KR20110088898A - Organic light emitting material and organic light emitting diode having the same - Google Patents

Organic light emitting material and organic light emitting diode having the same Download PDF

Info

Publication number
KR20110088898A
KR20110088898A KR1020100008621A KR20100008621A KR20110088898A KR 20110088898 A KR20110088898 A KR 20110088898A KR 1020100008621 A KR1020100008621 A KR 1020100008621A KR 20100008621 A KR20100008621 A KR 20100008621A KR 20110088898 A KR20110088898 A KR 20110088898A
Authority
KR
South Korea
Prior art keywords
formula
organic electroluminescent
group
electroluminescent device
substituted
Prior art date
Application number
KR1020100008621A
Other languages
Korean (ko)
Inventor
박종억
김정미
김명주
이혜진
이상진
배유진
백용구
김진영
Original Assignee
주식회사 이엘엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엘엠 filed Critical 주식회사 이엘엠
Priority to KR1020100008621A priority Critical patent/KR20110088898A/en
Publication of KR20110088898A publication Critical patent/KR20110088898A/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Abstract

PURPOSE: An organic electroluminescent composition is provided to prolong the lifetime of a device using a hole transport material of an organic electroluminescent device and to obtain the organic electroluminescent device with excellent brightness and luminous efficiency. CONSTITUTION: An organic electroluminescent composition is used as a light emitting material of an organic electroluminescent device. The organic electroluminescent composition includes a carbazole derivative represented by chemical formula I. In chemical formula I, R1 is substituted or unsubstituted aryl group, substituted or unsubstituted heteroaryl group, carbazolyl group, or alkyl group; R2 and R3 represent substituted or unsubstituted aryl group, or substituted or unsubstituted heteroaryl group; R4 represents hydrogen, alkyl group or aryl group; and D represents substituted or unsubstituted arylene group or substituted or unsubstituted heteroarylene group.

Description

유기 전기 발광 조성물 및 이를 포함하는 유기 전기 발광 소자{Organic Light Emitting Material and Organic Light Emitting Diode Having The Same}Organic electroluminescent composition and organic electroluminescent device comprising same {Organic Light Emitting Material and Organic Light Emitting Diode Having The Same}

본 발명은 유기 전기 발광 소자에 대한 것으로, 특히 유기 전기 발광 소자의 발광 재료로 사용되는 카바졸 유도체에 대한 것이며, 더욱 자세하게는 카바졸 화합물을 제조하고 이를 유기 전기발광 소자의 정공전달물질로 사용하여 소자의 수명을 증가시키며, 발광 휘도와 발광 효율이 우수한 유기 전기발광 소자를 제공하는 것이다.
The present invention relates to an organic electroluminescent device, and more particularly, to a carbazole derivative used as a light emitting material of an organic electroluminescent device, and more particularly to preparing a carbazole compound and using it as a hole transport material of the organic electroluminescent device. It is to provide an organic electroluminescent device which increases the life of the device and is excellent in light emission luminance and light emission efficiency.

저 전압구동, 자기발광, 경량 박형, 광 시야각 그리고 빠른 응답속도 등의 여러 가지 장점을 가진 유기 전기발광 소자는 LCD를 대체할 차세대 평판 디스플레이 중의 하나로서 최근 가장 연구가 활발히 이루어지고 있는 분야이다.
Organic electroluminescent devices with various advantages such as low voltage driving, self-luminous, light weight, wide viewing angle and fast response speed are one of the most researched fields as one of the next generation flat panel displays to replace LCD.

미국 특허 제 4,356,429 호에서, 탕(Tang) 등은 양극과 음극 사이에 놓인 2개의 유기층(정공전달층과 발광층)을 포함하는 이층구조의 유기 전기발광 소자를 개시하였다. 즉, 양극에 인접한 정공전달층은 정공전달물질을 함유하며 유기 전기발광 소자 장치 내에서 단지 정공(hole)만을 주로 발광층에 전달하는 기능을 갖는다. 이와 유사하게, 음극에 인접한 전자수송층은 전자전달물질을 함유하며 유기 전기발광 소자 장치 내에서 단지 전자만을 주로 전달하도록 선택된 이층구조의 유기 전기발광 소자 장치는 높은 발광 효율을 달성하여 상당부분 유기 전기발광 소자의 기술을 개선시켰다. 따라서, 발광효율적인 면에서 정공주입층(hole injection layer)과 정공수송층(hole transporting layer) 같은 정공전달층, 전자수송층(electron transporting layer), 정공차단층(hole blocking layer) 등을 포함하는 다층 구조(multilayer system)를 이용하지 않으면 고효율 및 고휘도의 발광특성을 기대하기는 불가능하다.
In US Pat. No. 4,356,429, Tang et al. Disclosed a two-layered organic electroluminescent device comprising two organic layers (hole transport layer and light emitting layer) sandwiched between an anode and a cathode. That is, the hole transport layer adjacent to the anode contains a hole transport material and has a function of transferring only holes to the light emitting layer mainly in the organic electroluminescent device. Similarly, the electron transport layer adjacent to the cathode contains an electron transport material, and the organic electroluminescent device device having a two-layer structure selected to mainly transmit only electrons within the organic electroluminescent device device achieves high luminous efficiency and thus substantially organic electroluminescence. The technology of the device was improved. Therefore, in terms of luminous efficiency, a multilayer structure including a hole transport layer such as a hole injection layer and a hole transporting layer, an electron transporting layer, a hole blocking layer, and the like ( Without the multilayer system, it is impossible to expect high efficiency and high luminance.

유기 전기발광 소자 장치를 실용화하기 위해서는 위의 다층 구조로 소자를 구성하는 것 이외에 소자 재료 특히, 정공전달물질의 역할이 매우 중요하다. 장 수명의 소자를 위해서는 정공전달물질이 열적 그리고 전기적으로 안정성을 지니고 있어야한다. 왜냐하면 전압을 걸어주었을 때 소자에서 발생되는 열로 인하여 열안정성이 낮은 분자는 결정 안정성이 낮아 재배열현상이 일어나게 되고, 결국 국부적으로 결정화가 발생되어 불균질 부분이 존재한다면, 전기장이 이 부분에 집중하여 소자의 열화 및 파괴를 가져오는 것으로 받아들여지기 때문이다. 따라서 유기층은 통상적으로 비결정질 상태로 사용된다. 더욱이, 유기 전기발광 소자는 전류주입형 소자이기 때문에, 만약 사용되는 재료가 낮은 유리전이온도(Tg)를 갖는다면, 사용 중 발생하는 열이 유기 전기발광 소자의 열화를 초래하여 소자의 수명을 단축시키게 된다. 이런 점에서, 높은 유리전이온도를 갖는 재료가 바람직하다.
In order to realize the organic electroluminescent device device, in addition to configuring the device in the above multilayer structure, the role of the device material, in particular, the hole transport material is very important. For long life devices, the hole transport material must be thermally and electrically stable. Because of the heat generated by the device when the voltage is applied, molecules with low thermal stability have low crystal stability, resulting in rearrangement. Finally, if localization occurs and an inhomogeneous part exists, the electric field concentrates on this part. This is because it is accepted to bring about deterioration and destruction of the device. Therefore, the organic layer is usually used in an amorphous state. Furthermore, since the organic electroluminescent device is a current injection type device, if the material used has a low glass transition temperature (Tg), the heat generated during use causes the organic electroluminescent device to deteriorate and shorten the life of the device. Let's go. In this respect, materials having a high glass transition temperature are preferred.

기존에 사용되고 있는 정공전달물질의 대표적인 예로는 CuPC[구리 프탈로시아닌], m-MTDATA[4,4',4"-트리스(N-3-메틸페닐-N-페닐아미노)-트리페닐아민], 하기 화학식 1의 2-TNATA[4,4',4"-트리스(N-(나프틸렌-2-일)-N-페닐아미노)-트리페닐아민], TPD[N,N'-디페닐-N,N'-디(3-메틸페닐)-4,4'-디아미노비페닐] 그리고 하기 화학식 2의 NPB[N,N'-디(나프탈렌-1-일)-N,N'-디페닐벤지딘] 등이 있다.Representative examples of hole-transfer materials used in the past include CuPC [copper phthalocyanine], m-MTDATA [4,4 ′, 4 ”-tris ( N- 3-methylphenyl- N -phenylamino) -triphenylamine], 2-TNATA [4,4 ', 4 "-tris ( N- (naphthylene-2-yl) -N -phenylamino) -triphenylamine] of 1, TPD [ N, N' -diphenyl- N, N' -di (3-methylphenyl) -4,4'-diaminobiphenyl] and NPB [ N, N' -di (naphthalen-1-yl) -N, N' -diphenylbenzidine] Etc.

[화학식 1] [화학식 2][Formula 1] [Formula 2]

Figure pat00001
Figure pat00002

Figure pat00001
Figure pat00002

그러나, CuPC는 금속착화합물이므로 ITO 기판과의 접착성이 우수하고 가장 안정하기 때문에 널리 사용되지만 가시광선 영역에서 흡수가 일어나므로 총 천연색을 구현하는 것이 어렵고, m-MTDATA나 2-TNATA는 유리전이온도가 78℃ 및 108℃로 낮을 뿐만 아니라 대량화 하는 과정에서 단점이 많이 발생하기 때문에, 이 역시 총 천연색을 구현하는 데는 문제점이 있다. 또한, TPD나 NPB도 유리전이온도(Tg)가 각각 60 ℃ 및 96 ℃로 낮기 때문에 상기와 같은 이유로 소자의 수명을 단축시킨다는 치명적인 단점이 있다.
However, since CuPC is a metal complex, it is widely used because it has excellent adhesion to ITO substrate and is the most stable, but it is difficult to realize total color due to absorption in the visible region, and m-MTDATA or 2-TNATA have a glass transition temperature. Since not only is low as 78 ℃ and 108 ℃ but also a lot of disadvantages in the process of mass production, this also has a problem in realizing the total color. In addition, TPD or NPB also has a fatal disadvantage of shortening the life of the device for the same reason because the glass transition temperature (Tg) as low as 60 ℃ and 96 ℃, respectively.

상기와 같이 종래의 유기 전기발광 소자에 사용되는 정공전달물질은 여전히 많은 문제점을 내포하고 있으며, 우수한 물리적 특성을 가지는 성능 개량이 요구되고 있다. 따라서 유기 전기발광 소자의 발광효율을 향상시키고, 높은 열안정성과 높은 유리전이온도를 갖는 우수한 재료에 대한 개발이 절실히 요구된다.
As described above, the hole transport material used in the conventional organic electroluminescent device still contains many problems, and there is a demand for improved performance having excellent physical properties. Therefore, there is an urgent need for development of an excellent material having an improved luminous efficiency of an organic electroluminescent device and having high thermal stability and high glass transition temperature.

상기한 문제점을 해결하기 위한 본 발명은 높은 유리전이온도를 갖는 카바졸 화합물 유도체와 이것을 포함하는 유기 전기 발광 조성물, 유기 전기 발광 소자를 제공하는데 그 목적이 있다. 본 발명의 다른 목적은 유기 전기발광 소자의 발광 효율을 향상시키고 소자의 수명을 증가시킬 수 있는 우수한 열안정성을 가진 유기 전기발광 소자용 정공전달 물질 및 그 제조방법을 제공하는 것이다. 본 발명의 또 다른 목적은 높은 발광 효율을 나타내는 유기 전기발광 소자를 제공하는 것이다. 본 발명의 또 다른 목적은 연장된 수명을 갖는 유기 전기발광 소자를 제공하는 것이다.
The present invention for solving the above problems is to provide a carbazole compound derivative having a high glass transition temperature, an organic electroluminescent composition comprising the same, and an organic electroluminescent device. Another object of the present invention is to provide a hole transport material for an organic electroluminescent device having excellent thermal stability and a method of manufacturing the same, which can improve the luminous efficiency of the organic electroluminescent device and increase the lifetime of the device. Still another object of the present invention is to provide an organic electroluminescent device exhibiting high luminous efficiency. Another object of the present invention is to provide an organic electroluminescent device having an extended lifetime.

먼저, 본 발명은 유기 전기 발광 소자의 발광 재료로 사용되며, 하기 화학식 I로 표시되는 카바졸 유도체를 포함하는 것을 특징으로 하는 유기 전기 발광 조성물이다. First, the present invention is an organic electroluminescent composition, which is used as a light emitting material of an organic electroluminescent device and comprises a carbazole derivative represented by the following general formula (I).

[화학식 I][Formula I]

Figure pat00003
Figure pat00003

(상기 화학식 I에서, R1은 치환되거나 비치환된 아릴기, 치환되거나 비치환된 헤테로아릴기, 카바졸릴기 또는 알킬기이고, R2 및 R3는 치환되거나 비치환된 아릴기 또는 치환되거나 비치환된 헤테로아릴기이고, R4는 수소, 알킬기 또는 아릴기이고, D는 치환되거나 비치환된 아릴렌기 또는 치환되거나 비치환된 헤테로아릴렌기이다.)
(In Formula I, R1 is a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a carbazolyl group or an alkyl group, R2 and R3 is a substituted or unsubstituted aryl group or a substituted or unsubstituted hetero. Is an aryl group, R 4 is hydrogen, an alkyl group or an aryl group, and D is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group.)

본 발명의 다른 실시형태는 상술한 유기 전기 발광 조성물을 포함하여 이루어진 유기층을 하나 이상 포함하는 것을 특징으로 하는 유기 전기 발광 소자이다. 여기서, 상기 유기 전기 발광 소자는 유기 발광 다이오드, 유기 전계-효과 트랜지스터, 유기 박막 트랜지스터, 유기 레이저 다이오드, 유기 태양 전지, 유기 발광 전기화학 전지 또는 유기 집적 회로를 포함하고, 본 발명은 상기한 유기 발광 다이오드 등에 다양하게 적용될 수 있다는 것은 이 기술분야에서 보통의 지식을 가진자에게 명백하다.
Another embodiment of the invention is an organic electroluminescent device comprising at least one organic layer comprising the organic electroluminescent composition described above. Here, the organic electroluminescent device includes an organic light emitting diode, an organic field-effect transistor, an organic thin film transistor, an organic laser diode, an organic solar cell, an organic light emitting electrochemical cell, or an organic integrated circuit. It is apparent to those skilled in the art that various applications such as diodes can be made.

기타 다른 실시예들은 후술하는 발명의 상세한 설명 및 도면에 기재되어 있다.
Other embodiments are described in the detailed description and drawings below.

본 발명에 따른 카바졸 유도체는 140℃ 이상의 높은 유리전이온도와 높은 열분해 온도를 갖고 있기 때문에 열적 안정성이 우수하고, 이것을 포함하는 조성물을 유기 전기 발광 소자의 정공전달물질 등으로 사용하여 발광특성을 평가한 결과, 기존의 정공전달물질인 2-TNATA(화학식 1)나 NPB(화학식 2)보다 전류 밀도, 휘도, 최고 휘도 그리고 발광 효율 여러 면에서 우수한 발광 특성을 나타내었다.
The carbazole derivatives according to the present invention have excellent thermal stability because they have a high glass transition temperature and a high pyrolysis temperature of 140 ° C. or higher, and the light emitting properties of the carbazole derivatives are evaluated using a composition including the same as a hole transport material of an organic electroluminescent device. As a result, the present invention showed superior luminescence properties in terms of current density, brightness, highest brightness, and luminous efficiency than conventional hole transport materials, 2-TNATA (Formula 1) or NPB (Formula 2).

이에 따라, 본 발명에 따른 카바졸 유도체를 정공전달물질 등으로 사용하여 유기 전기발광 소자를 제작하면, 기존의 유기 전기발광 소자의 가장 큰 단점인 발광 휘도와 발광 효율이 낮은 문제를 동시에 해결할 수 있을 뿐만 아니라, 유리전이온도도 높기 때문에 유기 전기발광 소자의 열적 안정성까지 뛰어나므로, 고성능의 유기 전기발광 소자의 제작이 가능할 뿐만 아니라 고효율, 고휘도 및 장수명이 요구되는 총천연색의 유기 전기발광 소자의 상용화에 크게 기여할 수 있다.
Accordingly, when the organic electroluminescent device is manufactured using the carbazole derivative according to the present invention as a hole transporting material, the problems of low luminance and low luminous efficiency, which are the biggest disadvantages of the conventional organic electroluminescent device, can be solved at the same time. In addition, since the glass transition temperature is high, the thermal stability of the organic electroluminescent device is excellent. Therefore, it is possible to manufacture a high-performance organic electroluminescent device and to commercialize a full-color organic electroluminescent device requiring high efficiency, high brightness and long life. Can contribute.

도 1은 본 발명에 따른 화학식 26의 카바졸 유도체에 대한 UV/Vis. 및 형광 스펙트럼 그래프이다.
도 2는 본 발명에 따른 화학식 29의 카바졸 유도체에 대한 시차주사열량계(DSC) 곡선 그래프이다.
도 3은 본 발명에 따른 화학식 31의 카바졸 유도체에 대한 UV/Vis. 및 형광 스펙트럼 그래프이다.
도 4는 본 발명에 따른 화학식 31의 카바졸 유도체에 대한 시차주사열량계(DSC) 곡선 그래프이다.
도 5는 본 발명에 따른 화학식 43의 카바졸 유도체에 대한 UV/Vis. 및 형광 스펙트럼 그래프이다.
도 6은 본 발명에 따른 카바졸 유도체를 이용하여 제작된 유기 전기발광 소자의 다층 구조를 나타내는 도면이다.
1 is a UV / Vis for the carbazole derivative of formula 26 according to the present invention. And fluorescence spectral graphs.
Figure 2 is a differential scanning calorimetry (DSC) curve graph of the carbazole derivative of formula 29 according to the present invention.
Figure 3 is a UV / Vis for the carbazole derivative of formula 31 in accordance with the present invention. And fluorescence spectral graphs.
Figure 4 is a differential scanning calorimetry (DSC) curve graph for the carbazole derivative of formula 31 according to the present invention.
Figure 5 is a UV / Vis for the carbazole derivative of formula 43 according to the present invention. And fluorescence spectral graphs.
6 is a diagram showing a multilayer structure of an organic electroluminescent device manufactured using a carbazole derivative according to the present invention.

본 발명은 유기 전기 발광 소자에서 정공전달물질 또는 유기 전기 발광 재료로써 사용하기에 유용한 하기 화학식 I로 표시되는 카바졸 유도체로써, 이러한 카바졸 유도체는 높은 유리 전이 온도와 우수한 정공 주입, 수송 능력을 갖고 있기 때문에, 이를 정공전달물질 등으로 사용하여 유기 전기 발광 소자를 제작하면 발광 효율을 높이고 소자의 수명을 증가시킬 수 있는 것이다.The present invention is a carbazole derivative represented by the following general formula (I) which is useful for use as a hole transport material or an organic electroluminescent material in an organic electroluminescent device, and the carbazole derivative has a high glass transition temperature and excellent hole injection and transport ability. Therefore, when the organic electroluminescent device is manufactured using the hole transport material, the light emitting efficiency can be increased and the life of the device can be increased.

[화학식 I][Formula I]

Figure pat00004
Figure pat00004

(상기 화학식 I에서, R1은 치환되거나 비치환된 아릴기, 치환되거나 비치환된 헤테로아릴기, 카바졸릴기 또는 알킬기이고, R2 및 R3는 치환되거나 비치환된 아릴기 또는 치환되거나 비치환된 헤테로아릴기이고, R4는 수소, 알킬기 또는 아릴기이고, D는 치환되거나 비치환된 아릴렌기 또는 치환되거나 비치환된 헤테로아릴렌기이다.)
(In Formula I, R1 is a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a carbazolyl group or an alkyl group, R2 and R3 is a substituted or unsubstituted aryl group or a substituted or unsubstituted hetero. Is an aryl group, R 4 is hydrogen, an alkyl group or an aryl group, and D is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group.)

상기 화학식 I 에서, 치환되거나 비치환된 6 내지 30개의 핵 탄소 원자를 갖는 아릴기라 함은, 특정한 작용기에 의해 치환되거나 또는 어떠한 작용기에 의해서도 치환되지 않은 것으로써, 6 내지 30개의 핵 탄소 원자를 갖는 아릴기를 뜻하며, 이러한 아릴기의 예로써는 페닐기, 나프틸기, 페난트릴기, 안트릴기, 비페닐기, 터페닐기, 플루오렌기 등을 포함한다.
In the above formula (I), an aryl group having 6 to 30 nuclear carbon atoms, which is substituted or unsubstituted, is substituted by a specific functional group or unsubstituted by any functional group, and has 6 to 30 nuclear carbon atoms. It means an aryl group, and examples of such aryl groups include phenyl group, naphthyl group, phenanthryl group, anthryl group, biphenyl group, terphenyl group, fluorene group and the like.

그리고, 상기 화학식 I에서, R1 내지 R4의 바람직한 예는 다음의 표 1에 기재된 화학 구조식의 단위구조와 같다. 각각의 단위구조에는 이를 구분하기 위하여 b01 내지 b16으로 구분기호를 명명하였다.In addition, in the general formula (I), preferred examples of R1 to R4 are the same as the unit structure of the chemical formula shown in Table 1 below. Each unit structure is named by b01 to b16 to distinguish them.

구분division 단위구조Unit structure 구분division 단위구조Unit structure 구분division 단위구조Unit structure b01b01

Figure pat00005
Figure pat00005
b02b02
Figure pat00006
Figure pat00006
b03b03
Figure pat00007
Figure pat00007
b04b04
Figure pat00008
Figure pat00008
b05b05
Figure pat00009
Figure pat00009
b06b06
Figure pat00010
Figure pat00010
b07b07
Figure pat00011
Figure pat00011
b08b08
Figure pat00012
Figure pat00012
b09b09
Figure pat00013
Figure pat00013
b10b10
Figure pat00014
Figure pat00014
b11b11
Figure pat00015
Figure pat00015
b12b12
Methyl

Methyl
b13b13
Ethyl

Ethyl
b14b14
Hexyl

Hexyl
b15b15
tert-Butyl

tert -Butyl
b16b16
Figure pat00016
Figure pat00016

특별히, 본 발명에 따른 화학식I에서 R4로 치환된 플루오렌기를 가지는 아민(N-)은 하나의 플루오렌기와 연결되면서 플루오렌 이외에 다른 아릴기와 함께 연결되는 것이 바람직하고, 이에 따라 상기 화학식I에서 R2는 치환되거나 비치환된 아릴기로써, 페닐기, 나프틸기, 페난트릴기, 안트릴기, 비페닐기 또는 터페닐기인 것이 더욱 바람직하다. 본 발명자들은 이 경우 중심 아민(N-)에 플루오렌기가 전혀 결합되지 않거나 플루오렌기만이 결합된 경우보다 그 효과가 현저히 우수함을 확인하였다.
Particularly, the amine (N-) having a fluorene group substituted with R 4 in formula (I) according to the present invention is preferably connected with one fluorene group and other aryl groups in addition to fluorene, and accordingly, R 2 in formula (I) Is a substituted or unsubstituted aryl group, more preferably a phenyl group, a naphthyl group, a phenanthryl group, an anthryl group, a biphenyl group or a terphenyl group. The present inventors have found that the effect is remarkably superior to the case where no fluorene group is bonded to the central amine (N-) or only a fluorene group is bonded.

또한, 상기 화학식 I에서, D의 바람직한 예는 다음의 표 2에 기재된 화학 구조식의 단위구조와 같다. 각각의 단위구조에는 이를 구분하기 위하여 d01 내지 d05로 구분기호를 명명하였다.In addition, in the general formula (I), a preferable example of D is the same as the unit structure of the chemical formula shown in Table 2. In each unit structure, the division symbols are named d01 to d05 to distinguish them.

구분division 단위구조Unit structure 구분division 단위구조Unit structure 구분division 단위구조Unit structure d01d01

Figure pat00017
Figure pat00017
d02d02
Figure pat00018
Figure pat00018
d03d03
Figure pat00019
Figure pat00019
d04d04
Figure pat00020
Figure pat00020
d05d05
Figure pat00021
Figure pat00021

상기 표 1과 표 2를 바탕으로, 최종적으로 높은 발광 효율과 긴 수명의 유기 전기 발광 소자를 가능하게 하는 일반 화학식 I의 구조를 갖는 카바졸 유도체의 구체적인 예는 하기의 표 3 내지 표 5에 표시되는 화합물인 화학식 11 내지 화학식 85 화합물을 포함한다. 하지만 본 발명은 이들로 한정되지는 않는다.
Based on Tables 1 and 2, specific examples of carbazole derivatives having a structure of general formula (I) which finally enable organic electroluminescent devices with high luminous efficiency and long lifetime are shown in Tables 3 to 5 below. Compounds represented by Formula 11 to Formula 85 are included. However, the present invention is not limited to these.

화학식Chemical formula DD R1R1 R2R2 R3R3 R4R4 1111 d01d01 b01b01 b01b01 b01b01 b12b12 1212 d01d01 b01b01 b01b01 b01b01 b13b13 1313 d01d01 b01b01 b01b01 b01b01 b14b14 1414 d01d01 b01b01 b01b01 b01b01 b01b01 1515 d01d01 b01b01 b02b02 b01b01 b12b12 1616 d01d01 b01b01 b02b02 b01b01 b13b13 1717 d01d01 b01b01 b03b03 b01b01 b12b12 1818 d01d01 b01b01 b04b04 b01b01 b12b12 1919 d01d01 b01b01 b05b05 b01b01 b12b12 2020 d01d01 b01b01 b06b06 b01b01 b12b12 2121 d01d01 b01b01 b08b08 b01b01 b12b12 2222 d01d01 b01b01 b09b09 b01b01 b12b12 2323 d01d01 b02b02 b01b01 b01b01 b12b12 2424 d01d01 b02b02 b02b02 b01b01 b12b12 2525 d01d01 b02b02 b03b03 b01b01 b12b12 2626 d01d01 b02b02 b04b04 b01b01 b12b12 2727 d01d01 b02b02 b08b08 b01b01 b12b12 2828 d01d01 b03b03 b01b01 b01b01 b12b12 2929 d01d01 b03b03 b02b02 b01b01 b12b12 3030 d01d01 b03b03 b03b03 b01b01 b12b12 3131 d01d01 b03b03 b04b04 b01b01 b12b12 3232 d01d01 b03b03 b08b08 b01b01 b12b12 3333 d01d01 b03b03 b09b09 b01b01 b12b12 3434 d01d01 b04b04 b01b01 b01b01 b12b12 3535 d01d01 b04b04 b02b02 b01b01 b12b12 3636 d01d01 b04b04 b03b03 b01b01 b12b12

화학식Chemical formula DD R1R1 R2R2 R3R3 R4R4 3737 d01d01 b04b04 b04b04 b01b01 b12b12 3838 d01d01 b05b05 b01b01 b01b01 b12b12 3939 d01d01 b05b05 b03b03 b01b01 b12b12 4040 d01d01 b05b05 b04b04 b01b01 b12b12 4141 d01d01 b06b06 b01b01 b01b01 b12b12 4242 d01d01 b06b06 b04b04 b01b01 b12b12 4343 d01d01 b07b07 b01b01 b01b01 b12b12 4444 d01d01 b07b07 b01b01 b01b01 b13b13 4545 d01d01 b07b07 b01b01 b01b01 b01b01 4646 d01d01 b07b07 b02b02 b01b01 b12b12 4747 d01d01 b07b07 b02b02 b01b01 b13b13 4848 d01d01 b07b07 b03b03 b01b01 b12b12 4949 d01d01 b07b07 b04b04 b01b01 b12b12 5050 d01d01 b07b07 b05b05 b01b01 b12b12 5151 d01d01 b07b07 b06b06 b01b01 b12b12 5252 d01d01 b07b07 b08b08 b01b01 b12b12 5353 d01d01 b07b07 b09b09 b01b01 b12b12 5454 d01d01 b08b08 b01b01 b01b01 b12b12 5555 d01d01 b08b08 b02b02 b01b01 b12b12 5656 d01d01 b08b08 b03b03 b01b01 b12b12 5757 d01d01 b08b08 b04b04 b01b01 b12b12 5858 d01d01 b08b08 b08b08 b01b01 b12b12 5959 d01d01 b09b09 b01b01 b01b01 b12b12 6060 d01d01 b09b09 b02b02 b01b01 b12b12 6161 d01d01 b09b09 b03b03 b01b01 b12b12 6262 d01d01 b09b09 b04b04 b01b01 b12b12

화학식Chemical formula DD R1R1 R2R2 R3R3 R4R4 6363 d01d01 b09b09 b08b08 b01b01 b12b12 6464 d01d01 b10b10 b01b01 b01b01 b12b12 6565 d01d01 b10b10 b03b03 b01b01 b12b12 6666 d01d01 b10b10 b04b04 b01b01 b12b12 6767 d01d01 b11b11 b04b04 b01b01 b12b12 6868 d01d01 b15b15 b04b04 b01b01 b12b12 6969 d01d01 b01b01 b04b04 b01b01 b01b01 7070 d01d01 b02b02 b04b04 b01b01 b01b01 7171 d01d01 b03b03 b04b04 b01b01 b01b01 7272 d01d01 b01b01 b04b04 b16b16 b12b12 7373 d01d01 b02b02 b03b03 b16b16 b12b12 7474 d01d01 b02b02 b04b04 b16b16 b12b12 7575 d01d01 b03b03 b01b01 b16b16 b12b12 7676 d01d01 b03b03 b02b02 b16b16 b12b12 7777 d01d01 b03b03 b03b03 b16b16 b12b12 7878 d01d01 b03b03 b04b04 b16b16 b12b12 7979 d02d02 b02b02 b04b04 b01b01 b12b12 8080 d03d03 b02b02 b04b04 b01b01 b12b12 8181 d04d04 b02b02 b04b04 b01b01 b12b12 8282 d04d04 b08b08 b04b04 b01b01 b12b12 8383 d05d05 b02b02 b04b04 b01b01 b12b12 8484 d05d05 b03b03 b04b04 b01b01 b12b12 8585 d05d05 b04b04 b04b04 b01b01 b12b12

이에 따라, 상기 화학식 I의 구조를 갖는 카바졸 유도체로서, 특별히 높은 발광 효율과 긴 수명의 유기 전기 발광 소자를 가능하게 하는 구체적인 예는 하기 화학식 11, 21, 26, 28, 29, 31, 37, 43, 46, 48, 49, 54 및 78 중에서 선택된 하나 이상일 수 있다. 하지만 본 발명은 이들로 한정되지는 않는다.Accordingly, specific examples of the carbazole derivative having the structure of Formula (I), which enable an organic electroluminescent device having a particularly high luminous efficiency and a long lifetime, are represented by the following Formulas 11, 21, 26, 28, 29, 31, 37, At least one selected from 43, 46, 48, 49, 54 and 78. However, the present invention is not limited to these.

[화학식 11] [화학식 21][Formula 11] [Formula 21]

Figure pat00022
Figure pat00023
Figure pat00022
Figure pat00023

[화학식 26] [화학식 28][Formula 26] [Formula 28]

Figure pat00024
Figure pat00025
Figure pat00024
Figure pat00025

[화학식 29] [화학식 31][Formula 29] [Formula 31]

Figure pat00026
Figure pat00027
Figure pat00026
Figure pat00027

[화학식 37] [화학식 43][Formula 37] [Formula 43]

Figure pat00028
Figure pat00029
Figure pat00028
Figure pat00029

[화학식 46] [화학식 48][Formula 46] [Formula 48]

Figure pat00030
Figure pat00031
Figure pat00030
Figure pat00031

[화학식 49] [화학식 54][Formula 49] [Formula 54]

Figure pat00032
Figure pat00033
Figure pat00032
Figure pat00033

[화학식 78] (78)

Figure pat00034

Figure pat00034

본 발명은 상기와 같이 유기 전기 발광 소자의 발광 재료로 사용될 수 있는 카바졸 유도체이거나 이를 포함하는 유기 발광 조성물 또는 유기 발광 재료일 수 있다. 이러한 유도체, 조성물 또는 재료를 유기 전기 발광 소자의 정공전달물질로 사용하면 고 발광효율을 얻을 수 있고, 상기 카바졸 유도체의 유리전이 온도가 높기 때문에 우수한 내구성을 갖는 소자를 제작할 수 있다. 여기에서 상기 정공전달물질은 정공주입층 또는 정공수송층에 사용되는 물질을 말하며, 일부 경우에는 발광층에 사용하는 물질일 수도 있다.
The present invention may be an organic light emitting composition or an organic light emitting material comprising or a carbazole derivative that can be used as a light emitting material of the organic electroluminescent device as described above. Using such a derivative, composition or material as a hole transporting material of the organic electroluminescent device can obtain a high luminous efficiency, it is possible to manufacture a device having excellent durability because of the high glass transition temperature of the carbazole derivatives. Here, the hole transport material refers to a material used for the hole injection layer or the hole transport layer, in some cases may be a material used for the light emitting layer.

그리고, 본 발명에 따른 카바졸 유도체들은 고순도를 요구하는 유기 전기 발광 소자의 특성상 재결정과 승화법을 이용하여 정제를 하는 것도 가능하다.
In addition, the carbazole derivatives according to the present invention may be purified using recrystallization and sublimation methods due to the characteristics of the organic electroluminescent device requiring high purity.

이하, 본 발명을 실시예와 비교예를 참조하여 더욱 상세히 설명한다. 본 발명은 하기의 실시예와 비교예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명을 예시하기 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The invention can be better understood by the following examples and comparative examples, which are intended to illustrate the invention and are not intended to limit the scope of protection defined by the appended claims.

[실시예 1] 화학식 11의 제조Example 1 Preparation of Chemical Formula 11

본 발명에서 상기 화학식 I로 표시되는 카바졸 유도체는 하기 반응식 1과 같은 합성 경로에 의해 제조할 수 있다. In the present invention, the carbazole derivative represented by Formula I may be prepared by a synthetic route as in Scheme 1 below.

[반응식 1]Scheme 1

Figure pat00035

Figure pat00035

1-1. 화학식 102의 제조1-1. Preparation of Formula 102

1000-ml, 4구 둥근바닥플라스크에 N-페닐카바졸(화학식 101) 50g(0.205mol)을 투입하고 디클로로메탄 300ml로 희석시켰다. 이 희석액에 N-브로모숙신이미드(NBS) 38g을 서서히 투입하고 반응액을 실온에서 4시간동안 교반시켰다. 반응액에 증류수 300ml를 투입 후 30분간 교반한 다음 유기층을 분리하였다. 분리된 유기층을 건조 후 농축한 다음 아세톤과 메탄올로 재결정하고 진공건조하여 목적화합물 55g(수율 83%)을 얻었다.
N -phenylcarbazole (Formula 101) 50g (0.205mol) was added to a 1000-ml, four-necked round bottom flask, and diluted with 300ml of dichloromethane. 38 g of N -bromosuccinimide (NBS) was slowly added to the diluent, and the reaction solution was stirred at room temperature for 4 hours. 300 ml of distilled water was added to the reaction solution, the mixture was stirred for 30 minutes, and the organic layer was separated. The separated organic layer was dried and concentrated, then recrystallized with acetone and methanol and dried in vacuo to give 55 g (yield 83%) of the title compound.

1-2. 화학식 103의 제조1-2. Preparation of Chemical Formula 103

5000-ml, 4구 둥근바닥플라스크에 실시예 1-1에서 제조한 화학식 102 화합물 53g(0.165mol)을 투입하고 테트라하이드로퓨란 1000ml로 희석시켰다. 이 희석액에 4-클로로페닐보론 산 28.4g, 3M-탄산칼륨 수용액 70ml 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 3.6g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 에틸 아세테이트 1000ml와 증류수 1000ml를 투입 후 교반하였다. 유기층을 분리하고 수분을 제거시킨 후 농축시켰다. 이 농축액에 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 42g(수율 72%)을 얻었다.
53 g (0.165 mol) of the compound of formula 102 prepared in Example 1-1 were added to a 5000-ml, four-necked round bottom flask and diluted with 1000 ml of tetrahydrofuran. 28.4 g of 4-chlorophenylboronic acid, 70 ml of 3M-potassium carbonate aqueous solution, and 3.6 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, 1000 ml of ethyl acetate and 1000 ml of distilled water were added and stirred. The organic layer was separated, concentrated to remove moisture. Methanol was added to this concentrate, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 42 g (yield 72%) of the title compound.

1-3. 화학식 104의 제조1-3. Preparation of Formula 104

1000-ml, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 1-2에서 제조한 화학식 103 화합물 61g(0.172mol), 9,9-디메틸-N-페닐-9H-플루오렌-2-아민 51.2g, 팔라디움 아세테이트(II) 0.19g, 트리-(t-부틸)포스핀(10% 헥산용액) 3.4g, 소디움 t-부톡시드 18g 그리고 톨루엔 600ml를 투입하였다. 반응액을 8시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 92g(수율 89%)을 얻었다.
61 g (0.172 mol) of Chemical Formula 103 compound prepared in Example 1-2 in a 1000-ml, four-necked round bottom flask under nitrogen atmosphere, 9,9-dimethyl- N -phenyl-9 H -fluoren-2-amine 51.2 g, 0.19 g of palladium acetate (II), 3.4 g of tri- (t-butyl) phosphine (10% hexane solution), 18 g of sodium t-butoxide and 600 ml of toluene were added thereto. The reaction solution was refluxed for 8 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 92 g (yield 89%) of the title compound.

1-4. 화학식 105의 제조1-4. Preparation of Formula 105

3000-ml, 4구 둥근바닥플라스크에 실시예 1-3에서 제조한 화학식 104 화합물 90g(0.149mol)을 투입하고 디클로로메탄 900ml로 희석시켰다. 이 희석액에 N-브로모숙신이미드(NBS) 27g을 서서히 투입하고 반응액을 실온에서 4시간동안 교반시켰다. 반응액에 증류수 900ml를 투입 후 30분간 교반한 다음 유기층을 분리하였다. 분리된 유기층을 건조 후 농축한 다음 아세톤과 메탄올로 재결정하고 진공건조하여 목적화합물 90g(수율 89%)을 얻었다.
Into a 3000-ml, four-necked round bottom flask was added 90 g (0.149 mol) of the compound of formula 104 prepared in Example 1-3 and diluted with 900 ml of dichloromethane. 27 g of N -bromosuccinimide (NBS) was slowly added to the diluent, and the reaction solution was stirred at room temperature for 4 hours. 900 ml of distilled water was added to the reaction solution, stirred for 30 minutes, and the organic layer was separated. The separated organic layer was dried, concentrated and then recrystallized with acetone and methanol and dried in vacuo to give 90 g (yield 89%) of the title compound.

1-5. 화학식 11의 제조1-5. Preparation of Formula 11

3000-ml, 4구 둥근바닥플라스크에 실시예 1-4에서 제조한 화학식 105 화합물 80g(0.117mol)을 투입하고 테트라하이드로퓨란 1500ml로 희석시켰다. 이 희석액에 페닐보론 산 16g, 3M-탄산칼륨 수용액 117ml 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 4.1g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 테트라하이드로퓨란을 농축한 다음 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 65g(수율 82%)을 얻었다.80 g (0.117 mol) of the Formula 105 compound prepared in Example 1-4 were added to a 3000-ml, four-necked round bottom flask and diluted with 1500 ml of tetrahydrofuran. 16 g of phenylboronic acid, 117 ml of 3M-potassium carbonate aqueous solution and 4.1 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, tetrahydrofuran was concentrated, methanol was added, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 65 g (yield 82%) of the title compound.

MS(m/z, [M]+): C51H38N2: 678.45
MS ( m / z , [M] + ): C51H38N2: 678.45

[실시예 2] 화학식 21의 제조Example 2 Preparation of Chemical Formula 21

Figure pat00036
Figure pat00036

2-1. 화학식 108의 제조2-1. Preparation of Formula 108

2000-ml, 4구 둥근바닥플라스크에 질소 분위기 하에서 화학식 107 화합물 100g(0.310mol), 화학식 106 화합물 71g, 팔라디움 아세테이트(II) 0.35g, 트리-(t-부틸)포스핀(10% 헥산용액) 6.3g, 소디움 t-부톡시드 36g 그리고 톨루엔 1000ml를 투입하였다. 반응액을 3시간 동안 환류 시킨 후 냉각하고 과량의 메탄올 수용액에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 100g(수율 71%)을 얻었다.
2000-ml, 4-necked round bottom flask under nitrogen atmosphere, 100 g (0.310 mol) of formula 107 compound, 71 g of formula 106 compound, 0.35 g of palladium acetate (II), tri- (t-butyl) phosphine (10% hexane solution) 6.3 g, sodium t-butoxide 36 g and toluene 1000 ml were added. The reaction solution was refluxed for 3 hours, cooled, and poured into an excess of aqueous methanol solution to precipitate a solid. The obtained solid was filtered and dried under vacuum to obtain 100 g (yield 71%) of the title compound.

2-2. 화학식 109의 제조2-2. Preparation of Formula 109

5000-ml, 4구 둥근바닥플라스크에 실시예 1-1에서 제조한 화학식 102 화합물 100g(0.310mol)을 투입하고 테트라하이드로퓨란 2000ml로 희석시켰다. 이 희석액에 페닐보론 산 41.9g, 3M-탄산칼륨 수용액 281ml 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 14.5g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 에틸 아세테이트 1000ml와 증류수 1000ml를 투입 후 교반하였다. 유기층을 분리하고 수분을 제거시킨 후 농축시켰다. 이 농축액에 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 81g(수율 82%)을 얻었다.
100 g (0.310 mol) of the compound of Formula 102 prepared in Example 1-1 were added to a 5000-ml, four-necked round bottom flask and diluted with 2000 ml of tetrahydrofuran. 41.9 g of phenylboronic acid, 281 ml of 3M-potassium carbonate aqueous solution, and 14.5 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, 1000 ml of ethyl acetate and 1000 ml of distilled water were added and stirred. The organic layer was separated, concentrated to remove moisture. Methanol was added to this concentrate, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 81 g (yield 82%) of the title compound.

2-3. 화학식 110의 제조2-3. Preparation of Formula 110

2000-ml, 4구 둥근바닥플라스크에 실시예 2-2에서 제조한 화학식 109 화합물 80g(0.250mol)을 투입하고 디클로로메탄 800ml로 희석시켰다. 이 희석액에 N-브로모숙신이미드(NBS) 47g을 서서히 투입하고 반응액을 실온에서 4시간동안 교반시켰다. 반응액에 증류수 600ml를 투입 후 30분간 교반한 다음 유기층을 분리하였다. 분리된 유기층을 건조 후 농축한 다음 아세톤과 메탄올로 재결정하고 진공건조하여 목적화합물 84g(수율 84%)을 얻었다.
Into a 2000-ml, four-necked round bottom flask, 80 g (0.250 mol) of the compound of formula 109 prepared in Example 2-2 were added and diluted with 800 ml of dichloromethane. 47 g of N -bromosuccinimide (NBS) was slowly added to the diluent, and the reaction solution was stirred at room temperature for 4 hours. After distilled water 600ml was added to the reaction solution, the mixture was stirred for 30 minutes, and the organic layer was separated. The separated organic layer was dried, concentrated and then recrystallized with acetone and methanol and dried in vacuo to give 84 g (yield 84%) of the title compound.

2-4. 화학식 111의 제조2-4. Preparation of Formula 111

5000-ml, 4구 둥근바닥플라스크에 실시예 2-3에서 제조한 화학식 110 화합물 80g(0.201mol)을 투입하고 테트라하이드로퓨란 1600ml로 희석시켰다. 이 희석액에 4-클로로페닐보론 산 34.6g, 3M-탄산칼륨 수용액 85ml 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 4.4g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 에틸 아세테이트 1000ml와 증류수 1000ml를 투입 후 교반하였다. 유기층을 분리하고 수분을 제거시킨 후 농축시켰다. 이 농축액에 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 61g(수율 71%)을 얻었다.
80 g (0.201 mol) of the Formula 110 compound prepared in Example 2-3 were added to a 5000-ml, four-necked round bottom flask, and diluted with 1600 ml of tetrahydrofuran. 34.6 g of 4-chlorophenylboronic acid, 85 ml of 3M-potassium carbonate aqueous solution and 4.4 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, 1000 ml of ethyl acetate and 1000 ml of distilled water were added and stirred. The organic layer was separated, concentrated to remove moisture. Methanol was added to this concentrate, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 61 g (yield 71%) of the title compound.

2-5. 화학식 21의 제조2-5. Preparation of Formula 21

1000-ml, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 2-1에서 제조한 화학식 108 화합물 50g(0.111mol), 실시예 2-4에서 제조한 화학식 111 화합물 50g, 팔라디움 아세테이트(II) 0.12g, 트리-(t-부틸)포스핀(10% 헥산용액) 2.2g, 소디움 t-부톡시드 13g 그리고 o-자일렌 500ml를 투입하였다. 반응액을 6시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 87g(수율 93%)을 얻었다.50 g (0.111 mol) of the compound of formula 108 prepared in Example 2-1 in a 1000-ml, four-necked round bottom flask under nitrogen atmosphere, 50 g of the compound of formula 111 prepared in Examples 2-4, 0.12 g of palladium acetate (II) , 2.2 g of tri- (t-butyl) phosphine (10% hexane solution), 13 g of sodium t-butoxide and 500 ml of o -xylene were added thereto. The reaction solution was refluxed for 6 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 87 g (yield 93%) of the title compound.

UV(λmax) : 347nm PL : 407nmUV (λ max ): 347nm PL: 407nm

유리전이온도(Tg, DSC에 의한 측정) : 152℃Glass transition temperature (measured by Tg, DSC): 152 ℃

MS(m/z, [M]+): C63H45N3: 843.52
MS ( m / z , [M] + ): C63H45N3: 843.52

[실시예 3] 화학식 26의 제조Example 3 Preparation of Chemical Formula 26

Figure pat00037

Figure pat00037

3-1. 화학식 112의 제조3-1. Preparation of Formula 112

2000-ml, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 1-2에서 제조한 화학식 103 화합물 61g(0.172mol), N-(4-비페닐)-9,9-디메틸-9H-플루오렌-2-아민 62.2g, 팔라디움 아세테이트(II) 0.19g, 트리-(t-부틸)포스핀(10% 헥산용액) 3.4g, 소디움 t-부톡시드 18g 그리고 o-자일렌 600ml를 투입하였다. 반응액을 8시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 96g(수율 82%)을 얻었다.
2000-ml, 4 gu a formula 103 compound prepared in Example 1-2 in a nitrogen atmosphere in a round bottom flask, 61g (0.172mol), N - ( 4- biphenyl), 9,9-dimethyl -9 H - fluoren 62.2 g of 2-amine, 0.19 g of palladium acetate (II), 3.4 g of tri- (t-butyl) phosphine (10% hexane solution), 18 g of sodium t-butoxide and 600 ml of o-xylene were added. The reaction solution was refluxed for 8 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 96 g (yield 82%) of the title compound.

3-2. 화학식 113의 제조3-2. Preparation of Formula 113

3000-ml, 4구 둥근바닥플라스크에 실시예 3-1에서 제조한 화학식 112 화합물 90g(0.133mol)을 투입하고 디클로로메탄 900ml로 희석시켰다. 이 희석액에 N-브로모숙신이미드(NBS) 24g을 서서히 투입하고 반응액을 실온에서 4시간동안 교반시켰다. 반응액에 증류수 900ml를 투입 후 30분간 교반한 다음 유기층을 분리하였다. 분리된 유기층을 건조 후 농축한 다음 아세톤과 메탄올로 재결정하고 진공건조하여 목적화합물 96g(수율 95%)을 얻었다.
Into a 3000-ml, four-necked round bottom flask, 90 g (0.133 mol) of the formula 112 compound prepared in Example 3-1 were added and diluted with 900 ml of dichloromethane. 24 g of N -bromosuccinimide (NBS) was slowly added to the diluent, and the reaction solution was stirred at room temperature for 4 hours. 900 ml of distilled water was added to the reaction solution, stirred for 30 minutes, and the organic layer was separated. The separated organic layer was dried, concentrated and then recrystallized with acetone and methanol and dried in vacuo to give 96 g (yield 95%) of the title compound.

3-3. 화학식 26의 제조3-3. Preparation of Formula 26

3000-ml, 4구 둥근바닥플라스크에 실시예 3-2에서 제조한 화학식 113 화합물 90g(0.119mol)을 투입하고 테트라하이드로퓨란 1800ml로 희석시켰다. 이 희석액에 1-나프틸보론 산 22.5g, 3M-탄산칼륨 수용액 120ml 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 4.3g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 테트라하이드로퓨란을 농축한 다음 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 67g(수율 70%)을 얻었다.Into a 3000-ml, four-necked round bottom flask, 90 g (0.119 mol) of the formula 113 compound prepared in Example 3-2 were added and diluted with 1800 ml of tetrahydrofuran. 22.5 g of 1-naphthylboronic acid, 120 ml of 3M-potassium carbonate aqueous solution, and 4.3 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, tetrahydrofuran was concentrated, methanol was added, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 67 g (yield 70%) of the title compound.

1H NMR (400MHz, DMSO-d6) : δ 8.67(s, 1H), 8.48(s, 1H), 8.01(d, J = 8.1Hz, 1H), 7.96(d, J = 4.3Hz, 1H), 7.94(d, J = 5.1Hz, 1H), 7.77-7.71(m, 9H), 7.63-7.45(m, 13H), 7.41(t, J = 7.7Hz, 2H), 7.33-7.23(m, 4H), 7.15(d, J = 8.8Hz, 2H), 7.12(d, J = 8.8Hz, 2H), 7.03(dd, J = 8.1, 1.8Hz ,1H), 1.38(s, 6H). 1 H NMR (400 MHz, DMSO-d 6 ): δ 8.67 (s, 1H), 8.48 (s, 1H), 8.01 (d, J = 8.1Hz, 1H), 7.96 (d, J = 4.3Hz, 1H) , 7.94 (d, J = 5.1 Hz, 1H), 7.77-7.71 (m, 9H), 7.63-7.45 (m, 13H), 7.41 (t, J = 7.7 Hz, 2H), 7.33-7.23 (m, 4H ), 7.15 (d, J = 8.8 Hz, 2H), 7.12 (d, J = 8.8 Hz, 2H), 7.03 (dd, J = 8.1, 1.8 Hz, 1H), 1.38 (s, 6H).

UV(λmax) : 356nm PL : 413nm(도 1 참조)UV (λ max ): 356 nm PL: 413 nm (see FIG. 1)

유리전이온도(Tg, DSC에 의한 측정) : 160℃
Glass transition temperature (measured by Tg, DSC): 160 ℃

[실시예 4] 화학식 28의 제조Example 4 Preparation of Chemical Formula 28

Figure pat00038

Figure pat00038

4-1. 화학식 114의 제조4-1. Preparation of Formula 114

2000-ml, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 1-2에서 제조한 화학식 103 화합물 61g(0.172mol), N-(페닐)-9,9-디메틸-9H-플루오렌-2-아민 49.1g, 팔라디움 아세테이트(II) 0.19g, 트리-(t-부틸)포스핀(10% 헥산용액) 3.4g, 소디움 t-부톡시드 18g 그리고 o-자일렌 600ml를 투입하였다. 반응액을 8시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 89g(수율 86%)을 얻었다.
61 g (0.172 mol) of formula 103 compound prepared in Example 1-2, 2000-ml, 4-necked round bottom flask under nitrogen atmosphere, N- (phenyl) -9,9-dimethyl-9 H -fluorene-2- 49.1 g of amine, 0.19 g of palladium acetate (II), 3.4 g of tri- (t-butyl) phosphine (10% hexane solution), 18 g of sodium t-butoxide and 600 ml of o-xylene were added. The reaction solution was refluxed for 8 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried under vacuum to obtain 89 g (yield 86%) of the title compound.

4-2. 화학식 115의 제조4-2. Preparation of Formula 115

3000-ml, 4구 둥근바닥플라스크에 실시예 4-1에서 제조한 화학식 114 화합물 82g(0.133mol)을 투입하고 디클로로메탄 900ml로 희석시켰다. 이 희석액에 N-브로모숙신이미드(NBS) 24g을 서서히 투입하고 반응액을 실온에서 4시간동안 교반시켰다. 반응액에 증류수 900ml를 투입 후 30분간 교반한 다음 유기층을 분리하였다. 분리된 유기층을 건조 후 농축한 다음 아세톤과 메탄올로 재결정하고 진공건조하여 목적화합물 85g(수율 94%)을 얻었다.
Into a 3000-ml, four-necked round bottom flask was added 82 g (0.133 mol) of the compound of Formula 114 prepared in Example 4-1 and diluted with 900 ml of dichloromethane. 24 g of N -bromosuccinimide (NBS) was slowly added to the diluent, and the reaction solution was stirred at room temperature for 4 hours. 900 ml of distilled water was added to the reaction solution, stirred for 30 minutes, and the organic layer was separated. The separated organic layer was dried and concentrated, then recrystallized with acetone and methanol and dried in vacuo to give 85 g (yield 94%) of the title compound.

4-3. 화학식 28의 제조4-3. Preparation of Formula 28

3000-ml, 4구 둥근바닥플라스크에 실시예 4-2에서 제조한 화학식 115 화합물 81g(0.119mol)을 투입하고 테트라하이드로퓨란 1600ml로 희석시켰다. 이 희석액에 2-나프틸보론 산 22.5g, 3M-탄산칼륨 수용액 120ml 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 4.3g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 테트라하이드로퓨란을 농축한 다음 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 65g(수율 75%)을 얻었다.81 g (0.119 mol) of the formula 115 compound prepared in Example 4-2 were added to a 3000-ml, four-necked round bottom flask, and diluted with 1600 ml of tetrahydrofuran. 22.5 g of 2-naphthylboronic acid, 120 ml of 3M-potassium carbonate aqueous solution, and 4.3 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, tetrahydrofuran was concentrated, methanol was added, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 65 g (yield 75%) of the title compound.

MS(m/z, [M]+): C55H40N2: 728.53
MS ( m / z , [M] + ): C55H40N2: 728.53

[실시예 5] 화학식 29의 제조Example 5 Preparation of Chemical Formula 29

Figure pat00039

Figure pat00039

5-1. 화학식 116의 제조5-1. Preparation of Formula 116

2000-ml, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 1-2에서 제조한 화학식 103 화합물 61g(0.172mol), N-(1-나프틸)-9,9-디메틸-9H-플루오렌-2-아민 58g, 팔라디움 아세테이트(II) 0.19g, 트리-(t-부틸)포스핀(10% 헥산용액) 3.4g, 소디움 t-부톡시드 18g 그리고 o-자일렌 600ml를 투입하였다. 반응액을 8시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 86g(수율 77%)을 얻었다.
2000-ml, 4-neck round a formula 103 compound 61g (0.172mol) prepared in Example 1-2 under a nitrogen atmosphere bottom flask, N - (1- naphthyl) 9,9-dimethyl -9 H - fluoren 58 g of 2-amine, 0.19 g of palladium acetate (II), 3.4 g of tri- (t-butyl) phosphine (10% hexane solution), 18 g of sodium t-butoxide and 600 ml of o-xylene were added. The reaction solution was refluxed for 8 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 86 g (yield 77%) of the title compound.

5-2. 화학식 117의 제조5-2. Preparation of Formula 117

3000-ml, 4구 둥근바닥플라스크에 실시예 5-1에서 제조한 화학식 116 화합물 86g(0.132mol)을 투입하고 디클로로메탄 900ml로 희석시켰다. 이 희석액에 N-브로모숙신이미드(NBS) 24g을 서서히 투입하고 반응액을 실온에서 4시간동안 교반시켰다. 반응액에 증류수 850ml를 투입 후 30분간 교반한 다음 유기층을 분리하였다. 분리된 유기층을 건조 후 농축한 다음 아세톤과 메탄올로 재결정하고 진공건조하여 목적화합물 88g(수율 91%)을 얻었다.
Into a 3000-ml, four-necked round bottom flask, 86 g (0.132 mol) of the compound of Formula 116 prepared in Example 5-1 were added and diluted with 900 ml of dichloromethane. 24 g of N -bromosuccinimide (NBS) was slowly added to the diluent, and the reaction solution was stirred at room temperature for 4 hours. 850 ml of distilled water was added to the reaction solution, stirred for 30 minutes, and the organic layer was separated. The separated organic layer was dried, concentrated and then recrystallized with acetone and methanol and dried in vacuo to give 88 g (yield 91%) of the title compound.

5-3. 화학식 29의 제조5-3. Preparation of Formula 29

3000-ml, 4구 둥근바닥플라스크에 실시예 5-2에서 제조한 화학식 117 화합물 87g(0.119mol)을 투입하고 테트라하이드로퓨란 1700ml로 희석시켰다. 이 희석액에 2-나프틸보론 산 22.5g, 3M-탄산칼륨 수용액 120ml 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 4.3g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 테트라하이드로퓨란을 농축한 다음 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 66g(수율 71%)을 얻었다.Into a 3000-ml, four-necked round bottom flask was added 87 g (0.119 mol) of the compound of Formula 117 prepared in Example 5-2 and diluted with 1700 ml of tetrahydrofuran. 22.5 g of 2-naphthylboronic acid, 120 ml of 3M-potassium carbonate aqueous solution, and 4.3 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, tetrahydrofuran was concentrated, methanol was added, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 66 g (yield 71%) of the title compound.

1H NMR (400MHz, DMSO-d6) : δ 8.85(s, 1H), 8.70(s, 1H), 8.32(s, 1H), 8.03-7.90(m, 8H), 7.71-7.41(m, 19H), 7.30-7.20(m, 3H), 7.04(d, J = 8.4Hz, 2H), 6.88(dd, J = 8.4, 2.2Hz ,1H), 1.35(s, 6H). 1 H NMR (400 MHz, DMSO-d 6 ): δ 8.85 (s, 1H), 8.70 (s, 1H), 8.32 (s, 1H), 8.03-7.90 (m, 8H), 7.71-7.41 (m, 19H ), 7.30-7.20 (m, 3H), 7.04 (d, J = 8.4 Hz, 2H), 6.88 (dd, J = 8.4, 2.2 Hz, 1H), 1.35 (s, 6H).

UV(λmax) : 371nm PL : 453nmUV (λ max ): 371nm PL: 453nm

유리전이온도(Tg, DSC에 의한 측정) : 159℃(도 2 참조)
Glass transition temperature (measured by Tg, DSC): 159 ° C (see Fig. 2)

[실시예 6] 화학식 31의 제조Example 6 Preparation of Chemical Formula 31

Figure pat00040

Figure pat00040

3000-ml, 4구 둥근바닥플라스크에 실시예 3-2에서 제조한 화학식 113 화합물 80g(0.106mol)을 투입하고 테트라하이드로퓨란 1600ml로 희석시켰다. 이 희석액에 2-나프틸보론 산 20g, 3M-탄산칼륨 수용액 110ml 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 3.7g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 테트라하이드로퓨란을 농축한 다음 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 57g(수율 67%)을 얻었다.80 g (0.106 mol) of the formula 113 compound prepared in Example 3-2 were added to a 3000-ml, four-necked round bottom flask and diluted with 1600 ml of tetrahydrofuran. 20 g of 2-naphthylboronic acid, 110 ml of 3M-potassium carbonate aqueous solution and 3.7 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, tetrahydrofuran was concentrated, methanol was added, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 57 g (yield 67%) of the title compound.

1H NMR (400MHz, DMSO-d6) : δ 8.89(s, 1H), 8.76(s, 1H), 8.34(s, 1H), 8.03-7.92(m, 5H), 7.81-7.63(m, 13H), 7.57-7.42(m, 8H), 7.36-7.25(m, 4H), 7.23(d, J = 8.5Hz, 2H), 7.16(d, J = 8.4Hz, 2H), 7.07(dd, J = 7.7, 1.5Hz ,1H), 1.42(s, 6H). 1 H NMR (400 MHz, DMSO-d 6 ): δ 8.89 (s, 1H), 8.76 (s, 1H), 8.34 (s, 1H), 8.03-7.92 (m, 5H), 7.81-7.63 (m, 13H ), 7.57-7.42 (m, 8H), 7.36-7.25 (m, 4H), 7.23 (d, J = 8.5 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 7.07 (dd, J = 7.7, 1.5 Hz, 1 H), 1.42 (s, 6 H).

UV(λmax) : 357nm PL : 413nm(도 3 참조)UV (λ max ): 357 nm PL: 413 nm (see FIG. 3)

유리전이온도(Tg, DSC에 의한 측정) : 154℃(도 4 참조)
Glass transition temperature (measured by Tg, DSC): 154 ° C (see Figure 4)

[실시예 7] 화학식 37의 제조Example 7 Preparation of Chemical Formula 37

Figure pat00041

Figure pat00041

3000-ml, 4구 둥근바닥플라스크에 실시예 3-2에서 제조한 화학식 113 화합물 80g(0.106mol)을 투입하고 테트라하이드로퓨란 1600ml로 희석시켰다. 이 희석액에 4-비페닐보론 산 21g, 3M-탄산칼륨 수용액 110ml 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 3.7g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 테트라하이드로퓨란을 농축한 다음 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 76g(수율 87%)을 얻었다.80 g (0.106 mol) of the formula 113 compound prepared in Example 3-2 were added to a 3000-ml, four-necked round bottom flask and diluted with 1600 ml of tetrahydrofuran. 21 g of 4-biphenylboronic acid, 110 ml of 3M-potassium carbonate aqueous solution and 3.7 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, tetrahydrofuran was concentrated, methanol was added, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 76 g (yield 87%) of the title compound.

UV(λmax) : 355nm PL : 412nmUV (λ max ): 355nm PL: 412nm

유리전이온도(Tg, DSC에 의한 측정) : 161℃Glass transition temperature (measured by Tg, DSC): 161 ℃

MS(m/z, [M]+): C63H46N2: 830.49
MS ( m / z , [M] + ): C63H46N2: 830.49

[실시예 8] 화학식 43의 제조Example 8 Preparation of Chemical Formula 43

Figure pat00042

Figure pat00042

2000-ml, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 4-2에서 제조한 화학식 115 화합물 80g(0.117mol), 카바졸 20.6g, 팔라디움 아세테이트(II) 0.13g, 트리-(t-부틸)포스핀(10% 헥산용액) 2.4g, 소디움 t-부톡시드 14g 그리고 o-자일렌 800ml를 투입하였다. 반응액을 7시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 62g(수율 69%)을 얻었다.80 g (0.117 mol) of Formula 115 compound, 20.6 g of carbazole, 0.13 g of palladium acetate (II), tri- (t-butyl), prepared in Example 4-2 in a 2000-ml, four-necked round bottom flask under nitrogen atmosphere 2.4 g of phosphine (10% hexane solution), 14 g of sodium t-butoxide and 800 ml of o-xylene were added thereto. The reaction solution was refluxed for 7 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried under vacuum to obtain 62 g (yield 69%) of the title compound.

1H NMR (400MHz, DMSO-d6) : δ 8.58(s, 1H), 8.33(d, J = 7.7Hz, 1H), 8.23(d, J = 7.0Hz, 2H), 7.85-7.74(m, 5H), 7.71-7.64(m, 4H), 7.55-7.52(m, 4H), 7.45-7.37(m, 8H), 7.32-7.26(m, 9H), 7.19(dd, J = 8.1, 1.9Hz ,1H), 1.44(s, 6H). 1 H NMR (400 MHz, DMSO-d 6 ): δ 8.58 (s, 1 H), 8.33 (d, J = 7.7 Hz, 1 H), 8.23 (d, J = 7.0 Hz, 2H), 7.85-7.74 (m, 5H), 7.71-7.64 (m, 4H), 7.55-7.52 (m, 4H), 7.45-7.37 (m, 8H), 7.32-7.26 (m, 9H), 7.19 (dd, J = 8.1, 1.9 Hz, 1H), 1.44 (s, 6H).

UV(λmax) : 344nm PL : 404nm(도 5 참조)UV (λ max ): 344 nm PL: 404 nm (see FIG. 5)

유리전이온도(Tg, DSC에 의한 측정) : 152℃
Glass transition temperature (measured by Tg, DSC): 152 ℃

[실시예 9] 화학식 46의 제조Example 9 Preparation of Chemical Formula 46

Figure pat00043

Figure pat00043

3000-ml, 4구 둥근바닥플라스크에 실시예 5-2에서 제조한 화학식 117 화합물 85.6g(0.117mol), 카바졸 20.6g, 팔라디움 아세테이트(II) 0.13g, 트리-(t-부틸)포스핀(10% 헥산용액) 2.4g, 소디움 t-부톡시드 14g 그리고 o-자일렌 800ml를 투입하였다. 반응액을 7시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 59g(수율 62%)을 얻었다.85.6 g (0.117 mol) of Formula 117 compound prepared in Example 5-2, 20.6 g of carbazole, 0.13 g of palladium acetate (II), tri- (t-butyl) phosphine in a 3000-ml, four-necked round bottom flask 2.4 g (10% hexane solution), 14 g sodium t-butoxide and 800 ml o-xylene were added. The reaction solution was refluxed for 7 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried under vacuum to obtain 59 g (yield 62%) of the title compound.

MS(m/z, [M]+): C61H43N3: 817.51
MS ( m / z , [M] + ): C 61 H 43 N 3: 817.51

[실시예 10] 화학식 48의 제조Example 10 Preparation of Chemical Formula 48

Figure pat00044

Figure pat00044

10-1. 화학식 118의 제조10-1. Preparation of Formula 118

2000-ml, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 1-2에서 제조한 화학식 103 화합물 61g(0.172mol), N-(2-나프틸)-9,9-디메틸-9H-플루오렌-2-아민 58g, 팔라디움 아세테이트(II) 0.19g, 트리-(t-부틸)포스핀(10% 헥산용액) 3.4g, 소디움 t-부톡시드 18g 그리고 o-자일렌 600ml를 투입하였다. 반응액을 8시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 92g(수율 82%)을 얻었다.
2000-ml, 4-neck round a formula 103 compound 61g (0.172mol) prepared in Example 1-2 under a nitrogen atmosphere bottom flask, N - (2- naphthyl) 9,9-dimethyl -9 H - fluoren 58 g of 2-amine, 0.19 g of palladium acetate (II), 3.4 g of tri- (t-butyl) phosphine (10% hexane solution), 18 g of sodium t-butoxide and 600 ml of o-xylene were added. The reaction solution was refluxed for 8 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 92 g (yield 82%) of the title compound.

10-2. 화학식 119의 제조10-2. Preparation of Formula 119

3000-ml, 4구 둥근바닥플라스크에 실시예 10-1에서 제조한 화학식 118 화합물 86g(0.132mol)을 투입하고 디클로로메탄 900ml로 희석시켰다. 이 희석액에 N-브로모숙신이미드(NBS) 24g을 서서히 투입하고 반응액을 실온에서 4시간동안 교반시켰다. 반응액에 증류수 850ml를 투입 후 30분간 교반한 다음 유기층을 분리하였다. 분리된 유기층을 건조 후 농축한 다음 아세톤과 메탄올로 재결정하고 진공건조하여 목적화합물 89g(수율 92%)을 얻었다.
Into a 3000-ml, four-necked round bottom flask, 86 g (0.132 mol) of the compound of formula 118 prepared in Example 10-1 were added and diluted with 900 ml of dichloromethane. 24 g of N -bromosuccinimide (NBS) was slowly added to the diluent, and the reaction solution was stirred at room temperature for 4 hours. 850 ml of distilled water was added to the reaction solution, stirred for 30 minutes, and the organic layer was separated. The separated organic layer was dried, concentrated and then recrystallized with acetone and methanol and dried in vacuo to give 89 g (yield 92%) of the title compound.

10-3. 화학식 48의 제조10-3. Preparation of Formula 48

3000-ml, 4구 둥근바닥플라스크에 실시예 10-2에서 제조한 화학식 119 화합물 85.6g(0.117mol), 카바졸 20.6g, 팔라디움 아세테이트(II) 0.13g, 트리-(t-부틸)포스핀(10% 헥산용액) 2.4g, 소디움 t-부톡시드 14g 그리고 o-자일렌 800ml를 투입하였다. 반응액을 5시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 63g(수율 66%)을 얻었다.85.6 g (0.117 mol) of Formula 119 compound prepared in Example 10-2, carbazole 20.6 g, palladium acetate (II) 0.13 g, tri- (t-butyl) phosphine in a 3000-ml, four-necked round bottom flask 2.4 g (10% hexane solution), 14 g sodium t-butoxide and 800 ml o-xylene were added. The reaction solution was refluxed for 5 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried under vacuum to obtain 63 g (yield 66%) of the title compound.

MS(m/z, [M]+): C61H43N3: 817.52
MS ( m / z , [M] + ): C 61 H 43 N 3: 817.52

[실시예 11] 화학식 49의 제조Example 11 Preparation of Chemical Formula 49

Figure pat00045

Figure pat00045

3000-ml, 4구 둥근바닥플라스크에 실시예 3-2에서 제조한 화학식 113 화합물 89g(0.117mol), 카바졸 20.6g, 팔라디움 아세테이트(II) 0.13g, 트리-(t-부틸)포스핀(10% 헥산용액) 2.4g, 소디움 t-부톡시드 14g 그리고 o-자일렌 900ml를 투입하였다. 반응액을 5시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 72g(수율 73%)을 얻었다.89 g (0.117 mol) of formula 113 compound prepared in Example 3-2, carbazole 20.6 g, palladium acetate (II) 0.13 g, tri- (t-butyl) phosphine (3000-ml, 4-necked round bottom flask) 10 g of hexane solution) 2.4 g, sodium t-butoxide 14 g and 900 ml of o-xylene were added. The reaction solution was refluxed for 5 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 72 g (yield 73%) of the title compound.

MS(m/z, [M]+): C63H45N3: 843.52
MS ( m / z , [M] + ): C63H45N3: 843.52

[실시예 12] 화학식 54의 제조Example 12 Preparation of Chemical Formula 54

Figure pat00046

Figure pat00046

3000-ml, 4구 둥근바닥플라스크에 실시예 4-2에서 제조한 화학식 115 화합물 81g(0.119mol)을 투입하고 테트라하이드로퓨란 1600ml로 희석시켰다. 이 희석액에 4-(9H-카바졸-9-일)페닐보론 산 37.6g, 3M-탄산칼륨 수용액 120ml 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 4.3g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 테트라하이드로퓨란을 농축한 다음 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 67g(수율 67%)을 얻었다.81 g (0.119 mol) of the formula 115 compound prepared in Example 4-2 were added to a 3000-ml, four-necked round bottom flask, and diluted with 1600 ml of tetrahydrofuran. To this diluent, 37.6 g of 4- (9H-carbazol-9-yl) phenylboronic acid, 120 ml of 3M-potassium carbonate aqueous solution, and 4.3 g of tetrakis (triphenylphosphine) palladium (0) were added. Reflux for a while. After cooling the reaction solution to room temperature, tetrahydrofuran was concentrated, methanol was added, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 67 g (yield 67%) of the title compound.

MS(m/z, [M]+): C63H45N3: 843.51
MS ( m / z , [M] + ): C63H45N3: 843.51

[실시예 13] 화학식 78의 제조Example 13 Preparation of Chemical Formula 78

Figure pat00047
Figure pat00047

13-1. 화학식 120의 제조13-1. Preparation of Formula 120

3000-ml, 4구 둥근바닥플라스크에 질소 분위기 하에서 카바졸 80g(0.478mol), 2-브로모-9,9-디메틸-9H-플루오렌 137g, 팔라디움 아세테이트(II) 0.54g, 트리-(t-부틸)포스핀(10% 헥산용액) 9.7g, 소디움 t-부톡시드 55g 그리고 o-자일렌 1000ml를 투입하였다. 반응액을 9시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 224g(수율 87%)을 얻었다.
3000-ml, 4-necked round bottom flask with carbazole 80 g (0.478 mol) under nitrogen atmosphere, 137 g 2-bromo-9,9-dimethyl-9 H -fluorene, 0.54 g palladium acetate (II), tri- ( 9.7 g of t-butyl) phosphine (10% hexane solution), 55 g of sodium t-butoxide and 1000 ml of o -xylene were added thereto. The reaction solution was refluxed for 9 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 224 g (yield 87%) of the title compound.

13-2. 화학식 121의 제조13-2. Preparation of Formula 121

2000-ml, 4구 둥근바닥플라스크에 실시예 13-1에서 제조한 화학식 120 화합물 74g(0.205mol)을 투입하고 디클로로메탄 500ml로 희석시켰다. 이 희석액에 N-브로모숙신이미드(NBS) 38g을 서서히 투입하고 반응액을 실온에서 4시간동안 교반시켰다. 반응액에 증류수 500ml를 투입 후 30분간 교반한 다음 유기층을 분리하였다. 분리된 유기층을 건조 후 농축한 다음 아세톤과 메탄올로 재결정하고 진공건조하여 목적화합물 80g(수율 89%)을 얻었다.
Into a 2000-ml, four-necked round bottom flask, 74 g (0.205 mol) of the formula 120 compound prepared in Example 13-1 were added and diluted with 500 ml of dichloromethane. 38 g of N -bromosuccinimide (NBS) was slowly added to the diluent, and the reaction solution was stirred at room temperature for 4 hours. 500 ml of distilled water was added to the reaction solution, stirred for 30 minutes, and the organic layer was separated. The separated organic layer was dried, concentrated and then recrystallized with acetone and methanol and dried in vacuo to give 80 g (yield 89%) of the title compound.

13-3. 화학식 122의 제조13-3. Preparation of Formula 122

5000-ml, 4구 둥근바닥플라스크에 실시예 13-2에서 제조한 화학식 121 화합물 72g(0.165mol)을 투입하고 테트라하이드로퓨란 1000ml로 희석시켰다. 이 희석액에 4-클로로페닐보론 산 28.4g, 3M-탄산칼륨 수용액 70ml 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 3.6g을 투입 후 반응액을 15시간 동안 환류시켰다. 반응액을 실온으로 냉각 후 에틸 아세테이트 1000ml와 증류수 1000ml를 투입 후 교반하였다. 유기층을 분리하고 수분을 제거시킨 후 농축시켰다. 이 농축액에 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 60g(수율 77%)을 얻었다.
72 g (0.165 mol) of the formula 121 compound prepared in Example 13-2 were added to a 5000-ml, four-necked round bottom flask and diluted with 1000 ml of tetrahydrofuran. 28.4 g of 4-chlorophenylboronic acid, 70 ml of 3M-potassium carbonate aqueous solution, and 3.6 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluted solution, and the reaction solution was refluxed for 15 hours. After cooling the reaction solution to room temperature, 1000 ml of ethyl acetate and 1000 ml of distilled water were added and stirred. The organic layer was separated, concentrated to remove moisture. Methanol was added to this concentrate, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 60 g (yield 77%) of the title compound.

13-4. 화학식 123의 제조13-4. Preparation of Formula 123

2000-ml, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 13-3에서 제조한 화학식 122 화합물 60g(0.128mol), 9N-(4-비페닐)-9,9-디메틸-9H-플루오렌-2-아민 43.8g, 팔라디움 아세테이트(II) 0.14g, 트리-(t-부틸)포스핀(10% 헥산용액) 2.6g, 소디움 t-부톡시드 15g 그리고 o-자일렌 600ml를 투입하였다. 반응액을 7시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 88g(수율 87%)을 얻었다.
2000-ml, 4 sphere formula prepared in Example 13-3 in a nitrogen atmosphere in a round bottom flask 122 Compound 60g (0.128mol), 9 N - (4- biphenyl), 9,9-dimethyl -9 H - FLOUR 43.8 g of oren-2-amine, 0.14 g of palladium acetate (II), 2.6 g of tri- (t-butyl) phosphine (10% hexane solution), 15 g of sodium t-butoxide and 600 ml of o-xylene were added. The reaction solution was refluxed for 7 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 88 g (yield 87%) of the title compound.

13-5. 화학식 124의 제조13-5. Preparation of Formula 124

3000-ml, 4구 둥근바닥플라스크에 실시예 13-4에서 제조한 화학식 123 화합물 85g(0.107mol)을 투입하고 디클로로메탄 850ml로 희석시켰다. 이 희석액에 N-브로모숙신이미드(NBS) 19g을 서서히 투입하고 반응액을 5시간동안 환류시켰다. 반응액에 실온으로 냉각한 다음 증류수 850ml를 투입 후 30분간 교반한 다음 유기층을 분리하였다. 분리된 유기층을 건조 후 농축한 다음 아세톤과 메탄올로 재결정하고 진공건조하여 목적화합물 86g(수율 92%)을 얻었다.
Into a 3000-ml, four-necked round bottom flask was added 85 g (0.107 mol) of the compound of formula 123 prepared in Example 13-4, and diluted with 850 ml of dichloromethane. 19 g of N -bromosuccinimide (NBS) was slowly added to the diluent, and the reaction solution was refluxed for 5 hours. After cooling to room temperature, 850 ml of distilled water was added thereto, stirred for 30 minutes, and the organic layer was separated. The separated organic layer was dried, concentrated and then recrystallized with acetone and methanol and dried in vacuo to give 86 g (yield 92%) of the title compound.

13-6. 화학식 78의 제조13-6. Preparation of Formula 78

3000-ml, 4구 둥근바닥플라스크에 실시예 13-5에서 제조한 화학식 124 화합물 85g(0.098mol)을 투입하고 테트라하이드로퓨란 1700ml로 희석시켰다. 이 희석액에 2-나프틸보론 산 20.3g, 3M-탄산칼륨 수용액 98ml 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 3.4g을 투입 후 반응액을 12시간 동안 환류시켰다. 반응액을 실온으로 냉각 후 테트라하이드로퓨란을 농축한 다음 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 70g(수율 77%)을 얻었다.Into a 3000-ml, four-necked round bottom flask was added 85g (0.098mol) of the compound of the formula 124 prepared in Example 13-5 and diluted with 1700ml of tetrahydrofuran. 20.3 g of 2-naphthylboronic acid, 98 ml of 3M-potassium carbonate aqueous solution, and 3.4 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 12 hours. After cooling the reaction solution to room temperature, tetrahydrofuran was concentrated, methanol was added, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 70 g (yield 77%) of the title compound.

MS(m/z, [M]+): C70H52N2: 920.65
MS ( m / z , [M] + ): C70H52N2: 920.65

[실시예 14]Example 14

화학식 11을 사용한 유기 전기발광 소자 제작 Fabrication of Organic Electroluminescent Device Using Formula 11

25mm × 75mm × 1.1mm 크기의 유리 기판 상에 막 두께가 750Å 인 인듐 주석 산화물(ITO)의 투명성 양극을 형성시켰다. 상기 유리 기판을 진공 증착장치에 넣어 약 10-7torr로 감압하였다. 이어서 하기 화학식 1의 2-TNATA를 두께가 500Å이 되도록 증착시켜 정공주입층을 형성시켰다. 이어서 본 발명의 상기 화학식 11을 두께가 300Å이 되도록 증착시켜 정공수송층을 형성하였다. 이어서 하기 화학식 3의 Alq3를 두께가 500Å이 되도록 증착시켜 발광층을 형성하였다. 최종적으로 리튬 프루오라이드(LiF)를 두께가 8Å이 되도록 증착한 다음 알루미늄을 두께가 1000Å이 되도록 증착하여 음극을 형성시켰다(도 6 참조).상기와 같이 제작된 유기 전기발광 소자에 전압을 인가하여 발광시험을 실시하였다. 7V 인가전압에서 측정된 발광 특성을 표 6에 나타내었다.A transparent anode of indium tin oxide (ITO) having a thickness of 750 kPa was formed on a glass substrate having a size of 25 mm x 75 mm x 1.1 mm. The glass substrate was placed in a vacuum deposition apparatus to reduce the pressure to about 10 −7 torr. Subsequently, 2-TNATA of Chemical Formula 1 was deposited to have a thickness of 500 kPa, thereby forming a hole injection layer. Subsequently, the chemical formula 11 of the present invention was deposited to have a thickness of 300 kPa to form a hole transport layer. Subsequently, Alq 3 of Formula 3 was deposited to a thickness of 500 kPa, thereby forming a light emitting layer. Finally, lithium fluoride (LiF) was deposited to have a thickness of 8 kW and aluminum was deposited to have a thickness of 1000 kW to form a cathode (see FIG. 6). A voltage was applied to the organic electroluminescent device fabricated as described above. The luminescence test was carried out. Table 6 shows the luminescence properties measured at 7V applied voltage.

[화학식 1] [화학식 3][Formula 1] [Formula 3]

Figure pat00048
Figure pat00049

Figure pat00048
Figure pat00049

[실시예 15]Example 15

화학식 21을 사용한 유기 전기발광 소자 제작 Fabrication of Organic Electroluminescent Device Using Chemical Formula 21

상기 실시예 14에서, 정공수송층으로 화학식 11 대신 화학식 21을 사용한 것을 제외하고는 실시예 14와 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 7V 인가전압에서 측정된 발광 특성을 표 6에 나타내었다.
In Example 14, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 14, except that Chemical Formula 21 was used instead of Chemical Formula 11 as the hole transport layer. Table 6 shows the luminescence properties measured at 7V applied voltage.

[실시예 16]Example 16

화학식 26을 사용한 유기 전기발광 소자 제작 Fabrication of Organic Electroluminescent Device Using Chemical Formula 26

상기 실시예 14에서, 정공수송층으로 화학식 11 대신 화학식 26을 사용한 것을 제외하고는 실시예 14와 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 7V 인가전압에서 측정된 발광 특성을 표 6에 나타내었다.
In Example 14, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 14, except that Chemical Formula 26 was used instead of Chemical Formula 11 as the hole transport layer. Table 6 shows the luminescence properties measured at 7V applied voltage.

[실시예 17]Example 17

화학식 28을 사용한 유기 전기발광 소자 제작 Fabrication of Organic Electroluminescent Device Using Chemical Formula 28

상기 실시예 14에서, 정공수송층으로 화학식 11 대신 화학식 28을 사용한 것을 제외하고는 실시예 14와 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 7V 인가전압에서 측정된 발광 특성을 표 6에 나타내었다.
In Example 14, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 14, except that Chemical Formula 28 was used instead of Chemical Formula 11 as the hole transport layer. Table 6 shows the luminescence properties measured at 7V applied voltage.

[실시예 18]Example 18

화학식 29를 사용한 유기 전기발광 소자 제작 Fabrication of Organic Electroluminescent Device Using Chemical Formula 29

상기 실시예 14에서, 정공수송층으로 화학식 11 대신 화학식 29를 사용한 것을 제외하고는 실시예 14와 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 7V 인가전압에서 측정된 발광 특성을 표 6에 나타내었다.
In Example 14, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 14, except that Chemical Formula 29 was used instead of Chemical Formula 11 as the hole transport layer. Table 6 shows the luminescence properties measured at 7V applied voltage.

[실시예 19]Example 19

화학식 31을 사용한 유기 전기발광 소자 제작 Fabrication of Organic Electroluminescent Device Using Chemical Formula 31

상기 실시예 14에서, 정공수송층으로 화학식 11 대신 화학식 31을 사용한 것을 제외하고는 실시예 14와 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 7V 인가전압에서 측정된 발광 특성을 표 6에 나타내었다.
In Example 14, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 14, except that Chemical Formula 31 was used instead of Chemical Formula 11 as the hole transport layer. Table 6 shows the luminescence properties measured at 7V applied voltage.

[실시예 20]Example 20

화학식 37을 사용한 유기 전기발광 소자 제작 Fabrication of Organic Electroluminescent Device Using Formula 37

상기 실시예 14에서, 정공수송층으로 화학식 11 대신 화학식 37을 사용한 것을 제외하고는 실시예 14와 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 7V 인가전압에서 측정된 발광 특성을 표 6에 나타내었다.
In Example 14, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 14, except that Chemical Formula 37 was used instead of Chemical Formula 11 as the hole transport layer. Table 6 shows the luminescence properties measured at 7V applied voltage.

[실시예 21]Example 21

화학식 43을 사용한 유기 전기발광 소자 제작 Fabrication of Organic Electroluminescent Device Using Chemical Formula 43

상기 실시예 14에서, 정공수송층으로 화학식 11 대신 화학식 43을 사용한 것을 제외하고는 실시예 14와 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 7V 인가전압에서 측정된 발광 특성을 표 6에 나타내었다.
In Example 14, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 14, except that Chemical Formula 43 was used instead of Chemical Formula 11 as the hole transport layer. Table 6 shows the luminescence properties measured at 7V applied voltage.

[실시예 22][Example 22]

화학식 46을 사용한 유기 전기발광 소자 제작 Fabrication of Organic Electroluminescent Device Using Chemical Formula 46

상기 실시예 14에서, 정공수송층으로 화학식 11 대신 화학식 46을 사용한 것을 제외하고는 실시예 14와 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 7V 인가전압에서 측정된 발광 특성을 표 6에 나타내었다.
In Example 14, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 14, except that Chemical Formula 46 was used instead of Chemical Formula 11 as the hole transport layer. Table 6 shows the luminescence properties measured at 7V applied voltage.

[실시예 23][Example 23]

화학식 48을 사용한 유기 전기발광 소자 제작 Fabrication of Organic Electroluminescent Device Using Chemical Formula 48

상기 실시예 14에서, 정공수송층으로 화학식 11 대신 화학식 48을 사용한 것을 제외하고는 실시예 14와 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 7V 인가전압에서 측정된 발광 특성을 표 6에 나타내었다.
In Example 14, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 14, except that Chemical Formula 48 was used instead of Chemical Formula 11 as the hole transport layer. Table 6 shows the luminescence properties measured at 7V applied voltage.

[실시예 24]Example 24

화학식 49를 사용한 유기 전기발광 소자 제작 Fabrication of Organic Electroluminescent Device Using Chemical Formula 49

상기 실시예 14에서, 정공수송층으로 화학식 11 대신 화학식 49를 사용한 것을 제외하고는 실시예 14와 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 7V 인가전압에서 측정된 발광 특성을 표 6에 나타내었다.
In Example 14, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 14, except that Chemical Formula 49 was used instead of Chemical Formula 11 as the hole transport layer. Table 6 shows the luminescence properties measured at 7V applied voltage.

[실시예 25][Example 25]

화학식 54를 사용한 유기 전기발광 소자 제작 Fabrication of Organic Electroluminescent Device Using Chemical Formula 54

상기 실시예 14에서, 정공수송층으로 화학식 11 대신 화학식 54를 사용한 것을 제외하고는 실시예 14와 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 7V 인가전압에서 측정된 발광 특성을 표 6에 나타내었다.
In Example 14, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 14, except that Chemical Formula 54 was used instead of Chemical Formula 11 as the hole transport layer. Table 6 shows the luminescence properties measured at 7V applied voltage.

[실시예 26]Example 26

화학식 78을 사용한 유기 전기발광 소자 제작 Fabrication of Organic Electroluminescent Device Using Chemical Formula 78

상기 실시예 14에서, 정공수송층으로 화학식 11 대신 화학식 78을 사용한 것을 제외하고는 실시예 14와 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 7V 인가전압에서 측정된 발광 특성을 표 6에 나타내었다.
In Example 14, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 14, except that Chemical Formula 78 was used instead of Chemical Formula 11 as the hole transport layer. Table 6 shows the luminescence properties measured at 7V applied voltage.

[비교예 1]Comparative Example 1

NPB를 사용한 유기 전기발광 소자 제작Fabrication of organic electroluminescent device using NPB

본 비교예에서는 상기 실시예 14에서 정공수송층으로 화학식 11 대신 종래에 널리 알려진 상기 화학식 2의 NPB를 사용한 것을 제외하고는 실시예 14와 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 7V 인가전압에서 측정된 발광 특성을 표 6에 나타내었다.In the present Comparative Example, the organic electroluminescent device was manufactured and evaluated in the same manner as in Example 14 except that the NPB of Formula 2, which is well known in the art, was used instead of Formula 11 as the hole transport layer in Example 14. Table 6 shows the luminescence properties measured at 7V applied voltage.

[화학식 2] [화학식 4][Formula 2] [Formula 4]

Figure pat00050
Figure pat00051
Figure pat00050
Figure pat00051

[비교예 2]Comparative Example 2

화학식 4를 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Chemical Formula 4

본 비교예에서는 상기 실시예 14에서 정공수송층으로 화학식 11 대신 상기 화학식 4를 사용한 것을 제외하고는 실시예 14와 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 7V 인가전압에서 측정된 발광 특성을 표 6에 나타내었다.
In the present Comparative Example, the organic electroluminescent device was manufactured and evaluated in the same manner as in Example 14, except that Chemical Formula 4 was used instead of Chemical Formula 11 as the hole transport layer in Example 14. Table 6 shows the luminescence properties measured at 7V applied voltage.

[비교예 3]Comparative Example 3

화학식 5를 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Formula 5

본 비교예에서는 상기 실시예 14에서 정공수송층으로 화학식 11 대신 하기 화학식 5를 사용한 것을 제외하고는 실시예 14와 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 7V 인가전압에서 측정된 발광 특성을 표 6에 나타내었다.In the present Comparative Example, the organic electroluminescent device was manufactured and evaluated in the same manner as in Example 14 except that the following Formula 5 was used instead of Formula 11 as the hole transport layer. Table 6 shows the luminescence properties measured at 7V applied voltage.

[화학식 5][Chemical Formula 5]

Figure pat00052

Figure pat00052

유기 전기발광 소자의 발광 특성Luminescence Characteristics of Organic Electroluminescent Devices 실시예Example 정공수송층의 화합물Compound of hole transport layer 전류밀도
(mA/cm2)
Current density
(mA / cm 2 )
휘도
(cd/m2)
Luminance
(cd / m 2 )
효율
(cd/A)
efficiency
(cd / A)
실시예 14Example 14 화학식 11Formula 11 81.781.7 33933393 4.154.15 실시예 15Example 15 화학식 21Formula 21 50.150.1 22752275 4.544.54 실시예 16Example 16 화학식 26Formula 26 60.260.2 24532453 4.074.07 실시예 17Example 17 화학식 28Formula 28 52.452.4 23252325 4.444.44 실시예 18Example 18 화학식 29Formula 29 48.448.4 20822082 4.304.30 실시예 19Example 19 화학식 31Formula 31 38.838.8 17511751 4.514.51 실시예 20Example 20 화학식 37Formula 37 55.555.5 24602460 4.434.43 실시예 21Example 21 화학식 43Formula 43 75.775.7 30753075 4.064.06 실시예 22Example 22 화학식 46Formula 46 27.327.3 11171117 4.094.09 실시예 23Example 23 화학식 48Formula 48 109109 47254725 4.334.33 실시예 24Example 24 화학식 49Formula 49 90.490.4 40294029 4.464.46 실시예 25Example 25 화학식 54Formula 54 27.427.4 11261126 4.114.11 실시예 26Example 26 화학식 78Formula 78 37.437.4 16461646 4.404.40 비교예 1Comparative Example 1 화학식 2(NPB)Formula 2 (NPB) 18.918.9 764764 4.054.05 비교예 2Comparative Example 2 화학식 4Formula 4 24.624.6 999999 4.064.06 비교예 3Comparative Example 3 화학식 5Formula 5 20.320.3 830830 4.094.09

상기 표 6에서 알 수 있는 바와 같이, 본 발명의 실시예 14 내지 26에 따른 유기 전기발광 소자는 대체로 비교예 1 및 비교예 3 보다 높은 전류밀도, 휘도 및 효율을 가지고 있음을 알 수 있다.
As can be seen in Table 6, it can be seen that the organic electroluminescent device according to Examples 14 to 26 of the present invention generally has a higher current density, brightness and efficiency than Comparative Examples 1 and 3.

본 발명의 단순한 변형 또는 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함될 수 있다.
Simple modifications or changes of the present invention can be easily made by those skilled in the art, and all such modifications or changes can be included in the scope of the present invention.

본 발명에 따른 유기 발광 조성물 및 이를 포함하는 유기 전기 발광 소자는 유기 발광 다이오드 뿐만 아니라 유기 전계-효과 트랜지스터, 유기 박막 트랜지스터, 유기 레이저 다이오드, 유기 태양 전지, 유기 발광 전기화학 전지 및 유기 집적 회로 등의 분야에서도 사용할 수 있다. The organic light emitting composition and the organic electroluminescent device including the same according to the present invention are not only organic light emitting diodes but also organic field-effect transistors, organic thin film transistors, organic laser diodes, organic solar cells, organic light emitting electrochemical cells, and organic integrated circuits. Can also be used in the field.

Claims (4)

유기 전기 발광 소자의 발광 재료로 사용되며, 하기 화학식 I로 표시되는 카바졸 유도체를 포함하는 것을 특징으로 하는 유기 전기 발광 조성물.
[화학식 I]
Figure pat00053

(상기 화학식 I에서, R1은 치환되거나 비치환된 아릴기, 치환되거나 비치환된 헤테로아릴기, 카바졸릴기 또는 알킬기이고, R2 및 R3는 치환되거나 비치환된 아릴기 또는 치환되거나 비치환된 헤테로아릴기이고, R4는 수소, 알킬기 또는 아릴기이고, D는 치환되거나 비치환된 아릴렌기 또는 치환되거나 비치환된 헤테로아릴렌기이다.)
An organic electroluminescent composition, which is used as a light emitting material of an organic electroluminescent device, comprises a carbazole derivative represented by the following general formula (I).
(I)
Figure pat00053

(In Formula I, R1 is a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a carbazolyl group or an alkyl group, R2 and R3 is a substituted or unsubstituted aryl group or a substituted or unsubstituted hetero. Is an aryl group, R 4 is hydrogen, an alkyl group or an aryl group, and D is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group.)
제1항에 있어서, 상기 화학식 I 중 R2는 치환되거나 비치환된 아릴기로써, 페닐기, 나프틸기, 페난트릴기, 안트릴기, 비페닐기 또는 터페닐기인 것을 특징으로 하는 유기 전기 발광 조성물.
The organic electroluminescent composition of claim 1, wherein R 2 in Formula I is a substituted or unsubstituted aryl group, and is a phenyl group, naphthyl group, phenanthryl group, anthryl group, biphenyl group or terphenyl group.
제1항에 있어서, 상기 화학식 I은 하기 화학식 11, 21, 26, 28, 29, 31, 37, 43, 46, 48, 49, 54 및 78 중에서 선택된 것임을 특징으로 하는 유기 전기 발광 조성물.
[화학식 11] [화학식 21]
Figure pat00054
Figure pat00055

[화학식 26] [화학식 28]
Figure pat00056
Figure pat00057

[화학식 29] [화학식 31]
Figure pat00058
Figure pat00059

[화학식 37] [화학식 43]
Figure pat00060
Figure pat00061

[화학식 46] [화학식 48]
Figure pat00062
Figure pat00063

[화학식 49] [화학식 54]
Figure pat00064
Figure pat00065

[화학식 78]
Figure pat00066

The organic electroluminescent composition according to claim 1, wherein Chemical Formula I is selected from Chemical Formulas 11, 21, 26, 28, 29, 31, 37, 43, 46, 48, 49, 54 and 78.
[Formula 11] [Formula 21]
Figure pat00054
Figure pat00055

[Formula 26] [Formula 28]
Figure pat00056
Figure pat00057

[Formula 29] [Formula 31]
Figure pat00058
Figure pat00059

[Formula 37] [Formula 43]
Figure pat00060
Figure pat00061

[Formula 46] [Formula 48]
Figure pat00062
Figure pat00063

[Formula 49] [Formula 54]
Figure pat00064
Figure pat00065

[Formula 78]
Figure pat00066

제1항 내지 제3항 중 어느 한항에 따른 유기 전기 발광 조성물을 포함하여 이루어진 유기층을 하나 이상 포함하는 것을 특징으로 하는 유기 전기 발광 소자.An organic electroluminescent device comprising at least one organic layer comprising the organic electroluminescent composition according to any one of claims 1 to 3.
KR1020100008621A 2010-01-29 2010-01-29 Organic light emitting material and organic light emitting diode having the same KR20110088898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100008621A KR20110088898A (en) 2010-01-29 2010-01-29 Organic light emitting material and organic light emitting diode having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100008621A KR20110088898A (en) 2010-01-29 2010-01-29 Organic light emitting material and organic light emitting diode having the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020120097552A Division KR101312471B1 (en) 2012-09-04 2012-09-04 Organic Light Emitting Material and Organic Light Emitting Diode Having The Same

Publications (1)

Publication Number Publication Date
KR20110088898A true KR20110088898A (en) 2011-08-04

Family

ID=44927278

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100008621A KR20110088898A (en) 2010-01-29 2010-01-29 Organic light emitting material and organic light emitting diode having the same

Country Status (1)

Country Link
KR (1) KR20110088898A (en)

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130016032A (en) * 2011-08-05 2013-02-14 삼성디스플레이 주식회사 A carbazole-based compound and an organic light emitting diode comprising the same
CN104105777A (en) * 2011-10-27 2014-10-15 默克专利有限公司 Materials for electronic devices
KR20140147374A (en) * 2013-06-19 2014-12-30 삼성디스플레이 주식회사 Amined-basd compound and organic light emitting diode including the same
US9373802B2 (en) 2011-02-07 2016-06-21 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US9403795B2 (en) 2011-08-05 2016-08-02 Samsung Display Co., Ltd. Carbazole-based compound and organic light-emitting diode comprising the same
EP3056504A1 (en) 2015-02-16 2016-08-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3061763A1 (en) 2015-02-27 2016-08-31 Universal Display Corporation Organic electroluminescent materials and devices
EP3098229A1 (en) 2015-05-15 2016-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3101021A1 (en) 2015-06-01 2016-12-07 Universal Display Corporation Organic electroluminescent materials and devices
EP3124488A1 (en) 2015-07-29 2017-02-01 Universal Display Corporation Organic electroluminescent materials and devices
US9601703B2 (en) 2014-02-14 2017-03-21 Samsung Display Co., Ltd. Organic light-emitting device
EP3159350A1 (en) 2015-09-03 2017-04-26 Universal Display Corporation Organic electroluminescent materials and devices
US9660202B2 (en) 2013-12-27 2017-05-23 Samsung Display Co., Ltd. Organic electroluminescence device
EP3205658A1 (en) 2016-02-09 2017-08-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3231809A2 (en) 2016-04-11 2017-10-18 Universal Display Corporation Organic electroluminescent materials and devices
EP3261147A1 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3261146A2 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3270435A2 (en) 2016-06-20 2018-01-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3297051A1 (en) 2016-09-14 2018-03-21 Universal Display Corporation Organic electroluminescent materials and devices
EP3301088A1 (en) 2016-10-03 2018-04-04 Universal Display Corporation Condensed pyridines as organic electroluminescent materials and devices
EP3305796A1 (en) 2016-10-07 2018-04-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3321258A1 (en) 2016-11-09 2018-05-16 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
JP2018078308A (en) * 2012-08-03 2018-05-17 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, electronic device, and lighting device
EP3323822A1 (en) 2016-09-23 2018-05-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3345914A1 (en) 2017-01-09 2018-07-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3354654A2 (en) 2016-11-11 2018-08-01 Universal Display Corporation Organic electroluminescent materials and devices
US10069076B2 (en) 2012-08-03 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
EP3381927A1 (en) 2017-03-29 2018-10-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3401318A1 (en) 2017-05-11 2018-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US10147888B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
EP3418286A1 (en) 2017-06-23 2018-12-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3444258A2 (en) 2017-08-10 2019-02-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3489243A1 (en) 2017-11-28 2019-05-29 University of Southern California Carbene compounds and organic electroluminescent devices
EP3492528A1 (en) 2017-11-30 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3492480A2 (en) 2017-11-29 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3613751A1 (en) 2018-08-22 2020-02-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3689889A1 (en) 2019-02-01 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3690973A1 (en) 2019-01-30 2020-08-05 University Of Southern California Organic electroluminescent materials and devices
US10749118B2 (en) 2014-06-26 2020-08-18 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
EP3715353A1 (en) 2019-03-26 2020-09-30 Universal Display Corporation Organic electroluminescent materials and devices
CN111808013A (en) * 2020-08-19 2020-10-23 吉林奥来德光电材料股份有限公司 Light-emitting auxiliary material, preparation method thereof and organic electroluminescent device
EP3750897A1 (en) 2019-06-10 2020-12-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3771717A1 (en) 2019-07-30 2021-02-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3778614A1 (en) 2019-08-16 2021-02-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3816175A1 (en) 2019-11-04 2021-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3845545A1 (en) 2020-01-06 2021-07-07 Universal Display Corporation Organic electroluminescent materials and devices
EP3858945A1 (en) 2020-01-28 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4001286A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4001287A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4016659A1 (en) 2020-11-16 2022-06-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4019526A1 (en) 2018-01-26 2022-06-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4039692A1 (en) 2021-02-03 2022-08-10 Universal Display Corporation Organic electroluminescent materials and devices
EP4053137A1 (en) 2021-03-05 2022-09-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4056578A1 (en) 2021-03-12 2022-09-14 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4059941A1 (en) 2021-03-15 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4075530A1 (en) 2021-04-14 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4074723A1 (en) 2021-04-05 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4079743A1 (en) 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4086266A1 (en) 2021-04-23 2022-11-09 Universal Display Corporation Organic electroluminescent materials and devices
EP4112701A2 (en) 2021-06-08 2023-01-04 University of Southern California Molecular alignment of homoleptic iridium phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4185086A1 (en) 2017-07-26 2023-05-24 Universal Display Corporation Organic electroluminescent materials and devices
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A2 (en) 2022-02-16 2023-08-23 Universal Display Corporation Organic electroluminescent materials and devices
EP4242285A1 (en) 2022-03-09 2023-09-13 Universal Display Corporation Organic electroluminescent materials and devices
EP4265626A2 (en) 2022-04-18 2023-10-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4282863A1 (en) 2022-05-24 2023-11-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP4299693A1 (en) 2022-06-28 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP4326030A1 (en) 2022-08-17 2024-02-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4362645A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4362631A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4362630A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices

Cited By (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10147888B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US9818958B2 (en) 2011-02-07 2017-11-14 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US10230057B2 (en) 2011-02-07 2019-03-12 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US10147889B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US9373802B2 (en) 2011-02-07 2016-06-21 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US9403795B2 (en) 2011-08-05 2016-08-02 Samsung Display Co., Ltd. Carbazole-based compound and organic light-emitting diode comprising the same
KR20130016032A (en) * 2011-08-05 2013-02-14 삼성디스플레이 주식회사 A carbazole-based compound and an organic light emitting diode comprising the same
KR20140121382A (en) * 2011-10-27 2014-10-15 메르크 파텐트 게엠베하 Materials for electronic devices
CN104105777A (en) * 2011-10-27 2014-10-15 默克专利有限公司 Materials for electronic devices
US9812643B2 (en) 2011-10-27 2017-11-07 Merck Patent Gmbh Materials for electronic devices
US10355219B2 (en) 2012-08-03 2019-07-16 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
JP2018078308A (en) * 2012-08-03 2018-05-17 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, electronic device, and lighting device
US10069076B2 (en) 2012-08-03 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11968889B2 (en) 2012-08-03 2024-04-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10897012B2 (en) 2012-08-03 2021-01-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11043637B2 (en) 2012-08-03 2021-06-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
KR20140147374A (en) * 2013-06-19 2014-12-30 삼성디스플레이 주식회사 Amined-basd compound and organic light emitting diode including the same
US9660202B2 (en) 2013-12-27 2017-05-23 Samsung Display Co., Ltd. Organic electroluminescence device
US9601703B2 (en) 2014-02-14 2017-03-21 Samsung Display Co., Ltd. Organic light-emitting device
US10749118B2 (en) 2014-06-26 2020-08-18 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
EP3056504A1 (en) 2015-02-16 2016-08-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3061763A1 (en) 2015-02-27 2016-08-31 Universal Display Corporation Organic electroluminescent materials and devices
EP3098229A1 (en) 2015-05-15 2016-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3101021A1 (en) 2015-06-01 2016-12-07 Universal Display Corporation Organic electroluminescent materials and devices
EP3124488A1 (en) 2015-07-29 2017-02-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3760635A1 (en) 2015-09-03 2021-01-06 Universal Display Corporation Organic electroluminescent materials and devices
EP3159350A1 (en) 2015-09-03 2017-04-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3858842A1 (en) 2016-02-09 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3205658A1 (en) 2016-02-09 2017-08-16 Universal Display Corporation Organic electroluminescent materials and devices
EP4122941A1 (en) 2016-04-11 2023-01-25 Universal Display Corporation Organic electroluminescent materials and devices
EP3231809A2 (en) 2016-04-11 2017-10-18 Universal Display Corporation Organic electroluminescent materials and devices
EP4349935A2 (en) 2016-06-20 2024-04-10 Universal Display Corporation Organic electroluminescent materials and devices
EP3843171A1 (en) 2016-06-20 2021-06-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3261147A1 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3920254A1 (en) 2016-06-20 2021-12-08 Universal Display Corporation Organic electroluminescent materials and devices
EP3261146A2 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3758084A1 (en) 2016-06-20 2020-12-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3270435A2 (en) 2016-06-20 2018-01-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3297051A1 (en) 2016-09-14 2018-03-21 Universal Display Corporation Organic electroluminescent materials and devices
EP3323822A1 (en) 2016-09-23 2018-05-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3301088A1 (en) 2016-10-03 2018-04-04 Universal Display Corporation Condensed pyridines as organic electroluminescent materials and devices
EP3858844A1 (en) 2016-10-07 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3305796A1 (en) 2016-10-07 2018-04-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3321258A1 (en) 2016-11-09 2018-05-16 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP3789379A1 (en) 2016-11-09 2021-03-10 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP4092036A1 (en) 2016-11-11 2022-11-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3354654A2 (en) 2016-11-11 2018-08-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3689890A1 (en) 2017-01-09 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3345914A1 (en) 2017-01-09 2018-07-11 Universal Display Corporation Organic electroluminescent materials and devices
EP4212540A1 (en) 2017-01-09 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP3381927A1 (en) 2017-03-29 2018-10-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3985012A1 (en) 2017-03-29 2022-04-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3730506A1 (en) 2017-03-29 2020-10-28 Universal Display Corporation Organic electroluminescent materials and devices
EP4141010A1 (en) 2017-05-11 2023-03-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3401318A1 (en) 2017-05-11 2018-11-14 Universal Display Corporation Organic electroluminescent materials and devices
EP3418286A1 (en) 2017-06-23 2018-12-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4185086A1 (en) 2017-07-26 2023-05-24 Universal Display Corporation Organic electroluminescent materials and devices
EP3444258A2 (en) 2017-08-10 2019-02-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3783006A1 (en) 2017-08-10 2021-02-24 Universal Display Corporation Organic electroluminescent materials and devices
EP3878855A1 (en) 2017-11-28 2021-09-15 University of Southern California Carbene compounds and organic electroluminescent devices
EP3489243A1 (en) 2017-11-28 2019-05-29 University of Southern California Carbene compounds and organic electroluminescent devices
EP3492480A2 (en) 2017-11-29 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3492528A1 (en) 2017-11-30 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4019526A1 (en) 2018-01-26 2022-06-29 Universal Display Corporation Organic electroluminescent materials and devices
EP3613751A1 (en) 2018-08-22 2020-02-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4206210A1 (en) 2018-08-22 2023-07-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3690973A1 (en) 2019-01-30 2020-08-05 University Of Southern California Organic electroluminescent materials and devices
EP4301117A2 (en) 2019-02-01 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3689889A1 (en) 2019-02-01 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3715353A1 (en) 2019-03-26 2020-09-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4134371A2 (en) 2019-03-26 2023-02-15 Universal Display Corporation Organic electroluminescent materials and devices
EP3750897A1 (en) 2019-06-10 2020-12-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3771717A1 (en) 2019-07-30 2021-02-03 Universal Display Corporation Organic electroluminescent materials and devices
EP4219515A1 (en) 2019-07-30 2023-08-02 Universal Display Corporation Organic electroluminescent materials and devices
EP3778614A1 (en) 2019-08-16 2021-02-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3816175A1 (en) 2019-11-04 2021-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3845545A1 (en) 2020-01-06 2021-07-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4151644A1 (en) 2020-01-06 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4294157A2 (en) 2020-01-28 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3858945A1 (en) 2020-01-28 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
CN111808013A (en) * 2020-08-19 2020-10-23 吉林奥来德光电材料股份有限公司 Light-emitting auxiliary material, preparation method thereof and organic electroluminescent device
EP4016659A1 (en) 2020-11-16 2022-06-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4329463A2 (en) 2020-11-24 2024-02-28 Universal Display Corporation Organic electroluminescent materials and devices
EP4001286A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4001287A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4039692A1 (en) 2021-02-03 2022-08-10 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4053137A1 (en) 2021-03-05 2022-09-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4056578A1 (en) 2021-03-12 2022-09-14 Universal Display Corporation Organic electroluminescent materials and devices
EP4059941A1 (en) 2021-03-15 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4074723A1 (en) 2021-04-05 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4075530A1 (en) 2021-04-14 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4086266A1 (en) 2021-04-23 2022-11-09 Universal Display Corporation Organic electroluminescent materials and devices
EP4079743A1 (en) 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4112701A2 (en) 2021-06-08 2023-01-04 University of Southern California Molecular alignment of homoleptic iridium phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A2 (en) 2022-02-16 2023-08-23 Universal Display Corporation Organic electroluminescent materials and devices
EP4242285A1 (en) 2022-03-09 2023-09-13 Universal Display Corporation Organic electroluminescent materials and devices
EP4265626A2 (en) 2022-04-18 2023-10-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4282863A1 (en) 2022-05-24 2023-11-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP4299693A1 (en) 2022-06-28 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP4326030A1 (en) 2022-08-17 2024-02-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4362645A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4362631A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4362630A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices

Similar Documents

Publication Publication Date Title
KR20110088898A (en) Organic light emitting material and organic light emitting diode having the same
KR101555816B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101007516B1 (en) Organic light emitting material and organic light emitting diode having the same
EP2937347B1 (en) Novel compound and organic electronic element using same
KR20100079458A (en) Bis-carbazole chemiclal and organic electroric element using the same, terminal thererof
KR101312471B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101202410B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101282178B1 (en) Aromatic amine compund having various permutator and organic electroric element using the same, terminal thererof
KR101429961B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR20140076170A (en) Pyrene compound and organic electroluminescent device using the same
KR101125682B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101023624B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR100753454B1 (en) High-Efficient Organic light emitting material and Organic Light Emitting Diode
KR101334204B1 (en) A New Pyrene Compounds, Method of Producing the Same and Organic Electroluminescent Device Comprising the Same
KR20200095709A (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101134575B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR20090112137A (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101125683B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101160387B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101149721B1 (en) high-efficiency organic light emitting material with thermal stability and preparation thereof
KR101159729B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR100990805B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR20150071639A (en) Organic electroluminescence material and organic electroluminescence device having the same
KR20130133518A (en) Organic light emitting material and organic light emitting diode having the same
KR101750696B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E801 Decision on dismissal of amendment
A107 Divisional application of patent