor blade method, then dried on a hot plate for 5 minutes at 60 ° C. to remove alcohol solvent and binder, and then at 180 ° C. for 2 minutes. Dried over. This coating-drying process was repeated three times to form a CIGS compound thin film on the substrate. Subsequently, the prepared CIGS compound thin film was placed in a vacuum vaporizer equipped with a Se shot having a thickness of 3 mm, and then the base pressure was adjusted to 10 -6 torr using a vacuum pump. Se was deposited on the substrate with a thickness of 4 μm, and a scanning electron microscope photograph was taken on the side of the CIGS compound thin film before performing the selenization heat treatment process. Subsequently, a SeGS deposited CIGS compound thin film was mounted in a chamber of a rapid heat treatment apparatus, and the base pressure was lowered to 10 -6 torr using a vacuum pump, and the operating pressure was adjusted to 10 -3 torr using an inert gas. After operating the substrate temperature reaches 700 ℃ within 1 minute and then maintained at 700 ℃ for 1 minute and then naturally cooled to perform a heat treatment process. Scanning electron micrographs were taken of the side surfaces of the CIGS compound thin film subjected to the selenization heat treatment process as shown in FIG. 2.

실시예 1에서와 동일한 방법으로 제조된 CIGS 화합물 나노입자 0.3 g 및 프로필렌글리콜 0.3 g을 메탄올 1.2 g에 용해시킨 후 초음파 처리를 60분간 수행하여 CIGS 화합물 슬러리를 제조하였다. 이후 제조한 CIGS 화합물 슬러리를 유리기판 상에 닥터 블레이드법을 사용하여 코팅한 후, 알코올 용매와 바인더를 제거하기 위해 핫플레이트(hot plate) 상에서 60℃에서 5분 동안 건조하고, 180℃에서 2분 동안 건조하였다. 이러한 코팅-건조 공정을 3회 반복하여 기판 상에 CIGS 화합물 박막을 형성하였다. 이후 제조된 CIGS 화합물 박막 위에 셀레늄 화합물이 용해된 셀레늄 전구체 용액을 도포하여 Se 공급층을 형성시켰다. 이를 위해 SeO2 3g을 에탄올 10ml 및 프로필렌글리콜 10ml에 혼합한 후 60분간 교반하여 닥터 블레이드 코팅이 가능한 Se 전구체 슬러리를 제조하였다. 상기 Se 전구체 슬러리를 닥터 블레이드 방법으로 CIGS 화합물 나노 입자 박막 상에 코팅한 후 알코올 용매와 바인더를 제거하기 위해 핫플레이트 상에서 60℃에서 5분 동안 건조하고, 180℃에서 2분 동안 건조하였다. 건조 후 Se 전구체 박막의 최종 두께가 4 ㎛가 되도록 필요한 경우 코팅 및 건조 공정을 반복하였다. 이후 Se이 증착된 CIGS 화합물 박막을 급속열처리 장치의 챔버에 장착한 후, 진공 펌프를 이용하여 기저압력을 10-6 torr까지 낮추고 비활성 가스를 이용하여 작동압력을 10-3 torr로 조절하였고, 챔버를 가동하여 기판온도가 1분 이내에 700℃에 이르게 한 후 700℃에서 1분 동안 유지한 후 자연 냉각시켜 열처리 과정을 수행하였다.
CIGS compound slurry was prepared by dissolving 0.3 g of CIGS compound nanoparticles prepared in the same manner as in Example 1 and 0.3 g of propylene glycol in 1.2 g of methanol, followed by sonication for 60 minutes. The CIGS compound slurry was then coated on a glass substrate using a doctor blade method, then dried on a hot plate for 5 minutes at 60 ° C. to remove alcohol solvent and binder, and then at 180 ° C. for 2 minutes. Dried over. This coating-drying process was repeated three times to form a CIGS compound thin film on the substrate. Thereafter, the selenium precursor solution in which the selenium compound was dissolved was coated on the prepared CIGS compound thin film to form an Se supply layer. To this end, 3 g of SeO 2 was mixed with 10 ml of ethanol and 10 ml of propylene glycol, followed by stirring for 60 minutes to prepare a Se precursor slurry capable of doctor blade coating. The Se precursor slurry was coated on the CIGS compound nanoparticle thin film by the doctor blade method, then dried at 60 ° C. for 5 minutes on a hotplate to remove alcohol solvent and binder, and dried at 180 ° C. for 2 minutes. After drying, the coating and drying processes were repeated if necessary so that the final thickness of the Se precursor thin film was 4 μm. Subsequently, a SeGS deposited CIGS compound thin film was mounted in a chamber of a rapid heat treatment apparatus, and the base pressure was lowered to 10 -6 torr using a vacuum pump, and the operating pressure was adjusted to 10 -3 torr using an inert gas. After operating the substrate temperature reaches 700 ℃ within 1 minute and then maintained at 700 ℃ for 1 minute and then naturally cooled to perform a heat treatment process.

도 1을 참조하면, 실시예 1에서 셀렌화 열처리 공정을 수행하기 전의 CIGS 화합물 박막에는 기공이 많이 형성되어 있다 그러나 도 2를 참조하면 본 발명에 따라 CIGS 화합물 박막에 대해 셀렌화 열처리 공정을 급속열처리 방법에 의해 수행하는 경우 1분 동안 급속열처리를 수행하여도 CIGS 화합물 박막이 치밀화되는 것을 알 수 있다.
Referring to FIG. 1, a large number of pores are formed in the CIGS compound thin film before performing the selenization heat treatment process in Example 1. However, referring to FIG. 2, the selenization heat treatment process is rapidly performed for the CIGS compound thin film according to the present invention. In the case of the method, it can be seen that the CIGS compound thin film is densified even after rapid heat treatment for 1 minute.

이상 본 발명을 바람직한 실시예에 대해서 설명하지만, 본 발명은 상술한 특정 실시예에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 그 기술적 사상을 벗어나지 않고 다양하게 변형 실시할 수 있을 것이다. 따라서 본 발명의 권리범위는 특정 실시예가 아니라, 첨부된 특허청구범위에 의해 정해지는 것으로 해석되어야 한다. Although the present invention has been described with reference to preferred embodiments, the present invention is not limited to the above-described specific embodiments, and those skilled in the art to which the present invention pertains have various modifications without departing from the technical spirit. You can do it. Therefore, the scope of the present invention should be construed as defined by the appended claims rather than the specific embodiments.

Claims (18)

비진공 코팅법을 이용한 CIS계 화합물 박막의 제조방법으로,
기판 상에 형성된 CIS계 화합물 박막에 대해 급속열처리 공정을 사용하여 셀렌화 열처리 공정을 수행하는 것을 특징으로 하는, 급속열처리 공정에 의한 CIS계 박막의 제조방법.
In the manufacturing method of the CIS-based compound thin film using a non-vacuum coating method,
A selenization heat treatment process is performed on a CIS compound thin film formed on a substrate using a rapid heat treatment process.
청구항 1에 있어서,
상기 CIS계 화합물 박막은 CIS 화합물 박막, CIGS 화합물 박막 또는 CZTS 화합물 박막인 것을 특징으로 하는, 급속열처리 공정에 의한 CIS계 박막의 제조방법.
The method according to claim 1,
The CIS compound thin film is a CIS compound thin film, CIGS compound thin film or CZTS compound thin film, characterized in that the rapid heat treatment process for producing a CIS-based thin film.
청구항 1에 있어서,
상기 급속열처리 공정을 사용한 셀렌화 열처리 공정은 Se 금속을 가열하여 Se 증기를 발생시켜 상기 CIS계 화합물 박막 상에 Se를 진공 증착시킨 후 급속열처리하여 수행되는 것을 특징으로 하는, 급속열처리 공정에 의한 CIS계 박막의 제조방법.
The method according to claim 1,
The selenization heat treatment process using the rapid heat treatment process is carried out by heating the Se metal to generate Se vapor by vacuum depositing Se on the CIS compound thin film, followed by rapid heat treatment, CIS by the rapid heat treatment process Method for producing a thin film.
청구항 1에 있어서,
상기 급속열처리 공정을 사용한 셀렌화 열처리 공정은 셀레늄 화합물 및 바인더를 알코올 용매에 용해시켜 셀레늄 전구체 용액을 제조하여 이를 상기 CIS계 화합물 박막 상에 코팅하여 증착시킨 후 급속열처리하여 수행되는 것을 특징으로 하는, 급속열처리 공정에 의한 CIS계 박막의 제조방법.
The method according to claim 1,
The selenization heat treatment process using the rapid heat treatment process is performed by dissolving a selenium compound and a binder in an alcohol solvent to prepare a selenium precursor solution, coating it on the CIS compound thin film and depositing the same, followed by rapid heat treatment. Method for producing a CIS-based thin film by a rapid heat treatment process.
청구항 4에 있어서,
상기 셀레늄 화합물은 SeO2, SeCl4 및 셀레노우레아로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 급속열처리 공정에 의한 CIS계 박막의 제조방법.
The method of claim 4,
The selenium compound is selected from the group consisting of SeO 2 , SeCl 4 and selenourea, CIS-based thin film manufacturing method by a rapid heat treatment process.
청구항 4에 있어서,
상기 바인더는 에틸렌글리콜, 프로필렌글리콜, 에틸셀룰로오스 및 폴리비닐피롤리돈으로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 급속열처리 공정에 의한 CIS계 박막의 제조방법.
The method of claim 4,
The binder is selected from the group consisting of ethylene glycol, propylene glycol, ethyl cellulose and polyvinylpyrrolidone, CIS-based thin film manufacturing method by a rapid heat treatment process.
청구항 3 또는 청구항 4에 있어서,
상기 급속열처리 공정은 Se이 증착된 CIS계 화합물 박막을 챔버에 장착한 후, 600?700℃에서 1?5분 동안 급속열처리하여 수행하는 것을 특징으로 하는, 급속열처리 공정에 의한 CIS계 박막의 제조방법.
The method according to claim 3 or 4,
The rapid heat treatment process is characterized in that the CIS-based thin film is deposited by the Se-deposited CIS-based compound thin film and then carried out by rapid heat treatment at 600 ~ 700 ℃ for 1 ~ 5 minutes, the CIS based thin film by the rapid heat treatment process Way.
청구항 3 또는 청구항 4에 있어서,
상기 CIS계 화합물 박막 상에 Se은 4?5 ㎛로 증착되는 것을 특징으로 하는, 급속열처리 공정에 의한 CIS계 박막의 제조방법.
The method according to claim 3 or 4,
Se is deposited on the CIS compound thin film in a 4 ~ 5 ㎛ characterized in that the rapid heat treatment process for producing a CIS-based thin film.
청구항 1에 있어서,
상기 CIS계 화합물 박막은 스프레이법, 초음파 스프레이법, 스핀코팅법, 닥터블레이드법, 스크린 인쇄법 및 잉크젯 프린팅법으로 이루어진 군에서 선택된 비진공 코팅법에 의해 형성되는 것을 특징으로 하는, 급속열처리 공정에 의한 CIS계 박막의 제조방법.
The method according to claim 1,
The CIS-based compound thin film is formed by a non-vacuum coating method selected from the group consisting of a spray method, an ultrasonic spray method, a spin coating method, a doctor blade method, a screen printing method, and an inkjet printing method. Method for producing a CIS-based thin film.
CIS계 화합물 박막을 광흡수층으로 포함하는 박막 태양전지의 제조방법으로,
상기 CIS계 화합물 박막은 비진공 코팅법으로 코팅된 후, 급속열처리 공정을 사용한 셀렌화 열처리 공정을 수행하여 제조되는 것을 특징으로 하는, CIS계 박막 태양전지의 제조방법.
In the manufacturing method of a thin film solar cell comprising a CIS-based compound thin film as a light absorption layer,
The CIS-based compound thin film is coated by a non-vacuum coating method, characterized in that it is produced by performing a selenization heat treatment process using a rapid heat treatment process, CIS-based thin film solar cell manufacturing method.
청구항 10에 있어서,
상기 CIS계 화합물 박막은 CIS 화합물 박막, CIGS 화합물 박막 또는 CZTS 화합물 박막인 것을 특징으로 하는, CIS계 박막 태양전지의 제조방법.
The method according to claim 10,
The CIS compound thin film is a CIS compound thin film, CIGS compound thin film or CZTS compound thin film, characterized in that the CIS-based thin film solar cell manufacturing method.
청구항 10에 있어서,
상기 급속열처리 공정을 사용한 셀렌화 열처리 공정은 Se 금속을 가열하여 Se 증기를 발생시켜 상기 CIS계 화합물 박막 상에 Se를 진공 증착시킨 후 급속열처리하여 수행되는 것을 특징으로 하는, CIS계 박막 태양전지의 제조방법.
The method according to claim 10,
The selenization heat treatment process using the rapid heat treatment process is performed by vacuum deposition of Se on the CIS compound thin film by heating Se metal to generate Se vapor, followed by rapid heat treatment. Manufacturing method.
청구항 10에 있어서,
상기 급속열처리 공정을 사용한 셀렌화 열처리 공정은 셀레늄 화합물 및 바인더를 알코올 용매에 용해시켜 셀레늄 전구체 용액을 제조하여 이를 상기 CIS계 화합물 박막 상에 코팅하여 증착시킨 후 급속열처리하여 수행되는 것을 특징으로 하는, CIS계 박막 태양전지의 제조방법.
The method according to claim 10,
The selenization heat treatment process using the rapid heat treatment process is performed by dissolving a selenium compound and a binder in an alcohol solvent to prepare a selenium precursor solution, coating it on the CIS compound thin film and depositing the same, followed by rapid heat treatment. Method of manufacturing CIS thin film solar cell.
청구항 13에 있어서,
상기 셀레늄 화합물은 SeO2, SeCl4 및 셀레노우레아로 이루어진 군으로부터 선택되는 것을 특징으로 하는, CIS계 박막 태양전지의 제조방법.
The method according to claim 13,
The selenium compound is selected from the group consisting of SeO 2 , SeCl 4 and selenourea, CIS-based thin film solar cell manufacturing method.
청구항 13에 있어서,
상기 바인더는 에틸렌글리콜, 프로필렌글리콜, 에틸셀룰로오스 및 폴리비닐피롤리돈으로 이루어진 군으로부터 선택되는 것을 특징으로 하는, CIS계 박막 태양전지의 제조방법.
The method according to claim 13,
The binder is selected from the group consisting of ethylene glycol, propylene glycol, ethyl cellulose and polyvinylpyrrolidone, CIS-based thin film solar cell manufacturing method.
청구항 12 또는 청구항 13에 있어서,
상기 급속열처리 공정은 Se이 증착된 CIS계 화합물 박막을 챔버에 장착한 후, 600?700℃에서 1?5분 동안 급속열처리하여 수행하는 것을 특징으로 하는, CIS계 박막 태양전지의 제조방법.
The method according to claim 12 or 13,
The rapid heat treatment process is a CIS-based thin film solar cell, characterized in that after the Se-deposited CIS-based compound thin film is mounted in the chamber, the rapid heat treatment for 1 to 5 minutes at 600 ~ 700 ℃.
비진공 코팅법으로 코팅된 후, 급속열처리 공정을 사용한 셀렌화 열처리 공정을 수행하여 제조된 CIS계 화합물 박막을 광흡수층으로 포함하는 CIS계 박막 태양전지.
CIS-based thin film solar cell comprising a CIS-based compound thin film manufactured by performing a selenization heat treatment process using a rapid heat treatment process after coating by a non-vacuum coating method.
CIS계 화합물 박막을 광흡수층으로서 포함하는 박막 태양전지의 제조방법으로서,
상기 CIS계 화합물 박막은 기판 상에 비진공 코팅법으로 형성된 CIS계 화합물 박막에 대해 급속열처리 공정을 사용하여 셀렌화 열처리 공정을 수행하는 단계를 포함하여 이루어지는 것을 특징으로 하는 박막 태양전지의 제조방법.
As a method of manufacturing a thin film solar cell comprising a CIS compound thin film as a light absorption layer,
The CIS-based compound thin film is a thin-film solar cell manufacturing method comprising the step of performing a selenization heat treatment process using a rapid heat treatment process for the CIS-based compound thin film formed by a non-vacuum coating method on the substrate.
KR1020100069933A 2010-07-20 2010-07-20 Preparation method for cis-based compound thin film by using rapid thermal processing and preparation method for thin film solarcell manufactured by using the cis-based compound thin film KR101137434B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100069933A KR101137434B1 (en) 2010-07-20 2010-07-20 Preparation method for cis-based compound thin film by using rapid thermal processing and preparation method for thin film solarcell manufactured by using the cis-based compound thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100069933A KR101137434B1 (en) 2010-07-20 2010-07-20 Preparation method for cis-based compound thin film by using rapid thermal processing and preparation method for thin film solarcell manufactured by using the cis-based compound thin film

Publications (2)

Publication Number Publication Date
KR20120009668A true KR20120009668A (en) 2012-02-02
KR101137434B1 KR101137434B1 (en) 2012-04-20

Family

ID=45834434

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100069933A KR101137434B1 (en) 2010-07-20 2010-07-20 Preparation method for cis-based compound thin film by using rapid thermal processing and preparation method for thin film solarcell manufactured by using the cis-based compound thin film

Country Status (1)

Country Link
KR (1) KR101137434B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165076A1 (en) 2012-05-02 2013-11-07 주식회사 아이센스 Reagent composition for redox reaction
CN114904744A (en) * 2022-04-14 2022-08-16 南京邮电大学 Blade coating method for preparing copper indium selenium film and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736940B2 (en) * 2004-03-15 2010-06-15 Solopower, Inc. Technique and apparatus for depositing layers of semiconductors for solar cell and module fabrication
US20070093006A1 (en) * 2005-10-24 2007-04-26 Basol Bulent M Technique For Preparing Precursor Films And Compound Layers For Thin Film Solar Cell Fabrication And Apparatus Corresponding Thereto
KR20080009346A (en) * 2006-07-24 2008-01-29 주식회사 엘지화학 Process of preparing buffer layer of solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165076A1 (en) 2012-05-02 2013-11-07 주식회사 아이센스 Reagent composition for redox reaction
CN114904744A (en) * 2022-04-14 2022-08-16 南京邮电大学 Blade coating method for preparing copper indium selenium film and application thereof

Also Published As

Publication number Publication date
KR101137434B1 (en) 2012-04-20

Similar Documents

Publication Publication Date Title
KR101129194B1 (en) Preparation method for cis-based compound thin film with high density and preparation method for thin film solarcell manufactured by using the cis-based compound thin film
US8815123B2 (en) Fabrication method for ibiiiavia-group amorphous compound and ibiiiavia-group amorphous precursor for thin-film solar cells
KR101197228B1 (en) Method for Manufacturing Light Absorbing Layer of Compound Semiconductor Solar Cell
KR101865239B1 (en) Cigs nanoparticle ink formulation having a high crack-free limit
KR20120131536A (en) Preparation method for cis-based compound thin film with high density
CN107134507B (en) Preparation method of copper indium sulfur selenium film with gradient component solar cell absorption layer
KR101193106B1 (en) Preparation method for ci(g)s-based compound thin film using cu-se binary nano particle as flux and ci(g)s-based compound thin film prepared by the same
KR101137434B1 (en) Preparation method for cis-based compound thin film by using rapid thermal processing and preparation method for thin film solarcell manufactured by using the cis-based compound thin film
KR101192289B1 (en) Preparation method for ci(g)s-based compound thin film using binary nano particle hydrid and ci(g)s-based compound thin film prepared by the same
KR101388451B1 (en) Preparation method of ci(g)s-based thin film with decreased carbon layers, ci(g)s-based thin film prepared by the same, and solar cell including the same
Xue et al. Fabrication of Cu2ZnSn (SxSe1− x) 4 solar cells by ethanol-ammonium solution process
KR20120131535A (en) Preparation method for compact thin film by selenization of nano partlcle
KR101369167B1 (en) Method for preparing ci(g)s-based thin film introduced with aging step of slurry comprising binary nanoparticle and ci(g)s-based thin film prepared by the same
JP5782672B2 (en) COMPOUND SEMICONDUCTOR THIN FILM INK
KR20130054800A (en) Manufacturing method for thin film of absorber layer and thin film solar cell comprising it
JP2016510179A (en) PV device with adjusted particle size and S: Se ratio
TWI675890B (en) Cigs nanoparticle ink formulation with a high crack-free limit
Chiou et al. Copper-indium-gallium-diselenide nanoparticles synthesized by a solvothermal method for solar cell application
Zhang et al. Improving the performance of Sb2Se3 thin-film solar cells using pyrolytic ammonium metatungstate back contact layer
US20160284901A1 (en) Method of manufacturing ci(g)s-based thin film including aging of slurry comprising binary nanoparticles, and ci(g)s-based thin film manufactured thereby
Guo et al. Selenization of copper indium gallium disulfide nanocrystal films for thin film solar cells
KR20140099346A (en) Preparation Method of Copper Indium Diselenide Thin Film for Solar Cell Using Spray Process
KR20120062073A (en) Preparation of chalcopyrite type complex and its composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160406

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190326

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 9