KR20110093970A - Composition of nano composite - Google Patents

Composition of nano composite Download PDF

Info

Publication number
KR20110093970A
KR20110093970A KR1020110069271A KR20110069271A KR20110093970A KR 20110093970 A KR20110093970 A KR 20110093970A KR 1020110069271 A KR1020110069271 A KR 1020110069271A KR 20110069271 A KR20110069271 A KR 20110069271A KR 20110093970 A KR20110093970 A KR 20110093970A
Authority
KR
South Korea
Prior art keywords
weight
oxide
sol
magnesium
phosphate
Prior art date
Application number
KR1020110069271A
Other languages
Korean (ko)
Other versions
KR101873053B1 (en
Inventor
이재환
Original Assignee
이재환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이재환 filed Critical 이재환
Priority to KR1020110069271A priority Critical patent/KR101873053B1/en
Publication of KR20110093970A publication Critical patent/KR20110093970A/en
Application granted granted Critical
Publication of KR101873053B1 publication Critical patent/KR101873053B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • C04B14/026Carbon of particular shape, e.g. nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • C04B14/026Carbon of particular shape, e.g. nanotubes
    • C04B14/028Carbon aerogels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/064Silica aerogel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/301Oxides other than silica porous or hollow
    • C04B14/302Aerogels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/32Carbides; Nitrides; Borides ; Silicides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE: A nanocomposite composition is provided to maximize the efficiency of energy by increasing the combining force of a nano material with other materials using a main hardening material, an expansion compressing material, and a reinforcing material. CONSTITUTION: A nanocomposite composition includes silica aerogel, 0.01 to 60 weight% of a nano material, 25 to 65 weight% of a main hardening material, 3 to 13 weight% of an expansion compressing material, 5 to 25 weight% of a reinforcing core material, 3 to 45 weight% of a reinforcing material, 0.1 to 10 weight% of an organic polymer coagulating material, 15 to 25 weight% of an organic/inorganic sol, and 3 to 20 weight% of an adhesive material. The nano material includes carbon nano-tube. The main hardening material includes micro cement. The expansion compressing material includes calcium sulfur aluminate. The reinforcing core material includes a borosilicate glass material. The reinforcing material includes silica fume. The organic polymer coagulating material includes polyacrylamide. The organic/inorganic sol includes silica sol. The adhesive material includes acryl-co-polymer.

Description

나노 복합체 조성물{COMPOSITION OF NANO COMPOSITE}Nanocomposite composition {COMPOSITION OF NANO COMPOSITE}

본 발명은 실리카 에어로젤(aerogel), 탄소나노튜브(CNT) 등의 나노 소재를 마이크로 시멘트 등과 고압축하여 이를 복합화하기 위한 나노 복합 재료 조성물에 관한 것이다. 나노 소재는 자체 성질 및 변환된 우수 특성을 보유하고는 있으나 그 자체적으로는 초경량성, 초소수성 등으로 인하여 실용성에 한계가 있어 이를 적극적으로 도입, 보완하고 초기 응집력을 형성시켜 이를 고형화한 것이 특징으로 마이크로 시멘트 등과의 복합화로 고압축화 및 내열성을 배가한 나노 복합체 조성물에 관한 것이다.The present invention relates to a nanocomposite composition for high-compression of nanomaterials such as silica airgel (aerogel), carbon nanotubes (CNT) and the like by micro-compression. Nano-materials have their own properties and converted excellent properties, but in themselves they are limited in practicality due to their ultra-light weight and ultra-hydrophobicity, so they are actively introduced, supplemented, and formed an initial cohesive force to solidify them. The present invention relates to a nanocomposite composition in which high pressure compression and heat resistance are doubled by complexation with micro cement or the like.

최근 들어 에너지 효율을 극대화하기 위한 친환경적이고 또한 고효율적인 장치, 장비, 기초 소재, 신재생 에너지원 등의 새로운 기술 개발이 국내외에서 이루어지고 있는 실정이다.Recently, in order to maximize energy efficiency, new technologies such as eco-friendly and high-efficiency devices, equipment, base materials, and renewable energy sources have been developed at home and abroad.

실리카 에어로젤의 예로 보면 저밀도 나노 기공으로 인한 초단열성 등의 특성을 보유한 우수한 기초 소재이나 단독 적용은 기계적으로 강도가 약하고 압축, 치밀성 및 기타 재료와의 점착력이 결여되어 타 재료와의 복합화로 그 기능을 수행하게 하여야만 한다. 그 자체적으로는 그 특성을 유지하기 위한 초경량성, 초소수성 등으로 인하여 오히려 기타 재료와의 복합화에 무리가 따르고 소재의 원활한 실적용을 위해서는 에어로젤이 다량 함유하고 고압축화된 기타 재료와의 복합화가 반드시 이루어져야만 한다. 그러나 과량 함유 시 초경량성, 소수성 등으로 인하여 강도, 지지력, 결합력 등이 낮아지고 전혀 압축되지 않는 현상이 발생하는 등 일체화되지 않는다. 또한 결합, 경화를 하여도 유기물과의 점착 경화는 고온에는 적용할 수 없고 유기물 바인더의 자체 부피 팽창으로 인해 압축화하기가 쉽지가 않다. 그 전체 복합체의 체적을 최대한 압축하고 줄여야만이 그 특성을 기대할 수 있다. 압축되지 않으면 성능이 저하한다.As an example of silica airgel, it is an excellent basic material with properties such as ultra-thermal insulation due to low-density nano pores, but its application alone is weak in mechanical strength and lacks adhesiveness with other materials due to its lack of compression, compactness and adhesion with other materials. It must be done. Due to its light weight and ultra-hydrophobicity to maintain its characteristics, it is difficult to complex with other materials, and in order to use the material smoothly, complex with other materials containing a large amount of airgel and high compression It must be done. However, when the excessive content, such as ultra-lightness, hydrophobicity, etc., strength, bearing capacity, bonding force, etc. are lowered and does not integrate at all, such as a phenomenon that does not compress at all. In addition, even when bonded and cured, adhesive curing with an organic material is not applicable at high temperatures and is not easy to compress due to self-volume expansion of the organic binder. Only by compressing and reducing the volume of the entire complex as much as possible can expect this property. If not compressed, performance will be degraded.

에어로젤 기초 소재를 시멘트 등으로 2차적으로 응용 복합화하기 위한 국내외 공개된 특허는 현재 극히 미미한 실정이고 에어로젤을 함유한 코팅제는 국내외 없는 상태로 이를 복합화하기 위한 기술 개발이 대기업 및 공공연구소 등에서 현재 진행 중에 있으며 에너지원의 효율적 활용을 위한 보다 나은 새로운 기술 개발이 절실히 요구되는 실정이다.Patents published at home and abroad for secondary application and compounding of aerogel base materials into cement are very few at present, and coatings containing airgel are not available at home and abroad. There is an urgent need to develop new technologies for the efficient use of energy sources.

본 출원인도 이에 편성하여 수 년간의 개발 과정을 통한 나노 소재인 실리카 에어로젤 등의 기초 소재 복합화로의 연구 결과물로 수 건의 특허 출원, 등록을 하고 현재도 개발 중에 있다. 본 출원인의 기존의 기술과 차별화할 수 있는 본 출원의 조성물과 조성물은 에어로젤을 복합화하기 위한 기존의 기술 대비, 전체 나노 소재를 아울러 복합화할 수 있는 조성물로 압축성 및 내구성을 높이고 점착성을 추가로 부여하여 전체 나노 소재를 복합화하게 되었다. 본 발명은 에어로젤, 그래핀(graphene), 풀러렌(fullerene), 탄소나노튜브 등의 복합화로 많은 기초 소재의 실제 적용성을 높일 수 있다 하겠다.Applicant also filed several patents and registered as a result of research into composite of basic materials such as silica airgel, which is a nano material through years of development process, and is currently developing. The composition and composition of the present application, which can be distinguished from the existing technology of the applicant, are a composition capable of complexing all nanomaterials as well as the existing technology for compounding aerogels. The entire nanomaterial is compounded. The present invention can increase the practical applicability of many basic materials by the combination of aerogel, graphene (graphene), fullerene (fullerene), carbon nanotubes and the like.

결론적으로 에어로젤, 탄소나노튜브 등의 나노 소재는 고유의 우수 특성을 보유하고 있으나 단독 적용의 많은 문제가 있어 이를 극복하고 해결하기 위한 기술이 많이 개발되어야 한다. 혼합 자체의 중요성 보다 중요한 것은 고압축화 과정이다.In conclusion, nano-materials such as aerogels and carbon nanotubes have inherent superior characteristics, but there are many problems of application alone, and thus a lot of technologies must be developed to overcome and solve them. More important than the mixing itself is the high pressure compression process.

이에 본 발명은 위와 같은 문제점을 해결하기 위하여 개발된 것으로써 에어로젤, 탄소나노튜브 등의 기초 소재를 적극 도입하고 그 고유 우수 기능을 그대로 유지되게 하며 기타 재료와의 결합력의 증대로 실제 사용의 적응성을 높여 에너지 효율을 극대화하기 위한 것이다. 나노 소재의 표면에 마이크로 시멘트 등의 무기질 재료와 기타 유기물 재료와의 물리적 점착, 고압축, 결합, 경화로 복합체 및 고형체를 형성하기 위해 나노 복합체 조성물을 제공함에 그 목적이 있다 하겠다.Accordingly, the present invention has been developed to solve the above problems, and actively introduce basic materials such as aerogels, carbon nanotubes, etc., to maintain their excellent excellent functions, and to increase the bonding strength with other materials, thereby improving the adaptability of actual use. To maximize energy efficiency. It is an object of the present invention to provide a nanocomposite composition to form a composite and a solid by physical adhesion, high compression, bonding and curing of inorganic materials such as micro cement and other organic materials on the surface of the nano-material.

상술한 바와 같은 목적을 달성하기 위한 본 발명의 조성물과 조성비(중량%)는 다음과 같다.Composition and composition ratio (weight%) of this invention for achieving the objective as mentioned above are as follows.

실리카 에어로젤, 탄소 에어로젤, 탄소나노튜브에어로젤, 유기 에어로젤, 금속산화물 에어로젤, 그래핀, 풀러렌, 산화그래핀, 탄소 나노튜브, 나노 탄소, 질화붕소 나노튜브, 티탄산염 나노튜브, 산화니켈 나노튜브, 산화텅스텐 나노튜브, 산화구리-산화티타늄 나노튜브 분말, 금속산화물 나노튜브, 유기 나노튜브 중 1종 이상 선택하는 나노 소재 0.01∼60중량%.Silica Airgel, Carbon Airgel, Carbon Nanotube Aerogel, Organic Airgel, Metal Oxide Airgel, Graphene, Fullerene, Graphene Oxide, Carbon Nanotube, Nano Carbon, Boron Nitride Nanotube, Titanate Nanotube, Nickel Oxide Nanotube, Oxidation 0.01-60 wt% of nanomaterials selected from tungsten nanotubes, copper oxide-titanium oxide nanotube powders, metal oxide nanotubes, and organic nanotubes.

소석회, 생석회, 티탄산바륨, 티탄산지르코늄, 티탄산리튬, 마이크로 시멘트, 석고, 수산화알루미늄, 티탄산칼륨, 티탄산마그네슘, 석회석, 나노클레이, 시트르산, 헥토라이트, 붕산염, 산화망간, 산화티타늄, 산화주석, 산화철, 인산아연, 산화구리, 셀룰로오스, 카올린클레이, 황산알루미늄, 폴리염화알루미늄, 황산제1철, 황산제2철, 알카리성 실리케이트계 금속산화물, 규조토, 탄산칼슘, 탄산마그네슘, 산화아연, 제올라이트, 염화파라핀, 염화제1철, 염화제2철, 암모늄백반, 칼륨명반 중 1 종 이상 선택하는 주경화재료 25∼65중량%.Slaked lime, quicklime, barium titanate, zirconium titanate, lithium titanate, micro cement, gypsum, aluminum hydroxide, potassium titanate, magnesium titanate, limestone, nanoclay, citric acid, hectorite, borate, manganese oxide, titanium oxide, tin oxide, iron oxide, Zinc phosphate, copper oxide, cellulose, kaolin clay, aluminum sulfate, polyaluminum chloride, ferrous sulfate, ferric sulfate, alkaline silicate metal oxide, diatomaceous earth, calcium carbonate, magnesium carbonate, zinc oxide, zeolite, paraffin chloride, 25-65 weight% of main hardening materials chosen from 1 or more types of ferric chloride, ferric chloride, ammonium alum, and potassium alum.

칼슘설포알루미네이트, 인산마그네슘, 규산칼슘 중 1종 이상 선택하는 팽창 압축재료 3∼13중량%.3 to 13% by weight of an expanded compression material selected from calcium sulfo aluminate, magnesium phosphate and calcium silicate.

붕규산 유리분말, 규산마그네슘, 탄산리튬, 알루미나, 인산알루미늄, 산화마그네슘, 인산암모늄, 오산화인, 유리질 카본, 황산암모늄 중 1종 이상 선택하는 보강 심재료 5∼25중량%.5 to 25% by weight of reinforcing core material selected from at least one of borosilicate glass powder, magnesium silicate, lithium carbonate, alumina, aluminum phosphate, magnesium oxide, ammonium phosphate, phosphorus pentoxide, glassy carbon, and ammonium sulfate.

실리카 흄, 흄드 실리카, 탈크, 인산 시멘트, 알루미나 시멘트, 제련마그네슘분말, 카라기난, 알루미늄인산나트륨, 수산화마그네슘, 폴리나프탈렌설포네이트, 마이크로화 순수실리카, 카제인, 폴리크리스털린실리콘 중 1종 이상 선택하는 보강재료 3∼45중량%.Reinforcement to select at least one of silica fume, fumed silica, talc, phosphate cement, alumina cement, smelted magnesium powder, carrageenan, sodium aluminum phosphate, magnesium hydroxide, polynaphthalenesulfonate, micronized silica, casein, and polycrystalline silicon 3 to 45% by weight of the material.

폴리아크릴아마이드, 폴리아민, 폴리아마이드, 소디움폴리아크릴레이트 중 1종 이상 선택하는 유기 고분자 응집재료 0.1∼10중량%.0.1-10 weight% of organic polymer aggregation materials chosen by 1 or more types of polyacrylamide, polyamine, polyamide, and sodium polyacrylate.

실리카 졸, 인산염, 메탄올, 에탄올, 폴리비닐알코올, 이소프로필알코올, 물유리, 규산염, 나노실리카 콜로이드, 알루미나 졸, 지르코니아 졸, 티타니아 졸, 알킬실란, 실록산 올리고머, 폴리카르본산염, 금속산화물 졸. 중 1종 이상 선택하는 유·무기질 졸 15∼25중량%.Silica sol, phosphate, methanol, ethanol, polyvinyl alcohol, isopropyl alcohol, water glass, silicate, nanosilica colloid, alumina sol, zirconia sol, titania sol, alkylsilane, siloxane oligomer, polycarbonate, metal oxide sol. 15-25 weight% of organic-inorganic sol to which 1 or more types are selected.

아크릴코폴리머, 페놀, 멜라민, 우레아, 실란실록산중합체, 우레탄, 에폭시, 폴리카르보실란, 실리콘, 에틸렌비닐아세테이트 중 1종 이상 선택하는 점착재료 3∼20중량%로 구성됨을 특징으로 하는 나노 복합 재료 조성물로 혼합된 것으로 구성되고 제공하며 이상의 재료를 혼합하고 전체 재료 중량 1대비 0.5∼5.5의 물을 혼입하고 교반기 300∼3000rpm, 3분 이상, 10분 이하의 교반을 통하여 에멀젼이 이루어진다. 이를 에어로젤, 탄소나노튜브 등의 각 특성에 맞는 용도 즉 단열성, 전도체형성, 인장력, 유연성 증대, 고발열성 등으로의 적용처에 맞게 일부 타 재료를 첨가 투입하거나 압력, 열원 등을 부여하여 고형체를 형성한다. 본 발명의 나노 복합체 조성물은 전체 나노 소재를 에멀젼 복합화하기 위한 기술로 각 사용처에 맞는 코팅제 및 패널의 제품화, 성형화 이전까지를 언급한다. 이상과 같은 조성물 재료로 과제를 해결한다.Nanocomposite composition comprising 3 to 20% by weight of an adhesive material selected from at least one of acrylic copolymer, phenol, melamine, urea, silane siloxane polymer, urethane, epoxy, polycarbosilane, silicone and ethylene vinyl acetate It is composed and provided as a mixture, and the above materials are mixed and 0.5 to 5.5 water is mixed with respect to the total weight of the material 1, and the emulsion is formed through stirring at 300 to 3000 rpm, 3 minutes or more, and 10 minutes or less. It is added to some other materials according to the characteristics such as aerogel, carbon nanotube, etc., that is, insulation, conductor formation, tensile force, flexibility, high heat generation, etc. do. The nanocomposite composition of the present invention refers to a technique for emulsion complexing an entire nanomaterial until the commercialization and molding of coatings and panels for each application. The problem is solved by the composition materials as described above.

본 발명은 기존의 나노 소재 단독적용의 한계를 극복한 것으로 조성된 재료와 복합화하여 단열성능 향상 및 발열 효율성 증대, 인장력 및 유연성 증대, 전도체 형성 등 나노 소재의 각 기능별 용도로 쉽게 적용할 수 있다. 원활한 분산성을 통해 점착, 고압축되고 경화되어 그 고유 특성이 그대로 유지된다. 나노 소재의 균질한 복합화로 에멀젼이 되고 이로 인해 도료 및 판상형의 패널, 시트와 같이 실생활 적용이 용이한 정형, 부정형 등의 여러 형태로 고형체 형성이 가능하다.The present invention overcomes the limitations of the conventional nanomaterials alone, and can be easily applied to each function of the nanomaterials such as the improvement of the thermal insulation performance, the heating efficiency, the increase of the tensile force and the flexibility, and the formation of the conductor by complexing with the composition. Smooth dispersibility ensures adhesion, high compression, and hardening to maintain their inherent properties. The homogeneous complexation of nanomaterials results in an emulsion, which makes it possible to form solids in various forms, such as forms and irregular forms, which are easily applied in real life such as paints and plates and sheets.

나노 소재를 복합화하기 위한 각 재료의 구성 및 역할을 설명한다.Describe the composition and role of each material to composite nanomaterials.

주 기능 소재가 되는 나노 소재 0.01∼60중량%, 주경화재료 25∼65중량%, 팽창 압축재료 3∼13중량%, 보강 심재료 5∼25중량%, 보강재료 3∼45중량%, 유기 고분자 응집재료 0.1∼10중량%, 유·무기질 졸 15∼25중량%, 점착재료 3∼20중량%를 혼합하여 조성되는 것을 특징으로 한다.0.01 to 60% by weight of nano material to be the main functional material, 25 to 65% by weight of main hardening material, 3 to 13% by weight of expanded compression material, 5 to 25% by weight of reinforcing core material, 3 to 45% by weight of reinforcing material, organic polymer 0.1 to 10% by weight of the flocculating material, 15 to 25% by weight of the organic and inorganic sol, and 3 to 20% by weight of the adhesive material.

실시 예 및 비교 예는 따로 표기하지 않으며 시험에 의한 과량 시 및 소량 적용 시를 기준으로 기재한다. 과량은 초과 적용, 소량은 미만 적용에 의한 것이다.Examples and comparative examples are not separately indicated, and are described based on the excess and small application by the test. Excess is due to over application and small amount to under application.

실리카 에어로젤(aerogel), 탄소나노튜브(Carbon nanotube) 등의 나노 소재는 기초 신소재로서 기본 물질에서 여러 제조 과정을 거쳐 나노 사이즈로 변환된 극히 미세한 구조로 이루어져 있다. 그 결과로 기본 물성의 적용범위 이상의 특성 및 변환된 새로운 성질을 유지하게 되며 이를 적용하여 효용성을 극대화하는 용도로 사용된다. 그러나 이러한 특성에도 불구하고 고형체 형성 및 분산성 등의 여러 복합화로의 문제점을 안고 있어 복합체 형성에 많은 제약을 받는다.Nanomaterials, such as silica aerogel and carbon nanotubes, are basic new materials and have an extremely fine structure converted from nanomaterials to nanosizes through various manufacturing processes. As a result, it maintains the characteristics over the range of application of basic physical properties and the converted new properties, and is used for maximizing utility by applying it. However, in spite of these characteristics, there is a problem in the formation of complexes such as solid formation and dispersibility, so that the formation of complexes is restricted.

실리카 에어로젤의 예로 보면 저밀도 나노기공 구조를 가져 열전도율이 아주 낮아 단열 등의 용도로 적합한 소재이나 그 특성을 유지하는 초경량성, 초소수성 등으로 인하여 오히려 기타 재료와의 복합화에 많은 문제점을 가지고 있다. 이를 해결하고자 본 발명에 적극 도입한다. 기타 재료와 표면 점착되어 복합체가 형성되며 이를 복합화하여 쉽게 실생활에 적용되게 하기 위한 것이다.As an example of silica airgel, it has a low density nanopore structure and has a very low thermal conductivity, and thus has a lot of problems in the compounding with other materials due to the ultra-lightness, ultra-hydrophobicity, etc., which are suitable for use for thermal insulation and the like. In order to solve this problem, the present invention is actively introduced. The surface is adhered with other materials to form a composite, which is intended to be easily applied to real life by compounding it.

탄소나노튜브의 기본적 기능은 신축성, 전기 전도도, 인장력 증대 및 열 발산 능력이 구리에 비해 탁월하게 높아 방열 효과를 극대화하는 용도로 적용되나 이 또한 기타 재료와의 복합화로 고형체를 형성해야만 한다. 주요 기능 성분인 나노 소재는 단열, 전도체 형성, 강도 상승, 발열성 증대 등 그 소재에 맞는 용도로 적용되며 본 발명에서 기능성 재료의 역할을 한다.The basic function of carbon nanotubes is that they have excellent elasticity, electrical conductivity, tensile strength, and heat dissipation ability compared to copper, so that they can be applied to maximize heat dissipation effect. Nano-materials, which are the main functional components, are applied to applications such as heat insulation, conductor formation, strength increase, and exothermicity, and serve as functional materials in the present invention.

최대한 나노 소재를 많이 함유하면 그 기능이 충실히 이행되나 과량 시 기타 재료와의 점착성의 부족으로 고형체가 부실해지고 오히려 균열로 인해 그 기능을 수행할 수 없다. 소량 시는 혼합되지 않는 것만 못하다. 그 기능이 존재하지 않는다.If it contains as much nano material as possible, its function is faithfully fulfilled, but when it is excessive, the solid body becomes poor due to lack of adhesion with other materials and rather, it cannot perform its function due to cracking. In small quantities it can not only be mixed. The function does not exist.

마이크로 시멘트 등의 주 경화재료는 전체 복합체의 지지력, 강도, 결합력, 중질감 등을 부여하며 나노 소재와 기타 재료와의 경화체가 형성되도록 하며 아울러 압축하고 밀착, 치밀화하여 교반 시 초기 혼합, 점착성을 좋게하여 에멀젼의 빠른 생성을 돕고 자체 수경성 및 자연 건조, 경화성을 가져 교반 후 나노 소재를 주변으로 머물고 결합력을 한층 높이며 경화한다. 과량 시 기타 재료와의 불균형으로 오히려 결합력이 약해지고 뭉침현상의 과발생으로 복합화가 이루어지지 않고 소량 시는 이 또한 점결력이 부실하여 결합, 경화될 수 없다.The main hardening material such as micro cement gives the support strength, strength, bonding strength, and heavy feeling of the entire composite, and the hardened material is formed between nano material and other materials. It helps the emulsion to be formed quickly and has its own hydraulic, natural drying and curing properties. After stirring, the nanomaterial stays around and the bonding force is further enhanced and cured. In case of excess, the bonding strength is weakened due to the imbalance with other materials, and the compounding is not achieved due to the occurrence of agglomeration phenomenon.

칼슘설포알루미네이트 등의 팽창 압축재료는 수화 시 팽창하여 나노 소재와 기타 재료의 층간에 셀룰로오스의 증점과 완전히 다른 침상의 겔을 생성하여 점착력을 높이며 결합력을 높인다. 경화시는 마이크로 시멘트와 기타 재료의 혼화로 건조 수축에 의한 균열을 방지한다. 이는 전체 고형체의 부실을 방지하고 복합체의 지지력을 향상시킨다. 과량 시는 점도 상승과 신축성의 과잉 생성으로 각 재료간 이격되어 결합력이 낮아진다. 소량 시는 팽창성의 저하로 점착성이 낮아지고 균열을 초래할 수 있다.Expansion compressive materials, such as calcium sulfoaluminate, expand upon hydration to produce needle-like gels that are completely different from the thickening of cellulose between layers of nanomaterials and other materials, increasing adhesion and increasing bonding strength. During hardening, the mixing of micro cement and other materials prevents cracking due to dry shrinkage. This prevents the loss of the entire solid and improves the bearing capacity of the composite. In the case of excess, the bonding strength is lowered due to the increase in viscosity and the excessive generation of elasticity, so as to be spaced apart from each other. In small amounts, the lowering of the expandability may lower the adhesiveness and cause cracking.

붕규산 유리분말 등의 보강 심재료는 나노 복합체의 층간에 존재하며 골격 형성을 하는 재료로 고결성 및 압축성을 높이는 역할을 한다. 과량 시 치밀화가 이루어지지 않고 소량 시는 전체 복합체의 지지력이 낮아질 수 있다.Reinforcing core material such as borosilicate glass powder is present between layers of nanocomposite, and it is a material for skeletal formation, and plays a role of increasing solidification and compressibility. In excess, densification is not achieved and in small amounts, the bearing capacity of the entire composite may be lowered.

실리카흄 등의 보강재료는 전체 복합체의 강도를 높이는 역할을 한다. 과량 시는 점도 상승이 크게 따르고 이로 인해 교반 불량으로 각 재료를 점착할 수 없고 압축되지 않으며 오히려 경화체 형성에 방해가 될 수 있다. 소량 시는 점착력의 결여로 강도가 약해질 수 있다. 조성 범위내 적정량 사용한다.Reinforcing materials such as silica fume increase the strength of the entire composite. In the case of excess, the viscosity rise is greatly followed, so that the agitation can not adhere to each material and do not compress, rather it may interfere with the formation of the cured body. In small amounts, the strength may be weakened by the lack of adhesion. Use an appropriate amount within the composition range.

폴리아크릴아마이드의 유기 고분자 응집재료는 물 혼입 교반 시 점도 상승을 가져와 나노 소재의 표면과 기타 재료를 주변 점착하고 응집력을 부여하여 결합력을 높인다. 이 상태 그대로 유지가 되면 점도의 상승으로 오히려 높은 뭉침성으로 인해 재료간 이격되고 압축이 이루어지지 않고 교반불량 및 층간에 과잉 존재하여 고형체가 형성되지 않는다. 그러나 점성력을 증대하여 재료들을 점착하고 난 후 마이크로 시멘트 등의 칼슘 등 다가의 금속 양이온이 있는 수용액 상태에서는 머금은 수분을 일부 배출하고 점성이 줄어들어 나노 소재와 각 재료를 점착한 상태에서 부피가 줄어 압축이 이루어진다. 이러한 현상으로 인해 비중이 낮은 나노 소재와 기타 재료의 점성 및 점착력의 증대로 표면 결합하고, 이후 결합한 상태로 기타 마이크로 시멘트와 기타 재료와의 수화 반응으로 재료가 압축되는 결과를 가져온다. 일체화되고 압축된 치밀화가 이루어진다. 과량 시 과잉 점도 상승으로 결합력이 낮아지고 재료간 분리가 일어나고 소량 시는 점성력이 줄어 각 재료간 점착력이 낮아 서로 점착하지 못한다.The polyacrylamide organic polymer agglomerate material has a viscosity increase when stirring with water, thereby adhering the surface of the nano material and other materials and giving cohesive force to increase the bonding force. If this state is maintained as it is, due to the increase in viscosity, due to the high agglomeration, the material is separated from each other, compression is not achieved, and agitation is poor and there is an excessive presence between the layers, and solids are not formed. However, after adhesion of the materials by increasing the viscosity, in the aqueous solution state with multivalent metal cations such as calcium, such as micro cement, some of the moisture is released and the viscosity is reduced, so the volume is reduced in the state of adhesion of nanomaterials and each material. Is done. This phenomenon results in the surface bonding due to the increase in the viscosity and adhesion of low-density nanomaterials and other materials, and then the material is compressed by the hydration reaction of other micro cement and other materials in the bonded state. Integrated, compacted compaction is achieved. When excessive, the excess viscosity rises, the bonding strength is lowered, and the separation between materials occurs, and when the amount is small, the viscous force is decreased, and thus the adhesive strength between the materials is low, so that they cannot adhere to each other.

실리카 졸 등의 유·무기질 졸은 결합 점결력을 높이며 내열성 재료로 고온 적용 및 점착성을 높이고 강도를 높인다. 과량 시는 자체 고유 부피로 인한 점도의 상승을 불러와 결합력이 오히려 낮아지고 소량 시는 점결력 결여로 강도가 낮아지고 복합체의 부실을 초래할 수 있다.Organic and inorganic sol, such as silica sol, increases bond cohesion, and is a heat-resistant material to improve high temperature application, adhesion, and strength. Excessive amounts can lead to an increase in viscosity due to its own intrinsic volume, resulting in a lower binding force and, in small amounts, a lack of cohesion, resulting in low strength and poor composites.

아크릴코폴리머 등은 미세분말상 및 액상으로 제공되며 나노 소재와 마이크로 시멘트의 결합력을 증대하는 역할을 하며 수성 및 수용성으로 점착성의 부여로 기타 재료와의 결합력도 최대 증대하고 치밀화하는 역할을 한다. 교반 초기 응집성을 최대 부여하며 결합력을 도와 층간을 밀착하며 치밀한 공극 형성이 이루어지도록 한다. 또한 신축성을 최대한 부여하여 결합력 증대와 아울러 향후 균열방지 기능도 한다. 과량 시 점도 상승으로 각 재료간 이격되고 소량 시 점착력의 결여로 복합체가 부실해지고 균열이 발생될 수 있다.The acrylic copolymer is provided in the form of fine powder and liquid phase, and serves to increase the bonding strength of nanomaterial and micro cement, and also provides the adhesion to other materials by providing adhesion to aqueous and water soluble, and plays a role of maximizing and densifying. It provides maximum initial cohesiveness and helps the bonding force to close the layers and to form the fine pores. In addition, the elasticity is maximized to increase the bonding strength and also prevents future cracking. In excess, the viscosity rises, the materials are separated from each other, and in a small amount, the lack of cohesion may cause the composite to become poor and cracking may occur.

상술한 바와 같은 조성물과 조성비로 구성되며 여기에 총 재료 1중량 대비 물 0.5∼5.5가 교반기에 혼입되고 300∼3000rpm, 3분 이상, 10분 이하의 교반을 통해 고압축되고 일체화된 복합체가 형성된다. 복합화된 에멀젼에서 각 나노 소재의 용도에 맞게 코팅제 및 판상형태, 시트형태로 성형되며 추가적으로 일부 재료가 충진될 수 있다. 그리고 압력 또는 열원 등이 공급될 수 있고 단열성능 향상 및 고발열체 형성, 고인장력, 고유연성, 전도체형성 등 나노 소재의 적용범위를 이해하고 효용성을 높이며 이를 적극 활용한다. 향후 판상형 패널과 두루마리형 시트(블랭킷)의 경쟁력에 비해 코팅제가 효용성,효율성 및 가격 대비 차별성을 기대할 수 있으며 기술적으로는 패널, 시트, 코팅제 순으로 높다고 볼 수 있다. 본 조성물을 함유하는 코팅제로 적용할 때 그 활용성이 높다 하겠다.It is composed of the composition and composition ratio as described above, wherein 0.5 to 5.5 of water relative to 1 weight of the total material is incorporated into the stirrer and a high-compression and integrated composite is formed through stirring at 300 to 3000 rpm, 3 minutes or more and 10 minutes or less. The complexed emulsion may be molded into a coating, plate, sheet, etc. to suit the purpose of each nanomaterial, and additionally, some materials may be filled. In addition, pressure or a heat source can be supplied, and the scope of application of nanomaterials, such as improvement of thermal insulation performance, formation of high heating elements, high tensile strength, high flexibility, and conductor formation, are improved, and the utilization thereof is actively utilized. Compared to the competitiveness of plate-shaped panels and roll-type sheets (blankets), coatings can be expected to be effective, efficient, and price-based, and technically, panels, sheets, and coatings are the highest. When applied as a coating containing the present composition, its utility is high.

Claims (1)

실리카 에어로젤, 탄소 에어로젤, 탄소나노튜브에어로젤, 유기 에어로젤, 금속산화물 에어로젤, 그래핀, 풀러렌, 산화그래핀, 탄소 나노튜브, 나노 탄소, 질화붕소 나노튜브, 티탄산염 나노튜브, 산화니켈 나노튜브, 산화텅스텐 나노튜브, 산화구리-산화티타늄 나노튜브 분말, 금속산화물 나노튜브, 유기 나노튜브 중 1종 이상 선택하는 나노 소재 0.01∼60 중량%.
마이크로 시멘트, 티탄산바륨, 소석회, 생석회, 셀룰로오스, 카올린클레이, 수산화알루미늄, 티탄산마그네슘, 석고, 석회석, 나노클레이, 시트르산, 헥토라이트, 황산알루미늄, 티탄산지르코늄, 폴리염화알루미늄, 산화철, 인산아연, 산화구리, 산화망간, 산화주석, 산화티탄, 붕산염, 황산제1철, 황산제2철, 알카리성 실리케이트계 금속산화물, 티탄산리튬, 규조토, 탄산칼슘, 탄산마그네슘, 산화아연, 제올라이트, 염화파라핀, 티탄산칼륨, 염화제1철, 염화제2철, 암모늄백반, 칼륨명반 중 1 종 이상 선택하는 주경화재료 25∼65중량%.
칼슘설포알루미네이트, 인산마그네슘, 규산칼슘 중 1종 이상 선택하는 팽창 압축재료 3∼13중량%.
붕규산 유리분말, 규산마그네슘, 탄산리튬, 알루미나, 인산알루미늄, 산화마그네슘, 인산암모늄, 오산화인, 유리질 카본, 황산암모늄 중 1종 이상 선택하는 보강 심재료 5∼25중량%.
실리카 흄, 흄드 실리카, 인산 시멘트, 제련마그네슘분말, 알루미나 시멘트, 수산화마그네슘, 카제인, 알루미늄인산나트륨, 탈크, 폴리나프탈렌설포네이트, 카라기난, 마이크로화 순수실리카, 폴리크리스털린실리콘 중 1종 이상 선택하는 보강재료 3∼45중량%.
폴리아크릴아마이드, 폴리아민, 폴리아마이드, 소디움폴리아크릴레이트 중 1종 이상 선택하는 유기 고분자 응집재료 0.1∼10중량%.
실리카 졸, 인산염, 메탄올, 에탄올, 폴리비닐알코올, 이소프로필알코올, 물유리, 알킬실란, 실록산올리고머, 나노 실리카 콜로이드, 알루미나 졸, 지르코니아 졸, 티타니아 졸, 폴리카르본산염, 규산염, 금속산화물 졸. 중 1종 이상 선택하는 유·무기질 졸 15∼25중량%.
아크릴코폴리머, 페놀, 멜라민, 우레아, 실란실록산중합체, 우레탄, 에폭시, 폴리카르보실란, 실리콘, 에틸렌비닐아세테이트 중 1종 이상 선택하는 점착재료 3∼20중량%로 구성됨을 특징으로 하는 나노 복합체 조성물.
Silica Airgel, Carbon Airgel, Carbon Nanotube Aerogel, Organic Airgel, Metal Oxide Airgel, Graphene, Fullerene, Graphene Oxide, Carbon Nanotube, Nano Carbon, Boron Nitride Nanotube, Titanate Nanotube, Nickel Oxide Nanotube, Oxidation 0.01-60 wt% of nanomaterials selected from tungsten nanotubes, copper oxide-titanium oxide nanotube powders, metal oxide nanotubes, and organic nanotubes.
Micro cement, barium titanate, slaked lime, quicklime, cellulose, kaolin clay, aluminum hydroxide, magnesium titanate, gypsum, limestone, nanoclay, citric acid, hectorite, aluminum sulfate, zirconium titanate, polyaluminum chloride, iron oxide, zinc phosphate, copper oxide , Manganese oxide, tin oxide, titanium oxide, borate, ferrous sulfate, ferric sulfate, alkaline silicate metal oxide, lithium titanate, diatomaceous earth, calcium carbonate, magnesium carbonate, zinc oxide, zeolite, paraffin chloride, potassium titanate, 25-65 weight% of main hardening materials chosen from 1 or more types of ferric chloride, ferric chloride, ammonium alum, and potassium alum.
3 to 13% by weight of an expanded compression material selected from calcium sulfo aluminate, magnesium phosphate and calcium silicate.
5 to 25% by weight of reinforcing core material selected from at least one of borosilicate glass powder, magnesium silicate, lithium carbonate, alumina, aluminum phosphate, magnesium oxide, ammonium phosphate, phosphorus pentoxide, glassy carbon, and ammonium sulfate.
Reinforcement to select one or more of silica fume, fumed silica, phosphate cement, smelting magnesium powder, alumina cement, magnesium hydroxide, casein, sodium aluminum phosphate, talc, polynaphthalenesulfonate, carrageenan, micronized pure silica, and polycrystalline silicon 3 to 45% by weight of the material.
0.1-10 weight% of organic polymer aggregation materials chosen by 1 or more types of polyacrylamide, polyamine, polyamide, and sodium polyacrylate.
Silica sol, phosphate, methanol, ethanol, polyvinyl alcohol, isopropyl alcohol, water glass, alkylsilane, siloxane oligomer, nano silica colloid, alumina sol, zirconia sol, titania sol, polycarbonate, silicate, metal oxide sol. 15-25 weight% of organic-inorganic sol to which 1 or more types are selected.
Nanocomposite composition comprising an acrylic copolymer, phenol, melamine, urea, silane siloxane polymer, urethane, epoxy, polycarbosilane, silicone, 3 to 20% by weight of the adhesive material selected from at least one of ethylene vinyl acetate.
KR1020110069271A 2011-07-13 2011-07-13 Composition of nano composite KR101873053B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110069271A KR101873053B1 (en) 2011-07-13 2011-07-13 Composition of nano composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110069271A KR101873053B1 (en) 2011-07-13 2011-07-13 Composition of nano composite

Publications (2)

Publication Number Publication Date
KR20110093970A true KR20110093970A (en) 2011-08-19
KR101873053B1 KR101873053B1 (en) 2018-06-29

Family

ID=44930306

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110069271A KR101873053B1 (en) 2011-07-13 2011-07-13 Composition of nano composite

Country Status (1)

Country Link
KR (1) KR101873053B1 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863179A (en) * 2012-09-21 2013-01-09 莆田市集友艺术框业有限公司 Ornamental clay statuette material
WO2013133498A1 (en) * 2012-03-06 2013-09-12 Remtech Co., Ltd. Composite composition including aerogel and method of preparing the same
WO2014161214A1 (en) * 2013-04-01 2014-10-09 宁波墨西科技有限公司 Grapheme inorganic coating and use method thereof
CN104610787A (en) * 2015-02-03 2015-05-13 安徽工业大学 Neodymium aluminate nanowire multifunctional composite coating
KR101534296B1 (en) * 2014-10-23 2015-07-06 주식회사 에코인프라홀딩스 Method for preparing super-conducting heat-dissipating adhesive using sol-gel method and graphene and super-conducting heat-dissipating adhesive prepared by the same
CN104893376A (en) * 2015-06-16 2015-09-09 上海宜瓷龙新材料股份有限公司 Ceramic film coating allowing normal-temperature spraying
CN105234343A (en) * 2015-10-21 2016-01-13 南京润屹电子科技有限公司 Graphene enhanced pipeline casting-penetration composition and use method thereof
CN105255221A (en) * 2015-09-28 2016-01-20 广东嘉宝莉科技材料有限公司 Algae mud decorative wall material coating and preparation method and application thereof
CN105268909A (en) * 2015-10-21 2016-01-27 南京润屹电子科技有限公司 Graphene enhanced type valve casting-penetration composition and application method thereof
CN105268910A (en) * 2015-10-21 2016-01-27 南京润屹电子科技有限公司 Graphene enhanced type valve accessory casting-penetration composition and application method thereof
CN105462300A (en) * 2015-12-25 2016-04-06 山东鲁阳节能材料股份有限公司 Paint and preparation method thereof
CN105542519A (en) * 2016-02-02 2016-05-04 安徽恒昊科技有限公司 High-temperature wear-resistant sericite pearlescent pigment
CN105895923A (en) * 2016-05-18 2016-08-24 河南田园新能源科技有限公司 Preparation method of primer used for coating cathode piece of copper foil current collector
KR20160116112A (en) 2015-03-25 2016-10-07 한국생산기술연구원 Copper-carbon composite powder and manufacturing method the same
KR20160116113A (en) 2015-03-25 2016-10-07 한국생산기술연구원 Silver-carbon composite powder and manufacturing method the same
CN106699085A (en) * 2017-01-03 2017-05-24 北京乾清太洁环保科技有限公司 Silica paint and preparation method thereof
CN108546138A (en) * 2018-06-29 2018-09-18 芜湖市元奎新材料科技有限公司 Nano zirconia ceramic material and preparation method thereof
CN108911654A (en) * 2018-08-15 2018-11-30 陕西科技大学 Modified graphene oxide repairing concrete crack material and preparation method thereof
CN109265195A (en) * 2018-10-23 2019-01-25 青海送变电工程有限公司 A kind of chemical heat production curing means of transmission line of electricity pile driving construction and its maintenance process
CN109513425A (en) * 2018-09-25 2019-03-26 山东大学 A kind of peanut shell graphene composite aerogel oil absorption material and preparation method thereof
CN109796793A (en) * 2019-01-24 2019-05-24 江苏金陵特种涂料有限公司 A kind of aqueous inorganic high temperature heat radiation coating and preparation method thereof based on carbon nanomaterial
CN110669435A (en) * 2019-10-12 2020-01-10 陈昊 Environment-friendly paint
KR102081433B1 (en) * 2019-11-11 2020-02-26 최재영 Nonflammable insulation material with high strength and manufacturing method of the same
CN111244309A (en) * 2018-11-29 2020-06-05 Tcl集团股份有限公司 Composite material, preparation method thereof and quantum dot light-emitting diode
KR20200107453A (en) * 2019-03-08 2020-09-16 김성래 Mold type pipe thermal insulation material having non-combustibility and manufacturing method thereof
KR102168827B1 (en) * 2020-01-30 2020-10-22 대운글로벌 주식회사 Eco-friendly functional finish composition using graphene and surface protection and strengthening finishing method of concrete and steel structure using the same
KR102196295B1 (en) * 2019-11-13 2020-12-29 홍대길 Construction mortar with natural materials
CN112322126A (en) * 2020-10-30 2021-02-05 江西玉龙防水科技有限公司 Anti-aging coating and preparation method thereof
CN112521782A (en) * 2021-01-06 2021-03-19 成都容浓伊涂料科技有限公司 Preparation method of high-toughness water-based wear-resistant ceramic coating
KR20210105107A (en) * 2020-02-18 2021-08-26 김한경 Decomposition and antimicrobial deodorization coatings composition comprising of graphen-nanoparticle and yellow soil's honeycomb structure
CN114275770A (en) * 2021-12-24 2022-04-05 中国安全生产科学研究院 Carbon-based aerogel with fire early warning and high compression performance and preparation method thereof
CN115677327A (en) * 2022-10-26 2023-02-03 中国地质大学(武汉) Water-soluble calcium oxide-based supporting mold core for internal flow passage member and preparation method thereof
CN116715982A (en) * 2023-06-09 2023-09-08 江苏苏博特新材料股份有限公司 Inorganic exterior wall building coating with high color retention and preparation method thereof
CN117106349A (en) * 2023-10-16 2023-11-24 广东东方一哥新材料股份有限公司 Preparation method of high-performance fireproof water-based inorganic coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100002101A (en) * 2009-05-18 2010-01-06 이재환 Aerogel coating
KR20100002232A (en) * 2009-08-26 2010-01-06 이재환 Aerogel composite
KR20100033396A (en) * 2010-02-27 2010-03-29 이재환 Aerogel coating composition
KR20100075789A (en) * 2010-05-26 2010-07-05 이재환 High strength aerogel paint composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100002101A (en) * 2009-05-18 2010-01-06 이재환 Aerogel coating
KR20100002232A (en) * 2009-08-26 2010-01-06 이재환 Aerogel composite
KR20100033396A (en) * 2010-02-27 2010-03-29 이재환 Aerogel coating composition
KR20100075789A (en) * 2010-05-26 2010-07-05 이재환 High strength aerogel paint composition

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133498A1 (en) * 2012-03-06 2013-09-12 Remtech Co., Ltd. Composite composition including aerogel and method of preparing the same
CN102863179A (en) * 2012-09-21 2013-01-09 莆田市集友艺术框业有限公司 Ornamental clay statuette material
CN102863179B (en) * 2012-09-21 2013-09-18 莆田市集友艺术框业有限公司 Ornamental clay statuette material
WO2014161214A1 (en) * 2013-04-01 2014-10-09 宁波墨西科技有限公司 Grapheme inorganic coating and use method thereof
KR101534296B1 (en) * 2014-10-23 2015-07-06 주식회사 에코인프라홀딩스 Method for preparing super-conducting heat-dissipating adhesive using sol-gel method and graphene and super-conducting heat-dissipating adhesive prepared by the same
CN104610787A (en) * 2015-02-03 2015-05-13 安徽工业大学 Neodymium aluminate nanowire multifunctional composite coating
KR20160116113A (en) 2015-03-25 2016-10-07 한국생산기술연구원 Silver-carbon composite powder and manufacturing method the same
KR20160116112A (en) 2015-03-25 2016-10-07 한국생산기술연구원 Copper-carbon composite powder and manufacturing method the same
CN104893376A (en) * 2015-06-16 2015-09-09 上海宜瓷龙新材料股份有限公司 Ceramic film coating allowing normal-temperature spraying
CN105255221A (en) * 2015-09-28 2016-01-20 广东嘉宝莉科技材料有限公司 Algae mud decorative wall material coating and preparation method and application thereof
CN105268909A (en) * 2015-10-21 2016-01-27 南京润屹电子科技有限公司 Graphene enhanced type valve casting-penetration composition and application method thereof
CN105268910A (en) * 2015-10-21 2016-01-27 南京润屹电子科技有限公司 Graphene enhanced type valve accessory casting-penetration composition and application method thereof
CN105234343A (en) * 2015-10-21 2016-01-13 南京润屹电子科技有限公司 Graphene enhanced pipeline casting-penetration composition and use method thereof
CN105462300B (en) * 2015-12-25 2017-12-01 山东鲁阳节能材料股份有限公司 A kind of coating and preparation method thereof
CN105462300A (en) * 2015-12-25 2016-04-06 山东鲁阳节能材料股份有限公司 Paint and preparation method thereof
CN105542519A (en) * 2016-02-02 2016-05-04 安徽恒昊科技有限公司 High-temperature wear-resistant sericite pearlescent pigment
CN105895923A (en) * 2016-05-18 2016-08-24 河南田园新能源科技有限公司 Preparation method of primer used for coating cathode piece of copper foil current collector
CN106699085A (en) * 2017-01-03 2017-05-24 北京乾清太洁环保科技有限公司 Silica paint and preparation method thereof
CN108546138A (en) * 2018-06-29 2018-09-18 芜湖市元奎新材料科技有限公司 Nano zirconia ceramic material and preparation method thereof
CN108911654A (en) * 2018-08-15 2018-11-30 陕西科技大学 Modified graphene oxide repairing concrete crack material and preparation method thereof
CN109513425B (en) * 2018-09-25 2021-08-10 山东大学 Peanut shell graphene composite aerogel oil absorption material and preparation method thereof
CN109513425A (en) * 2018-09-25 2019-03-26 山东大学 A kind of peanut shell graphene composite aerogel oil absorption material and preparation method thereof
CN109265195A (en) * 2018-10-23 2019-01-25 青海送变电工程有限公司 A kind of chemical heat production curing means of transmission line of electricity pile driving construction and its maintenance process
CN111244309B (en) * 2018-11-29 2021-06-11 Tcl科技集团股份有限公司 Composite material, preparation method thereof and quantum dot light-emitting diode
CN111244309A (en) * 2018-11-29 2020-06-05 Tcl集团股份有限公司 Composite material, preparation method thereof and quantum dot light-emitting diode
CN109796793A (en) * 2019-01-24 2019-05-24 江苏金陵特种涂料有限公司 A kind of aqueous inorganic high temperature heat radiation coating and preparation method thereof based on carbon nanomaterial
KR20200107453A (en) * 2019-03-08 2020-09-16 김성래 Mold type pipe thermal insulation material having non-combustibility and manufacturing method thereof
CN110669435A (en) * 2019-10-12 2020-01-10 陈昊 Environment-friendly paint
KR102081433B1 (en) * 2019-11-11 2020-02-26 최재영 Nonflammable insulation material with high strength and manufacturing method of the same
KR102196295B1 (en) * 2019-11-13 2020-12-29 홍대길 Construction mortar with natural materials
KR102168827B1 (en) * 2020-01-30 2020-10-22 대운글로벌 주식회사 Eco-friendly functional finish composition using graphene and surface protection and strengthening finishing method of concrete and steel structure using the same
KR20210105107A (en) * 2020-02-18 2021-08-26 김한경 Decomposition and antimicrobial deodorization coatings composition comprising of graphen-nanoparticle and yellow soil's honeycomb structure
CN112322126A (en) * 2020-10-30 2021-02-05 江西玉龙防水科技有限公司 Anti-aging coating and preparation method thereof
CN112521782A (en) * 2021-01-06 2021-03-19 成都容浓伊涂料科技有限公司 Preparation method of high-toughness water-based wear-resistant ceramic coating
CN114275770A (en) * 2021-12-24 2022-04-05 中国安全生产科学研究院 Carbon-based aerogel with fire early warning and high compression performance and preparation method thereof
CN114275770B (en) * 2021-12-24 2022-09-30 中国安全生产科学研究院 Carbon-based aerogel with fire early warning and high compression performance and preparation method thereof
CN115677327A (en) * 2022-10-26 2023-02-03 中国地质大学(武汉) Water-soluble calcium oxide-based supporting mold core for internal flow passage member and preparation method thereof
CN116715982A (en) * 2023-06-09 2023-09-08 江苏苏博特新材料股份有限公司 Inorganic exterior wall building coating with high color retention and preparation method thereof
CN117106349A (en) * 2023-10-16 2023-11-24 广东东方一哥新材料股份有限公司 Preparation method of high-performance fireproof water-based inorganic coating
CN117106349B (en) * 2023-10-16 2024-02-02 广东东方一哥新材料股份有限公司 Preparation method of high-performance fireproof water-based inorganic coating

Also Published As

Publication number Publication date
KR101873053B1 (en) 2018-06-29

Similar Documents

Publication Publication Date Title
KR20110093970A (en) Composition of nano composite
KR101137673B1 (en) Composition of nano composite
KR101280076B1 (en) High density nano coating compositions
Lin et al. Graphene reinforced cement composites: A review
Sun et al. Rheology, curing temperature and mechanical performance of oil well cement: Combined effect of cellulose nanofibers and graphene nano-platelets
KR101212870B1 (en) Nano paint compositions
Yu et al. Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties
KR101169522B1 (en) Aerogel coating composition
KR20110093971A (en) High compression nano coating compositions
Gao et al. Mineral-based form-stable phase change materials for thermal energy storage: A state-of-the art review
KR20110089835A (en) High density nano coating compositions
KR101083133B1 (en) Complex aerogel coating composition
Cao et al. Effect of graphene on mechanical properties of cement mortars
Du et al. Microstructure and compressive properties of silicon carbide reinforced geopolymer
KR101236584B1 (en) High strength aerogel paint compositions
KR101137686B1 (en) Hydrophile property aerogel powder composition
Asim et al. Application of graphene-based materials in developing sustainable infrastructure: An overview
WO2013141189A1 (en) Heat insulator composition, heat insulator using same, and method for manufacturing heat insulator
Krishna et al. The role of graphene and its derivatives in modifying different phases of geopolymer composites: A review
CN110759691B (en) Environment-friendly phase-change gypsum board and preparation method thereof
Che et al. Effects of graphene oxide sheets-zirconia spheres nanohybrids on mechanical, thermal and tribological performances of epoxy composites
KR20130048754A (en) Curable composition
KR20130048739A (en) Liquid curable composition
KR20130048740A (en) Liquid curable composition
KR20150028188A (en) Paint composition

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
E701 Decision to grant or registration of patent right
E701 Decision to grant or registration of patent right
GRNT Written decision to grant