KR20110009517A - Absorption type refrigeration system - Google Patents

Absorption type refrigeration system Download PDF

Info

Publication number
KR20110009517A
KR20110009517A KR1020090066957A KR20090066957A KR20110009517A KR 20110009517 A KR20110009517 A KR 20110009517A KR 1020090066957 A KR1020090066957 A KR 1020090066957A KR 20090066957 A KR20090066957 A KR 20090066957A KR 20110009517 A KR20110009517 A KR 20110009517A
Authority
KR
South Korea
Prior art keywords
refrigerant
evaporator
condenser
absorber
cooling system
Prior art date
Application number
KR1020090066957A
Other languages
Korean (ko)
Other versions
KR101059537B1 (en
Inventor
우성민
이수용
허재원
Original Assignee
삼중테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼중테크 주식회사 filed Critical 삼중테크 주식회사
Priority to KR1020090066957A priority Critical patent/KR101059537B1/en
Publication of KR20110009517A publication Critical patent/KR20110009517A/en
Application granted granted Critical
Publication of KR101059537B1 publication Critical patent/KR101059537B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/007Machines, plants or systems, using particular sources of energy using solar energy in sorption type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/009Heat exchange having a solid heat storage mass for absorbing heat from one fluid and releasing it to another, i.e. regenerator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE: An absorptive type cooling system is provided to prevent the overcooling of cold water discharged from the evaporator when the loading load is smaller than the cooling performance. CONSTITUTION: An absorptive type cooling system comprises an absorber(110), a regenerator(120), a condenser(130), an evaporator(140), a load control refrigerant valve(170), and a controller. The absorber makes refrigerant vapor absorbed into an absorptive solution. The regenerator heats the absorptive solution delivered from the absorber so as to create refrigerant vapor. The condenser condenses the refrigerant vapor delivered from the regenerator to liquid refrigerant. The evaporator evaporates the liquid refrigerant delivered from the condenser to create refrigerant vapor being transferred to the absorber. The load control refrigerant valve transfers the refrigerant vapor staying in the lower part of the evaporator to the condenser. The controller opens the load control refrigerant valve in case the cooling load of the cooling system is smaller than the cooling performance.

Description

흡수식 냉방 시스템{Absorption Type Refrigeration System}Absorption Type Refrigeration System

본 발명은 흡수식 냉방 시스템에 관한 것이다.The present invention relates to an absorption cooling system.

흡수식 냉방 시스템은 태양열 또는 가스, 석유 등의 열원을 이용하여 건물의 냉방을 실행한다. 특히 일사 강도가 큰 하절기에 태양열을 이용하면 구동 비용이 절약되고 화석 연료를 사용하지 않아 지구 온난화를 완화하고 환경 오염이 적다. Absorption cooling systems use solar heat or heat sources such as gas and oil to perform cooling of buildings. In particular, the use of solar heat in the summer with high solar intensity saves driving costs and eliminates fossil fuels, which reduces global warming and reduces environmental pollution.

가스, 석유 등의 열원을 이용하여 흡수식 냉방 시스템을 구동하는 경우, 냉방 부하의 증감에 따라 가스, 석유 등의 연소를 증감시킴으로써 이에 대응할 수 있다. When the absorption type cooling system is driven using a heat source such as gas or petroleum, it is possible to cope with this by increasing or decreasing combustion of gas or petroleum according to the increase or decrease of the cooling load.

태양열을 이용하여 흡수식 냉방 시스템을 구동하는 경우, 냉방 부하가 태양열만으로 부족한 경우 이를 보충하기 위해 가스, 석유 등의 연소를 보조 가열원으로 사용할 수 있고, 냉방 부하가 태양열만으로 충분한 경우 태양열만으로 냉방 시스템을 구동한다. 그러나, 냉방 부하가 태양열에 의한 냉방 처리 능력보다 작은 경우 냉방 시스템으로 공급되는 열량을 감소시키는 것은 용이하지 않다. 냉방 부하에 비해 태양열이 과다하게 공급되는 경우 태양열 집열기의 온도는 증가하게 되어 태양열 집열기의 파손을 유발할 수 있다. 태양열 집열기의 과열을 피하기 위해 냉방 시스템을 구동하는 경우 냉방 시스템에 연결된 공기 조화기로 공급되는 공기는 과냉각될 수 있다.When operating absorption type cooling system using solar heat, combustion of gas, petroleum, etc. can be used as supplementary heating source to compensate for the lack of cooling load with only solar heat. If cooling load is enough with solar heat, cooling system can be used with only solar heat. Drive. However, it is not easy to reduce the amount of heat supplied to the cooling system if the cooling load is less than the solar heat treatment capacity. When the solar heat is excessively supplied compared to the cooling load, the temperature of the solar collector may increase, causing damage to the solar collector. When driving a cooling system to avoid overheating of the solar collector, the air supplied to the air conditioner connected to the cooling system may be supercooled.

본 발명은 상술한 문제점을 극복하기 위해 안출된 것으로서, 냉방 부하가 냉방 처리 능력에 비하여 작을 경우 이를 조절할 수 있는 흡수식 냉방 시스템(특히, 태양열을 이용하는 흡수식 냉방 시스템)을 제공하는 것을 목적으로 한다.The present invention has been made to overcome the above problems, and an object of the present invention is to provide an absorption cooling system (particularly, an absorption cooling system using solar heat) that can control the cooling load when the cooling load is small compared to the cooling processing capacity.

상술한 목적을 달성하기 위해 본 발명은, 냉매 증기를 흡수 용액에 흡수시키는 흡수기, 흡수기에서 전달된 흡수 용액을 가열하여 냉매 증기를 발생시키는 재생기, 재생기에서 전달된 냉매 증기를 냉매액으로 응축시키는 응축기, 및 응축기에서 전달된 냉매액을 증발시켜서 냉매 증기를 발생시키고 흡수기로 전달하는 증발기를 포함하는 흡수식 냉방 시스템으로서, 증발기 하부에 고인 냉매액을 응축기로 전달하는 부하 제어 냉매 밸브; 및 흡수식 냉방 시스템의 냉방 부하가 흡수식 냉방 시스템의 냉방 능력보다 작은 경우 부하 제어 냉매 밸브를 개방하는 제어부를 더 포함하는 흡수식 냉방 시스템을 제공한다. In order to achieve the above object, the present invention provides an absorber for absorbing refrigerant vapor into an absorbent solution, a regenerator for heating the absorbent solution transferred from the absorber to generate refrigerant vapor, and a condenser for condensing the refrigerant vapor transferred from the regenerator to the refrigerant liquid. And an evaporator which evaporates the refrigerant liquid delivered from the condenser to generate refrigerant vapor and delivers the refrigerant vapor to the absorber, the absorption cooling system comprising: a load control refrigerant valve configured to transfer the refrigerant liquid accumulated under the evaporator to the condenser; And a control unit that opens the load control refrigerant valve when the cooling load of the absorption cooling system is smaller than the cooling capacity of the absorption cooling system.

상술한 본 발명에 따르면, 냉방 시스템의 냉방 부하가 냉방 능력보다 작을 때 증발기의 냉매액을 응축기로 역류시켜 증발기 내의 냉매 온도를 증가시키고 이를 통해 증발기에서 방출되는 냉수의 온도를 증가시킬 수 있다. 이를 통하여 증발기에서 방출되는 냉수가 과냉각되는 것을 방지하여 원하는 온도로 제어될 수 있도록 한다.According to the present invention described above, when the cooling load of the cooling system is less than the cooling capacity, the refrigerant liquid of the evaporator can be flowed back to the condenser to increase the temperature of the refrigerant in the evaporator and thereby increase the temperature of the cold water discharged from the evaporator. This prevents the cold water discharged from the evaporator to be supercooled to be controlled to the desired temperature.

이하에서는 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 기술한다. 본 발명의 추가적인 구성 및 효과는 이하에서 보다 상세하게 기술될 것이다.Hereinafter, with reference to the accompanying drawings will be described a preferred embodiment of the present invention. Additional configurations and effects of the present invention will be described in more detail below.

도 1은 본 발명에 따른 부하 제어 장치가 적용된 흡수식 냉방 시스템의 구성도이다.1 is a block diagram of an absorption type cooling system to which a load control device according to the present invention is applied.

도 1을 참조하면, 흡수식 냉방 시스템은 흡수식 냉방기(100), 흡수식 냉방기(100)에 에너지원으로서 태양열에 의해 가열된 온수를 공급하는 태양열 집열기(200), 냉각수를 이용하여 흡수식 냉방기(100)로부터의 폐열을 대기 중으로 방출하기 위한 냉각탑(300) 및 흡수식 냉방기(100)에서 냉각된 냉수를 이용하여 실내 온도를 조절하기 위한 공기조화기(Air Handling Unit, AHU) 또는 팬 코일 유닛(Fan Coil Unit, FCU)(400)를 포함한다. Referring to FIG. 1, the absorption air cooling system includes an absorption air conditioner 100, a solar heat collector 200 supplying hot water heated by solar heat as an energy source to the absorption air conditioner 100, and an absorption air conditioner 100 using cooling water. Air Handling Unit (AHU) or Fan Coil Unit (Fan Coil Unit) for controlling the room temperature by using the cold water cooled in the cooling tower 300 and the absorption air conditioner 100 to discharge the waste heat to the atmosphere FCU) 400.

흡수식 냉방기(100)는 태양열이 부족한 경우 용액을 가열하기 위한 보조 열원으로서 사용될 수 보조 가열원을 포함할 수 있다. 보조 가열원은 가스 등의 연료를 연소시켜 사용된다. 또는, 보조 가열원은 흡수식 냉방기(100) 외부에서 태양열 집열기(200)로부터 공급되는 온수를 가열하기 위해 사용될 수 있다.The absorption air conditioner 100 may include an auxiliary heating source that may be used as an auxiliary heat source for heating a solution in the case of lack of solar heat. The auxiliary heating source is used by burning fuel such as gas. Alternatively, the auxiliary heating source may be used to heat the hot water supplied from the solar collector 200 outside the absorption air conditioner 100.

도 2는 도 1에 도시된 흡수식 냉방기(100)의 내부 구성도이다.2 is a diagram illustrating an internal configuration of the absorption air conditioner 100 shown in FIG. 1.

도 2를 참조하면, 흡수식 냉방기(100)는 흡수기(110), 재생기(120), 응축기(130) 및 증발기(140)를 포함한다.2, the absorption air conditioner 100 includes an absorber 110, a regenerator 120, a condenser 130, and an evaporator 140.

흡수기(110)는 재생기(120)에서 공급되는 희석된 흡수 용액(예를 들면, 수용액)에 증발기(140)에서 공급되는 냉매(예를 들면, 물, 리튬브로마이드(LiBr))를 흡 수시켜서 농축된 흡수 용액으로 만들고 이를 재생기(120)로 공급된다.Absorber 110 is concentrated by absorbing the refrigerant (eg, water, lithium bromide (LiBr)) supplied from the evaporator 140 to the diluted absorption solution (eg, an aqueous solution) supplied from the regenerator 120 Made into an absorbent solution and supplied to the regenerator 120.

재생기(120)는 흡수기(110)에서 공급받은 농축된 흡수 용액을 태양열 집열기(200)에서 공급되는 온수를 이용하여 가열하고, 가열에 의해 흡수 용액으로부터 증발된 냉매 증기를 응축기(130)로 공급하며, 냉매 증기가 증발함에 따라 희석된 흡수 용액을 흡수기(110)로 공급한다. 실제 냉방 시스템에서 태양열 집열기(200)로부터 공급되는 온수는 일반적으로 85℃ 이상이다. 열교환에 의해 온도가 낮아진 온수는 다시 태양열 집열기(200)로 공급된다.The regenerator 120 heats the concentrated absorption solution supplied from the absorber 110 using hot water supplied from the solar collector 200, and supplies the refrigerant vapor evaporated from the absorption solution to the condenser 130 by heating. As the refrigerant vapor evaporates, the diluted absorbing solution is supplied to the absorber 110. The hot water supplied from the solar collector 200 in an actual cooling system is generally above 85 ° C. The hot water lowered by the heat exchange is supplied to the solar collector 200 again.

한편, 도 2에는 도시되지는 않았지만, 태양열 집열기(200)에서 공급되는 온수만으로 흡수식 냉방기(100)를 구동하기에 충분하지 않을 경우 이를 보충하기 위하여, 흡수식 냉방기(100)는 가스 연소열 등을 이용하는 냉매 증기를 발생시키는 하나 이상의 보조 재생기를 포함하는 것이 바람직하다. 보조 재생기는 태양열이 충분한 경우 구동되지 않고 태양열이 부족한 경우 구동되도록 제어된다. 보조 재생기는 설명의 편의를 위해 도 2에서 생략되었다.On the other hand, although not shown in Figure 2, in order to compensate for this if the hot water supplied from the solar collector 200 is not enough to drive the absorption air conditioner 100, the absorption air conditioner 100 is a refrigerant using a gas combustion heat, etc. It is preferred to include at least one auxiliary regenerator which generates steam. The auxiliary regenerator is controlled to be driven when there is not enough solar heat, but driven when there is not enough solar heat. The auxiliary player is omitted in FIG. 2 for convenience of description.

응축기(130)는 재생기(120)에서 공급받은 냉매 증기를 냉각탑(300)에서 공급되는 냉각수를 이용하여 냉각하고, 냉각에 의해 냉매 증기로부터 응축된 냉매액을 증발기(140)로 공급한다. 열교환에 의해 온도가 높아진 냉각수는 다시 냉각탑(300)으로 공급된다.The condenser 130 cools the refrigerant vapor supplied from the regenerator 120 using the cooling water supplied from the cooling tower 300, and supplies the refrigerant liquid condensed from the refrigerant vapor to the evaporator 140 by cooling. The cooling water whose temperature is increased by the heat exchange is supplied to the cooling tower 300 again.

증발기(140)는 응축기(130)에서 공급받은 냉매액을 분사하여 냉매 증기로 증발시킨다. 증발기(140)에서 증발된 냉매 증기는 흡수기(110)로 공급된다. 냉매의 증발에 따른 잠열은 공기 조화기(400)에서 공급되는 냉수를 냉각시킨다. 실제 냉방 시스템에서 증발기(140)에서 냉수 출구 온도는 일반적으로 약 7℃이다. 공기 조화기(400)는 냉각된 냉수를 이용하여 실내 온도를 조절한다. The evaporator 140 sprays the refrigerant liquid supplied from the condenser 130 and evaporates the refrigerant vapor. The refrigerant vapor evaporated in the evaporator 140 is supplied to the absorber 110. The latent heat according to the evaporation of the coolant cools the cold water supplied from the air conditioner 400. In an actual cooling system, the cold water outlet temperature at evaporator 140 is typically about 7 ° C. The air conditioner 400 adjusts the room temperature using the cooled cold water.

증발기(140)에서 분사된 냉매액이 냉매 증기로 증발하지만, 증발기(140) 내의 모든 냉매가 증기 상태로 존재하는 것은 아니다. 증발기(140) 하부에는 분사되었지만 증발되지는 않은 잔존 냉매액이 고여 있고, 증발기(140)의 나머지 부분에는 냉매 증기가 채워져 있다. 증발기(140) 내부에서 냉매액과 냉매 증기는 평형 상태를 이룬다.The refrigerant liquid injected from the evaporator 140 evaporates into the refrigerant vapor, but not all refrigerants in the evaporator 140 exist in the vapor state. The remaining refrigerant liquid which is injected but not evaporated is accumulated in the lower part of the evaporator 140, and the refrigerant vapor is filled in the remaining part of the evaporator 140. The refrigerant liquid and the refrigerant vapor in the evaporator 140 is in an equilibrium state.

상술한 흡수기(110), 재생기(120), 응축기(130) 및 증발기(140)를 포함하는 흡수식 냉방기(100)는 종래 기술과 동일하다. 본 발명에 따른 흡수식 냉방기(100)는 센서(150), 냉매 펌프(160), 부하 제어 냉매 밸브(170) 및 제어부(180)를 포함하는 부하 제어 장치를 더 포함한다.The absorption type air conditioner 100 including the absorber 110, the regenerator 120, the condenser 130, and the evaporator 140 described above is the same as the related art. The absorption chiller 100 according to the present invention further includes a load control device including a sensor 150, a refrigerant pump 160, a load control refrigerant valve 170, and a controller 180.

센서(150)는 증발기(140)에서 냉수 출구 온도를 측정한다. 측정한 온도는 제어부(180)로 전송된다.Sensor 150 measures the cold water outlet temperature at evaporator 140. The measured temperature is transmitted to the controller 180.

냉매 펌프(160) 및 부하 제어 냉매 밸브(170)는 증발기(140) 하부에 고인 냉매액을 응축기(130)로 공급하는 것을 제어한다. 냉매 펌프(160) 및 부하 제어 냉매 밸브(170)는 이들을 통해서 응축기(130)의 냉매액이 증발기(140)로 공급되지 않도록 설계된다. 증발기(140) 하부에 고인 냉매액을 응축기(130)로 공급할 때 별도의 동력이 필요하지 않는 경우 냉매 펌프(160)는 생략될 수 있다.The refrigerant pump 160 and the load control refrigerant valve 170 control supply of the refrigerant liquid accumulated under the evaporator 140 to the condenser 130. The refrigerant pump 160 and the load control refrigerant valve 170 are designed such that the refrigerant liquid of the condenser 130 is not supplied to the evaporator 140 through them. The refrigerant pump 160 may be omitted when a separate power is not required to supply the refrigerant liquid accumulated under the evaporator 140 to the condenser 130.

제어부(180)는 센서(150)에서 측정된 냉수 출구 온도에 기초하여 냉매 펌프(160) 및 부하 제어 냉매 밸브(170)를 제어한다. 냉수 출구 온도가 목표 온도값 (예를 들면, 7℃) 이상인 경우, 제어부(180)는 냉매 펌프(160) 및 부하 제어 냉매 밸브(170)가 작동하지 않도록 한다. The controller 180 controls the refrigerant pump 160 and the load control refrigerant valve 170 based on the cold water outlet temperature measured by the sensor 150. When the cold water outlet temperature is greater than or equal to the target temperature value (eg, 7 ° C.), the controller 180 prevents the refrigerant pump 160 and the load control refrigerant valve 170 from operating.

냉방 부하가 흡수식 냉방기(100)의 냉방 능력보다 작아서 냉수가 과냉각되고 냉수 출구 온도가 목표 온도값보다 낮은 경우, 제어부(180)는 냉매 펌프(160) 및 부하 제어 냉매 밸브(170)를 작동시켜 증발기(140) 하부에 고인 냉매액의 일부를 응축기(130)로 보낸다. 응축기(130)로 보내진 냉매액은 응축기(130)에서 냉각수에 의해 가열되고 증발기(140)로 오버플로우되어 증발기(140) 내의 냉매 온도를 증가시킨다. 또한, 증발기(140) 내부 상태는 평형 상태에 비해 냉매액이 부족한 상태이므로 냉매액의 증발이 적어지고 냉매액의 증발에 의한 잠열은 감소한다. 이러한 요인들에 의해 증발기(140) 내부의 온도는 증가하고 냉수 출구 온도 또한 증가한다. 그리하여, 공기 조화기(400)로 공급되는 냉수가 과냉각되는 것을 억제할 수 있다. 이후 냉매 펌프(160) 및 부하 제어 냉매 밸브(170)의 작동을 중지하면 증발기(140) 내부는 천천히 원상태로 복귀하게 된다.If the cooling load is less than the cooling capacity of the absorption air conditioner 100 and the cold water is supercooled and the cold water outlet temperature is lower than the target temperature value, the controller 180 operates the refrigerant pump 160 and the load control refrigerant valve 170 to operate the evaporator. A portion of the refrigerant liquid accumulated in the lower portion 140 is sent to the condenser 130. The refrigerant liquid sent to the condenser 130 is heated by the cooling water in the condenser 130 and overflowed to the evaporator 140 to increase the refrigerant temperature in the evaporator 140. In addition, since the internal state of the evaporator 140 is a state in which the refrigerant liquid is insufficient compared to the equilibrium state, the evaporation of the refrigerant liquid is reduced, and the latent heat due to the evaporation of the refrigerant liquid is reduced. These factors increase the temperature inside the evaporator 140 and also increases the cold water outlet temperature. Therefore, the cold water supplied to the air conditioner 400 can be suppressed from being overcooled. After the operation of the refrigerant pump 160 and the load control refrigerant valve 170 is stopped, the evaporator 140 is slowly returned to its original state.

상술한 기술에서 제어부(180)는 센서(150)에서 측정된 냉수 출구 온도에 기초하여 제어를 하였지만, 냉방 부하를 측정하기 위한 센서를 흡수식 냉방기(100)의 다른 구성요소 또는 공기 조화기(400)에 설치하는 것도 가능하다.In the above-described technique, the controller 180 controls based on the cold water outlet temperature measured by the sensor 150, but the sensor for measuring the cooling load is another component of the absorption air conditioner 100 or the air conditioner 400. It is also possible to install in.

상술한 기술에서 열원으로서 태양열을 이용하는 것이 기술되었지만, 증발기 하부에 고인 냉매 일부를 흡수기로 보내는 것을 제어하는 밸브를 포함하는 부하 제어 장치는 가스 연소열 등과 같은 다른 열원을 에너지원으로서 이용하는 흡수식 냉동 시스템에서도 사용될 수 있다. 그러나, 연소열 등과 같은 에너지원은 연료 공급 을 조절하는 것 등에 의해 용이하게 조절 가능하므로, 본 발명에 따른 부하 제어 장치는 태양열을 이용하는 흡수식 냉동 시스템에 특히 이롭다.Although the use of solar heat as a heat source has been described in the above description, a load control device including a valve for controlling the transfer of a portion of refrigerant accumulated under the evaporator to the absorber may be used in an absorption refrigeration system using another heat source such as gas combustion heat as an energy source. Can be. However, since energy sources such as heat of combustion and the like can be easily adjusted by adjusting fuel supply, the load control device according to the present invention is particularly advantageous for absorption refrigeration systems using solar heat.

비록 본 발명이 상기에서 언급한 바람직한 실시예와 관련하여 설명되었지만, 본 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정 및 변형이 가능한 것은 당업자라면 용이하게 인식할 수 있을 것이며, 이러한 변경 및 수정은 모두 첨부된 특허청구의 범위에 속함은 자명하다.Although the present invention has been described in connection with the above-mentioned preferred embodiments, it will be readily apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention, and all such changes and modifications are It is obvious that it belongs to the scope of the appended claims.

도 1은 본 발명에 따른 부하 제어 장치가 적용된 흡수식 냉방 시스템의 구성도, 및1 is a block diagram of an absorption type cooling system to which a load control device according to the present invention is applied, and

도 2는 도 1의 흡수식 냉방기의 내부 구성도.Figure 2 is an internal configuration of the absorption air conditioner of Figure 1;

Claims (2)

냉매 증기를 흡수 용액에 흡수시키는 흡수기, 상기 흡수기에서 전달된 흡수 용액을 가열하여 냉매 증기를 발생시키는 재생기, 상기 재생기에서 전달된 냉매 증기를 냉매액으로 응축시키는 응축기, 및 상기 응축기에서 전달된 냉매액을 증발시켜서 냉매 증기를 발생시키고 상기 흡수기로 전달하는 증발기를 포함하는 흡수식 냉방 시스템으로서, An absorber for absorbing the refrigerant vapor into the absorbent solution, a regenerator for heating the absorbent solution delivered from the absorber to generate refrigerant vapor, a condenser for condensing the refrigerant vapor delivered from the regenerator to the refrigerant liquid, and a refrigerant liquid delivered from the condenser An absorption cooling system comprising an evaporator which evaporates to generate refrigerant vapor and delivers the refrigerant vapor to the absorber. 상기 증발기 하부에 고인 냉매액을 상기 응축기로 전달하는 부하 제어 냉매 밸브; 및A load control refrigerant valve for transferring refrigerant liquid accumulated under the evaporator to the condenser; And 상기 흡수식 냉방 시스템의 냉방 부하가 상기 흡수식 냉방 시스템의 냉방 능력보다 작은 경우 상기 부하 제어 냉매 밸브를 개방하는 제어부를 더 포함하는 것을 특징으로 하는 흡수식 냉방 시스템.And a control unit for opening the load control refrigerant valve when the cooling load of the absorption cooling system is smaller than the cooling capacity of the absorption cooling system. 제 1 항에 있어서,The method of claim 1, 상기 재생기는 태양열을 이용하여 흡수 용액을 가열하는 것을 특징으로 하는 흡수식 냉방 시스템.And the regenerator heats the absorption solution using solar heat.
KR1020090066957A 2009-07-22 2009-07-22 Absorption Cooling System KR101059537B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090066957A KR101059537B1 (en) 2009-07-22 2009-07-22 Absorption Cooling System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090066957A KR101059537B1 (en) 2009-07-22 2009-07-22 Absorption Cooling System

Publications (2)

Publication Number Publication Date
KR20110009517A true KR20110009517A (en) 2011-01-28
KR101059537B1 KR101059537B1 (en) 2011-08-26

Family

ID=43615195

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090066957A KR101059537B1 (en) 2009-07-22 2009-07-22 Absorption Cooling System

Country Status (1)

Country Link
KR (1) KR101059537B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013063210A1 (en) * 2011-10-25 2013-05-02 University Of Florida Research Foundation, Inc. Thin film-based compact absorption cooling system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082823A (en) 1999-09-14 2001-03-30 Art Plan:Kk Absorption type cooling and heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013063210A1 (en) * 2011-10-25 2013-05-02 University Of Florida Research Foundation, Inc. Thin film-based compact absorption cooling system
US9488392B2 (en) 2011-10-25 2016-11-08 University Of Florida Research Foundation, Inc. Thin film-based compact absorption cooling system

Also Published As

Publication number Publication date
KR101059537B1 (en) 2011-08-26

Similar Documents

Publication Publication Date Title
CN101583832B (en) Liquid evaporative cooler
JP4606255B2 (en) Operation method of single double effect absorption refrigerator
US20140026602A1 (en) Method and Apparatus for Generating Chilled Water for Air-Conditioning
JP2011089722A (en) Method and device for refrigeration/air conditioning
KR100448424B1 (en) Control method of absorption refrigerator
KR200445537Y1 (en) Hybrid Absoption Cooling System
JP2016057032A (en) Absorption type refrigeration system
KR101059537B1 (en) Absorption Cooling System
JP6232251B2 (en) Absorption type hot and cold water system
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
JP5902955B2 (en) Absorption type hot and cold water system
CN101871709B (en) Absorption system
JP2009058207A (en) Absorption water cooler/heater
JP6603066B2 (en) Waste heat input type absorption chiller / heater
JP2012007784A (en) Absorption cooling and heating machine, and its operation control method
KR20090103740A (en) Absorption heat pump
JP2004156827A (en) Hybrid heat and electricity supplying system
JP4077973B2 (en) Operation method of exhaust heat absorption cold water heater
KR101775036B1 (en) Hybrid air conditioning system for vessel
KR102396955B1 (en) Hybrid absorption chiller system for gas engine generator and method for driving the same
KR20190115694A (en) Hybrid heating system using absorption chiller/heater
JP2002181405A (en) Air-conditioning method and air conditioner
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JP2005037008A (en) Air conditioner
JPH08100959A (en) Air conditioner

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140819

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150819

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160819

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170821

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180820

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190819

Year of fee payment: 9