KR20100118415A - Diffuse pollutant treatment system using submerged plant dominant detention type wetland, multi vegetated swales, and hypolimnetic water siphoning system - Google Patents

Diffuse pollutant treatment system using submerged plant dominant detention type wetland, multi vegetated swales, and hypolimnetic water siphoning system Download PDF

Info

Publication number
KR20100118415A
KR20100118415A KR1020090037251A KR20090037251A KR20100118415A KR 20100118415 A KR20100118415 A KR 20100118415A KR 1020090037251 A KR1020090037251 A KR 1020090037251A KR 20090037251 A KR20090037251 A KR 20090037251A KR 20100118415 A KR20100118415 A KR 20100118415A
Authority
KR
South Korea
Prior art keywords
water
wetland
vegetation
plants
plant
Prior art date
Application number
KR1020090037251A
Other languages
Korean (ko)
Inventor
성기준
이석모
강대석
정용현
박소영
김영윤
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Priority to KR1020090037251A priority Critical patent/KR20100118415A/en
Publication of KR20100118415A publication Critical patent/KR20100118415A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/001Runoff or storm water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/30Flood prevention; Flood or storm water management, e.g. using flood barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: A non-point source treatment system for pollutant is provided to enable that in an adjacent vegetation waterway, nutriments are eliminated and that the process efficiency is increased through a water level control process. CONSTITUTION: A structure of an undercurrent type swale(3) of a potamogeton crispus is included. Less than 45% of the total area has the depth of water 0-0.5m, 55% or greater has the depth of water 0.5m or greater, 20-30% has the depth of the water 0.5-1.0m, and 30-20% has the depth of the water 1.0-20m. The potamogeton crispus is the Ceratophyllum demersum and horse Hydrilla verticillata. The growth fasts and the nitrogen and the content which is high. The width 2-4m while being connected to multistage structured bottled waters(6,7,8) to the undercurrent type swale. The Typha orientalis, and the Phragmites communis and high cooling Scirpus tabernaemontani are included. The deep water siphoning system controls the water gate condition of the vegetation waterway. The moisture is supplied and contaminant is processed in plant.

Description

침수식물 우점의 저류형습지, 다단식생수로와 사이퍼닝 시스템을 이용한 비점원오염물질 처리시스템{Diffuse pollutant treatment system using submerged plant dominant detention type wetland, multi vegetated swales, and hypolimnetic water siphoning system}Diffuse pollutant treatment system using submerged plant dominant detention type wetland, multi vegetated swales, and hypolimnetic water siphoning system}

본 발명은 하천이나 호소에 유입되는 비점원오염물질을 처리하여 하천이나 호소 수질을 개선에 기여할 수 있는 습지시스템에 관한 것이다. 더 상세하게는 우리나라의 비점원오염물질 유출특성에 적합한 자연습지의 형태와 기능을 참조로 하여 조성된 침수식물 우점의 저류형습지를 이용하여 습지의 생지화학적 기작에 의하여 오염물질을 1차 처리하고 이후 다단 식생수로를 이용하여 오염물질을 2차 처리하여 유기물질과 질소 및 인과 같은 영양물질을 제거할 수 있도록 한 것으로, 특히 비강우시에는 저류형 습지 하층의 오염농도가 높은 심층수를 식생수로로 사이퍼닝하여 식물정화를 통하여 처리하도록 하는 사이퍼닝시스템을 이용한 생태공학적 습지시스템이라 할 수 있다.The present invention relates to a wetland system that can contribute to the improvement of river or lake water quality by treating non-point source pollutants introduced into the river or lake. More specifically, the primary treatment of pollutants by biogeochemical mechanisms of wetlands is performed by using wetland-type reservoirs, which are constructed with reference to the shape and function of natural wetlands suitable for the non-point source pollutant discharge characteristics in Korea. Afterwards, multi-stage vegetation can be used to remove contaminants to remove organic substances and nutrients such as nitrogen and phosphorus. It can be called an ecological wetland system using a siphoning system that is treated by planting to process through plant purification.

1970년대부터 미국에서 자연습지를 이용한 폐수의 처리가 시도된 이래, 영양물질이나 중금속 등을 함유한 하폐수나 오염된 물을 처리하는데 사용되어온 인공습지는 크게 수위에 따라 지표흐름형과 지하흐름형 및 부유식물형으로 나눌 수 있으며, 이들을 연속으로 연결하여 사용하게 된다.Since the 1970s, natural wetlands have been attempted to treat wastewater, and artificial wetlands, which have been used to treat sewage and polluted water containing nutrients and heavy metals, have largely varied surface and subsurface flows. It can be divided into floating plant type, and it is used by connecting them continuously.

인공습지를 이용한 점,비점오염원 처리용 인공습지 시스템으로는 특허1004449720000와 같이 침강저류지와 침강저류지로부터 방류되는 상등수를 처리하기 위한 1차 습지와 다시 이를 처리하기 위한 2차 연못 등으로 이루어져있는 것이 있다. 이런 종래의 시스템은 깊은 습지와 낮은 습지가 분리되어 사용되어 있어 공간을 많이 필요로 하며, 고형물이 처리된 상등수를 방류하는 시스템으로 이루어져 있어, 습지내에 오염물질이 축적될 가능성이 매우 높아 지속적인 관리가 필요하다. 습지에서 처리하고자 하는 비점원 오염물질 중 질소의 경우 탈질에 의한 제거가 60-70%로 질소 제거의 대부분을 차지하며, 나머지를 식물에 의한 흡수로 제거하게 되며, 제거되지 않은 질소는 습지를 거쳤다고 하여도 질산성 질소 상태로 하천이나 호소에 유입되게 된다. 깊은 습지의 경우 식생이 없으므로 식생에 의한 생지화학적 기작에 의한 오염물질의 제거는 미비하다.The artificial wetland system for treating point and nonpoint source using artificial wetland is composed of primary wetland for treating sedimentary reservoir and supernatant discharged from sedimentary reservoir, and secondary pond for treating it, as in patent 1004449720000. . This conventional system requires a lot of space since the deep and low wetlands are separated and used, and consists of a system for discharging the supernatant treated with solids, which is very likely to accumulate contaminants in the wetlands so that continuous management need. Nitrogen removal among non-point source pollutants to be treated in wetlands accounted for 60-70% of denitrification, accounting for the majority of nitrogen removal, and the rest was removed by plant absorption. Even at high altitudes, it enters rivers and lakes as nitrate nitrogen. Deep wetlands do not have vegetation, so elimination of pollutants by biogeochemical mechanisms by vegetation is insufficient.

또 다른 인공습지 형태는 특허2004177200000와 같이 오염수가 유입되면 상부에 수생식물과 설치된 미생물 접촉여과제 및 포기장치로 처리한 후 처리된 물을 저류한 후 배출하도록 정수연못을 설치하여 오염수를 처리하는 시스템이 있는데, 이 역시 하폐수 처리장의 방류수를 지속적으로 처리하고 저류하기 위하여 많은 공간을 필요로 할 수 있으며, 일반적으로 제안된 시스템에서 사용되는 부유식물의 경우 처리의 문제가 발생될 수 있으며, 강우의 영향을 받아 유입되는 비점원오염물질의 처리에는 부적합하며, 미생물 접촉여과제의 경우 유기물의 제거에는 효과적일 수 있으나 일반적으로 인공습지가 질소와 인과 같은 영양물질의 제거를 목적으로 하는 3차 처리에 사용될 경우 정화효과는 낮을 수밖에 없다. Another type of artificial wetland is treated with aquatic plants and microbial contact filter and aeration device installed in the upper part when contaminated water is introduced as in Patent 2004177200000, and then treated with contaminated water by installing a purified water pond to store and discharge the treated water. There is a system, which may require a lot of space to continuously treat and store the effluent of the sewage treatment plant, and floating plants used in the proposed system may cause problems of treatment. It is inadequate for the treatment of non-point source contaminants that are affected and can be effective for the removal of organic matter in the case of microbial contact filters, but artificial wetlands are generally used for tertiary treatment for the purpose of removing nutrients such as nitrogen and phosphorus. When used, the purification effect is inevitably low.

기존의 인공습지는 물리적인 침전이나 수생식물에 의한 영양물질 흡수를 이용하도록 고안되어 있어 습지 자체의 생지화학적(biogeochemistry)에 의한 제거 기작이 미약하여, 시간이 경과함에 따라 정화 효율이 낮아질 가능성이 높으며, 오염저질의 준설 등 습지관리가 지속적으로 필요하게 된다. 더구나 오염물질의 축적으로 인하여 습지의 수질이 악화될 경우 처리할 수 있는 시설이 없으므로, 습지의 기능이 지속적으로 악화될 수밖에 없다. 습지의 생지화학적 기작에 가장 큰 영향을 주는 요인은 수문으로 수심이나 침수기간에 따라 습지수체내 혹은 습지토양에서의 반응이 변하게 된다. 하지만 기존의 인공습지의 경우 이런 생지화학적 반응을 위한 수위조절은 시도되지 않은 실정이다. Existing artificial wetlands are designed to take advantage of physical precipitation or the absorption of nutrients by aquatic plants, so the removal mechanism by the biogeochemistry of the wetland itself is weak, so the purification efficiency is likely to decrease over time. In addition, wetland management will continue to be necessary, including dredging of pollutants. In addition, since there is no facility to treat the water quality of the wetland due to the accumulation of pollutants, the function of the wetland will continue to deteriorate. The most influential factor in the biogeochemical mechanisms of wetlands is hydrology, which changes the response in wetland bodies or wetland soils depending on depth and inundation period. However, in the case of existing artificial wetlands, the level control for such biogeochemical reactions has not been attempted.

따라서 본 발명은 자연습지의 생지화학적 기작을 충분이 활용하여 초기 강우 유출에 의한 비점원오염물질을 처리할 수 있게 하기 위하여 자연습지 구조의 침수식물우점 저류형습지를 개발하여 오염물질을 제거할 수 있는 시스템을 제공하는데 그 목적이 있다. 또한 저류형 습지와 다단의 식생수로를 연결하여 수위조절을 병행하여 처리 효율을 증진 시키며 특히 비강우시에는 심층수의 고오염수를 사이퍼닝하여 인접한 식생수로에서 영양물질을 제거할 수 있는 비점원 오염물질 처리시스템을 개발하는데 있다.Therefore, the present invention can remove the pollutants by developing the wetland dominant reservoir type wetland structure of natural wetland structure in order to fully utilize the biogeochemical mechanism of natural wetland to treat nonpoint source pollutants caused by the initial rainfall runoff. The purpose is to provide a system. In addition, it improves treatment efficiency by connecting water level control by connecting wetland and multi-stage vegetation channel, especially non-point source pollutant that can remove nutrients from adjacent vegetation channel by siphoning high polluted water of deep water during rainy season. To develop a treatment system.

침수식물 우점의 저류형 습지는 호기성-혐기성 조건의 변화를 주기적으로 가능하게 하여 질산화와 탈질반응에 의한 질소제거 효율을 극대화 할 수 있으며, 인의 경우에도 유입후 pH 변화에 의한 침전과 이후 혐기성조건에서의 용출된 인을 침수식물체로 흡수하여 제거함으로써 인의 제거 효율도 증가시킬 수 있다.Reservoir wetland of immersed plants is able to maximize the nitrogen removal efficiency by nitrification and denitrification by periodically changing the aerobic-anaerobic conditions.In case of phosphorus, precipitation by pH change after inflow and anaerobic conditions The removal efficiency of phosphorus can also be increased by absorbing and removing the eluted phosphorus from submerged plants.

아울러 저류형습지에 다단식생수로를 연결하고 3종류 이상의 정수식물을 이용하여 오염물질의 정화능을 극대화 할 수 있게 되었다. 비강우시에는 저류형습지의 오염심층수를 사이퍼닝하여 식생수로에 공급하므로 식생수로의 수문조건을 조절하여 침전이나 식물정화에 의한 오염물질 정화와 식물의 수분 공급을 동시에 가능하게 한다.In addition, it is possible to maximize the purification capacity of pollutants by connecting multi-stage drinking water channels to the reservoir wetland and using three or more types of purified water plants. In case of rain, the deep water of contaminated wetland is siphoned and supplied to the vegetation waterway, so it is possible to control the hydrological conditions of the vegetation waterway to purify the pollutants by precipitation or plant purification and to supply the plant moisture.

1) 전체 시스템의 구성1) Configuration of the whole system

본 발명은 크게 습지의 생지화학적 기작을 최대한 활용할 수 있는 침수식물우점의 저류형습지와 강우시의 저오염 유출수와 비강우시의 오염심층수를 처리할 수 있는 다단 식생수로 및 저류형습지와 다단식생수로를 연결하는 웨어 및 사이퍼닝시스템으로 이루어져있다. 도 1은 본 발명의 전체 구성도(평명도)이고, 도 2는 습지시스템의 입면도이며, 도 3은 웨어와 사이퍼닝 시스템을 나타내는 본 발명의 일부 예시도이며, 도 4는 실제 자연습지의 구조를 참조로 하여 조성한 발명품을 보여준다. 습지에 유입된 강우시 초기 유출수는 침전조(1)를 지난 후 침수식물 우점의 저류형습지(3)에 체류하며 생지화학적 기작에 의하여 영양물질이 제거되며, 이후 유출수가 웨어(4)를 통하여 다단식생수로(6-8)를 거쳐 다시 정화된 후 유출구(9)를 통하여 배출하게 된다. 비강우시에는 저류형습지의 심층수(19)를 사이퍼닝하여 다단식생수로로 흘려보내주어 오염수를 처리하게 된다. The present invention is a multi-stage vegetation waterway and a storage type wetland and multi-stage vegetation water that can treat the deep wetland of the submerged vegetation and the deep-polluted effluent during rainfall and the non-rainy deepwater that can make the most of the wetland biogeochemical mechanism. It consists of ware and siphoning system connecting the furnace. 1 is an overall configuration diagram (flatness) of the present invention, Figure 2 is an elevation of the wetland system, Figure 3 is a partial view of the present invention showing the weir and the siphoning system, Figure 4 is the actual structure of natural wetlands It shows the invention formed with reference to. In case of rainfall entering the wetland, the initial runoff flows through the sedimentation tank (1) and then stays in the wetland-type wetland (3), where nutrients are removed by biogeochemical mechanisms. After purified again through the bottled water (6-8) is discharged through the outlet (9). During rain, the deep water 19 of the reservoir wetland is siphoned and flowed into the multi-stage bottled water to treat contaminated water.

2)침수식물 우점습지시스템 (Submerged Aquatic Plants Dominant Wetland System)2) Submerged Aquatic Plants Dominant Wetland System

먼저 본 발명에 의하여 제안된 습지시스템은 이러한 생지화학적 기작을 최대화하기 위한 시스템이다. First, the wetland system proposed by the present invention is a system for maximizing such biogeochemical mechanisms.

침수식물은 광합성을 수행하는 경엽부가 물 속에 완전히 잠겨있어, 수중생태계에서 물질생산과 영양소 순환에 직접적인 영향을 미치는데, 줄기, 잎, 뿌리를 통해서 산소를 방출하여 수체내에 용존산소의 변동에 영향을 준다. 도 5는 침수식물이 우점하고 있을 경우, 이로 인한 수체내의 용존산소 변화를 보여준다. 수체내 산소농도가 주기적으로 호기성과 혐기성으로 변동함을 알 수 있다. 습지에서의 영구적인 질소제거 기작인 탈질반응이 일어나기 위해서는 먼저 호기성 조건에서 질산화과정를 통하여 유기질소나 암모니아가 질산성 질소로 변환되어야 하며, 이후 혐기성 조건에서 질산성 질소가 질소가스로 변환하여 대기 중으로 방출되게 됨으로써 질소가 제거된다. 호기조건만이 지속된다거나 혐기조건만이 지속되면 이러한 탈질의 효과는 반감한다. 침수식물이 우점하고 있는 습지의 경우 호기성과 혐기성이 교대로 일어날 수 있으므로 이러한 질소 제거 기작을 향상 시킬 수 있으며, 일부 질산성 질 소는 식물체내에 흡수되어 제거되므로 다른 습지시스템에 비하여 질소제거능이 매우 높다. 인의 경우 혐기성 상태에서 용출되는데 이때 침수식물이 근권이나 줄기 등으로 흡수하여 제거할 수 있으므로 부유식물시스템보다 제거가 용이하다. 침수식물을 우점으로 하는 인공습지 시스템은 국내에서 아직 시도된 적이 없다. 본 발명의 적용식물은 국내의 자연습지에 널리 분포하며 질소와 인함유량이 크며, 수체내 산소공급량이 큰 것으로 조사된 검정말(11)과 붕어마름(12)이다.In submerged plants, the foliage that performs photosynthesis is completely submerged in water, which directly affects material production and nutrient circulation in the aquatic ecosystem, which releases oxygen through stems, leaves, and roots to affect dissolved oxygen in water bodies. Gives. Figure 5 shows the change in dissolved oxygen in the water body when the immersion plants dominate. It can be seen that oxygen concentration in the water bodies changes periodically to aerobic and anaerobic. For denitrification, a permanent nitrogen removal mechanism in wetlands, organic nitrogen or ammonia must be converted to nitrate nitrogen through nitrification under aerobic conditions, and then nitrate nitrogen is converted to nitrogen gas and released into the atmosphere under anaerobic conditions. As a result, nitrogen is removed. If only aerobic conditions persist or anaerobic conditions persist, the effects of this denitrification are halved. Wetland, which is dominated by submerged plants, can improve aerobic and anaerobic alternating mechanisms, which can improve the nitrogen removal mechanism. Some nitrate nitrogen is absorbed and removed from plants, so nitrogen removal ability is very high compared to other wetland systems. . Phosphorus is eluted in anaerobic condition, which is easier to remove than floating plant systems because submerged plants can be absorbed and removed by root zone or stem. Artificial wetland systems, which are dominated by submerged plants, have not yet been tried in Korea. Applicable plants of the present invention are widely distributed in the natural wetlands in Korea, the nitrogen and phosphorus content is large, the black horse (11) and the crucian carp (12) investigated as a large oxygen supply in the water body.

3) 자연습지 구조를 참조한 3) referring to the natural wetland structure 저류형Storage 습지 ( Marsh ( NatureNature WetlandWetland TypeType DetentionDetention WetlandWetland ))

둘째, 본 발명에 의하여 제안된 습지시스템은 우리나라 강우패턴을 잘 반영할 수 있도록 설계된 저류형습지이다.Second, the wetland system proposed by the present invention is a storage wetland designed to reflect the rainfall pattern of Korea well.

우리나라의 비점원 오염물질은 강우에 의하여 유입되게 되므로 강우 패턴에 영향을 받게 된다. 이는 여름철 강우가 집중될 때에 많은 오염물질이 유입되게 되며, 갈수기인 겨울철의 경우 오영물질의 유입은 거의 없다. 강우시에도 초기 강우 시 30분 이내에 유입되는 초기 유출수에 다량의 오염물질이 유입되므로, 이 초기 유출수를 효과적으로 처리하는 것이 중요하다. 오염물질이 집중적으로 유입되는 여름철의 경우 식물의 성장이나 미생물의 활동이 가장 왕성한 시기이므로 이들 초기 유입수를 잘 저류하여 충분한 생지화학적 반응이 일어나도록 하는 것이 중요하다. 우리나라의 자연습지는 대부분 이러한 저류형 습지로 여름철에 유입되는 비점원 오염물질을 효과적으로 처리하고 있다(도6). 이러한 저류형습지의 구조는 강우시 전체 습지의 수심을 0.5m 이상으로 하여 충분한 침수식물의 서식공간을 제공하도록 하는 것으로 기존의 인공습지의 수심구조와 차이점을 갖는다. 바닥은 지하수 오염을 방지하기 위하여 차단막(18)을 설치하도록 한다.Non-point source pollutants in Korea are affected by rainfall patterns because they are introduced by rainfall. This is because a lot of pollutants are introduced when the rainfall in summer is concentrated, and there is almost no influx of pollutants in the winter season. Even during rainfall, a large amount of pollutants enter the initial runoff that is introduced within 30 minutes during the initial rainfall, so it is important to treat the initial runoff effectively. In the summer, when the pollutants are concentrated, the growth of the plant or the microbial activity is the most active. Therefore, it is important to keep these initial inflows well so that sufficient biogeochemical reactions occur. Most of the natural wetlands in Korea are effectively treated as non-point source pollutants introduced into the summer as these reservoir wetlands (Fig. 6). The structure of this wetland type is to provide a sufficient space for submerged plants by setting the depth of the entire wetland at 0.5m or more during rainfall, which has a difference from that of the existing artificial wetland. The bottom is to install a barrier 18 to prevent groundwater contamination.

4) 고농도 심층수 처리를 위한 4) for high concentration deep water treatment 사이퍼닝시스템Cyphoning System ( ( hyperlimnetichyperlimnetic SiphoningSiphoning SystemSystem ))

비강우시 저류형 습지의 심층수는 오염물질이 축적될 수 있으므로, 이 심층수(19)를 사이퍼닝시스템(13)을 이용하여 식생수로(6-8)로 유입시켜 저류형습지의 기능이 악화되는 것을 방지하고, 식생수로에서 성장하는 정수식물에 수분을 공급하고 아울러 오염물질을 제거하도록 하는 시스템이다. 저류형습지의 심층수와 식생수로를 연결하는 웨어를 파이프로 연결하여 농도가 높은 심층수를 식생수로로 배수하도록 한다. 이러한 사이퍼닝시스템을 이용한 인공습지의 심층수 처리시스템은 국내에서 처음으로 시도되는 것이다. Contaminants may accumulate in the deep waters of the storage wetlands during the rain, so that the deep waters 19 are introduced into the vegetation channel 6-8 using the siphoning system 13, thereby deteriorating the function of the storage wetlands. It is a system to prevent water, and to supply water to plant water grown in the vegetation channel and to remove contaminants. The weeds connecting the deep water and the vegetation channel of the reservoir wetland are piped to drain the deep water with high concentration into the vegetation channel. Deep water treatment system of artificial wetland using this siphoning system is the first attempt in Korea.

5) 5) 다단식생수로Multistage bottled water ( ( MultiMulti vegetatedvegetated SwaleSwale ) )

저류형습지에 다단 식생수로를 연결하여 비강우시에는 오염농도가 높은 심층수를 처리하도록 하며, 강우시에는 유출수를 처리하도록 하여 침전과 식물흡수 기작을 통해 오염물질을 제거하도록 한다. 기존의 식생수로와 다른 점은 수위조건이 다른 세가지 식물을 연속하여 식재하며 단계별로 점차 수위를 낮추어 주어 침전과 식물흡수기작을 최대화하도록 설계한다는 것과, 1차처리수 뿐만이 아니라 영양물질의 농도가 높은 심층수를 처리하도록 하는 것이 큰 차이점이다. 첫번째 식생수로에는 부들(Typha orientalis)을, 두번째 식생수로는 고랭이(Scirpus tabernaemontani)를 마지막 식생수로는 갈대(Phragmites communis) 를 식재한다. 이들 정수식물이 서식환경 특히 수심별 서식환경의 차이를 갖게 수문을 조절하는데, 부들조에서 마지막 갈대조로 갈수록 수심을 깊게 조절하여 정수식물수로에서도 수심변화에 의한 호기성 및 혐기성 환경을 조성하여 질소제거능과 인흡수능을 증대시킬 수 있도록 조성하도록 한다. 이렇게 다단식생수로(6-8)를 통과한 처리수는 유출구(9)를 통하여 최종적으로 배출되게 된다. Multistage vegetation can be connected to the reservoir wetland to treat deep water with high pollutant concentration during rain, and to treat effluent during rainfall to remove contaminants through sedimentation and plant absorption mechanisms. The difference from the existing vegetation canal is that three plants with different water level conditions are planted in succession and designed to maximize the precipitation and plant absorption mechanism by gradually lowering the water level step by step. The big difference is that it allows you to handle deep water. The first vegetation canal is called Typha The orientalis), the second number is the last vegetation vegetation waterway for the goraeng (Scirpus tabernaemontani) reeds (Phragmites plant communis ). These water plants control the hydrology to have a difference in the habitat environment, especially the depth of the habitat. To increase the absorption capacity. Thus treated water passing through the multi-stage bottled water passage (6-8) is finally discharged through the outlet (9).

도 1은 발명의 구성 예시도1 is an exemplary configuration diagram of the invention

도 2는 본 발명에 의한 2 is according to the present invention 저류형습지Reservoir type wetland 단면도 Cross-section

도 3은 본 발명에 의한 3 is according to the present invention 사이퍼닝시스템Cyphoning System 구성 단면도 Composition section

도 4는 실제 운영되고 있는 발명품의 사진 Figure 4 is a photograph of the invention in operation

도 5 침수식물이 Figure 5 submerged plants 수체내In the water body 용존산소농도에Dissolved oxygen concentration 미치는 영향 실험 결과 Impact Experiment Results

도 6 자연습지의 오염물질 Figure 6 Contaminants of Natural Wetlands 정화능조사Purification capacity investigation 결과  result

<도면의 주요 부분에 대한 부호의 설명)<Explanation of symbols for the main parts of the drawing)

1. 유입구1. Inlet 2. 2. 침강조Sedimentation 3. 3. 저류형습지Reservoir type wetland ( ( 침수식물우점Flooded Plant Advantage ))

4. 4. 웨어1Wear 1 5. 제방5. Dike 6. 6. 식생수로1Vegetation waterway 1 ( ( 부들수로By chance ))

7. 7. 식생수로With vegetation water 2 ( 2 ( 고랭이수로At high heat )) 8. 8. 식생수로With vegetation water 3 ( 3 ( 갈대수로Reed ))

9. 9. 유출구Outlet 10. 10. 웨어Wear 11. 검정말11.Black horse

12. 12. 붕어마름Crucian carp 13. 13. 사이퍼닝시스템Cyphoning System 14.   14. 웨어2Wear2

15. 15. 부들수로By chance 16. 16. 고랭이수로At high heat 17. 17. 갈대수로Reed

18. 18. 차수막Curtain 19. 19. 오염심층수Deep water pollution

Claims (3)

침수식물우점의 저류형 습지의 구조와 적용식물: 침수식물 우점 저류형습지로 전체 면적의 45% 미만을 수심이 0-0.5m로 하며 55% 이상은 침수식물만이 가능하도록 0.5m 이상으로 한다. 20-30%는 0.5-1.0 m, 30-20%는 1.0-20m의 구조로 하여 침수식물의 서식범위를 충분히 확보하며, 대상 침수식물은 성장이 빠르고 질소 인 함유량이 높은 붕어마름(Ceratophyllum demersum)과 검정말(Hydrilla verticillata)로 한다.Structures and Applied Plants of Wetland Wetland Wetland Wetland Wetland Wetland wetlands are less than 45% of the total area of 0-0.5m and 55% or more are 0.5m or more so that only submerged plants can be used. . 20-30% has a structure of 0.5-1.0 m and 30-20% has 1.0-20m to secure enough habitat for submerged plants, and the target submerged plants have rapid growth and high nitrogen phosphorus ( Ceratophyllum demersum ) And black horse ( Hydrilla verticillata ). 다단식생수로의 구조와 적용식물: 저류형습지와 연결된 다단 식생수로로 폭은 2-4m내외로 하며, 곡선형으로 주어진 공간에서 최대한 체류시간을 확보한다. 이를 3단 이상 설치하여 식생수로의 수위변동에 따라 각각 다른 정수식물을 식재하도록 한다. 대상 정수식물은 수위에 따라 서식환경이 다른 부들(Typha orientalis), 갈대(Phragmites communis) 및 고랭이(Scirpus tabernaemontani)로 한다.Structure and Applied Plant of Multistage Vegetation Channel: The multistage vegetation channel connected to the reservoir wetland has a width of about 2-4m and ensures maximum residence time in a given space. Install three or more steps to plant different purified plants according to the fluctuation of water level in the vegetation. The target plant has different parts depending on the water level ( Typha orientalis ), Reed ( Phragmites communis ) and scorpus tabernaemontani . 심층수 사이퍼닝시스템: 비강우시 저류형습지에 상대적으로 오염농도가 높을 수 있는 심층수를 사이퍼닝하여 식생수로로 흘려보내줌으로써 식생수로의 수문조건을 조절하며, 식물에 수분을 공급하고 오염물질 또한 처리할 수 있도록 하는 시스템이다. Deep water siphoning system: Controls the hydrological conditions of the vegetation water system by supplying deep water, which may have a relatively high concentration of contaminated wetland wetlands, to the vegetation channel during rainy days, to supply water to plants and to treat pollutants. It is a system to make it possible.
KR1020090037251A 2009-04-28 2009-04-28 Diffuse pollutant treatment system using submerged plant dominant detention type wetland, multi vegetated swales, and hypolimnetic water siphoning system KR20100118415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090037251A KR20100118415A (en) 2009-04-28 2009-04-28 Diffuse pollutant treatment system using submerged plant dominant detention type wetland, multi vegetated swales, and hypolimnetic water siphoning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090037251A KR20100118415A (en) 2009-04-28 2009-04-28 Diffuse pollutant treatment system using submerged plant dominant detention type wetland, multi vegetated swales, and hypolimnetic water siphoning system

Publications (1)

Publication Number Publication Date
KR20100118415A true KR20100118415A (en) 2010-11-05

Family

ID=43404728

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090037251A KR20100118415A (en) 2009-04-28 2009-04-28 Diffuse pollutant treatment system using submerged plant dominant detention type wetland, multi vegetated swales, and hypolimnetic water siphoning system

Country Status (1)

Country Link
KR (1) KR20100118415A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103918424A (en) * 2014-03-04 2014-07-16 复旦大学 Planting method of plateau shallow lake submerged plants
CN106320253A (en) * 2016-08-17 2017-01-11 安徽省水利水电勘测设计院 Multi-pond ecological water compensation system construction method
CN107879556A (en) * 2017-11-24 2018-04-06 中国农业科学院农业环境与可持续发展研究所 A kind of agricultural area source pollutants enter river load and cut down system
AT15789U3 (en) * 2015-03-24 2018-11-15 Research Institute Of Forestry New Tech Chinese Academy Of Forestry Artificial water system and construction method of the artificial water system for the ecological prevention and treatment of algal blooms
CN113742945A (en) * 2021-09-30 2021-12-03 中国科学院东北地理与农业生态研究所 Optimization method for optimal water level of cattail growth in soda saline-alkali wetland

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103918424A (en) * 2014-03-04 2014-07-16 复旦大学 Planting method of plateau shallow lake submerged plants
AT15789U3 (en) * 2015-03-24 2018-11-15 Research Institute Of Forestry New Tech Chinese Academy Of Forestry Artificial water system and construction method of the artificial water system for the ecological prevention and treatment of algal blooms
CN106320253A (en) * 2016-08-17 2017-01-11 安徽省水利水电勘测设计院 Multi-pond ecological water compensation system construction method
CN107879556A (en) * 2017-11-24 2018-04-06 中国农业科学院农业环境与可持续发展研究所 A kind of agricultural area source pollutants enter river load and cut down system
CN107879556B (en) * 2017-11-24 2020-11-03 中国农业科学院农业环境与可持续发展研究所 Agricultural non-point source pollutant river entering load reduction system
CN113742945A (en) * 2021-09-30 2021-12-03 中国科学院东北地理与农业生态研究所 Optimization method for optimal water level of cattail growth in soda saline-alkali wetland

Similar Documents

Publication Publication Date Title
CN107720973B (en) Sewage treatment plant tail water constructed wetland treatment system
US8021551B2 (en) Eco-treatment system
CN101723520B (en) Method for cutting low-pollution water load of venous riverway
Brix et al. Danish experience with sewage treatment in constructed wetlands
Haydar et al. Performance evaluation of hybrid constructed wetlands for the treatment of municipal wastewater in developing countries
CN106277338A (en) Ecological purification system for river regulation
KR101241817B1 (en) Treatment method of leachates from landfill and device thereof
Barco et al. Treatment performances of floating wetlands: A decade of studies in North Italy
Kucuk et al. Removal of ammonia from tannery effluents in a reed bed constructed wetland
KR100668598B1 (en) Constructed wetlands combined phyto-bioremedation and the watwer purification method thereof
Quiroga Waste stabilization ponds for waste water treatment, anaerobic pond
KR20100118415A (en) Diffuse pollutant treatment system using submerged plant dominant detention type wetland, multi vegetated swales, and hypolimnetic water siphoning system
CN107585868B (en) Water body deep purification system
JP4199075B2 (en) Water purification facility
Vasudevan et al. Localized domestic wastewater treatment: part I-constructed wetlands (an overview)
KR100561171B1 (en) Waterway-type artificial wetland in no need of power and method of construction for natural purification of stream water using thereit
Wang et al. Municipal wastewater treatment with pond–constructed wetland system: a case study
Bekkari et al. Performance of pilot scale constructed wetland as ecological practice for domestic wastewater treatment in an arid climate–Algeria
KR100232361B1 (en) Automatic purification system using aquatic plant
KR100915918B1 (en) Apparatus for the enhancement of water quality using upflow biological activated carbon modules in a stagnant stream channel
KR200408145Y1 (en) Constructed wetlands combined phyto-bioremedation and the watwer purification
Gad et al. Fate of heavy metals and nutrients in waste stabilization ponds in arid zones
KR100561170B1 (en) Aeration-type constructed wetland system and method for advanced treatment of sewage, wastewater and the like using thereit
Borkar et al. Tidal flow constructed wetland: An overview
CN112158957A (en) Submerged plant remediation method for brackish water body polluted sediment in coastal city

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application