KR20110079141A - Manufacturing method of polyamide composite membrane and composite membrane thereby - Google Patents

Manufacturing method of polyamide composite membrane and composite membrane thereby Download PDF

Info

Publication number
KR20110079141A
KR20110079141A KR1020090136113A KR20090136113A KR20110079141A KR 20110079141 A KR20110079141 A KR 20110079141A KR 1020090136113 A KR1020090136113 A KR 1020090136113A KR 20090136113 A KR20090136113 A KR 20090136113A KR 20110079141 A KR20110079141 A KR 20110079141A
Authority
KR
South Korea
Prior art keywords
polyamide
derivatives
composite membrane
polyamine
aqueous solution
Prior art date
Application number
KR1020090136113A
Other languages
Korean (ko)
Inventor
지성대
차봉준
이종화
Original Assignee
웅진케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 웅진케미칼 주식회사 filed Critical 웅진케미칼 주식회사
Priority to KR1020090136113A priority Critical patent/KR20110079141A/en
Publication of KR20110079141A publication Critical patent/KR20110079141A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: A producing method of a polyamide system composite film, and the polyamide system composite film are provided to secure the high flux at the low driving pressure. CONSTITUTION: A producing method of a polyamide system composite film comprises the following steps: preparing an aqueous solution obtained by mixing polyamine, class 3 polyamine salt, and polar solvents, and coating the solution on a porous supporter; and contacting the porous supporter with an organic solution containing a poly-functional acid halide compound and a non-ionizing solvent for obtaining a polyamid layer.

Description

폴리아미드계 복합막의 제조방법 및 그에 의한 복합막{MANUFACTURING METHOD OF POLYAMIDE COMPOSITE MEMBRANE AND COMPOSITE MEMBRANE THEREBY}Manufacturing Method of Polyamide Composite Membrane and Composite Membrane Thereby {MANUFACTURING METHOD OF POLYAMIDE COMPOSITE MEMBRANE AND COMPOSITE MEMBRANE THEREBY}

폴리아미드계 복합막의 제조방법 및 그에 의한 복합막에 관한 것으로, 보다 상세하게는, 다공성 지지체 표면에 폴리아민, 3급 폴리아민 염 및 극성용매를 포함하는 수용액을 도포하는 단계; 및 상기 수용액이 도포된 다공성 지지체를 다관능성 산할로겐 화합물 및 무극성용매를 포함하는 유기용액을 접촉시켜 계면중합으로 폴리아미드층을 형성하는 단계를 포함하는 폴리아미드계 복합막의 제조방법 및 그에 의한 복합막에 관한 것이다.The present invention relates to a method for preparing a polyamide-based composite membrane and to a composite membrane, and more particularly, applying an aqueous solution including a polyamine, a tertiary polyamine salt, and a polar solvent to a surface of a porous support; And forming a polyamide layer by interfacial polymerization by contacting the porous support coated with the aqueous solution with an organic solution containing a polyfunctional acid halogen compound and a non-polar solvent, and a composite membrane therefrom. It is about.

전통적인 수처리막으로서, 역삼투막, 나노분리막, 한외여과막, 정밀여과막 등을 들 수 있고, 최근에는 소요 에너지 대비 성능의 우수성으로 인해 나노분리막 및 정삼투막이 새로운 관심 분야로 대두되고 있다. 나노분리막은 나노여과(nano filtration)라는 개념에서 나왔으며, 나노분리막의 주된 분리대상은 용질의 크기가 나노미터(nm)의 크기를 가진 2가 이온, 또는 여러 종류의 단당류와 저분자량 유기 물 등이라 할 수 있다.As the conventional water treatment membranes, reverse osmosis membranes, nano separation membranes, ultrafiltration membranes, microfiltration membranes, etc. may be mentioned. Recently, nano separation membranes and forward osmosis membranes are emerging as a new field of interest due to the superior performance compared to required energy. Nano-membrane is derived from the concept of nano filtration, and the main separation object of nano-membrane is divalent ion having solute size of nanometer (nm), or various kinds of monosaccharides and low molecular weight organic materials. This can be called.

이러한 나노분리막은 그 여과범위가 역삼투막과 한외여과막 경계에 존재하는 막으로서, 특히 오염도가 낮은 물로부터 미네랄을 제거하거나, 항생제 물질의 분리, 초순수 제조 또는 중금속 세척 등에서 응용될 수 있다. 물론, 역삼투막도 이러한 물질을 분리할 수 있지만 나노미터급의 특정용질에 대한 선택적 분리능력은 나노분리막보다 떨어지고, 운전압력도 나노분리막보다 더 높아야 하기 때문에 에너지 소비가 나노분리막 공정에 비해 훨씬 크다는 단점이 있다. 따라서, 상대적으로 낮은 압력에서 더 많은 양의 물질을 분리할 수 있는 나노분리막이 최근에 들어 각광을 받고 있는 것은 자연스러운 현상이라 할 것이다.The nano separation membrane is a membrane whose filtration range is present at the boundary between the reverse osmosis membrane and the ultrafiltration membrane, and may be particularly applied to remove minerals from water with low pollution, separation of antibiotic substances, ultrapure water production, or heavy metal washing. Of course, reverse osmosis membranes can also separate these materials, but because the selective separation ability of the nanometer-specific solutes is lower than that of the nanomembrane and the operating pressure must be higher than that of the nanomembrane, the energy consumption is much higher than that of the nanomembrane process. have. Therefore, it is a natural phenomenon that the nano-membrane that can separate a larger amount of material at a relatively low pressure has recently been in the spotlight.

또한, 삼투압을 이용한 정삼투막에 대한 개념 및 공정개발에 대한 관심도 높아지고 있다. 정삼투막은 분리막 양단의 농도차에 의해 물의 흐름을 유도하는 것으로 투과유량의 향상을 위해서는 내부의 농도분극 현상을 최소화할 수 있어야 하는 것으로 알려져 있으며, 이를 위해 막두께의 조절 및 활성층의 투과특성 향상이 이에 기여 할 수 있는 요소라 할 수 있다. In addition, interest in the concept and process development of the forward osmosis membrane using the osmotic pressure is increasing. The forward osmosis membrane induces the flow of water by the difference in concentration between the two ends of the membrane, and it is known that the concentration polarization phenomenon must be minimized in order to improve the permeate flow rate. To this end, it is necessary to control the membrane thickness and improve the permeation characteristics of the active layer. It can be said to contribute to this.

폴리아미드 복합막의 제조방법에는 여러 가지가 있는데, 그 중에서, 캐도트(Cadotte)는 미국특허 제4,259,183호에서 피페라진과 TMC/IPC를 반응시켜 복합막을 제조하는 방법을 개시한 바 있으며, 상기 특허를 기본으로 첨가제 및 후처리를 통해 물성을 개선시킨 다수의 특허들이 공지되어 있다. 그 일례로서, 미국특허 제4,765,897호, 제4,812,270호 및 제4,824,574호의 경우, 무기강산 및 염배제촉진제(rejection enhancer)로 후처리를 실시하고 있고, 미국특허 제 6,280,853호에서 는 옥사이드 물질로 막에 후처리 코팅하는 방법이 소개되어 있다. There are a number of methods for producing a polyamide composite membrane, and among them, Cadette has disclosed a method for preparing a composite membrane by reacting piperazine with TMC / IPC in US Pat. No. 4,259,183. There are a number of known patents that improve the physical properties through additives and post-treatment. For example, US Pat. Nos. 4,765,897, 4,812,270, and 4,824,574 are post-treated with inorganic strong acids and rejection enhancers, and US Pat. No. 6,280,853 uses an oxide material to post-treat the membrane. A method of treatment coating is introduced.

또한, 미국특허 제4,769,148호, 제4,859,384호에서는 막 제조 시, 피페라진층에 양이온성 습윤제(cationic wetting agent)를 첨가하여 유량 상승을 유도하는 기술을 제시하고 있다. In addition, U.S. Patent Nos. 4,769,148 and 4,859,384 disclose a technique for inducing a flow rate increase by adding a cationic wetting agent to the piperazine layer during membrane preparation.

또한, 미국특허 제4,619,767호 및 제4,737,325호에서는 막을 제조함에 있어서, MPD와 TMC의 계면반응이 아닌 PVA/아미노 화합물과 TMC의 계면반응을 통해 복합막을 제조하여 적용시킨 방법이 개시되어 있다. In addition, US Pat. Nos. 4,619,767 and 4,737,325 disclose a method for preparing a composite membrane by interfacial reaction between PVA / amino compound and TMC, not interfacial reaction between MPD and TMC.

미국특허 제4,950,404호에서는 수용액계에 극성의 비양성자성 용매를 포함시켜 지지층의 유연성을 높임으로써, 투수성 높은 막의 제조방법을 개시하고 있다. US Patent No. 4,950,404 discloses a method for producing a highly permeable membrane by increasing the flexibility of the support layer by including a polar aprotic solvent in an aqueous solution.

이외에도, 미국특허 제6,113,794호에서는 폴리아크릴로니트릴을 지지층으로 하여 친수성 폴리머를 코팅하는 제조방법 등이 공개되어 있다. In addition, US Pat. No. 6,113,794 discloses a manufacturing method for coating a hydrophilic polymer using polyacrylonitrile as a supporting layer.

복합막의 우수한 염배제율과 충분한 유량을 얻기 위한 몇 가지 기술들의 예를 들면, 폴리아미드 반응에 첨가하는 단량체들의 구조를 바꾸는 연구(미국특허 제4,761,234호, 제4,634,829호, 제5,019,264호, 제5,160,619호, 제5,271,843호, 제5,336,409호 등), 후처리를 통한 유량증가 방법(미국특허 제4,938,872호, 제927,540호), 조액시 첨가하는 물질들을 개발하는 연구(미국특허 제5,234,598호, 제5,258,203호), 그 외 수용액층 등에 여러가지 첨가제를 넣어 분리막의 고유한 성능을 높이는 기술들이 있다. Some techniques for obtaining good salt rejection and sufficient flow rates of composite membranes, for example, studies of changing the structure of monomers added to polyamide reactions (US Pat. Nos. 4,761,234, 4,634,829, 5,019,264, 5,160,619) , 5,271,843, 5,336,409, etc., a method of increasing the flow rate through post-treatment (US Pat. Nos. 4,938,872, 927,540), and researches for developing substances to be added during preparation (US Pat. Nos. 5,234,598, 5,258,203) In addition, there are techniques for increasing the inherent performance of the separator by adding various additives to the aqueous solution layer.

삼투압을 이용한 정삼투막 제조 기술로는 미국특허 제7,445,712호에 역삼투막 제조에 사용하는 셀룰로오스아세테이트, 셀룰로오스트리아세테이트를 이용한 비 대칭 단일막 형태의 막제조 방법이 제시되어 있다. 염배제율 특성에 있어서는 폴리아미드 복합막이 우수하므로 이를 이용한 정삼투막 개발이 진행되고 있다. As a technology for preparing an osmosis membrane using osmotic pressure, US Pat. No. 7,445,712 discloses a method of preparing a membrane in the form of an asymmetrical single membrane using cellulose acetate and cellulose triacetate used in the preparation of reverse osmosis membrane. Since the polyamide composite membrane is excellent in the salt excretion property, forward osmosis membrane development using the same has been in progress.

그러나, 전술한 특허들에 의해 설계 또는 제조되는 복합막들은 유량향상시 염배제율 하락이 되어 유량향상으로 인한 공정상 효율 측면이나 에너지 측면에서 유리하지 못하여 이를 개선할 필요성이 대두되고 있다.However, the composite membranes designed or manufactured by the aforementioned patents have a reduction in salt excretion rate when the flow rate is improved, and thus, there is a need for improvement in terms of process efficiency or energy due to the flow rate improvement.

본 발명의 목적은 수처리에 적용시 염배제율을 유지하면서 고유량을 투과시킬 있는 폴리아미드계 복합막의 제조방법을 제공하는 것이다.An object of the present invention is to provide a method for producing a polyamide-based composite membrane that can permeate a high flow rate while maintaining a salt excretion rate when applied to water treatment.

본 발명의 다른 목적은 상기 방법에 의해 제조되는 폴리아미드계 복합막을 제공하는 것이다.Another object of the present invention is to provide a polyamide-based composite membrane produced by the above method.

상기 목적을 달성하기 위한 본 발명의 복합막의 제조방법은 다공성 지지체 표면에 폴리아민, 3급 폴리아민 염 및 극성용매를 포함하는 수용액을 도포하는 단계; 및 상기 수용액이 도포된 다공성 지지체를 다관능성 산할로겐화합물 및 무극성용매를 포함하는 유기용액을 접촉시켜 계면중합으로 폴리아미드층을 형성하는 단계를 포함한다. Method for producing a composite membrane of the present invention for achieving the above object comprises the steps of applying an aqueous solution containing a polyamine, a tertiary polyamine salt and a polar solvent on the surface of the porous support; And forming a polyamide layer by interfacial polymerization by contacting the porous support coated with the aqueous solution with an organic solution including a polyfunctional acid halogen compound and a non-polar solvent.

상기 다공성 지지체는 폴리에스테르 부직포상에 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리프로필렌 및 폴리비닐리덴플로라이드로 이루어진 군에서 선택되는 하나의 성분이 캐스팅된 것이 바람직하다.The porous support is preferably cast one component selected from the group consisting of polysulfone, polyethersulfone, polyimide, polypropylene and polyvinylidene fluoride on the polyester nonwoven fabric.

상기 폴리아민은 페닐렌디아민, 사이클로헥산디아민, 피페라진 및 이들의 유도체로 구성된 군으로부터 선택되는 하나 이상이, 수용액 전체 중량에 대하여 0.1 ~ 10중량%로 포함된 것이 바람직하다.The polyamine is preferably one or more selected from the group consisting of phenylenediamine, cyclohexanediamine, piperazine and derivatives thereof in an amount of 0.1 to 10% by weight based on the total weight of the aqueous solution.

상기 3급 폴리아민 염은 1,4-디아자비시클로[2,2,2]옥탄(DABCO), 1,8-디아자비시클로[5,4,0]운덱-7-엔(DBU), 1,5-디아자비시클로[4,3,0]논-5-엔(DBN), 1,4-디메틸피페라진, 4-[2-(디메틸아미노)에틸]모포린, N,N,N',N'-테트라메틸에틸렌디아민, N,N,N',N'-테트라메틸-1,3-부탄디아민, N,N,N',N'-테트라메틸-1,4-부탄디아민(TMBD), N,N,N',N'-테트라메틸-1,3-프로판디아민, N,N,N',N'-테트라메틸-1,6-헥산디아민(TMHD), 1,1,3,3-테트라메틸구아니딘(TMGU) 및 N,N,N',N',N"-펜타메틸디에틸렌트리아민으로 구성된 군으로부터 선택되는 하나 이상이 강산과 반응하여 생성된 염으로서, 수용액 전체 중량에 대하여 0.01 ~ 2중량% 함유된 것이 바람직하다.The tertiary polyamine salts include 1,4-diazabicyclo [2,2,2] octane (DABCO), 1,8-diazabicyclo [5,4,0] undec-7-ene (DBU), 1, 5-diazabicyclo [4,3,0] non-5-ene (DBN), 1,4-dimethylpiperazine, 4- [2- (dimethylamino) ethyl] morpholine, N, N, N ', N'-tetramethylethylenediamine, N, N, N ', N'-tetramethyl-1,3-butanediamine, N, N, N', N'-tetramethyl-1,4-butanediamine (TMBD) , N, N, N ', N'-tetramethyl-1,3-propanediamine, N, N, N', N'-tetramethyl-1,6-hexanediamine (TMHD), 1,1,3, A salt formed by reaction of a strong acid with at least one selected from the group consisting of 3-tetramethylguanidine (TMGU) and N, N, N ', N', N "-pentamethyldiethylenetriamine, It is preferably contained 0.01 to 2% by weight relative to the.

상기 극성용매는 에틸렌글리콜 유도체, 프로필렌글리콜 유도체, 1,3-프로판디올 유도체, 술폭사이드 유도체, 술폰 유도체, 니트릴 유도체, 케톤 유도체 및 우레아 유도체로 이루어진 군에서 선택되는 하나 이상이 수용액 전체 중량에 대하여 0.01 ~ 1중량% 함유된 것이 바람직하다.The polar solvent is at least one selected from the group consisting of ethylene glycol derivatives, propylene glycol derivatives, 1,3-propanediol derivatives, sulfoxide derivatives, sulfone derivatives, nitrile derivatives, ketone derivatives and urea derivatives based on the total weight of the aqueous solution 0.01 It is preferable that 1 weight% is contained.

상기 다관능성 산할로겐 화합물은 이소프탈로일클로라이드, 트리메조일클로라이드 및 테레프탈로일클로라이드로 이루어진 군으로부터 선택되는 하나 이상이 유기용액 전체 중량에 대하여 0.01~1중량%로 함유된 것이 바람직하다.The polyfunctional acid halogen compound is preferably one or more selected from the group consisting of isophthaloyl chloride, trimesoyl chloride and terephthaloyl chloride in an amount of 0.01 to 1% by weight based on the total weight of the organic solution.

상기 무극성 용매는 디히드로퓨란, 디히드로피란(dihydropyrane), 톨루엔, 헥산, 디페닐에테르, 옥틸에테르, 디메틸포름알데히드, 테트라히드로퓨란, 1-옥타데센(1-octadecene), 테트라데칸 및 그 유도체로 이루어진 군에서 선택되는 하나 이상이 유기용액 전체 중량에 대하여 0.5 ~ 5 중량% 함유된 것이 바람직하다.The nonpolar solvent is dihydrofuran, dihydropyrane, toluene, hexane, diphenyl ether, octyl ether, dimethylformaldehyde, tetrahydrofuran, 1-octadecene, tetradecane and derivatives thereof. It is preferable that one or more selected from the group consisting of 0.5 to 5% by weight based on the total weight of the organic solution.

상기 유기용액을 구성하는 유기용매는 탄소수 5 ~ 12개이고, 쇄상, 분지상 또는 고리상인 포화 또는 불포화 탄화수소이거나, 이 범위에 속하는 탄화수소들의 혼합물인 것이 바람직하다.The organic solvent constituting the organic solution is 5 to 12 carbon atoms, it is preferable that the saturated, unsaturated hydrocarbons are linear, branched or cyclic, or a mixture of hydrocarbons in this range.

본 발명의 복합막은 다공성 지지체; 및 상기 다공성 지지체 표면상에 폴리아민, 3급 폴리아민 염 및 극성용매를 포함하는 수용액과, 다관능성 산할로 겐화합물 및 무극성용매를 포함하는 유기용액을 접촉시켜 계면중합으로 형성된 폴리아미드층을 포함한다.The composite membrane of the present invention is a porous support; And a polyamide layer formed by interfacial polymerization by contacting an aqueous solution including a polyamine, a tertiary polyamine salt, and a polar solvent on the surface of the porous support, and an organic solution including a polyfunctional acid halogen compound and a nonpolar solvent.

본 발명의 폴리아미드계 복합막은 계면중합시 수용액에 3급 폴리아민 염과 극성용매를 함유하고, 포함된 유기용액에 산할로겐 화합물 외에 무극성용매를 더 함유하여 계면중합시켜 폴리미드층을 형성함으로써, 투과성능을 향상시키면서도 염배제율을 유지할 수 있어 상대적으로 낮은 구동 압력 하에서 고유량을 투과시킬 수 있다.The polyamide-based composite membrane of the present invention contains a tertiary polyamine salt and a polar solvent in an aqueous solution during interfacial polymerization, and further contains a nonpolar solvent in addition to the acid halide compound in the organic solution to interfacially polymerize to form a polyamide layer. The salt rejection rate can be maintained while improving the performance, so that the high flow rate can be transmitted under a relatively low driving pressure.

상기 목적을 달성하기 위한 본 발명의 폴리아미드계 복합막 제조방법은 다공 성 지지체 표면에 폴리아민, 3급 폴리아민 염 및 극성용매를 포함하는 수용액을 도포하는 단계; 및 상기 수용액이 도포된 다공성 지지체를 다관능성 산할로겐 화합물 및 무극성용매를 포함하는 유기용액을 접촉시켜 계면중합으로 폴리아미드층을 형성하는 단계를 포함한다.Polyamide-based composite membrane production method of the present invention for achieving the above object comprises the steps of applying an aqueous solution containing a polyamine, a tertiary polyamine salt and a polar solvent on the surface of the porous support; And forming a polyamide layer by interfacial polymerization by contacting the porous support coated with the aqueous solution with an organic solution including a polyfunctional acid halogen compound and a non-polar solvent.

본 발명의 폴리아미드계 복합막 제조방법에 있어 첫 번째 단계는 다공성 지지체 표면에 폴리아민, 3급 폴리아민의 염 및 극성용매를 포함하는 수용액을 도포하는 단계이다. 이때, 상기 다공성 지지체는 계면중합으로 형성되는 폴리아미드 막을 지지하는 기능을 한다. 본 발명에서는 부직포 형태의 다공성 지지체의 표면에 관능기 함유 고분자가 결합된 것을 지지체로 사용한다. 상기 부직포의 재질로서는 특별한 제한이 없어 천연섬유나 합성섬유 중 어느 것이나 사용될 수 있다. 경제성 측면에서 인조섬유가 상용되는 것이 보통이며, 지지체용 합성섬유 부직포로서는 폴리프로필렌, 폴리에틸렌, 나일론, 폴리에스터, 폴리우레탄 등의 섬유를 이용한 부직포들이 있다. 필요에 따라 유리섬유 등이 사용되기도 하며, 이들은 단독으로 또는 여러 종이 혼합되어 사용될 수 있음은 물론이다. The first step in the method for producing a polyamide-based composite membrane of the present invention is to apply an aqueous solution containing a polyamine, a salt of a tertiary polyamine, and a polar solvent to the surface of the porous support. In this case, the porous support serves to support the polyamide membrane formed by interfacial polymerization. In the present invention, a functional group-containing polymer is bonded to the surface of the porous support in the form of a nonwoven fabric as a support. The material of the nonwoven fabric is not particularly limited, and any of natural fibers and synthetic fibers may be used. In terms of economy, artificial fibers are commonly used, and nonwoven fabrics using fibers such as polypropylene, polyethylene, nylon, polyester, and polyurethane as synthetic fiber nonwoven fabrics for a support are common. Glass fibers or the like may be used as necessary, and these may be used alone or in combination of several species.

상기 부직포의 표면에 결합되는 관능기 함유 고분자로서는 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리프로필렌 및 폴리비닐리덴플루오라이드로 이루어진 군에서 선택되는 하나 이상의 성분이 캐스팅된 것이 바람직하다. 이들 고분자는 다공성 제조가 용이하고 내화학 특성을 지녀 지지체로 사용 될 수 있다. 통상적으로는 상기 부직포상에 관능기 함유 고분자 15 ~ 20중량% 를 포함하는 용액을 나이프 캐 스팅하여 제조된다.As the functional group-containing polymer bonded to the surface of the nonwoven fabric, one or more components selected from the group consisting of polysulfone, polyethersulfone, polyimide, polypropylene and polyvinylidene fluoride are preferably cast. These polymers can be used as a support because they are easy to manufacture porous and have chemical resistance. Typically, the nonwoven fabric is prepared by knife casting a solution containing 15 to 20% by weight of a functional group-containing polymer.

한편, 본 발명의 복합막 제조방법에서 사용되는 다공성 지지체는 지지층의 공경이 1 ~ 500nm인 것이 바람직하다. 500nm 초과의 공경은 박막형성 시 함몰로 인해 최종 복합막의 결점으로 발현 될 수 있다.On the other hand, the porous support used in the composite membrane production method of the present invention preferably has a pore size of 1 ~ 500nm of the support layer. The pore size of more than 500 nm may be manifested as a defect of the final composite film due to depression during thin film formation.

상기 폴리아민은 계면중합되어 폴리아미드층을 형성하는 일 성분이다. 일반적으로 폴리아미드계 복합막은 폴리아민과 다관능성 산할로겐화물 사이의 계면중합에 의해 제막되며, 이때, 폴리아민이라 함은 단량체 당 2 ~ 3개 아민 관능기를 갖는 다관능성 1급 또는 2급 아민을 말한다. 상기 1급 또는 2급 폴리아민의 예로서는 메타페닐렌디아민, 파라페닐렌디아민 및 그 유도체들인 방향족 1급 디아민; 에틸렌디아민과 같은 지방족 1급 디아민; 사이클로헥산디아민과 같은 사이클로알리파틱 1급 디아민; 피페라진과 같은 사이클로알리파틱 2급아민; N,N'-디메틸-1,3-페닐렌디아민과 같은 방향족 2급 아민 등이 사용될 수 있다.The polyamine is one component that is interfacially polymerized to form a polyamide layer. In general, a polyamide-based composite membrane is formed by interfacial polymerization between a polyamine and a polyfunctional acid halide, wherein the polyamine refers to a polyfunctional primary or secondary amine having 2-3 amine functional groups per monomer. Examples of the primary or secondary polyamines include aromatic primary diamines which are metaphenylenediamine, paraphenylenediamine and derivatives thereof; Aliphatic primary diamines such as ethylenediamine; Cycloaliphatic primary diamines such as cyclohexanediamine; Cycloaliphatic secondary amines such as piperazine; Aromatic secondary amines such as N, N'-dimethyl-1,3-phenylenediamine and the like can be used.

이들은 단독으로 또는 2종 이상이 혼합된 형태로 사용될 수 있으며, 전체 수용액 중량에 대하여 0.1 ~ 10중량%, 바람직하게는 0.5 ~ 2중량%로 사용한다. 함량이 0.1중량% 미만이면 폴리아미드층 형성이 안정적이지 못하고, 10중량%를 초과하면 두꺼운 상기 폴리아미드층이 두꺼워져 최종적으로 형성되는 복합막의 투과유량이 감소하는 문제가 있다.These may be used alone or in combination of two or more thereof, and are used in an amount of 0.1 to 10% by weight, preferably 0.5 to 2% by weight based on the total weight of the aqueous solution. If the content is less than 0.1% by weight, polyamide layer formation is not stable. If the content is more than 10% by weight, the polyamide layer is thick and the permeate flow rate of the finally formed composite membrane is reduced.

상기 3급 폴리아민 염은 폴리아민과 다관능성 산 할로겐화물의 계면중합에 의하여 폴리아미드층으로 구성된 막을 형성할 때, 상기 막 내에 기공을 형성하는 역할을 수행하여 유량을 향상시킨다. 또한, 계면중합반응 중에 생성된 산의 산받게(acid acceptor) 작용을 수행함으로써 계면반응을 촉진시켜 주는 역할을 한다. 이와 같은 목적의 3급 폴리아민의 염은 1,4-디아자비시클로[2,2,2]옥탄(DABCO), 1,8-디아자비시클로[5,4,0]운덱-7-엔(DBU), 1,5-디아자비시클로[4,3,0]논-5-엔(DBN), 1,4-디메틸피페라진, 4-[2-(디메틸아미노)에틸]모포린, N,N,N',N'-테트라메틸에틸렌디아민, N,N,N',N'-테트라메틸-1,3-부탄디아민, N,N,N',N'-테트라메틸-1,4-부탄디아민(TMBD), N,N,N',N'-테트라메틸-1,3-프로판디아민, N,N,N',N'-테트라메틸-1,6-헥산디아민(TMHD), 1,1,3,3-테트라메틸구아니딘(TMGU) 및 N,N,N',N',N"-펜타메틸디에틸렌트리아민으로 구성된 군으로부터 선택되는 하나 이상이 강산과 반응하여 생성된 염인 것이 바람직하다.When the tertiary polyamine salt forms a membrane composed of a polyamide layer by interfacial polymerization of a polyamine and a polyfunctional acid halide, the third polyamine salt serves to form pores in the membrane to improve flow rate. In addition, it serves to promote the interfacial reaction by performing the acid acceptor action of the acid generated during the interfacial polymerization reaction. Salts of tertiary polyamines for this purpose include 1,4-diazabicyclo [2,2,2] octane (DABCO), 1,8-diazabicyclo [5,4,0] undec-7-ene (DBU). ), 1,5-diazabicyclo [4,3,0] non-5-ene (DBN), 1,4-dimethylpiperazine, 4- [2- (dimethylamino) ethyl] morpholine, N, N , N ', N'-tetramethylethylenediamine, N, N, N', N'-tetramethyl-1,3-butanediamine, N, N, N ', N'-tetramethyl-1,4-butane Diamine (TMBD), N, N, N ', N'-tetramethyl-1,3-propanediamine, N, N, N', N'-tetramethyl-1,6-hexanediamine (TMHD), 1, At least one selected from the group consisting of 1,3,3-tetramethylguanidine (TMGU) and N, N, N ', N', N "-pentamethyldiethylenetriamine is preferably a salt produced by reaction with a strong acid Do.

본 발명에서 사용되는 3급 폴리아민 염은 강산과 3급 폴리아민간의 반응생성물로서, 강산과 n개의 아민기를 가지는 3급 폴리아민이 1:n(n은 0.5 ~ 2)의 몰비로 반응하여 제조된 반응생성물이다. 이때, 강산으로는 지방족 술폰산, 방향족 술폰산, 사이클로-지방족 술폰산, 트리플루오로아세트산, 질산, 염산, 황산 또는 그들의 혼합물이 사용되는 것이 바람직하다.The tertiary polyamine salt used in the present invention is a reaction product between a strong acid and a tertiary polyamine. A reaction product prepared by reacting a tertiary polyamine having a strong acid with n amine groups in a molar ratio of 1: n (n is 0.5 to 2). to be. At this time, it is preferable to use aliphatic sulfonic acid, aromatic sulfonic acid, cyclo-aliphatic sulfonic acid, trifluoroacetic acid, nitric acid, hydrochloric acid, sulfuric acid, or a mixture thereof.

상기 3급 폴리아민 염들은 단독으로 사용되거나 또는 둘 이상이 혼합되어 사용될 수 있으며, 그 사용량은 상기 수용액의 전체 중량에 대하여 0.01 ~ 2중량% 함유된 것이 바람직하다. 상기 3급 폴리아민 염의 함량이 0.01중량% 미만이면 적절한 막기공을 형성하지 못하고, 2중량%를 초과하면 급격한 유량 증가로 제거성능을 내지 못하는 문제가 있어 바람직하지 않다.The tertiary polyamine salts may be used alone or in combination of two or more thereof, and the amount of the tertiary polyamine salt is preferably contained in an amount of 0.01 to 2% by weight based on the total weight of the aqueous solution. If the content of the tertiary polyamine salt is less than 0.01% by weight, it is not preferable to form an appropriate membrane pore, and when the content of the tertiary polyamine salt exceeds 2% by weight, the removal performance is not increased due to a rapid flow rate increase.

본 발명의 폴리아미드계 복합막 제조방법에서 상기 다공성 지지체에 도포되는 수용액은 추가적인 성분으로 극성용매를 포함한다. 극성용매는 계면중합 형성 시 수용액과 유기용액의 계면장력에 영향을 주어 활성화 시키는 기능을 한다. 상기 극성용매로서는 에틸렌글리콜 유도체, 프로필렌글리콜 유도체, 1,3-프로판디올 유도체, 술폭사이드 유도체, 술폰 유도체, 니트릴 유도체, 케톤 유도체 및 우레아 유도체로 이루어진 군에서 선택되는 하나 이상이 바람직하다. 사용량은 바람직하게는 수용액 전체 중량에 대하여 0.01 ~ 1중량%, 더욱 바람직하게는 0.05 ~ 0.5 중량%이다. 상기 극성 용매의 함량이 0.01중량% 미만이면 계면활성이 미약하여 바람직하지 않고, 1 중량%를 초과하면 이온성 물질의 제거성능이 낮아지는 단점이 있다.In the polyamide-based composite membrane production method of the present invention, the aqueous solution applied to the porous support includes a polar solvent as an additional component. Polar solvents function by activating the interfacial polymerization by affecting the interfacial tension between aqueous and organic solutions. The polar solvent is preferably at least one selected from the group consisting of ethylene glycol derivatives, propylene glycol derivatives, 1,3-propanediol derivatives, sulfoxide derivatives, sulfone derivatives, nitrile derivatives, ketone derivatives and urea derivatives. The amount of use is preferably 0.01 to 1% by weight, more preferably 0.05 to 0.5% by weight based on the total weight of the aqueous solution. If the content of the polar solvent is less than 0.01% by weight, the surface activity is weak, which is not preferable. If the content of the polar solvent exceeds 1% by weight, the removal performance of the ionic material is lowered.

상기 에틸렌글리콜 유도체로서는 예를 들면, 2-메톡시에탄올, 2-에톡시에탄올, 2-프로폭시에탄올, 2-부톡시에탄올, 디(에틸렌글리콜)-t-부틸메틸 에테르, 디(에틸렌글리콜)헥실 에테르, (2-메톡시에틸)에테르, (2-에톡시에틸)에테르 등이 있다.Examples of the ethylene glycol derivatives include 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, 2-butoxyethanol, di (ethylene glycol) -t-butylmethyl ether and di (ethylene glycol). Hexyl ether, (2-methoxyethyl) ether, (2-ethoxyethyl) ether and the like.

상기 1,3-프로판디올 유도체로는 예를 들면, 1,3-헵탄디올, 2-에틸-1,1-헥산디올, 1,3-헥산디올, 1,3-펜탄디올 등이 있다.Examples of the 1,3-propanediol derivatives include 1,3-heptanediol, 2-ethyl-1,1-hexanediol, 1,3-hexanediol, 1,3-pentanediol, and the like.

상기 술폭사이드 유도체로서는 예를 들면, 디메틸술폭사이드, 테트라메틸렌술폭사이드, 부틸술폭사이드, 메틸페닐술폭사이드 등이 있다.Examples of the sulfoxide derivatives include dimethyl sulfoxide, tetramethylene sulfoxide, butyl sulfoxide and methylphenyl sulfoxide.

상기 술폰유도체로서는 예를 들면, 디메틸술폰, 테트라메틸렌 술폰, 부틸 술폰 등이 있다. Examples of the sulfone derivatives include dimethyl sulfone, tetramethylene sulfone and butyl sulfone.

상기 니트릴 유도체로서는 예를 들면, 아세토니트릴, 프로피온니트릴 등이 있다.Examples of the nitrile derivatives include acetonitrile, propionitrile and the like.

상기 우레아 유도체로서는 예를 들면, 1,3-디메틸-2-이미다졸리디논 등이 있고, 상기 케톤 유도체로서는 예를 들면, 아세톤, 2-부탄온, 2-헥산온, 3-헥산온, 3-펜탄온, 시클로헥산온, 시클로 펜탄온 등이 있다.Examples of the urea derivatives include 1,3-dimethyl-2-imidazolidinone and the like, and examples of the ketone derivatives include acetone, 2-butanone, 2-hexanone, 3-hexanone, and 3; -Pentanone, cyclohexanone, cyclopentanone and the like.

본 발명의 제2다관능성 아민수용액의 pH는 7 ~ 10의 범위로 조절하는 것이 바람직하다. pH 7 이하에서는 투과유량이 감소하며, pH 10 이상에서는 가수분해에 의한 제거율 감소를 초래한다. 이때, pH는 염기성 물질을 넣어서 조절한다. 그러나 수용액에 1개 이상의 아민기가 산받게(acid acceptor)로 작용할 수 있는 아민의 염을 포함하는 경우는 염기성 물질을 첨가할 필요는 없다.It is preferable to adjust the pH of the 2nd polyfunctional amine aqueous solution of this invention to the range of 7-10. Below pH 7, the permeate flow rate decreases, and above pH 10, the removal rate is reduced by hydrolysis. At this time, pH is adjusted by putting a basic substance. However, it is not necessary to add a basic substance when the aqueous solution contains a salt of an amine in which one or more amine groups can act as an acid acceptor.

본 발명의 첫 번째 단계에서 상기의 조성을 포함하는 수용액이 다공성 지지체에 도포되는 방법에는 특별한 제한이 없다. 예컨대, 침지법, 스프레이코팅, 롤브러시코팅, 그라비아코팅, 나이프코팅 등 다양한 도포방법이 적절하게 선택될 수 있다. 한편, 상기 지지체 상에 수용액이 필요한 양 이상으로 과잉으로 도포된 경우에는 과잉용액이 적절한 방법으로 제거될 수 있는 공정이 추가될 수 있다. 예컨대, 상기 과잉용액은 고무판 등으로 압착하거나 또는 닙-롤러를 통과시키는 방법으로 제거될 수 있다.In the first step of the present invention, there is no particular limitation on the method in which the aqueous solution containing the composition is applied to the porous support. For example, various coating methods such as dipping, spray coating, roll brush coating, gravure coating, knife coating and the like may be appropriately selected. On the other hand, when the aqueous solution is excessively applied to the support in excess of the required amount may be added a process in which the excess solution can be removed by a suitable method. For example, the excess solution may be removed by pressing with a rubber plate or the like or passing the nip roller.

한편, 본 발명의 복합막 제조방법에 있어 두 번째 단계는 상기에서 설명된 수용액이 도포된 다공성 지지체를 다관능성 산할로겐 화합물 및 무극성용매를 포함하는 유기용액을 접촉시켜 계면중합으로 폴리아미드층을 형성하는 단계를 포함한다.On the other hand, the second step in the composite membrane production method of the present invention is to form a polyamide layer by interfacial polymerization by contacting the porous support coated with the aqueous solution described above in contact with the organic solution containing a polyfunctional acid halogen compound and a non-polar solvent It includes a step.

상기에서, 먼저 계면중합의 또 다른 원료를 포함하는 유기용액을 구성하는 유기용매는 탄소수 5 ~ 12개이고, 쇄상, 분지상 또는 고리상인 포화 또는 불포화 탄화수소이거나, 이 범위에 속하는 탄화수소들의 혼합물인 것이 바람직하다. 대표적으로는, 예를 들면, 헥산, 헵탄이 있다. 상업적으로 판매되는 것으로서는 이소파 용매(Isopar Series, 엑손모빌 제조)가 있다. 상기 이소파 용매는 탄소수 8 ~ 12 알칸 혼합물로서, 비등점이 낮은 물질 등은 화재발생 우려가 있어 이를 피할 목적으로 이소파 용매가 사용되는 것이 바람직하다.In the above, first, the organic solvent constituting the organic solution including another raw material of interfacial polymerization is a saturated or unsaturated hydrocarbon having 5 to 12 carbon atoms, and is a chain, branched or cyclic, or a mixture of hydrocarbons belonging to this range. Do. Representatives are, for example, hexane and heptane. Commercially available isopar solvent (Isopar Series, manufactured by ExxonMobil). The isopha solvent is a mixture of 8 to 12 carbon atoms, and a material having a low boiling point may cause a fire. Thus, the isopha solvent is preferably used for the purpose of avoiding this.

상기 다관능성 산할로겐 화합물은 상술한 폴리아민과 계면에서 접촉하여 중합됨으로써 폴리아미드층을 형성하는 계면중합의 또 다른 반응물이다. 본 발명의 제조방법에서는 이소프탈로일클로라이드, 트리메조일클로라이드 및 테레프탈로일클로라이드로 이루어진 군으로부터 선택되는 하나 이상을 사용하는 것이 바람직하다. 상기 다관능성 산할로겐 화합물의 사용량은 유기용액 전체 중량에 대하여 0.01 ~ 1 중량%로 함유된 것이 바람직하다.The polyfunctional acid halogen compound is another reactant of interfacial polymerization which forms a polyamide layer by contacting and polymerizing at the interface with the polyamine described above. In the production method of the present invention, it is preferable to use at least one selected from the group consisting of isophthaloyl chloride, trimesoyl chloride and terephthaloyl chloride. The amount of the polyfunctional acid halogen compound is preferably contained in an amount of 0.01 to 1% by weight based on the total weight of the organic solution.

한편, 상기 유기용액에 함유된 무극성용매는 계면중합 시에 안정적인 중합을 유도하며 지지체의 결함을 줄이는 작용을 한다. 상기 무극성용매로는 예를 들면 디히드로퓨란 , 디히드로피란, 톨루엔, 헥산, 디페닐에테르, 옥틸에테르, 디메틸포름 알데히드, 테트라히드로퓨란, 1-옥타데신, 테트라데칸 및 그 유도체로 이루어진 군에서 선택되는 1종 또는 2종 이상의 혼합물이 사용되는 것이 바람직 하다. 상기 디히드로퓨란 유도체로서는 예를 들면, 무극성 용매는 2,3-디히드로퓨란, 2,5-디히드로퓨란, 2,3-디히드로-5-메틸퓨란, 2,5-디메톡시-2,5-디히드로퓨란이 있으며; 디히드로피란 유도체로로서는 예를 들면, 3,4-디히드로-2-에톡시-2H-피란, 3,4-디히드로-2H-피란, 2,3-디히드로피란 등이 있다.On the other hand, the non-polar solvent contained in the organic solution induces stable polymerization during interfacial polymerization and serves to reduce the defect of the support. The nonpolar solvent is selected from the group consisting of, for example, dihydrofuran, dihydropyran, toluene, hexane, diphenyl ether, octyl ether, dimethylformaldehyde, tetrahydrofuran, 1-octadecine, tetradecane and derivatives thereof. It is preferred that one or two or more mixtures be used. As the dihydrofuran derivative, for example, the nonpolar solvent is 2,3-dihydrofuran, 2,5-dihydrofuran, 2,3-dihydro-5-methylfuran, 2,5-dimethoxy-2, 5-dihydrofuran; Examples of the dihydropyran derivatives include 3,4-dihydro-2-ethoxy-2H-pyran, 3,4-dihydro-2H-pyran, 2,3-dihydropyran and the like.

상기 무극성용매는 전체 유기용액 중량에 대하여 0.5 ~ 5중량%로 함유되는 것이 바람직하다. 이때 무극성용매의 함량이 1 중량% 미만이면 계면중합 형성에 영향을 미치지 못하기 때문에 유량개선이 미약하여 바람직하지 않고 5 중량% 를 초과하면 산할로겐 화합물의 용해를 저하시켜 계면중합 중에 폴리아미드층의 결함을 초래하기 때문에 제거성능이 낮아지는 어려움이 있다.The nonpolar solvent is preferably contained in 0.5 to 5% by weight based on the total weight of the organic solution. At this time, if the content of the nonpolar solvent is less than 1% by weight, it does not affect the formation of the interfacial polymerization. Therefore, the flow rate is not improved. There is a difficulty in lowering the removal performance because of the defect.

이상의 방법으로 제조되는 본 발명의 폴리아미드계 복합막은 다공성 지지체; 및 상기 다공성 지지체 표면상에 폴리아민, 3급 폴리아민 염 및 극성용매를 포함하는 수용액과, 다관능성 산할로겐 화합물 및 무극성용매를 포함하는 유기용액을 접촉시켜 계면중합으로 형성된 폴리아미드층을 포함한다.Polyamide-based composite membrane of the present invention prepared by the above method is a porous support; And a polyamide layer formed by interfacial polymerization by contacting an aqueous solution including a polyamine, a tertiary polyamine salt, and a polar solvent on the surface of the porous support, and an organic solution including a polyfunctional acid halogen compound and a non-polar solvent.

상기의 폴리아미드층은 100 ~ 300nm의 두께를 가지며 1 ~ 100Å의 기공사이즈를 형성한다.      The polyamide layer has a thickness of 100 to 300 nm and forms a pore size of 1 to 100 mm 3.

이하, 본 발명을 실시예 및 실험예에 의하여 상세히 설명한다. 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 범위가 하기 실시예 및 실험예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by Examples and Experimental Examples. The following Examples and Experimental Examples are only illustrative of the present invention, and the scope of the present invention is not limited to the following Examples and Experimental Examples.

<< 실시예Example 1>  1>

폴리에스테르 부직포 상에, 용매인 디메틸포름아미드에 폴리술폰 18중량%의 함유용액을 50±10㎛ 두께로 캐스팅한 후, 25℃온도의 증류수욕에 즉시 침지하여 고형화시켜, 부직포 보강 폴리술폰 미세다공성 지지체를 제조하였다. 이후, 상기 부직포 보강 폴리술폰 미세다공성 지지체를 충분히 수세하여, 기질 중의 용매와 물을 치환한 후, 상온에서 건조하고 순수에 보관하였다. 이렇게 얻어진 폴리술폰 미소다공 지지체를 0.9중량%의 메타-페닐렌디아민(MPD), 1.1중량%의 N,N,N',N'-테트라메틸-1,6-헥사디아민(TMHD), 0.99중량%의 톨루엔술폰산(TSA) 및 극성용매인 0.19중량%의 2-에틸-1,3-헥산디올(EHD)을 함유한 다관능성 아민수용액에 20초간 침지 압착방법으로 표면의 물층을 제거하였다. On the polyester nonwoven fabric, 18 wt% of polysulfone containing solution was cast to 50 ± 10 μm thick in dimethylformamide as a solvent, and immediately immersed in a distilled water bath at 25 ° C. to solidify. The support was prepared. Thereafter, the nonwoven fabric-reinforced polysulfone microporous support was sufficiently washed with water to replace the solvent and water in the substrate, and then dried at room temperature and stored in pure water. The polysulfone microporous support thus obtained was obtained with 0.9% by weight of meta-phenylenediamine (MPD), 1.1% by weight of N, N, N ', N'-tetramethyl-1,6-hexadiamine (TMHD), 0.99% by weight. The water layer on the surface was removed by immersion compression for 20 seconds in an aqueous polyfunctional amine solution containing% toluenesulfonic acid (TSA) and 0.19% by weight of 2-ethyl-1,3-hexanediol (EHD) as a polar solvent.

상기 지지체를 이소파용매(Isopar solvent)에 0.1중량% 트리메조일클로라이드(TMC), 1 중량% 2,3-디히드로퓨란(DHF)이 용해된 유기용액에 1분간 침적한 후, 과잉의 유기용액을 제거하고, 1분간 공기 중에 건조하여 폴리아미드 분리막을 형성시켰다. 상기 방법으로 얻어진 분리막을 0.2중량% 소듐카보네이트 함유 염기수용액에 상온에서 2시간 침지시킨 후, 증류수로 수세하여 복합막을 제조하였다. 얻어진 복합막의 성능은 2,000ppm인 염화나트륨(NaCl) 수용액을 25℃, 75psi에서 측정하였으며, 그 결과 염배제율은 95.08%, 투과유속은 19.92 gfd 였다.The support was immersed in an organic solution in which 0.1% by weight of trimezoyl chloride (TMC) and 1% by weight of 2,3-dihydrofuran (DHF) was dissolved in an isopar solvent for 1 minute, followed by excess organic The solution was removed and dried in air for 1 minute to form a polyamide separator. The membrane obtained by the above method was immersed in 0.2 wt% sodium carbonate-containing base aqueous solution at room temperature for 2 hours, and then washed with distilled water to prepare a composite membrane. The performance of the obtained composite membrane was measured at 25 ℃, 75psi aqueous sodium chloride (NaCl) solution of 2,000ppm, the result was 95.08% salt rejection, 19.92 gfd permeation rate.

<< 실시예Example 2> 2>

상기 실시예1에서 2,3-디히드로퓨란(DHF)농도를 표 1에 제시된 바와 같이 변경하여 실시한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 복합막을 제조하였다.A composite membrane was prepared in the same manner as in Example 1, except that 2,3-dihydrofuran (DHF) was changed in Example 1 as shown in Table 1 above.

<< 실시예3Example 3 ~4>~ 4>

상시 실시예1 에서 수용액 층의 농도변경 및 유기용액 층에 2,3-디히드로퓨란를 추가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 복합막을 제조하였다.A composite membrane was prepared in the same manner as in Example 1, except that in Example 1, the concentration of the aqueous solution layer and 2,3-dihydrofuran were added to the organic solution layer.

<< 비교예Comparative example 1~2> 1 ~ 2>

하기 표 1에 제시된 조성 및 그 함량에 따라 제조된 다관능성 아민수용액을 사용하고 유기용액 층에는 트리메조일클로라이드(TMC) 만 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 복합막을 제조하였다. The composite was carried out in the same manner as in Example 1, except that a polyfunctional aqueous amine solution prepared according to the composition and its content shown in Table 1 below was used and only trimezoyl chloride (TMC) was used for the organic solution layer. The membrane was prepared.

<< 실험예Experimental Example 1> 1>

상기 실시예 1 ~ 4 및 비교예 1 ~ 2에서 제조된 복합막에 대하여, 2,000ppm인 염화나트륨(NaCl) 수용액을 이용하고, 25℃, 75psi조건하에서 투과유속 및 염배제율 등의 막의 성능평가를 측정하고, 그 결과를 하기 표 1에 기재하였다. For the composite membranes prepared in Examples 1 to 4 and Comparative Examples 1 and 2, using a 2,000 ppm sodium chloride (NaCl) aqueous solution, the performance evaluation of the membrane, such as permeation flux and salt excretion rate at 25 ℃, 75 psi conditions It measured and the result is shown in following Table 1.

[표1]Table 1

구분division 수용액 층(wt%)Aqueous solution layer (wt%) 유기용액 층(wt%)Organic solution layer (wt%) 투과유속
(gfd)
Permeate Flow Rate
(gfd)
염제거율
(%)
Salt removal rate
(%)
MPDMPD TSATSA TMHDTMHD EHDEHD TMCTMC DHFDHF 실시예1Example 1 0.90.9 0.990.99 1.11.1 0.190.19 0.10.1 1One 19.9219.92 95.0895.08 실시예2Example 2 0.90.9 0.990.99 1.11.1 0.190.19 0.10.1 33 21.6821.68 95.0695.06 비교예1Comparative Example 1 0.90.9 0.990.99 1.11.1 0.190.19 0.10.1 00 18.7618.76 95.0695.06 실시예3Example 3 1.471.47 1.471.47 1.331.33 0.20.2 0.10.1 33 16.3116.31 96.2496.24 실시예4Example 4 1.471.47 1.471.47 1.331.33 0.20.2 0.10.1 55 16.0616.06 95.2895.28 비교예2Comparative Example 2 1.471.47 1.471.47 1.331.33 0.20.2 0.10.1 00 13.0513.05 95.9695.96

상기 표 1에서 보이는 바와 같이, 본 발명의 유기용액 층에 적정농도 범위의 DHF를 함유함으로써, 염제거율의 손실 없이 효과적으로 투과유속이 향상된 결과를 확인하였다.As shown in Table 1, by containing the DHF in the appropriate concentration range in the organic solution layer of the present invention, it was confirmed that the permeation flux improved effectively without loss of salt removal rate.

따라서, 본 발명에 의해 제조된 복합막은 수처리 및 해수담수 공정에 적용할 경우 종래의 제품에 비해 상대적으로 낮은 압력에서 동일 유량 또는 그 이상의 유량을 얻을 수 있어 에너지 절감 효과, 공정상의 효용성 향상 및 처리비용의 절감을 가져올 수 있다.Therefore, when the composite membrane prepared by the present invention is applied to water treatment and seawater desalination processes, the same flow rate or higher flow rate can be obtained at a relatively lower pressure than conventional products, resulting in energy saving effect, process efficiency improvement, and treatment cost. Can bring about savings.

이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.While the invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined by the appended claims.

본 발명에 의해 제조되는 폴리아미드계 복합막은 종래 나노분리막 및 역삼투분리막이 적용되는 공업용수, 음용수, 식품제조 공정 분야에 적용이 가능하고, 높은 염배제율 특성을 이용해 삼투압을 이용한 정삼투 공정운영을 할 수 있으며, 이외에 폐수처리, 해수담수화 전처리, 식품제조 공정, 농축 공정 등 폭넓은 용도에 적용할 수 있다.Polyamide-based composite membrane prepared according to the present invention can be applied to industrial water, drinking water, food manufacturing process fields to which the conventional nano separation membrane and reverse osmosis membrane is applied, operating the forward osmosis process using osmotic pressure using high salt excretion characteristics In addition, it can be applied to a wide range of applications such as wastewater treatment, seawater desalination pretreatment, food manufacturing process, and concentration process.

Claims (14)

다공성 지지체 표면에 폴리아민, 3급 폴리아민 염 및 극성용매를 포함하는 수용액을 도포하는 단계; 및Applying an aqueous solution comprising a polyamine, a tertiary polyamine salt, and a polar solvent to the surface of the porous support; And 상기 수용액이 도포된 다공성 지지체를 다관능성 산할로겐 화합물 및 무극성용매를 포함하는 유기용액을 접촉시켜 계면중합으로 폴리아미드층을 형성하는 단계를 포함하는 폴리아미드계 복합막의 제조방법.A method of manufacturing a polyamide-based composite membrane comprising forming a polyamide layer by interfacial polymerization by contacting the porous support coated with the aqueous solution with an organic solution containing a polyfunctional acid halogen compound and a non-polar solvent. 제1항에 있어서, 상기 다공성 지지체는 합성섬유 부직포 상에 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리프로필렌 및 폴리비닐리덴플로라이드로 이루어진 군에서 선택되는 하나의 성분이 캐스팅된 것임을 특징으로 하는 상기 폴리아미드계 복합막의 제조방법.The method of claim 1, wherein the porous support is a synthetic fiber nonwoven fabric A method for producing the polyamide-based composite membrane, characterized in that one component selected from the group consisting of polysulfone, polyethersulfone, polyimide, polypropylene and polyvinylidene fluoride is cast on it. 제1항에 있어서, 상기 폴리아민은 페닐렌디아민, 사이클로헥산디아민, 피페라진 및 이들의 유도체로 구성된 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 상기 폴리아미드계 복합막의 제조방법.The method of claim 1, wherein the polyamine is at least one selected from the group consisting of phenylenediamine, cyclohexanediamine, piperazine, and derivatives thereof. 제3항에 있어서, 상기 수용액에 상기 폴리아민의 함량은 0.1 ~ 10중량%인 것을 특징으로 하는 상기 폴리아미드계 복합막의 제조방법.The method of claim 3, wherein the content of the polyamine in the aqueous solution is 0.1 to 10% by weight. 제1항에 있어서, 상기 3급 폴리아민의 염은 1,4-디아자비시클로[2,2,2]옥탄(DABCO), 1,8-디아자비시클로[5,4,0]운덱-7-엔(DBU), 1,5-디아자비시클로[4,3,0]논-5-엔(DBN), 1,4-디메틸피페라진, 4-[2-(디메틸아미노)에틸]모포린, N,N,N',N'-테트라메틸에틸렌디아민, N,N,N',N'-테트라메틸-1,3-부탄디아민, N,N,N',N'-테트라메틸-1,4-부탄디아민(TMBD), N,N,N',N'-테트라메틸-1,3-프로판디아민, N,N,N',N'-테트라메틸-1,6-헥산디아민(TMHD), 1,1,3,3-테트라메틸구아니딘(TMGU) 및 N,N,N',N',N"-펜타메틸디에틸렌트리아민으로 구성된 군으로부터 선택되는 하나 이상이 강산과 반응하여 형성된 염인 것을 특징으로 하는 상기 폴리아미드계 복합막의 제조방법.The salt of claim 1 wherein the salt of the tertiary polyamine is 1,4-diazabicyclo [2,2,2] octane (DABCO), 1,8-diazabicyclo [5,4,0] undec-7- En (DBU), 1,5-diazabicyclo [4,3,0] non-5-ene (DBN), 1,4-dimethylpiperazine, 4- [2- (dimethylamino) ethyl] morpholine, N, N, N ', N'-tetramethylethylenediamine, N, N, N', N'-tetramethyl-1,3-butanediamine, N, N, N ', N'-tetramethyl-1, 4-butanediamine (TMBD), N, N, N ', N'-tetramethyl-1,3-propanediamine, N, N, N', N'-tetramethyl-1,6-hexanediamine (TMHD) At least one selected from the group consisting of 1,1,3,3-tetramethylguanidine (TMGU) and N, N, N ', N', N "-pentamethyldiethylenetriamine is a salt formed by reaction with a strong acid Method for producing the polyamide-based composite membrane, characterized in that. 제1항에 있어서, 상기 3급 폴리아민 염이 수용액 전체 중량에 대하여 0.01 ~ 2중량% 함유된 것을 특징으로 하는 상기 폴리아미드계 복합막의 제조방법.The method of claim 1, wherein the tertiary polyamine salt is contained in an amount of 0.01 to 2% by weight based on the total weight of the aqueous solution. 제1항에 있어서, 상기 극성용매는 에틸렌글리콜 유도체, 프로필렌글리콜 유도체, 1,3-프로판디올 유도체, 술폭사이드 유도체, 술폰 유도체, 니트릴 유도체, 케톤 유도체 및 우레아 유도체로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 상기 폴리아미드계 복합막의 제조방법.According to claim 1, wherein the polar solvent is one or more selected from the group consisting of ethylene glycol derivatives, propylene glycol derivatives, 1,3-propanediol derivatives, sulfoxide derivatives, sulfone derivatives, nitrile derivatives, ketone derivatives and urea derivatives Method for producing the polyamide-based composite membrane, characterized in that. 제1항에 있어서, 상기 극성용매는 수용액 전체 중량에 대하여 0.01 ~ 1중량% 함유된 것을 특징으로 하는 상기 폴리아미드계 복합막의 제조방법.The method of claim 1, wherein the polar solvent is contained in an amount of 0.01 to 1% by weight based on the total weight of the aqueous solution. 제1항에 있어서, 상기 다관능성 산할로겐 화합물은 이소프탈로일클로라이드, 트리메조일클로라이드 및 테레프탈로일클로라이드로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 상기 폴리아미드계 복합막의 제조방법.The method of claim 1, wherein the polyfunctional acid halogen compound is at least one selected from the group consisting of isophthaloyl chloride, trimezoyl chloride and terephthaloyl chloride. 제1항에 있어서, 상기 다관능성 산할로겐 화합물은 유기용액 전체 중량에 대하여 0.01~1중량%로 함유된 것을 특징으로 하는 상기 폴리아미드계 복합막의 제조방법.The method according to claim 1, wherein the polyfunctional acid halogen compound is contained in an amount of 0.01 to 1% by weight based on the total weight of the organic solution. 제1항에 있어서, 상기 무극성용매는 디히드로퓨란, 디히드로피란, 톨루엔, 헥산, 디페닐에테르, 옥틸에테르, 디메틸포름알데히드, 테트라히드로퓨란, 1-옥타데센, 테트라데칸 및 그 유도체로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 상기 폴리아미드계 복합막의 제조방법.The group of claim 1, wherein the nonpolar solvent is dihydrofuran, dihydropyran, toluene, hexane, diphenyl ether, octyl ether, dimethylformaldehyde, tetrahydrofuran, 1-octadecene, tetradecane and derivatives thereof. Method for producing the polyamide-based composite membrane, characterized in that at least one selected from. 제1항에 있어서, 상기 무극성용매가 유기용액 전체 중량에 대하여 0.5 ~ 5 중량% 함유된 것을 특징으로 하는 상기 폴리아미드계 복합막의 제조방법.The method according to claim 1, wherein the nonpolar solvent is contained in an amount of 0.5 to 5% by weight based on the total weight of the organic solution. 제 1항에 있어서, 유기용액을 구성하는 유기용매는 탄소수 5 ~ 12개이고, 쇄상, 분지상 또는 고리상인 포화 또는 불포화 탄화수소이거나, 이 범위에 속하는 탄화수소들의 혼합물인 것을 특징으로 하는 상기 폴리아미드계 복합막의 제조방법.The polyamide-based composite according to claim 1, wherein the organic solvent constituting the organic solution has 5 to 12 carbon atoms, and is a saturated, unsaturated hydrocarbon which is linear, branched or cyclic, or a mixture of hydrocarbons in this range. Method of Making Membranes. 다공성 지지체; 및 Porous support; And 상기 다공성 지지체 표면상에 폴리아민, 3급 폴리아민 염 및 극성용매를 포함하는 수용액과, 다관능성 산할로겐 화합물 및 무극성용매를 포함하는 유기용액을 접촉시켜 계면중합으로 형성된 폴리아미드층을 포함하는 폴리아미드계 복합막.A polyamide type comprising a polyamide layer formed by interfacial polymerization by contacting an aqueous solution containing a polyamine, a tertiary polyamine salt, and a polar solvent on the surface of the porous support, and an organic solution containing a polyfunctional acid halogen compound and a nonpolar solvent. Composite membrane.
KR1020090136113A 2009-12-31 2009-12-31 Manufacturing method of polyamide composite membrane and composite membrane thereby KR20110079141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090136113A KR20110079141A (en) 2009-12-31 2009-12-31 Manufacturing method of polyamide composite membrane and composite membrane thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090136113A KR20110079141A (en) 2009-12-31 2009-12-31 Manufacturing method of polyamide composite membrane and composite membrane thereby

Publications (1)

Publication Number Publication Date
KR20110079141A true KR20110079141A (en) 2011-07-07

Family

ID=44918551

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090136113A KR20110079141A (en) 2009-12-31 2009-12-31 Manufacturing method of polyamide composite membrane and composite membrane thereby

Country Status (1)

Country Link
KR (1) KR20110079141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246885B1 (en) * 2012-04-18 2013-03-25 주식회사 알.오환경시스템 Membrane for wastewater disposal and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246885B1 (en) * 2012-04-18 2013-03-25 주식회사 알.오환경시스템 Membrane for wastewater disposal and manufacturing method of the same

Similar Documents

Publication Publication Date Title
KR100910899B1 (en) Oxidation-resistant composite reverse osmosis membrane
KR101733264B1 (en) Polyamide water-treatment membranes having properties of high salt rejection and high flux and manufacturing method thereof
KR102172281B1 (en) Forward osmosis membrane having excellent inteflayer adhesion and manufacturing method thereof
KR101105199B1 (en) Polyamide nanofiltration membrane having high flux property for water purification and manufacturing method thereof
KR101453794B1 (en) High boron rejection polyamide composite membrane and manufacturing method thereof
KR101114668B1 (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
KR101659122B1 (en) Polyamide water-treatment membranes having properies of high salt rejection and high flux and manufacturing method thereof
KR101477848B1 (en) Reverse osmosis membrane having ultra hydrophilic layer and method of manufacturing the same
KR102101061B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, reverse osmosis membrane and water treatment module
KR20140003086A (en) Hollow fiber nano filtration membrane and manufacturing method thereof
KR102058631B1 (en) Method for preparing thin film nanocomposite membrane for the reverse osmosis deposited 1D nano material and thin film nanocomposite membrane prepared thereby
KR20140066603A (en) Hollow fiber type nanofiltration membrane and manufacturing method thereof
KR20140075120A (en) Hollow fiber type forward osmosis membrane and manufacturing method thereof
KR20140073671A (en) Forward osmosis membrane and manufacturing method thereof
KR20170047114A (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR102079845B1 (en) Method for manufacturing water-treatment separation membrane, water-treatment separation membrane manufactured by using the same, and composition for manufacturing water-treatment separation membrane
KR102337164B1 (en) Excellent removing nitrate polyamide reverse osmosis membrane, Method of manufacturing the same and Membrane module comprising the same
KR20200027226A (en) Reverse osmosis membrane, manufacturing method thereof and membrane module containing the same
KR20110079141A (en) Manufacturing method of polyamide composite membrane and composite membrane thereby
KR102041657B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR100813893B1 (en) Method of manufacturing reverse osmosis composite membrane
KR101453791B1 (en) Hollow fiber type forward osmosis membrane and manufacturing method thereof
KR20170090816A (en) Composition for interfacial polymerizing polyamide, method for preparing water treatment separation membrane using the same, and water treatment separation membrane and water treatment module
KR101403345B1 (en) Reverse osmosis composite membrane for boron rejection and manufacturing method thereof
KR100584081B1 (en) Producing Method of Nano Composite Membrane having high flow rate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application