KR20100112378A - Method for pareparing positive electrode active material for lithium ion secondary battery - Google Patents

Method for pareparing positive electrode active material for lithium ion secondary battery Download PDF

Info

Publication number
KR20100112378A
KR20100112378A KR1020090030859A KR20090030859A KR20100112378A KR 20100112378 A KR20100112378 A KR 20100112378A KR 1020090030859 A KR1020090030859 A KR 1020090030859A KR 20090030859 A KR20090030859 A KR 20090030859A KR 20100112378 A KR20100112378 A KR 20100112378A
Authority
KR
South Korea
Prior art keywords
active material
positive electrode
electrode active
ion secondary
lithium ion
Prior art date
Application number
KR1020090030859A
Other languages
Korean (ko)
Other versions
KR101103248B1 (en
Inventor
김찬
정준환
서상철
김철현
서인용
이승훈
양재석
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Priority to KR1020090030859A priority Critical patent/KR101103248B1/en
Publication of KR20100112378A publication Critical patent/KR20100112378A/en
Application granted granted Critical
Publication of KR101103248B1 publication Critical patent/KR101103248B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: A manufacturing method of a positive electrode active material for a lithium ion secondary battery is provided to simply mass-produce the positive electrode active material using an electro-spinning method. CONSTITUTION: A manufacturing method of a positive electrode active material for a lithium ion secondary battery comprises the following steps: forming a spinning solution by dissolving a positive electrode active material precursor and a conductive polymer; forming a nanofiber web by electro-spinning the spinning solution; and heat-processing the nanofiber web to form the positive electrode active material, and forming semi-graphite on the surface of the positive electrode active material.

Description

리튬이온 2차 전지용 정극 활물질의 제조방법{METHOD FOR PAREPARING POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM ION SECONDARY BATTERY}Manufacturing method of positive electrode active material for lithium ion secondary battery {METHOD FOR PAREPARING POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM ION SECONDARY BATTERY}

본 발명은 리튬이온 2차 전지용 정극활물질의 제조방법에 관한 것이다.The present invention relates to a method for producing a positive electrode active material for a lithium ion secondary battery.

리튬이온 2차 전지는 정극 물질로 LiCoO2과 부극 물질로 흑연(Graphite)을 채택하면서 꾸준히 발전하여 이론용량에 근접하고 있으며, 생산 단가의 절감도 어느 정도 달성하고 있다. 그러나, 최근 각종 휴대 전자기기의 고성능화, CO2 배출규제 등으로 보다 친환경적이면서 고용량을 갖고 가격이 저렴한 2차 전지에 대한 요구가 증가되고 있다. 또한, 하이브리드 자동차나 전기자동차의 개발에 필수불가결한 에너지원으로서 리튬이온 2차 전지가 사용될 것으로 예측되고 있어, 더욱 활발한 연구가 기대되고 있다. 특히, 재료적인 측면에서 보다 저렴하고 우수한 성능과 안전성을 갖추고 있으며, 환경 친화적인 활물질의 개발에 있어서, 나노화에 의한 표면적의 증가 및 그에 따른 용량발현 등 새롭고 손쉬운 합성법이 관심을 끌고 있다.Lithium-ion secondary batteries are steadily generating power by adopting LiCoO 2 as the positive electrode material and graphite as the negative electrode material, approaching the theoretical capacity, and achieving some reduction in production cost. However, in recent years, there is an increasing demand for secondary batteries that are more environmentally friendly, have higher capacity, and are cheaper due to high performance of various portable electronic devices and CO 2 emission regulations. In addition, since lithium ion secondary batteries are expected to be used as an indispensable energy source for the development of hybrid vehicles or electric vehicles, more active research is expected. In particular, new and easy synthesis methods, such as increase in surface area and nanocapacity, are attracting attention in the development of an active material which is cheaper, has better performance and safety in terms of materials, and is environmentally friendly.

정극재료로는 초기 코발트계에서 니클계, 3원계, 망간계, 올리빈계에 이르 기까지 다양한 재료를 탐색하는 방향으로 연구가 진행되고 있으며, 고가의 코발트를 대체하는 쪽으로 LiMn2O4가 개발되었으나 충방전 반복시 Mn2+용출에 의한 안전성 문제가 있는 것으로 알려져 있다. LiNiO2의 경우는 제조가 어렵고 수명이나 고온 특성이 LiCoO2계에 비해 좋지 않다는 단점이 있다. 이러한 단점을 극복하기 위한 방안으로 정극활물질을 다양한 금속산화물(Al2O3, ZrO2, 란탄족 산화물) 또는 금속 인화물(AlPO4, 올리빈 LiPO4) 등으로 표면 코팅하는 방법도 제안되고 있으나 근본적인 해결책으로는 한계가 있다. As a positive electrode material, research has been conducted in the direction of exploring various materials from the initial cobalt to nickel, ternary, manganese, and olivine. LiMn 2 O 4 was developed to replace expensive cobalt. It is known that there is a safety problem due to Mn 2+ elution during repeated charge and discharge. LiNiO 2 has a disadvantage in that it is difficult to manufacture and its life and high temperature characteristics are not as good as those of LiCoO 2 system. In order to overcome these disadvantages, a method of surface coating a positive electrode active material with various metal oxides (Al 2 O 3 , ZrO 2 , lanthanide oxides) or metal phosphides (AlPO 4 , olivine LiPO 4 ) has been proposed. There is a limit to the solution.

최근에 제안된 올리빈계인 LiFePO4, LiMnPO4, LiNiPO4 등의 경우, 저가격, 환경 친화성, 고용량, 높은 사이클 수명, 안전성 등 여러 우수한 정극재료의 특성을 가지고 있으나, 최대 단점인 낮은 전기전도성과 낮은 리튬이온(Li-ion)의 확산성으로 인해 개발이 지연되고 있다. 이러한 낮은 전기전도성을 해결하기 위한 방법으로 Mg, Al, Nb, Mo 등을 Li 부위에 도핑(doping) 시키거나 입자표면에 카본을 증착시켜서 전기전도성 향상시키는 새로운 정극재료의 합성방법이 제안되고 있다. The recently proposed olivine-based LiFePO 4 , LiMnPO 4 , LiNiPO 4 , etc. have many excellent positive electrode materials such as low cost, environmental friendliness, high capacity, high cycle life, and safety. Development is delayed due to the low diffusion of Li-ion. As a method for solving such low electrical conductivity, a method of synthesizing a new positive electrode material which improves electrical conductivity by doping Mg, Al, Nb, Mo, etc. to Li sites or depositing carbon on the surface of particles has been proposed.

특히, LiFePO4 나노입자는 고상반응법, Sol-gel법, 수열합성법, 열처리법 등 다양한 방법에 의한 제조방법이 제시되고 있으나 대량생산의 한계, 공정상 나노입자의 성장으로 인한 용량발현의 한계, 적절한 물성제어가 곤란한 점, 복잡한 첨가 공정, 안정적으로 Fe3+를 Fe2+로 만드는 환원분위기 조성 등 해결해야 할 문제가 산적해 있는 것으로 알려져 있다. In particular, LiFePO 4 nanoparticles have been proposed by various methods such as solid phase reaction, sol-gel method, hydrothermal synthesis method, and heat treatment method, but the limitation of mass production, limit of capacity expression due to growth of nanoparticles, It is known that there are many problems to be solved, such as difficulty in controlling proper physical properties, complicated addition process, and stable atmosphere composition for making Fe 3+ into Fe 2+ .

최근, 일본의 국립 산업과학 기술연구소(AIST)는 아닐린(aniline) 용액중에서 나노크기의 FePO4 미립자를 합성함으로써(PANi-LiFePO4) 미립자 표면의 Fe3+가 아닐린을 산화시켜서 미립자 표면에 아닐린이 중합되고, 여기에 초산리튬을 첨가하고 환원분위기 하의 700℃에서 15시간 동안 열처리함으로써 표면(Sheath)에 카본(semi-graphite)층과 내부(core)에 LiFePO4로 구성된 복합구조의 미립자(사이즈: 20~40nm)를 제조하였음을 발표하였다. 이러한 복합구조의 미립자는 30C, 60C의 고속 충방전에서도 각각 112, 90mAh/g의 높은 용량을 나타내며, 충방전 심도(DOD) 100%에서 1,100회 사이클을 반복해도 165mAh/g의 초기 용량을 유지하는 것으로 알려졌다(Y. Wang et. al., Angewandte Chemie, 47(39), 2008, pp.7461-7465).Recently, the National Institute of Industrial Science and Technology (AIST) in Japan synthesized nano-sized FePO 4 fine particles in an aniline solution (PANi-LiFePO 4 ) to oxidize Fe 3+ aniline on the surface of the aniline, thereby aniline Polymerized, fine particles of a composite structure composed of a carbon-semi-graphite layer on the surface and LiFePO 4 on the core by adding lithium acetate and heat treatment at 700 ° C. for 15 hours under a reducing atmosphere. 20-40 nm) was prepared. The fine particles of this composite structure exhibit high capacity of 112 and 90 mAh / g even at high and low charge and discharge of 30C and 60C, respectively, and maintain an initial capacity of 165mAh / g even after repeating 1,100 cycles at 100% charge / discharge depth (DOD). (Y. Wang et. Al., Angewandte Chemie, 47 (39), 2008, pp.7461-7465).

그러나 상기와 같은 방법은, LiFePO4를 in-situ 합성으로 제조 하므로 표면 카본층의 코팅두께를 조절하는 것이 어려우며, 대량생산도 어렵다. 따라서, 카본층이 두껍게(厚膜) 형성될 경우 Li+의 출입에 방해가 되므로 고속 충방전시 용량저하의 원인으로 작용할 수 있으며, 대량생산이 어려우므로 경제성이 낮은 단점이 있다. 또한 취급이 불편하며, LiFePO4를 장시간 열처리해야 하기 때문에 LiFePO4자체의 가격 경쟁력도 상실시키는 문제가 있다. However, in the above method, since LiFePO 4 is manufactured by in-situ synthesis, it is difficult to control the coating thickness of the surface carbon layer, and mass production is difficult. Therefore, when the carbon layer is formed thick, it may interfere with the entrance and exit of Li + , and thus may act as a cause of capacity reduction during high-speed charging and discharging. In addition, because the need to heat treatment and handling is inconvenient, the LiFePO 4 for a long time in the LiFePO 4 itself Price competitiveness There is a problem of loss.

본 발명은, 종래기술의 상기와 같은 문제를 해결하기 위해 안출된 것으로서, The present invention has been made to solve the above problems of the prior art,

첫째, 전기방사 방법을 적용하여 간단한 방법으로 대량생산이 가능하며, 고용량, 고출력, 고안전성이 구비되는 리튬이온 2차 전지용 정극활물질의 제조방법을 제공하는 것을 목적으로 한다. First, the mass production is possible by a simple method by applying the electrospinning method, and an object of the present invention is to provide a method for producing a positive electrode active material for a lithium ion secondary battery equipped with high capacity, high output, high safety.

둘째, 전기방사 방법을 적용하여 정극활물질의 입자크기를 나노사이즈로 제조함으로써, 높은 에너지 밀도를 갖는 리튬이온 2차 전지용 정극활물질의 제조방법을 제공하는 것을 목적으로 한다. Second, an object of the present invention is to provide a method for producing a cathode active material for a lithium ion secondary battery having a high energy density by applying the electrospinning method to produce a particle size of the cathode active material in nano size.

셋째, 표면이 카본층으로 피복됨으로써 입자간 우수한 전기전도체널이 확보되어 고속 충방전에서도 용량저하가 발생하지 않으며, 열적, 기계적, 전기적 안전성이 우수한 리튬이온 2차 전지용 정극활물질의 제조방법을 제공하는 것을 목적으로 한다. Third, the surface is coated with a carbon layer to secure excellent electrical conduction channels between particles, so that capacity reduction does not occur even at high speed charging and discharging, and provides a method for producing a positive electrode active material for lithium ion secondary batteries having excellent thermal, mechanical and electrical safety. For the purpose of

넷째, 다양한 물질의 첨가와 복합화가 용이하여 손쉽게 정극활물질 전구체 비율의 조절과 도핑 원소의 함유량 조절이 가능하며, 다성분계 정극활물질도 용이하게 제조할 수 있는 리튬이온 2차 전지용 정극활물질의 제조방법을 제공하는 것을 목적으로 한다.Fourthly, it is easy to add and complex various materials to easily control the proportion of the positive electrode active material precursor and the content of the doping element, and to prepare a positive electrode active material for lithium ion secondary battery that can easily prepare a multi-component positive electrode active material. It aims to provide.

본 발명은,The present invention,

(a)리튬이온 2차 전지용 정극활물질 전구체와 전도성 고분자를 용매에 용해하여 방사용액을 제조하는 단계;(a) dissolving a positive electrode active material precursor and a conductive polymer for a lithium ion secondary battery in a solvent to prepare a spinning solution;

(b)상기 (a)단계에서 제조된 방사용액을 전기방사하여 나노섬유웹을 제조하는 단계;(b) preparing a nanofiber web by electrospinning the spinning solution prepared in step (a);

(c)상기 (b)단계에서 제조된 나노섬유웹을 환원성 분위기에서 열처리함으로써 정극활물질을 형성시키고, 상기 정극활물질 표면에 카본층(semi-graphite)을 형성시키는 단계를 포함하는 리튬이온 2차 전지용 정극활물질의 제조방법을 제공한다.(c) forming a positive electrode active material by heat-treating the nanofiber web prepared in step (b) in a reducing atmosphere, and forming a carbon layer (semi-graphite) on the surface of the positive electrode active material. It provides a method for producing a positive electrode active material.

또한, 본 발명은,In addition, the present invention,

(a)리튬이온 2차 전지용 정극활물질인 나노입자가 분산되고, 전도성 고분자가 용매에 용해된 방사용액을 제조하는 단계;(a) preparing a spinning solution in which nanoparticles as a positive electrode active material for a lithium ion secondary battery are dispersed and a conductive polymer is dissolved in a solvent;

(b)상기 (a)단계에서 제조된 방사용액을 전기방사하여 나노섬유웹을 제조하는 단계;(b) preparing a nanofiber web by electrospinning the spinning solution prepared in step (a);

(c)상기 (b)단계에서 제조된 나노섬유웹을 환원성 분위기에서 열처리함으로써 정극활물질을 형성시키고, 상기 정극활물질 표면에 카본층(semi-graphite)을 형성시키는 단계를 포함하는 리튬이온 2차 전지용 정극활물질의 제조방법을 제공한다.(c) forming a positive electrode active material by heat-treating the nanofiber web prepared in step (b) in a reducing atmosphere, and forming a carbon layer (semi-graphite) on the surface of the positive electrode active material. It provides a method for producing a positive electrode active material.

또한, 본 발명은,In addition, the present invention,

(a)리튬이온 2차 전지용 정극활물질 전구체와 전도성 고분자를 용매에 용해하여 분사용액을 제조하는 단계;(A) dissolving a positive electrode active material precursor and a conductive polymer for a lithium ion secondary battery in a solvent to prepare a spray solution;

(b)상기 (a)단계에서 제조된 분사용액을 전기분사하여 나노필름을 제조하는 단계;(b) preparing a nanofilm by electrospraying the injection solution prepared in step (a);

(c)상기 (b)단계에서 제조된 나노필름을 환원성 분위기에서 열처리함으로써 정극활물질을 형성시키고, 상기 정극활물질 표면에 카본층(semi-graphite)을 형성시키는 단계를 포함하는 리튬이온 2차 전지용 정극활물질의 제조방법을 제공한다.(c) forming a positive electrode active material by heat-treating the nanofilm prepared in step (b) in a reducing atmosphere, and forming a carbon layer (semi-graphite) on the surface of the positive electrode active material. It provides a method for producing an active material.

또한, 본 발명은,In addition, the present invention,

(a)리튬이온 2차 전지용 정극활물질인 나노입자가 분산되고, 전도성 고분자가 용매에 용해된 분사용액을 제조하는 단계;(a) preparing a spray solution in which nanoparticles, which are positive electrode active materials for lithium ion secondary batteries, are dispersed and conductive polymers are dissolved in a solvent;

(b)상기 (a)단계에서 제조된 분사용액을 전기분사하여 나노필름을 제조하는 단계;(b) preparing a nanofilm by electrospraying the injection solution prepared in step (a);

(c)상기 (b)단계에서 제조된 나노필름을 환원성 분위기에서 열처리함으로써 정극활물질을 형성시키고, 상기 정극활물질 표면에 카본층(semi-graphite)을 형성시키는 단계를 포함하는 리튬이온 2차 전지용 정극활물질의 제조방법을 제공한다.(c) forming a positive electrode active material by heat-treating the nanofilm prepared in step (b) in a reducing atmosphere, and forming a carbon layer (semi-graphite) on the surface of the positive electrode active material. It provides a method for producing an active material.

본 발명의 제조방법은 저렴한 비용으로 리튬이온 2차 전지용 정극활물질의 대량생산이 가능하므로 매우 경제적이며, 고용량, 고출력, 고안전성이 구비된 리튬이온 2차 전지용 정극활물질을 제공한다. The manufacturing method of the present invention is very economical because it is possible to mass-produce a positive electrode active material for a lithium ion secondary battery at low cost, and provides a positive electrode active material for a lithium ion secondary battery having high capacity, high output, and high safety.

또한, 전기방사 방법을 적용하여 리튬이온 2차 전지용 정극활물질의 입자크기를 나노사이즈로 제조하므로 높은 에너지 밀도를 갖는 리튬이온 2차 전지용 정극활물질을 제공한다. In addition, since the particle size of the positive electrode active material for lithium ion secondary batteries is manufactured in nano size by applying an electrospinning method, a positive electrode active material for lithium ion secondary batteries having a high energy density is provided.

또한, 본 발명의 제조방법에 의하여 제조되는 리튬이온 2차 전지용 정극활물질은 표면이 카본층으로 피복됨으로써 입자간 우수한 전기전도체널이 확보되기 때문에 고속 충방전에서도 용량저하가 발생하지 않으며, 열적, 기계적, 전기적 안전성이 우수하다. In addition, the positive electrode active material for a lithium ion secondary battery manufactured by the manufacturing method of the present invention is coated with a carbon layer so that excellent electric conduction channels between particles are ensured, so that capacity reduction does not occur even at high speed charging and discharging. Excellent electrical safety.

또한, 본 발명의 제조방법은 방사용액 내에 다양한 물질의 첨가와 복합화가 용이하여 손쉽게 정극활물질 전구체 비율의 조절과 도핑 원소의 함유량 조절이 가능하며, 다성분계 정극활물질도 용이하게 제조할 수 있다. In addition, the production method of the present invention is easy to add and complex the various substances in the spinning solution, it is possible to easily control the proportion of the positive electrode active material precursor and the content of the doping element, it is possible to easily prepare a multi-component positive electrode active material.

본 발명은,The present invention,

(a)리튬이온 2차 전지용 정극활물질 전구체와 전도성 고분자를 용매에 용해하여 방사용액을 제조하는 단계;(a) dissolving a positive electrode active material precursor and a conductive polymer for a lithium ion secondary battery in a solvent to prepare a spinning solution;

(b)상기 (a)단계에서 제조된 방사용액을 전기방사하여 나노섬유웹을 제조하는 단계;(b) preparing a nanofiber web by electrospinning the spinning solution prepared in step (a);

(c)상기 (b)단계에서 제조된 나노섬유웹을 환원성 분위기에서 열처리함으로써 정극활물질을 형성시키고, 상기 정극활물질 표면에 카본층(semi-graphite)을 형성시키는 단계를 포함하는 리튬이온 2차 전지용 정극활물질의 제조방법에 관한 것이다.(c) forming a positive electrode active material by heat-treating the nanofiber web prepared in step (b) in a reducing atmosphere, and forming a carbon layer (semi-graphite) on the surface of the positive electrode active material. It relates to a method for producing a positive electrode active material.

또한, 본 발명은,In addition, the present invention,

(a)리튬이온 2차 전지용 정극활물질인 나노입자가 분산되고, 전도성 고분자가 용매에 용해된 방사용액을 제조하는 단계;(a) preparing a spinning solution in which nanoparticles as a positive electrode active material for a lithium ion secondary battery are dispersed and a conductive polymer is dissolved in a solvent;

(b)상기 (a)단계에서 제조된 방사용액을 전기방사하여 나노섬유웹을 제조하는 단계;(b) preparing a nanofiber web by electrospinning the spinning solution prepared in step (a);

(c)상기 (b)단계에서 제조된 나노섬유웹을 환원성 분위기에서 열처리함으로써 정극활물질을 형성시키고, 상기 정극활물질 표면에 카본층(semi-graphite)을 형성시키는 단계를 포함하는 리튬이온 2차 전지용 정극활물질의 제조방법에 관한 것이다.(c) forming a positive electrode active material by heat-treating the nanofiber web prepared in step (b) in a reducing atmosphere, and forming a carbon layer (semi-graphite) on the surface of the positive electrode active material. It relates to a method for producing a positive electrode active material.

또한, 본 발명은,In addition, the present invention,

(a)리튬이온 2차 전지용 정극활물질 전구체와 전도성 고분자를 용매에 용해하여 분사용액을 제조하는 단계;(A) dissolving a positive electrode active material precursor and a conductive polymer for a lithium ion secondary battery in a solvent to prepare a spray solution;

(b)상기 (a)단계에서 제조된 분사용액을 전기분사하여 나노필름을 제조하는 단계;(b) preparing a nanofilm by electrospraying the injection solution prepared in step (a);

(c)상기 (b)단계에서 제조된 나노필름을 환원성 분위기에서 열처리함으로써 정극활물질을 형성시키고, 상기 정극활물질 표면에 카본층(semi-graphite)을 형 성시키는 단계를 포함하는 리튬이온 2차 전지용 정극활물질의 제조방법에 관한 것이다.(c) forming a positive electrode active material by heat-treating the nanofilm prepared in step (b) in a reducing atmosphere, and forming a carbon layer (semi-graphite) on the surface of the positive electrode active material. It relates to a method for producing a positive electrode active material.

또한, 본 발명은,In addition, the present invention,

(a)리튬이온 2차 전지용 정극활물질인 나노입자가 분산되고, 전도성 고분자가 용매에 용해된 분사용액을 제조하는 단계;(a) preparing a spray solution in which nanoparticles, which are positive electrode active materials for lithium ion secondary batteries, are dispersed and conductive polymers are dissolved in a solvent;

(b)상기 (a)단계에서 제조된 분사용액을 전기분사하여 나노필름을 제조하는 단계;(b) preparing a nanofilm by electrospraying the injection solution prepared in step (a);

(c)상기 (b)단계에서 제조된 나노필름을 환원성 분위기에서 열처리함으로써 정극활물질을 형성시키고, 상기 정극활물질 표면에 카본층(semi-graphite)을 형성시키는 단계를 포함하는 리튬이온 2차 전지용 정극활물질의 제조방법에 관한 것이다.(c) forming a positive electrode active material by heat-treating the nanofilm prepared in step (b) in a reducing atmosphere, and forming a carbon layer (semi-graphite) on the surface of the positive electrode active material. It relates to a method for producing an active material.

이하에 기재되는 내용은 특별한 언급이 없더라도 상기에 기재된 4가지 방법에 모두 적용되는 것이다.The contents described below apply to all four methods described above, even if there is no special mention.

본 발명에서 있어서, 상기 (a)단계의 방사용액은 열분해성 고분자를 더 포함하여 제조될 수 있다. 방사용액에 열분해성 고분자를 포함시킴으로써 카본층의 두께, 형태 등을 조절할 수 있다. In the present invention, the spinning solution of step (a) may be prepared further comprising a thermally decomposable polymer. By including the thermally decomposable polymer in the spinning solution, the thickness, shape, etc. of the carbon layer can be controlled.

상기 열분해성 고분자로는, 열처리 과정에서 분해되면서 열분해물이 금속 산화물층에 증착되지 않는 물질이라면 특별히 제한되지 않는다. 구체적인 예로는, 폴리메칠메타아크릴레이트(PMMA), 폴리비닐아세테이트(PVAc), 폴리비닐알콜(PVC), 폴리에칠렌 옥사이드(PEO), 폴리푸루푸릴알콜(PPFA) 등을 들 수 있으며, 이들은 1종 단독으로 또는 2종 이상을 조합하여 사용할 수 있다.The thermally decomposable polymer is not particularly limited as long as it is decomposed during the heat treatment and a pyrolysate is not deposited on the metal oxide layer. Specific examples thereof include polymethyl methacrylate (PMMA), polyvinylacetate (PVAc), polyvinyl alcohol (PVC), polyethylene oxide (PEO), polyfurfuryl alcohol (PPFA), and the like. It can be used in combination or two or more kinds.

상기 열분해성 고분자는 전도성 고분자 100중량부를 기준으로 5~90 중량부로 포함될 수 있다. 5 중량부 미만으로 포함되면 카본층의 두께에 영향을 주기 어려우며, 90 중량부를 초과하여 포함되면 요구되는 두께의 카본층을 형성하기 어렵기 때문에 바람직하지 않다.The thermally decomposable polymer may be included in an amount of 5 to 90 parts by weight based on 100 parts by weight of the conductive polymer. If it is included in less than 5 parts by weight, it is difficult to affect the thickness of the carbon layer, and if it is included in excess of 90 parts by weight, it is not preferable because it is difficult to form a carbon layer of the required thickness.

본 발명에서 있어서, 상기 (a)단계의 방사용액은 정극활물질을 도핑하기 위한 금속염 화합물을 더 포함하여 제조될 수 있다. 상기와 같이 정극활물질을 도핑하기 위한 금속염 화합물들이 포함되는 경우에 활물질의 전기전도성을 더 향상시킬 수 있다. In the present invention, the spinning solution of step (a) may be prepared further comprising a metal salt compound for doping the positive electrode active material. When the metal salt compounds for doping the positive electrode active material as described above may further improve the electrical conductivity of the active material.

상기 정극활물질을 도핑하기 위한 금속염 화합물로는 Ma, Al, Ti, Zr, Nb 또는W 이온 등을 포함하는 염화합물을 들 수 있으며, 이들은 1종 단독으로 또는 2종 이상을 조합하여 사용할 수 있다. 상기 금속염 화합물 중 Nb, Al 등이 바람직하게 사용될 수 있다.Examples of the metal salt compound for doping the positive electrode active material include salt compounds including Ma, Al, Ti, Zr, Nb, or W ions, and these may be used alone or in combination of two or more thereof. Of the metal salt compounds, Nb, Al and the like can be preferably used.

본 발명에서 있어서, 상기 (a)단계에서 방사용액의 제조를 위하여 사용되는 용매로는 디메틸포름아미드(di-methylformamide, DMF), 디메틸아세타마이드(di-methylacetamide, DMAc), THF(tetrahydrofuran), 아세톤(Acetone), 알코 올(Alcohol)류, 클로로포름(Chloroform), DMSO(dimethyl sulfoxide), 디클로로메탄(dichloromethane), 초산, NMP(1-Methyl-2-pyrrolidinon), 불소계 알콜류, 물 등이 사용될 수 있으며, 이들은1종 단독으로 또는2종 이상이 함께 사용될 수 있다.In the present invention, the solvent used for the preparation of the spinning solution in the step (a) is dimethylformamide (di-methylformamide, DMF), dimethylacetamide (di-methylacetamide, DMAc), THF (tetrahydrofuran), Acetone, alcohols, chloroform, dimethyl sulfoxide, DMSO, dichloromethane, acetic acid, NMP (1-Methyl-2-pyrrolidinon), fluorine alcohols, water, etc. These may be used alone or in combination of two or more.

본 발명에서 있어서, 상기 (a)단계에서 방사용액 또는 분사용액의 제조시 정극활물질인 나노입자의 분산성을 향상시키기 위하여 음이온 계면활성제, 양이온 계면활성제, 무극성 계면활성제, Brij-시리즈, 트윈-시리즈(Tween-series), 트리톤X-시리즈(Triton X-series), PVP(polyvinylpyrrolidone) 등으로 이루어진 군으로부터 선택되는1종 이상의 분산제를 사용할 수 있다.In the present invention, the anionic surfactant, cationic surfactant, nonpolar surfactant, Brij-series, twin-series in order to improve the dispersibility of the nanoparticles as a positive electrode active material in the preparation of the spinning solution or spray solution in step (a) One or more dispersants selected from the group consisting of (Tween-series), Triton X-series, polyvinylpyrrolidone (PVP) and the like can be used.

상기에서 음이온 계면활성제로는 SDS(sodium dodecyl sulfate), LDS(lithium dodecyl sulface), SDBS(sodium dodecylbebzebesulfonate), SDSA(sodium dodecylsulfonate) 등을 들 수 있으며; 양이온 계면활성제로는 DTAB(dodecyltrimethylammonium bromide), CTAB(cetyltrimethylammonium bromide) 등을 들 수 있으며; 무극성 계면활성제로는 폴리부틸렌옥사이드-폴리에틸렌옥사이드(polybutyleneoxide-polyethyleneoxide triblock copolymer), 트리블록 공중합체인 폴리에틸렌옥사이드-폴리페닐렌옥사이드-폴리에틸렌옥사이드(polyethyleneoxide-polyphenyleneoxide-polyethyleneoxide) 등을 들 수 있다.Examples of the anionic surfactants include sodium dodecyl sulfate (SDS), lithium dodecyl sulface (LDS), sodium dodecylbebzebesulfonate (SDBS), sodium dodecylsulfonate (SDSA), and the like; Cationic surfactants include DTAB (dodecyltrimethylammonium bromide), CTAB (cetyltrimethylammonium bromide) and the like; Examples of the nonpolar surfactants include polybutyleneoxide-polyethyleneoxide triblock copolymer, and polyethylene oxide-polyphenyleneoxide-polyethyleneoxide, which are triblock copolymers.

본 발명에 있어서, 분산제를 사용하는 경우, 정극활물질 나노입자 100중량부를 기준으로 0.01~5중량부로 사용하는 것이 바람직하다. 상기에서 분산제가0.01중량부 미만으로 포함되면 분산의 향상을 기대하기 어려우며, 5중량부를 초과하는 경우에는 더 이상 분산효과 증가하지 않는 반면 그로 인한 부작용의 우려가 있다. In this invention, when using a dispersing agent, it is preferable to use 0.01-5 weight part with respect to 100 weight part of positive electrode active material nanoparticles. When the dispersant is included in less than 0.01 parts by weight, it is difficult to expect the improvement of the dispersion, when the amount exceeds 5 parts by weight does not increase the dispersing effect any more, there is a concern of the resulting side effects.

또한, 본 발명에 있어서, 정극활물질인 나노입자의 분산은 초음파 분산, 원심분리 분산, 교반 등의 방법을 통해서도 실시할 수 있다. In addition, in this invention, the dispersion | distribution of the nanoparticle which is a positive electrode active material can also be performed through methods, such as ultrasonic dispersion, centrifugal dispersion, and stirring.

본 발명에서 있어서, 상기 (c)단계는 열처리 전 또는 후에 나노섬유웹을 분쇄하고 분급하는 과정을 더 포함할 수 있다. 상기 (c)단계의 열처리는 1000℃ 이하에서 실시될 수 있다. 1000℃를 초과하면_카본층의 전기전도도는 향상되나 정극활물질(예; LiFePO4등의)의 올리빈 구조가 파괴될 수 있다. In the present invention, the step (c) may further include the step of grinding and classifying the nanofiber web before or after the heat treatment. The heat treatment of step (c) may be carried out at less than 1000 ℃. If the temperature exceeds 1000 ° C., the electrical conductivity of the carbon layer is improved, but the olivine structure of the positive electrode active material (eg, LiFePO 4, etc.) may be destroyed.

또한, 상기 (c)단계의 열처리는 1 내지 3단계로 나누어서 실시할 수 있으며, 예컨대, 300~500℃에서 1차 열처리를 실시하고, 500~1000℃에서 2차 열처리를 실시하는 방식으로 수행될 수 있다. 이 경우에, 1차 열처리후, 분쇄, 분급 등의 과정을 거치고, 이어서 2차 열처리를 수행하는 것이 바람직하다. 상기에서 1차 열처리를 300~500℃에서 실시하는 것은 정극활물질(예: LiFePO4)의 내부 구조의 형성 면에서에서 바람직하며, 2차 열처리는 500 이상에서 실시되어야 전도성 고분자의 탄소화가 충분히 이루어질 수 있다. 상기에서 분쇄, 분급과정과 함께 표면 작용기 제거 과정이 수행될 수도 있다.In addition, the heat treatment of step (c) may be carried out by dividing into 1 to 3 steps, for example, the first heat treatment at 300 ~ 500 ℃, the second heat treatment at 500 ~ 1000 ℃ to be carried out in a manner. Can be. In this case, it is preferable to carry out a process such as pulverization and classification after the first heat treatment, and then perform the second heat treatment. The first heat treatment at 300 ~ 500 ℃ is preferable in terms of the formation of the internal structure of the positive electrode active material (for example, LiFePO 4 ), the second heat treatment should be carried out at 500 or more can be sufficiently carbonized conductive polymer have. The surface functional group removal process may be performed together with the grinding and classification process.

본 발명에 있어서, 상기 (a)단계의 정극활물질 전구체는 Li, P, Fe, V, W, Co, Ni, Mn 등의 이온을 포함하는 염화합물 중에서 선택하여 사용할 수 있다. 상기 염화물의 대표적인 예로는, 리튬아세칠아세토네이트(Lithium acethylacetonate), 염화망간(II)(MnCl2), 트리페닐포스핀(triphenylphosphine), 염화철(III)(FeCl3), 등을 들 수 있다. In the present invention, the positive electrode active material precursor of step (a) may be selected from salt compounds containing ions such as Li, P, Fe, V, W, Co, Ni, Mn. Representative examples of the chloride include lithium acetacetonate, manganese chloride (II) (MnCl 2 ), triphenylphosphine, iron chloride (III) (FeCl 3 ) , and the like.

본 발명에 있어서, 상기 (a)단계의 정극활물질인 나노입자로는 리튬이온 2차 전지에서 정극재료로 사용할 수 있는 전이금속 산화물 나노입자 내지 비전이금속 산화물 나노입자를1종 단독으로 또는2종 이상 복합화하여 사용할 수 있으며, 특정 물질로 한정되지 않는다. 대표적인 예로는 LiCoO2, LiMn2O4, LiFePO4, LiMnPO4, LiNiPO4 등의 나노입자를 들 수 있으며, 이들은 1종 단독으로 또는 2종 이상을 조합하여 사용할 수 있다. 상기에서 나노입자는 입자의 직경이 100㎚ 미만인 입자를 의미한다.In the present invention, as the nanoparticles of the positive electrode active material of step (a), one kind or two kinds of transition metal oxide nanoparticles to non-transition metal oxide nanoparticles that can be used as a positive electrode material in a lithium ion secondary battery. It can be used in combination above, and is not limited to a specific substance. Representative examples include LiCoO 2, LiMn 2 O 4, LiFePO 4 , LiMnPO 4 , LiNiPO 4, and the like. Nanoparticles are mentioned, These can be used individually by 1 type or in combination of 2 or more type. Nanoparticles as used herein means particles having a diameter of less than 100 nm.

본 발명에 있어서, 상기 (a)단계의 전도성 고분자로는 열처리 후 카본층을 형성 할 수 있는 물질이라면 특별히 제한되지 않는다. 구체적인 예로는, 폴리아세틸렌(polyacetylene), 폴리아닐린(polyaniline), 폴리피롤(polypyrrole), 폴리티오펜(polythiophene), 폴리설퍼니트리드(poly sulfur nitride) 등을 들 수 있으며, 이들은 1종 단독으로 또는 2종 이상을 조합하여 사용할 수 있다.In the present invention, the conductive polymer of step (a) is not particularly limited as long as it is a material capable of forming a carbon layer after heat treatment. Specific examples thereof include polyacetylene, polyaniline, polypyrrole, polythiophene, poly sulfur nitride, and the like, alone or in combination. The above can be used in combination.

본 발명에 있어서, 상기 (b)단계의 전기방사 또는 전기분사 방법은 특별히 제한되지 않으며 이 분야에서 통상적으로 사용되는 방법이 채용될 수 있다. 구체적인 예로는, 전기분사방사(electrobrown spinning), 원심전기방사(centrifugal electrospinning), 플래쉬 전기방사(flash-electrospinning)등을 들 수 있다. In the present invention, the electrospinning or electrospraying method of step (b) is not particularly limited and a method commonly used in this field may be employed. Specific examples include electrobrown spinning, centrifugal electrospinning, flash-electrospinning, and the like.

본 발명에 있어서, 카본층 두께의 조절은 열분해성 고분자의 함량, 방사조건, 열처리조건 등에 의해서 조절될 수 있다.In the present invention, the control of the carbon layer thickness can be controlled by the content of the thermally decomposable polymer, spinning conditions, heat treatment conditions and the like.

본 발명에 있어서, 상기 (b)단계의 전기분사에 의해 형성되는 분사물의 형태는 나노필름 형태에 한정되지 않으며, 개개의 입자형태로 형성된 것도 본 발명의 범위에 포함된다. 또한, 상기의 나노필름의 개념도 가장 넓은 범위로 해석되어야 한다. In the present invention, the form of the injection formed by the electrospray of the step (b) is not limited to the nanofilm form, it is also included in the scope of the present invention formed in the form of individual particles. In addition, the concept of the nanofilm should also be interpreted in the widest range.

이하에서, 각 단계별로 상세하게 설명한다.Hereinafter, each step will be described in detail.

방사용액 또는 분사용액의 제조 단계Preparation Step of Spinning Solution or Spraying Solution

정극활물질 전구체와 전도성 고분자를 혼합한 후, 상용성 있는 용매를 이용하여 방사 가능한 농도로 교반 용해하여 방사용액 또는 분사용액을 준비한다. 상기 방사용액 또는 분사용액의 제조에 있어서 정극활물질 전구체의 함량은 전도성 고분자 100중량부를 기준으로 0.5~90 중량부가 적당하다. 0.5중량부 미만의 경우 수율이 낮아 경제성이 없으며, 90중량부를 초과하는 경우에는 고분자의 함량이 낮아 후속열처리 공정에서 정극활물질에 카본층을 고르게 형성하기 어려운 문제가 있다. 또한 용매의 경우 특별히 제한되지 않으나, 방사용액 또는 분사용액 총 중량에 대하여 3~70중량%로 포함하여야 섬유상 구조의 형성이 용이하고, 섬유의 모폴러지(morphology) 제어에 유리하다. After mixing the positive electrode active material precursor and the conductive polymer, by stirring and dissolving to a spinning concentration using a compatible solvent to prepare a spinning solution or spray solution. In the production of the spinning solution or the injection solution, the content of the positive electrode active material precursor is appropriately 0.5 to 90 parts by weight based on 100 parts by weight of the conductive polymer. If the amount is less than 0.5 parts by weight, there is no economic efficiency, and if it exceeds 90 parts by weight, there is a problem that it is difficult to evenly form a carbon layer on the positive electrode active material in the subsequent heat treatment process because the content of the polymer is low. In addition, the solvent is not particularly limited, but it should be included in the range of 3 to 70% by weight based on the total weight of the spinning solution or the injection solution to facilitate the formation of the fibrous structure and to control the morphology of the fibers.

또한, 정극활물질의 전기전도성을 증가시키기 위해 Ma, Al, Ti, Zr, Nb, W 등을 함유하는 염화합물을 방사용액 또는 분사용액에 첨가할 수 있다. 이때, 첨가되는 염화합물은 Li에 대해 약 0.1~5atomic %(at%)가 적당하다. 0.1at% 이하의 경우 첨가 효과를 기대할 수 없으며, 5at%를 초과하면 전기전도도는 향상되나 충방전을 반복하게되면 정극활물질의 결정구조가 파괴될 가능성이 있다. In addition, in order to increase the electrical conductivity of the positive electrode active material, a salt compound containing Ma, Al, Ti, Zr, Nb, W and the like may be added to the spinning solution or the injection solution. At this time, about 0.1-5 atomic% (at%) is suitable for the added salt compound with respect to Li. If it is less than 0.1at%, the addition effect cannot be expected. If it exceeds 5at%, the electrical conductivity is improved, but if the charge and discharge are repeated, the crystal structure of the positive electrode active material may be destroyed.

또한, 본 발명은 정극활물질 나노입자가 분산되고, 전도성 고분자가 용매에 용해된 방사용액 또는 분사용액을 제조하여 사용할 수 있으며, 방사용액 또는 분사용액의 제조방법은 정극활물질 전구체 대신 정극활물질 나노입자를 사용한 것을 제외하고는 상기에 기재한 내용과 동일하다. In addition, the present invention can be used to prepare a spinning solution or spray solution in which the positive electrode active material nanoparticles are dispersed, the conductive polymer dissolved in a solvent, the manufacturing method of the spinning solution or spray solution is to use the positive electrode active material nanoparticles instead of the positive electrode active material precursor It is the same as what was described above except having used.

상기 방사용액 또는 분사용액의 제조에 있어서 정극활물질 나노입자의 함량은 전도성 고분자 100중량부를 기준으로 0.5~90 중량부가 적당하며, 0.5중량부 미만의 경우 수율이 낮아 경제성이 없으며, 90중량부를 초과하는 경우에는 고분자의 함량이 낮아 후속열처리 공정에서 정극활물질에 카본층을 고루 형성하기 어려운 문제가 있다. 또한 용매의 경우 특별히 제한되지 않으나, 방사용액 또는 분사용액 총 중량에 대하여 3~70중량%로 포함하여야 섬유상 구조의 형성이 용이하고, 섬유의 모폴러지(morphology) 제어에 유리하다.In the preparation of the spinning solution or the injection solution, the content of the positive electrode active material nanoparticles is appropriately 0.5 to 90 parts by weight based on 100 parts by weight of the conductive polymer, and when the amount is less than 0.5 parts by weight, the yield is not economical and exceeds 90 parts by weight. In this case, there is a problem that it is difficult to evenly form the carbon layer on the positive electrode active material in the subsequent heat treatment process because the content of the polymer is low. In addition, the solvent is not particularly limited, but it should be included in the range of 3 to 70% by weight based on the total weight of the spinning solution or the injection solution to facilitate the formation of the fibrous structure and to control the morphology of the fibers.

나노섬유웹 또는 나노필름의 형성 단계Formation of Nanofiber Web or Nanofilm

본 발명에 있어서, 전기방사 및 전기분사에는 동일한 장치가 사용될 수 있 다.In the present invention, the same apparatus can be used for electrospinning and electrospraying.

상기에서 제조된 방사용액 또는 분사용액을 정량펌프를 사용하여 방사팩(spin pack)으로 이송하고, 고전압 조절장치를 사용하여 방사팩에 전압을 인가하여 전기방사 또는 전기분사를 실시한다. 이때 사용되는 전압은 0.5kV~100kV까지 조절하는 것이 가능하며, 집전판은 접지를 하거나 (-)극으로 대전하여 사용할 수 있다. 집전판은 전기전도성 금속판 및 박리지 등으로 구성될 수 있다. 집전판의 경우 전기방사 또는 전기분사시 섬유의 집속을 원활하게 하기 위해 포집장치(suction collector)를 부착하여 사용하는 것이 바람직하다. 또한 방사팩과 집전판까지의 거리는 5~50㎝로 조절하여 사용하는 것이 바람직하다. 전기방사 또는 전기분사시 토출량은 정량펌프를 사용하여 홀당 0.01~5cc/hole·min으로 토출하여 방사 또는 분사하고, 방사 또는 분사는 온도 및 습도를 조절할 수 있는 챔버내에서 상대 습도 10-90%의 환경에서 실시하여 나노섬유웹 또는 나노필름을 제조하는 것이 바람직하다. The spinning solution or the injection solution prepared above is transferred to a spin pack using a metering pump, and a voltage is applied to the spinning pack using a high voltage control device to perform electrospinning or electrospraying. At this time, the voltage used can be adjusted to 0.5kV ~ 100kV, the current collector can be grounded or charged to the (-) pole. The current collector plate may be composed of an electrically conductive metal plate, a release paper, or the like. In the case of the current collector plate, it is preferable to attach and use a suction collector to smoothly focus the fibers during electrospinning or electrospraying. In addition, the distance between the spin pack and the current collector is preferably adjusted to 5 to 50 cm. In the case of electrospinning or electrospinning, the discharge amount is discharged or sprayed by discharging at 0.01 ~ 5cc / hole · min per hole using a metering pump, and the spinning or spraying is performed in a chamber where the temperature and humidity can be controlled. It is preferable to carry out in an environment to produce a nanofiber web or nanofilm.

정극활물질에 대한 카본층 피복 단계 Carbon layer coating step for positive electrode active material

상기에서 제조된 나노섬유웹 또는 나노필름을 열처리하여 나노섬유웹 또는 나노필름에 포함된 정극활물질 표면에 카본이 증착되도록 한다. 이때 열처리는 환원 분위기에서 실시하는 것이 바람직한데, 그러한 조건은 정극활물질(금속산화물)의 안정한 Fe3+를 Fe2+로 환원하기 위한 것이다. 이때 사용되는 분위기 가스로는 질 소, 아르곤, 헬륨, 수소 가스 등을 들 수 있으며, 이들은 단독 또는 복합화하여 사용하는 할 수 있다. The nanofiber web or nanofilm prepared above is heat-treated to deposit carbon on the surface of the positive electrode active material included in the nanofiber web or nanofilm. At this time, the heat treatment is preferably performed in a reducing atmosphere, and such conditions are for reducing stable Fe 3+ of the positive electrode active material (metal oxide) to Fe 2+ . At this time, the atmosphere gas used may include nitrogen, argon, helium, hydrogen gas, these may be used alone or in combination.

상기 열처리는 1~3 단계로 나누어서 수행될 수 있으며, 1차 열처리 후 분쇄, 분급 등의 과정을 거쳐 2차 열처리를 행하는 것이 바람직하다. 1차 열처리의 경우, 300~500℃ 전후에서 실시하고 볼밀, 어트리션밀, 젯트 밀 등의 방법을 사용해 분쇄 및 분급한 후, 500~1000℃에서 2차 열처리를 실시하여 정극활물질 표면에 카본층이 형성된 리튬이온 2차 전지용 정극활물질을 제조한다. The heat treatment may be carried out by dividing into 1 to 3 steps, it is preferable to perform the second heat treatment after the process such as pulverization, classification after the first heat treatment. In the case of primary heat treatment, it is carried out at around 300 to 500 ° C, pulverized and classified using methods such as ball mill, attrition mill, jet mill, etc., and then subjected to secondary heat treatment at 500 to 1000 ° C to form a carbon layer on the surface of the positive electrode active material. The formed positive electrode active material for a lithium ion secondary battery is manufactured.

상기에서 분쇄 및 분급을 거친 정극활물질은 1㎛ 미만의 길이를 갖는 것이 전극 슬러리 제조면에서 바람직하다. The positive electrode active material, which has been pulverized and classified in the above, preferably has a length of less than 1 µm in view of electrode slurry production.

일반적으로 열처리 과정을 거치면서 정극활물질(금속산화물)은 성장하게 되는데, 본 발명의 제조방법에 의하면, 열처리시에 정극활물질(금속산화물)이 전도성 고분자에 피복되어 있으므로, 성장하지 못하고 빠르게 결정을 형성하며, 정극활물질(금속산화물) 표면에는 전도성 고분자의 분해와 탄화에 의해 카본층(semi-graphie)이 형성된다. 상기 카본층은 충방전시 전기전도채널을 형성하므로 고속 충방전에서도 용량저하가 발생하지 않으며, 열적, 기계적, 전기적 안전성이 우수한 리튬이온 2차 전지용 정극활물질의 제조가 가능하게 한다.In general, the positive electrode active material (metal oxide) is grown during the heat treatment process. According to the manufacturing method of the present invention, since the positive electrode active material (metal oxide) is coated on the conductive polymer during heat treatment, crystals do not grow rapidly and form crystals. In addition, a carbon layer (semi-graphie) is formed on the surface of the positive electrode active material (metal oxide) by decomposition and carbonization of the conductive polymer. Since the carbon layer forms an electrically conductive channel during charging and discharging, the capacity reduction does not occur even at high speed charging and discharging, and thus the cathode active material for lithium ion secondary batteries having excellent thermal, mechanical, and electrical safety can be manufactured.

본 발명의 제조방법에 의해 제조된 리튬이온 2차 전지용 정극활물질은 전동 공구용, 하이브리드 자동차용, 플러그 인 하이브리드 자동차용, 전기 자동차용, 중,대형 발전용 전지로도 응용이 가능 하다. The positive electrode active material for a lithium ion secondary battery manufactured by the manufacturing method of the present invention is applicable to a power tool, a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, a medium and large power generation battery.

이하에서, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 그러나, 하기의 실시예는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 하기의 실시예에 의하여 한정되는 것은 아니다. 하기의 실시예는 본 발명의 범위 내에서 당업자에 의해 적절히 수정, 변경될 수 있다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are intended to illustrate the present invention more specifically, but the scope of the present invention is not limited by the following examples. The following examples can be appropriately modified and changed by those skilled in the art within the scope of the present invention.

실시예1: 리튬이온 2차 전지용 정극활물질의 제조Example 1: Preparation of positive electrode active material for lithium ion secondary battery

폴리아닐린(polyaniline)을 용매 NMP(1-Methyl-2-pyrrolidinon)와 크레졸(m-Crysol)의 혼합 용매(중량비 5:5)에 전체 용액 중량 대비 20중량%가 되도록 넣어 용해하였다. 여기에 폴리아닐린 100 중량부를 기준으로 50중량부가 되도록 리튬아세칠아세토네이트(Lithium acethylacetonate), 염화망간(II) 및 트리페닐포스핀(triphenylphosphine)을 중량비1:1:2로 넣었다. 이렇게 제조된 방사용액을 전기방사 장치를 사용하여 인가전압 30kV, 방사구와 집전체와의 거리 15㎝, 토출량 분당 0.05cc/g으로 상온상압에서 방사했다.Polyaniline was dissolved in a mixed solvent (weight ratio 5: 5) of the solvent NMP (1-Methyl-2-pyrrolidinon) and cresol (m-Crysol) so that 20 wt% of the total solution weight was dissolved. Lithium acethylacetonate, manganese chloride (II) and triphenylphosphine were added in a weight ratio of 1: 1: 2 to 50 parts by weight based on 100 parts by weight of polyaniline. The spinning solution thus produced was spun at room temperature and normal pressure using an electrospinning device at an applied voltage of 30 kV, a distance of 15 cm between the spinneret and the current collector, and a discharge amount of 0.05 cc / g per minute.

상기 방사된 웹을 Ar/H2(95/5%(v/v))의 가스분위기하에서 분당 5?씩 승온하여 400?에서 2시간 열처리 한 후 상온으로 냉각시켰다. 냉각된 시료를 볼밀을 통해 4시간 분쇄한 후, 10~200㎚로 분급하고 다시 Ar/H2(95/5%(v/v))의 분위기하에서 분당 5?씩 700℃까지 승온하여 5시간 열처리하였다. 이렇게 하여 LiMnPO4 나노입자에 카본이 증착된 리튬이온 2차 전지용 정극활물질을 제조하였다.The spun web was heated at 5 ° per minute in a gas atmosphere of Ar / H 2 (95/5% (v / v)), heat treated at 400 ° C. for 2 hours, and then cooled to room temperature. After grinding the cooled sample through a ball mill for 4 hours, it was classified into 10-200 nm and heated up to 700 ° C. per minute in an atmosphere of Ar / H 2 (95/5% (v / v)) for 5 hours. Heat treatment. Thus, a cathode active material for a lithium ion secondary battery in which carbon was deposited on LiMnPO 4 nanoparticles was prepared.

실시예2: 리튬이온 2차 전지용 정극활물질의 제조Example 2 Preparation of Positive Electrode Material for Lithium Ion Secondary Battery

염화망간(II)(MnCl2) 대신 염화철(III)(FeCl3)를 사용하고, 리튬아세칠아세토네이트(Lithium acethylacetonate), 트리페닐포스핀(triphenylphosphine)을 먼저 용해시키고, 염화철(III)을 천천히 적정하여 용해시킨 것을 제외하고는 상기 실시예 1의 방법과 동일한 방법으로 방사용액을 준비하고, 전기방사와 열처리를 실시하여 LiFePO4입자에 카본이 증착된 리튬이온 2차 전지용 정극활물질을 제조하였다. Ferric chloride (III) (FeCl 3 ) instead of manganese (II) chloride (MnCl 2 ) Lithium acethylacetonate and triphenylphosphine were dissolved first, and iron (III) chloride was slowly titrated and dissolved in the same manner as in Example 1 above. A working solution was prepared, and electrospinning and heat treatment were performed to prepare a cathode active material for a lithium ion secondary battery in which carbon was deposited on LiFePO 4 particles.

실시예3: 리튬이온 2차 전지용 정극활물질의 제조Example 3 Preparation of Positive Electrode Material for Lithium Ion Secondary Battery

정제된 LiFePO4 나노입자를 NMP용매 1L에 방사용액 중량 대비 10중량%가 되도록 넣고 초음파 분산을 실시했다. 또한, 폴리아닐린을 NMP/m-Crosol(1:1) 용매 1L 에 방사용액 중량 대비 30중량%가 되도록 용해하여 고분자 용액을 준비하였다. 고분자 용액에 LiFePO4가 분산된 NMP용액을 혼합하여 방사용액을 제조하였다. 이렇게 제조된 방사용액을 상기 실시예1과 동일한 방법으로 전기방사를 행하고 열처리를 실시하였다. 이렇게 하여 LiFePO4 입자에 카본층이 증착된 리튬이온 2차 전지용 정극활물질을 제조하였다. Purified LiFePO 4 nanoparticles were placed in 1 L of NMP solvent to 10% by weight based on the weight of the spinning solution and ultrasonic dispersion was performed. In addition, the polymer solution was prepared by dissolving polyaniline in 1 L of NMP / m-Crosol (1: 1) solvent to 30% by weight based on the weight of the spinning solution. A spinning solution was prepared by mixing an NMP solution containing LiFePO 4 dispersed in a polymer solution. The spinning solution thus prepared was electrospun in the same manner as in Example 1 and subjected to heat treatment. In this way, a cathode active material for a lithium ion secondary battery in which a carbon layer was deposited on LiFePO 4 particles was prepared.

도 1은 본 발명의 리튬이온 2차 전지용 정극활물질의 제조방법을 개략적으로 나타낸 모식도이다. 1 is a schematic diagram schematically showing a method for producing a positive electrode active material for a lithium ion secondary battery of the present invention.

Claims (16)

(a)리튬이온 2차 전지용 정극활물질 전구체와 전도성 고분자를 용매에 용해하여 방사용액을 제조하는 단계;(a) dissolving a positive electrode active material precursor and a conductive polymer for a lithium ion secondary battery in a solvent to prepare a spinning solution; (b)상기 (a)단계에서 제조된 방사용액을 전기방사하여 나노섬유웹을 제조하는 단계;(b) preparing a nanofiber web by electrospinning the spinning solution prepared in step (a); (c)상기 (b)단계에서 제조된 나노섬유웹을 환원성 분위기에서 열처리함으로써 정극활물질을 형성시키고, 상기 정극활물질 표면에 카본층(semi-graphite)을 형성시키는 단계를 포함하는 리튬이온 2차 전지용 정극활물질의 제조방법.(c) forming a positive electrode active material by heat-treating the nanofiber web prepared in step (b) in a reducing atmosphere, and forming a carbon layer (semi-graphite) on the surface of the positive electrode active material. Method for producing a positive electrode active material. (a)리튬이온 2차 전지용 정극활물질인 나노입자가 분산되고, 전도성 고분자가 용매에 용해된 방사용액을 제조하는 단계;(a) preparing a spinning solution in which nanoparticles as a positive electrode active material for a lithium ion secondary battery are dispersed and a conductive polymer is dissolved in a solvent; (b)상기 (a)단계에서 제조된 방사용액을 전기방사하여 나노섬유웹을 제조하는 단계;(b) preparing a nanofiber web by electrospinning the spinning solution prepared in step (a); (c)상기 (b)단계에서 제조된 나노섬유웹을 환원성 분위기에서 열처리함으로써 정극활물질을 형성시키고, 상기 정극활물질 표면에 카본층(semi-graphite)을 형성시키는 단계를 포함하는 리튬이온 2차 전지용 정극활물질의 제조방법.(c) forming a positive electrode active material by heat-treating the nanofiber web prepared in step (b) in a reducing atmosphere, and forming a carbon layer (semi-graphite) on the surface of the positive electrode active material. Method for producing a positive electrode active material. (a)리튬이온 2차 전지용 정극활물질 전구체와 전도성 고분자를 용매에 용해하여 분사용액을 제조하는 단계;(A) dissolving a positive electrode active material precursor and a conductive polymer for a lithium ion secondary battery in a solvent to prepare a spray solution; (b)상기 (a)단계에서 제조된 분사용액을 전기분사하여 나노필름을 제조하는 단계;(b) preparing a nanofilm by electrospraying the injection solution prepared in step (a); (c)상기 (b)단계에서 제조된 나노필름을 환원성 분위기에서 열처리함으로써 정극활물질을 형성시키고, 상기 정극활물질 표면에 카본층(semi-graphite)을 형성시키는 단계를 포함하는 리튬이온 2차 전지용 정극활물질의 제조방법.(c) forming a positive electrode active material by heat-treating the nanofilm prepared in step (b) in a reducing atmosphere, and forming a carbon layer (semi-graphite) on the surface of the positive electrode active material. Method for producing an active material. (a)리튬이온 2차 전지용 정극활물질인 나노입자가 분산되고, 전도성 고분자가 용매에 용해된 분사용액을 제조하는 단계;(a) preparing a spray solution in which nanoparticles, which are positive electrode active materials for lithium ion secondary batteries, are dispersed and conductive polymers are dissolved in a solvent; (b)상기 (a)단계에서 제조된 분사용액을 전기분사하여 나노필름을 제조하는 단계;(b) preparing a nanofilm by electrospraying the injection solution prepared in step (a); (c)상기 (b)단계에서 제조된 나노필름을 환원성 분위기에서 열처리함으로써 정극활물질을 형성시키고, 상기 정극활물질 표면에 카본층(semi-graphite)을 형성시키는 단계를 포함하는 리튬이온 2차 전지용 정극활물질의 제조방법.(c) forming a positive electrode active material by heat-treating the nanofilm prepared in step (b) in a reducing atmosphere, and forming a carbon layer (semi-graphite) on the surface of the positive electrode active material. Method for producing an active material. 청구항 1 내지 청구항 4 중의 어느 한 항에 있어서, 상기 (a)단계의 방사용액 또는 분사용액에 열분해성 고분자가 더 포함되는 것을 특징으로 하는 리튬이온 2차 전지용 정극활물질의 제조방법.The method of manufacturing a cathode active material for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the thermally decomposable polymer is further included in the spinning solution or the injection solution of step (a). 청구항 1 내지 청구항 4 중의 어느 한 항에 있어서, 상기 (a)단계의 방사용액 또는 분사용액에 정극활물질을 도핑하기 위한 금속염 화합물이 더 포함되는 것을 특징으로 하는 리튬이온 2차 전지용 정극활물질의 제조방법.The method of manufacturing a cathode active material for a lithium ion secondary battery according to any one of claims 1 to 4, further comprising a metal salt compound for doping the cathode active material in the spinning solution or the injection solution of step (a). . 청구항 1 내지 청구항 4 중의 어느 한 항에 있어서, 상기 (c)단계는 열처리 전 또는 후에 나노섬유웹 또는 나노필름을 분쇄하고 분급하는 과정을 더 포함하는 것을 특징으로 하는 리튬이온 2차 전지용 정극활물질의 제조방법.The positive electrode active material of any one of claims 1 to 4, wherein the step (c) further comprises a step of pulverizing and classifying the nanofiber web or the nanofilm before or after the heat treatment. Manufacturing method. 청구항 1 내지 청구항 4 중의 어느 한 항에 있어서, 상기 (c)단계의 열처리는 300~500℃에서 1차 열처리를 실시하고; 나노섬유웹의 분쇄 및 분급을 수행하고; 500~1000℃에서 2차 열처리를 실시하는 것을 특징으로 하는 리튬이온 2차 전지용 정극활물질의 제조방법.The heat treatment according to any one of claims 1 to 4, wherein the heat treatment in step (c) is performed at 300 to 500 ° C .; Performing grinding and classification of the nanofiber webs; A method for producing a positive electrode active material for a lithium ion secondary battery, characterized in that the secondary heat treatment at 500 ~ 1000 ℃. 청구항 1 또는 청구항 3에 있어서, 상기 (a)단계의 정극활물질 전구체는 Li, P, Fe, V, W, Co, Ni 또는 Mn 이온을 포함하는 염화합물 중에서 선택되는 2종 이상의 것임을 특징으로 하는 리튬이온 2차 전지용 정극활물질의 제조방법.The lithium active material according to claim 1 or 3, wherein the positive electrode active material precursor of step (a) is at least two selected from salt compounds containing Li, P, Fe, V, W, Co, Ni or Mn ions. Method for producing a positive electrode active material for an ion secondary battery. 청구항 2 또는 청구항 4에 있어서, 상기 (a)단계의 정극활물질인 나노입자는 LiCoO2, LiMn2O4, LiFePO4, LiMnPO4, 및 LiNiPO4 나노입자로 이루어진 군으로부터 선택되는 1종 이상의 것임을 특징으로 하는 리튬이온 2차 전지용 정극활물질의 제조방법.The method according to claim 2 or 4, wherein the nanoparticles of the positive electrode active material of step (a) is at least one member selected from the group consisting of LiCoO 2, LiMn 2 O 4, LiFePO 4 , LiMnPO 4 , and LiNiPO 4 nanoparticles. The manufacturing method of the positive electrode active material for lithium ion secondary batteries which uses 청구항 1 내지 청구항 4 중의 어느 한 항에 있어서, 상기 (a)단계의 전도성 고분자는 폴리아세틸렌(polyacetylene), 폴리아닐린(polyaniline), 폴리피롤(polypyrrole), 폴리티오펜(polythiophene), 및 폴리설퍼니트리드(poly sulfur nitride)로 이루어진 군으로부터 선택되는 1종 이상의 것임을 특징으로 하는 리튬이온 2차 전지용 정극활물질의 제조방법.The method according to any one of claims 1 to 4, wherein the conductive polymer of step (a) is polyacetylene (polyacetylene), polyaniline (polyaniline), polypyrrole (polypyrrole), polythiophene, and polysulfuritride ( A method for producing a positive electrode active material for a lithium ion secondary battery, characterized in that at least one selected from the group consisting of poly sulfur nitride). 청구항 5에 있어서, 상기 열분해성 고분자는 폴리메칠메타아크릴레이트(PMMA), 폴리비닐아세테이트(PVAc), 폴리비닐알콜(PVC), 폴리에칠렌 옥사이드(PEO) 및 폴리푸루푸릴알콜(PPFA) 로 이루어진 군으로부터 선택되는 1종 이상의 것임을 특징으로 하는 리튬이온 2차 전지용 정극활물질의 제조방법.The method according to claim 5, wherein the thermally decomposable polymer is from the group consisting of polymethyl methacrylate (PMMA), polyvinylacetate (PVAc), polyvinyl alcohol (PVC), polyethylene oxide (PEO) and polyfurfuryl alcohol (PPFA) Method for producing a positive electrode active material for lithium ion secondary batteries, characterized in that at least one selected. 청구항 6에 있어서, 상기 정극활물질을 도핑하기 위한 금속염 화합물은 Ma, Al, Ti, Zr, Nb 또는 W 이온을 포함하는 염화합물 중에서 선택되는 1종 이상인 것임을 특징으로 하는 리튬이온 2차 전지용 정극활물질의 제조방법.The method of claim 6, wherein the metal salt compound for doping the positive electrode active material is at least one selected from a salt compound containing Ma, Al, Ti, Zr, Nb or W ions of the positive electrode active material for lithium ion secondary battery Manufacturing method. 청구항 1 또는 청구항 2에 있어서, 상기 (b)단계의 전기방사는 전기분사방사(electrobrown spinning), 원심전기방사(centrifugal electrospinning) 또는 플래쉬 전기방사(flash-electrospinning)인 것을 특징으로 하는 리튬이온 2차 전지용 정극활물질의 제조방법.The lithium ion secondary of claim 1 or 2, wherein the electrospinning of the step (b) is electrobrown spinning, centrifugal electrospinning, or flash-electrospinning. Method for producing a positive electrode active material for batteries. 청구항 1 내지 청구항 4 중의 어느 한 항에 있어서, 상기 방사용액 또는 분사용액은 전도성 고분자 100중량부를 기준으로 0.5~90 중량부의 정극활물질 전구체 또는 정극활물질인 나노입자를 포함하며, 전체 방사용액 또는 분사용액 총 중량에 대하여 3~70중량%의 용매를 포함하는 것을 특징으로 하는 리튬이온 2차 전지용 정극활물질의 제조방법.According to any one of claims 1 to 4, The spinning solution or spraying solution comprises 0.5 to 90 parts by weight of the positive electrode active material precursor or a positive electrode active material nanoparticles based on 100 parts by weight of the conductive polymer, the total spinning solution or spraying solution A method for producing a cathode active material for a lithium ion secondary battery, characterized in that it comprises 3 to 70% by weight of a solvent based on the total weight. 청구항 5에 있어서, 상기 열분해성 고분자는 전도성 고분자 100중량부를 기준으로 5~90 중량부로 포함되는 것을 특징으로 하는 리튬이온 2차 전지용 정극활물질의 제조방법.The method of claim 5, wherein the thermally decomposable polymer is included in an amount of 5 to 90 parts by weight based on 100 parts by weight of the conductive polymer.
KR1020090030859A 2009-04-09 2009-04-09 Method for pareparing positive electrode active material for lithium ion secondary battery KR101103248B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090030859A KR101103248B1 (en) 2009-04-09 2009-04-09 Method for pareparing positive electrode active material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090030859A KR101103248B1 (en) 2009-04-09 2009-04-09 Method for pareparing positive electrode active material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
KR20100112378A true KR20100112378A (en) 2010-10-19
KR101103248B1 KR101103248B1 (en) 2012-01-10

Family

ID=43132326

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090030859A KR101103248B1 (en) 2009-04-09 2009-04-09 Method for pareparing positive electrode active material for lithium ion secondary battery

Country Status (1)

Country Link
KR (1) KR101103248B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013130690A1 (en) * 2012-03-02 2013-09-06 Cornell University Lithium ion batteries comprising nanofibers
WO2013130723A1 (en) * 2012-03-02 2013-09-06 Cornell University Lithium containing nanofibers
KR101306859B1 (en) * 2011-01-06 2013-09-10 서울대학교산학협력단 Method for generating nanofiber sheets of lithium titanium oxide-carbon hybrid composite, nanofiber sheets using thereof, lithium ion battery and hybrid supercapacitor having nanofiber sheets
KR20140011709A (en) * 2012-07-18 2014-01-29 현대모비스 주식회사 Nanocomposite for negative active material, method for preparing the same and secondary battery comprising the same
WO2014066299A1 (en) * 2012-10-23 2014-05-01 Cornell University Lithium nanocomposite nanofibers
KR101438683B1 (en) * 2012-04-17 2014-09-12 한국교통대학교산학협력단 Fabricating method of lithium-iron-metal-phosphate-carbon composite nanofiber cathode active material and cathode active material fabricated by the method
KR20160136809A (en) * 2015-05-21 2016-11-30 한국과학기술연구원 Olivine sodium iron phosphate with polymer coating, sodium iron battery comprising the same as cathode material, and process thereof
CN108336352A (en) * 2017-12-29 2018-07-27 贵州唯特高新能源科技有限公司 A kind of preparation method of high conductivity high vibration high density lithium iron phosphate
US10450674B2 (en) 2013-03-14 2019-10-22 Cornell University Process for preparing a silicon-carbon nanocomposite nanofiber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143713A (en) 1999-11-18 2001-05-25 Matsushita Electric Ind Co Ltd Porous metal and method of producing the same
KR100868290B1 (en) * 2007-05-04 2008-11-12 한국과학기술연구원 Anode for secondary battery having negative active material with nano-fiber network structure and secondary battery using the same, and fabrication method of negative active material for secondary battery
KR100975335B1 (en) * 2008-06-02 2010-08-12 한국과학기술연구원 Anode for secondary battery having calcium copper titanate based negative active material and secondary battery using the same, and fabrication method of negative active material for secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101306859B1 (en) * 2011-01-06 2013-09-10 서울대학교산학협력단 Method for generating nanofiber sheets of lithium titanium oxide-carbon hybrid composite, nanofiber sheets using thereof, lithium ion battery and hybrid supercapacitor having nanofiber sheets
WO2013130690A1 (en) * 2012-03-02 2013-09-06 Cornell University Lithium ion batteries comprising nanofibers
WO2013130723A1 (en) * 2012-03-02 2013-09-06 Cornell University Lithium containing nanofibers
US10903482B2 (en) 2012-03-02 2021-01-26 Cornell University Lithium containing nanofibers
US11050118B2 (en) 2012-03-02 2021-06-29 Cornell University Lithium ion batteries comprising nanofibers
KR101438683B1 (en) * 2012-04-17 2014-09-12 한국교통대학교산학협력단 Fabricating method of lithium-iron-metal-phosphate-carbon composite nanofiber cathode active material and cathode active material fabricated by the method
KR20140011709A (en) * 2012-07-18 2014-01-29 현대모비스 주식회사 Nanocomposite for negative active material, method for preparing the same and secondary battery comprising the same
WO2014066299A1 (en) * 2012-10-23 2014-05-01 Cornell University Lithium nanocomposite nanofibers
US10450674B2 (en) 2013-03-14 2019-10-22 Cornell University Process for preparing a silicon-carbon nanocomposite nanofiber
KR20160136809A (en) * 2015-05-21 2016-11-30 한국과학기술연구원 Olivine sodium iron phosphate with polymer coating, sodium iron battery comprising the same as cathode material, and process thereof
CN108336352A (en) * 2017-12-29 2018-07-27 贵州唯特高新能源科技有限公司 A kind of preparation method of high conductivity high vibration high density lithium iron phosphate

Also Published As

Publication number Publication date
KR101103248B1 (en) 2012-01-10

Similar Documents

Publication Publication Date Title
KR101103248B1 (en) Method for pareparing positive electrode active material for lithium ion secondary battery
US11728545B2 (en) Lithium ion batteries comprising nanofibers
Gong et al. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries
CN101752560B (en) Lithium titanate-carbon composite nano-material, preparation method thereof and application thereof
Rui et al. Li3V2 (PO4) 3 cathode materials for lithium-ion batteries: A review
Liu et al. Tiny Li 4 Ti 5 O 12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries
Zhang et al. High-capacity Li2Mn0. 8Fe0. 2SiO4/carbon composite nanofiber cathodes for lithium-ion batteries
Wang et al. MnO-carbon hybrid nanofiber composites as superior anode materials for lithium-ion batteries
Wang et al. The effect of tin content to the morphology of Sn/carbon nanofiber and the electrochemical performance as anode material for lithium batteries
Liu et al. Binder-free Si nanoparticles@ carbon nanofiber fabric as energy storage material
Weng et al. Electrospun carbon nanofiber-based composites for lithium-ion batteries: structure optimization towards high performance
Zhou et al. Preparation and characterization of ultralong spinel lithium manganese oxide nanofiber cathode via electrospinning method
Cao et al. In situ constructed (010)-oriented LiFePO4 nanocrystals/carbon nanofiber hybrid network: Facile synthesis of free-standing cathodes for lithium-ion batteries
Wang et al. An effective method for preparing uniform carbon coated nano-sized LiFePO4 particles
Song et al. Li2MnSiO4 nanorods-embedded carbon nanofibers for lithium-ion battery electrodes
Peng et al. Electrospun CuFe2O4 nanotubes as anodes for high-performance lithium-ion batteries
Xu et al. Synthesis and electrochemical properties of Li3V2 (PO4) 3/C cathode material with an improved sol–gel method by changing pH value
CN102817107B (en) Preparation method for silver nano-sphere loaded LiFePO4 nano-fibers
Fagundes et al. PAni-coated LiFePO 4 synthesized by a low temperature solvothermal method
Zhao et al. Environmentally benign and scalable synthesis of LiFePO4 nanoplates with high capacity and excellent rate cycling performance for lithium ion batteries
KR101392388B1 (en) Carbon nanofibers composite and method for preparing the same and anode active materials for lithium secondary batteries comprising the same
KR101438683B1 (en) Fabricating method of lithium-iron-metal-phosphate-carbon composite nanofiber cathode active material and cathode active material fabricated by the method
Li et al. Highly enhanced low-temperature performances of LiFePO 4/C cathode materials prepared by polyol route for lithium-ion batteries
Zhao et al. Synthesis and electrochemical performance of LiCoPO 4 micron-rods by dispersant-aided hydrothermal method for lithium ion batteries
JP2015043283A (en) One-dimensional nanostructure for electrochemical device electrode material, and its manufacturing method by electro-spinning technique

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141202

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151202

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161202

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171113

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181112

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191112

Year of fee payment: 9