KR20100040583A - 항-라이실 티알엔에이 합성효소 항체 및 항-라미닌 수용체 항체를 유효성분으로 포함하는 암 진단용 조성물 - Google Patents

항-라이실 티알엔에이 합성효소 항체 및 항-라미닌 수용체 항체를 유효성분으로 포함하는 암 진단용 조성물 Download PDF

Info

Publication number
KR20100040583A
KR20100040583A KR1020080099783A KR20080099783A KR20100040583A KR 20100040583 A KR20100040583 A KR 20100040583A KR 1020080099783 A KR1020080099783 A KR 1020080099783A KR 20080099783 A KR20080099783 A KR 20080099783A KR 20100040583 A KR20100040583 A KR 20100040583A
Authority
KR
South Korea
Prior art keywords
cancer
krs
antibody
cells
laminin
Prior art date
Application number
KR1020080099783A
Other languages
English (en)
Other versions
KR101009501B1 (ko
Inventor
김성훈
최진우
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020080099783A priority Critical patent/KR101009501B1/ko
Publication of KR20100040583A publication Critical patent/KR20100040583A/ko
Application granted granted Critical
Publication of KR101009501B1 publication Critical patent/KR101009501B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 항-라이실 tRNA 합성효소 항체 및 항-라미닌 수용체 항체를 유효성분으로 포함하는 암 진단용 조성물에 관한 것이다. 보다 상세하게는, 본 발명은 항-라이실 tRNA 합성효소 항체 및 항-라미닌 수용체 항체를 유효성분으로 포함하는 암 진단용 조성물 및 키트, 본 발명은 암 진단에 필요한 정보를 제공하기 위하여, 환자의 시료로부터 항원-항체 반응을 통해 라이실 tRNA 합성효소 및 67kDa 라미닌 수용체를 검출하는 방법에 관한 것이다. 본 발명의 KRS는 원형질막의 라미닌 수용체(67LR)와 함께 암의 전이에 관여하므로 이의 존재 여부 및 양을 측정함으로써 암의 진단에 유용하게 사용될 수 있다.
라이실 tRNA 합성효소, 라미닌 수용체, 항체, 암, 진단, 키트

Description

항-라이실 티알엔에이 합성효소 항체 및 항-라미닌 수용체 항체를 유효성분으로 포함하는 암 진단용 조성물{Composition for diagnosing cancer comprising anti-lysyl tRNA synthethase antibody and anti-laminin receptor antibody as an active ingredient}
본 발명은 항-라이실 tRNA 합성효소 항체 및 항-라미닌 수용체 항체를 유효성분으로 포함하는 암 진단용 조성물에 관한 것이다. 보다 상세하게는, 본 발명은 항-라이실 tRNA 합성효소 항체 및 항-라미닌 수용체 항체를 유효성분으로 포함하는 암 진단용 조성물 및 키트, 본 발명은 암 진단에 필요한 정보를 제공하기 위하여, 환자의 시료로부터 항원-항체 반응을 통해 라이실 tRNA 합성효소 및 67kDa 라미닌 수용체를 검출하는 방법에 관한 것이다.
암(또는 종양)은 비정상적이고 비제어성이며 무질서한 세포증식의 산물이다. 특히, 파괴적인 성장성, 침투성 및 전이성이 있다면 악성으로 분류된다. 침투성이란 주위 조직을 침투 또는 파괴하는 성질로서, 일반적으로 조직의 경계를 이루는 기저층을 파괴시켜 종양이 국부적으로 전파되는 것을 의미하며, 종종 체내의 순환계로도 유입된다. 전이란 일반적으로 림프관(lymphotic) 또는 혈관에 의해 원발 위 치와는 다른 곳으로 종양 세포가 퍼지는 것을 의미한다. 전이는 또한 장액성 체강 또는 다른 공간을 통해 직접 신장하여 종양 세포를 이동시키는 것을 의미하기도 한다.
현재, 암은 주로 3가지 치료법, 즉 외과적인 수술, 방사선조사 및 화학요법 중 1가지 또는 이들의 조합을 통해 치료되고 있다. 수술은 질병 조직을 대부분 제거하는 것을 포함한다. 이러한 외과적 수술은 특정 부위, 예컨대 유방, 결장 및 피부에 위치한 종양을 제거하는 데에는 효과적이지만, 척추와 같이 일부 구역에 있는 종양을 치료하거나 백혈병과 같은 분산성 종양질환을 치료하는 데는 사용할 수 없다.
화학요법은 세포 복제 또는 세포 대사를 붕괴시키며, 흔히 유방, 폐 및 정소의 암을 치료하는데 많이 사용되는데, 종양 질병을 치료하는데 사용되는 전신성 화학요법의 부작용은 암 치료를 받는 환자들에게 가장 문제가 된다. 이러한 부작용 중에서 멀미와 구토는 가장 일반적이며 심각한 부작용이다. 화학요법에 의한 부작용은 환자의 생명에 큰 영향을 미치며 치료에 대한 환자의 순응성을 급격하게 변화시킬 수 있다. 또한, 화학치료제와 관련된 부작용으로는 일반적으로 이러한 약물의 투여시 주의해야 하는 용량 제한 독성(DLT, Dose Limiting Toxicity)이 있다. 예를 들어, 점막염은 여러 항암제, 예컨대 항 대사물질 세포독소제인 5-플루오로우라실, 메소트렉세이트 및 항종양 항생제(예, 독소루비신) 등에 대한 용량 제한 독성이 있 다. 이러한 화학요법 유래의 부작용 중 대부분은 심한 경우 입원을 요하거나 통증을 치료하기 위해 진통제를 필요로 하기도 한다. 이와 같이 화학치료제 및 방사선 치료에 의한 부작용들은 암 환자의 임상적 처치시 주요 문제가 되고 있다.
유전자 치료란 DNA 재조합 방법을 이용하여 치료용 유전자를 환자의 세포 안으로 도입시켜 유전자 결함을 교정시키거나 세포에 새로운 기능을 추가시켜 인체 세포의 유전적 변형을 통해 각종 유전질환, 암, 심혈관질환, 감염성 질병, 그리고 자가면역질환 등과 같은 질환을 치료하거나 예방하는 방법이다. 즉, 치료 유전자를 체내의 원하는 장기로 전달하여 세포내에서 치료용 혹은 정상 단백질이 발현되도록 하여 질병을 치료하는 것을 유전자치료라고 한다. 유전자치료는 일반적인 약물에 의한 치료에 비해서 우수한 선택성을 가질 수 있고 다른 치료법으로는 조절하기 힘든 질병의 치료율 및 치료 속도를 개선하여 오랜 기간동안 적용할 수 있다. 유전자 치료는 단순히 질병의 증상을 치료하는 데에 그치지 않고 질병의 원인을 치료하고 제거하는 방식이다. 이러한 유전자 치료를 효과적으로 하기 위해서는 치료유전자를 원하는 표적세포로 전달하여 높은 발현 효율을 얻을 수 있도록 하는 유전자 전달기술이 필요하다.
유전자 전달체는 원하는 치료 유전자를 대상 세포에 도입하기 위해 필요한 매개체로써, 이상적인 유전자 전달체는 인체에 무해하고 대량 생산이 용이하며 효율적으로 유전자를 전달할 수 있으며 지속적으로 유전자를 발현할 수 있어야 한다. 유전자 전달체 기술은 유전자 치료 기술의 핵심 요소로서, 현재 유전자 치료에 많이 이용되는 대표적 유전자 전달체로는 아데노 바이러스, 아데노 부속 바이러스, 레트로 바이러스와 같은 바이러스성 전달체와 리포좀, 폴리에틸렌이민과 같은 비바이러스성 전달체가 있다.
유전자 치료의 전략 중 종양 세포를 제어하는 전략으로는 종양억제 유전자를 이용하는 방법, 종양 선택적 살상 바이러스를 이용하는 방법, 자살 유전자를 이용하는 방법, 면역조절 유전자를 도입하는 방법 등이 있다. 종양억제 유전자를 이용하는 방법은 상당수의 암환자에서 유전자가 결손 또는 변형되어 있는 p53과 같은 종양억제 유전자를 원형으로 인체에 전달하여 암을 치료하려는 방법이며, 종양선택적 살상바이러스를 이용하는 방법은 암조직에서 변형되어 있는 종양억제 유전자의 활성을 이용하여 종양세포에서만 선택적으로 증식할 수 있는 바이러스 유전자 전달체를 인체에 도입하여 치료효과를 거두려는 방법으로서 모두 종양세포를 직접 살상시키는 전략이다. 자살 유전자를 이용하는 방법도 HSV-TK와 같은 감수성 유전자를 도입하여 종양세포의 자살을 유도하는 방법도 이와 같은 범주에 속한다. 반면, 면역 조절 유전자를 도입하는 방법은 항종양 면역반응을 증강하게 하는 인터루킨 12, 인터루킨 4, 인터루킨 7, 감마 인터페론, 종양괴사인자 등의 유전자를 인체에 전달하여 T세포에게 종양을 인식하도록 유발하거나, 종양 유발 단백질을 차단하여 세포 자살을 유도하여 간접적으로 질병을 치료하는 전략이다. 안지오스타틴, 엔도스타틴과 같은 혈관생성억제인자를 발현시켜 종양으로의 영양공급을 차단하여 괴사시키는 방법도 이와 같은 간접적 질병치료 전략으로 널리 인식되고 있다.
종양의 전이는 암의 생존률에 있어서 결정적인 요소이다. 67 kDa의 라미닌 수용체(67LR)는 원형질막에 포매된(embedded) 비-인테그린형 수용체로서, 암의 침습(침윤) 및 전이와 연관이 있다(Nelson, J. et al. The 67 kDa laminin receptor: structure, function and role in disease. Biosci. Rep. 28, 33-48 (2008)). 67LR은 이들의 37kDa 전구체(37LRP)의 중합(dimerization)에 의해 생성되는데, 이러한 변화 과정에 대한 분자적인 세부기작은 잘 알려져 있지 않다. 37LRP는 폴리좀 형성에 관여하는 리보좀 서브유닛 p40과 동일하다(Auth, D. & Brawerman,G. A 33-kDa polypeptide with homology to the laminin receptor: component of translation machinery. Proc. Natl. Acad. Sci. USA 89, 4368-4372 (1992)). 67LR은 종종 다양한 종류의 암에서 고농도로 관찰된다(Nelson, J. et al.The 67 kDa laminin receptor: structure, function and role in disease. Biosci. Rep. 28, 33-48 (2008); Menard, S., Castronovo, V., Tagliabue, E. & Sobel, M. E.New insights into the metastasis-associated 67 kD laminin receptor. J. Cell. Biochem. 67, 155-165 (1997)). 그러나, 67LR의 막내 존재에서의 조절자나 분자적 기작은 아직 밝혀지지 않았다.
KRS는 단백질 합성을 위하여 동족의(cognate) 아미노산 및 tRNA를 접합시키는 aminoacyl-t-RNA synthetases(ARSs)에 속한다. 이들 원시 효소들은 촉매적 활성 외에도 다면적(pleiotropic) 특징을 갖는다(Park, S. G., Ewalt,K. L. & Kim, S. Functional expansion of aminoacyl-tRNA synthetases and their interacting factors: new perspectives on housekeepers. Trends Biochem. Sci . 30 , 569-574 (2005)). 이에 반해, KRS를 포함한 몇몇 포유류의 ARS는 구성 단백질의 다양한 기능을 조절하기 위하여, 분자 저장소(molecular reservoir)로서 작용하는(Ray, P. S., Arif, A. & Fox, P. Macromolecular complexes as depots for releasable regulatory proteins. Trends Biochem. Sci. 32, 158-164 (2007)) 거대분자 복합체를 형성한다(Lee, S. W., Cho, B. H.,Park, S. G. & Kim, S. Aminoacyl-tRNA synthetase complexes: beyond translation. J. Cell. Sci. 117, 3725-3734 (2004); Han, J. M., Kim, J. Y. & Kim, S. Molecular network and functional implications of macromolecular tRNA synthetase complex. Biochem. Biophys. Res. Commun. 303, 985-993 (2003)). 인간 KRS는 RNA와 기타 단백질간의 상호작용에 관여하는 고유한 N말단 연장부위를 함유하고 있다(Rho, S. B. et al. Genetic dissection of protein-protein interactions in multi-tRNA synthetase complex. Proc. Natl. Sci. Acad. USA 96, 4488-4493 (1999); Francin, M., Kaminska, M., Kerjan,P. &Mirande. M. The N-terminal domain of mammalian Lysyl-tRNA synthetase is a functional tRNA-binding domain. J. Biol. Chem. 277, 1762-1769 (2002)).
이에 본 발명자들은 인간 KRS의 기능적 다양성과 관련하여 이 펩티드의 유의성을 확인하고자, 본 발명자들은 인간 KRS의 N말단 116개 아미노산 펩티드를 분리하여 이스트 투 하이브리드를 이용한 HeLa 세포주 cDNA 라이브러리로부터 인간 KRS에 결합하는 단백질을 스크리닝하는 탐침(bait;미끼)용으로 사용하였다. 상기 스크리닝으로부터, 본 발명자들은 본 발명에서 결합 가능성이 있는 단백질의 하나로서 37LRP/p40을 확인하였고, KRS와 라미닌 수용체간의 상호작용에 있어서의 기능적 연관성을 조사하였다.
그 결과, 라이실 t-RNA 합성효소(lysyl-t-RNA synthetase, KRS)가 원형질 막에 있는 67LR을 안정화시킴으로써 세포 이동 및 암 전이를 촉진하는 등 KRS가 원형질 막의 라미닌 수용체를 통해서 암 전이 또는 암 세포 이동에 영향을 미친다는 것을 알아내어 본 발명을 완성하였다.
따라서 본 발명의 목적은 항-KRS 항체 및 항-KRS 항체와 항-67LR 항체를 유효성분으로 포함하는 암 진단용 조성물을 제공하는 것이다.
상기와 같은 목적을 달성하기 위하여, 항-KRS 항체를 유효성분으로 포함하는 암 진단용 조성물을 제공한다.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은 항-KRS 항체 및 항-67LR 항체를 유효성분으로 포함하는 암 진단용 조성물을 제공한다.
본 발명의 또다른 목적을 달성하기 위하여, 본 발명은 항-KRS 항체 및 항-67LR 항체를 포함하는 암 전이 진단키트를 제공한다.
본 발명의 또다른 목적을 달성하기 위하여, 본 발명은 암 진단에 필요한 정보를 제공하기 위하여, 환자의 시료로부터 항원-항체 반응을 통해 라이실 tRNA 합성효소 및 67kDa 라미닌 수용체를 검출하는 방법을 제공한다.
이하, 본 발명을 상세히 설명한다.
본 발명자들은 KRS가 암 전이 또는 암 세포 이동에 미치는 영향을 처음으로 규명하였다. 즉, 본 발명은 KRS가 원형질 막의 라미닌 수용체를 통해서 암 전이 또는 암 세포 이동에 영향을 미친다는 것을 규명하였다.
따라서, KRS 및/또는 67kDa 라미닌 수용체(67LR)의 검출을 통해 암의 진단, 병의 진행 상태 및 치료전후의 예후의 평가를 위한 진단 마커로서 사용될 수 있다. 본 발명에 따른 암의 진단 및 예후 평가는 생물학적 시료 중에서 KRS 및/또는 67LR 단백질을 검출함으로써 수행될 수 있다. 이에 본 발명은 항-KRS 항체를 유효성분으로 포함하는 암 진단용 조성물을 제공한다. 아울러, 진단의 효과, 즉 진단의 정확성을 더 높이기 위하여, 여러 개의 마커를 사용하면 좋기 때문에, 본 발명의 KRS는 67LR과 더불어 암 진단용 마커로 사용될 수 있다. 따라서, 본 발명은 항-KRS 항체 및 항-67LR 항체를 유효성분으로 포함하는 암 진단용 조성물을 제공한다.
본 발명에서 사용된 용어 “암 진단 마커”란 암 조직 및 세포에서 발현되고 이의 발현 여부를 확인함으로써 암의 발병을 확인할 수 있는 물질, 바람직하게는 정상 조직과 암 조직에서 유의한 차이를 보이는 단백질 또는 mRNA 등과 같은 유기 생체 분자를 의미한다. 본 발명에서 암 진단 마커는 KRS 및 67LR이며 시료에서 이의 유무 또는 양을 확인함으로써 암을 진단할 수 있다.
본 발명의 조성물이 적용될 수 있는 질환은 암일 수 있다. 상기 암은 이에 제한되지는 않으나, 대장암, 폐암, 간암, 위암, 식도암, 췌장암, 담낭암, 신장암, 방광암, 전립선암, 고환암, 자궁경부암, 자궁내막암, 융모암, 난소암, 유방암, 갑상선암, 뇌암, 두경부암, 악성흑색종, 림프종, 재생불량성 빈혈 등을 포함한다.
아울러, 상기 암 진단은 암의 전이의 진단일 수 있다. 즉, KRS 및 67LR의 검출을 통해 암의 전이 여부의 진단, 병의 진행 상태 및 치료전후의 예후의 평가를 위한 진단 마커로 사용될 수 있다.
본 발명에서 사용된 용어 “생물학적 시료” 또는 “시료”는 혈액 및 생물학적 기원의 기타 액상 시료, 생검 표본, 조직 배양과 같은 고형 조직 시료 또는 이로부터 유래된 세포가 포함된다. 보다 구체적으로 예를 들면 이에 한정되지는 않으나 조직, 추출물, 세포 용해물, 전혈, 혈장, 혈청, 침, 안구액, 뇌척수액, 땀, 뇨, 젖, 복수액, 활액, 복막액 등일 수 있다. 상기 시료는 동물, 바람직하게는 포유동물, 가장 바람직하게는 인간으로부터 수득될 수 있다. 상기 시료는 검출에 사용하기 전에 전처리할 수 있다. 예를 들어, 여과, 증류, 추출, 농축, 방해 성분의 불활성화, 시약의 첨가 등을 포함할 수 있다. 또한, 상기 시료로부터 핵산 및 단백질을 분리하여 검출에 사용할 수 있다.
본 발명에서 사용된 용어 “검출”은 표적 KRS 또는 67LR 단백질, 그의 서브유닛의 존재 또는 부재를 분석, 영상화, 확인, 확립하는 것을 말한다.
본 발명에서 "KRS 단백질 또는 “KRS 폴리펩티드"는 라이실 tRNA 합성효소로 알려져 있는 폴리펩티드를 말한다. 상기 KRS 폴리펩티드는 서열번호 1로 표시되는 아미노산 서열을 갖는 폴리펩티드일 수 있다(Genbank Accession No. NP_005539.1). 또한 본 발명의 KRS는 이의 기능적 동등물을 포함한다.
상기 기능적 동등물이란 서열번호 1로 표시되는 아미노산 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 보다 바람직하게는 90% 이상의 서열 상동성(즉, 동일성)을 갖는 폴리펩티드를 말한다. 예를 들면, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%의 서열 상동성을 갖는 폴리펩티드를 포함하는 것으로, 서열번호 1로 표시되는 폴리펩티드와 실질적으로 동질의 생리활성을 나타내는 폴리펩티드를 말한다. 여기서, "실질적으로 동질의 생리활성"이란 원형질막의 라미닌 수용체와 상호작용하며, 암 전이 또는 암 세포 이동을 조절하는 것을 의미한다. 상기 기능적 동등물은 서열번호 1의 아미노산 서열 중 일부가 부가, 치환 또는 결실의 결과 생성될 것일 수 있다. 상기에서 아미노산의 치환은 바람직하게는 보존적 치환이다. 천연에 존재하는 아미노산의 보존적 치환의 예는 다음과 같다 지방족 아미노산(Gly, Ala, Pro), 소수성 아미노산(Ile, Leu, Val), 방향족 아미노산(Phe, Tyr, Trp), 산성 아미노산(Asp, Glu), 염기성 아미노산(His, Lys, Arg, Gln, Asn) 및 황함유 아미노산(Cys, Met). 또한 상기 기능적 동등물에는 본 발명의 KRS 폴리펩티드의 아미노산 서열상에서 아미노산의 일부가 결실된 변형체도 포함된다. 상기 아미노산의 결실 또는 치환은 바람직하게는 본 발명의 폴리펩티드의 생리활성에 직접적으로 관련되지 않은 영역에 위치해 있다. 또한 아미노산의 결실은 바람직하게는 KRS 폴리펩티드 의 생리활성에 직접 관여하지 않는 부분에 위치한다. 아울러 상기 KRS 폴리펩티드의 아미노산 서열의 양 말단 또는 서열 내에 몇몇의 아미노산이 부가된 변형체도 포함된다. 또한 본 발명의 기능적 동등물의 범위에는 본 발명에 따른 폴리펩티드의 기본 골격 및 이의 생리 활성을 유지하면서 폴리펩티드의 일부 화학 구조가 변형된 폴리펩티드 유도체도 포함된다. 예를 들어, 본 발명의 폴리펩티드의 안정성, 저장성, 휘발성 또는 용해도 등을 변경시키기 위한 구조변경이 이에 포함된다.
본 명세서에서 서열 상동성 및 동질성은 KRS의 아미노산 서열(서열번호 1)과 후보 서열을 정렬하고 갭(gaps)을 도입한 후 KRS의 아미노산 서열에 대한 후보 서열의 아미노산 잔기의 백분율로서 정의된다. 필요한 경우, 최대 백분율 서열 동질성을 수득하기 위하여 서열 동질성의 부분으로서 보존적 치환은 고려하지 않는다. 또한, KRS의 아미노산 서열의 N-말단, C-말단 또는 내부 신장, 결손 또는 삽입은 서열 동질성 또는 상동성에 영향을 주는 서열로서 해석되지 않는다. 또한, 상기 서열 동질성은 두 개의 폴리펩티드의 아미노산 서열의 유사한 부분을 비교하기 위해 사용되는 일반적인 표준 방법에 의해 결정할 수 있다. BLAST 또는 FASTA와 같은 컴퓨터 프로그램은 두 개의 폴리펩티드를 각각의 아미노산이 최적으로 매칭되도록 정렬한다(하나 또는 두 서열의 전장서열을 따라 또는 하나 또는 두 서열의 예측된 부분을 따라). 상기 프로그램은 디펄트 오프닝 페널티(default opening penalty) 및 디펄트 갭 페널티(default gap penalty)를 제공하며 컴퓨터 프로그램과 함께 연계되어 사용될 수 있는 PAM250(표준 스코링 매트릭스 Dayhoff et al., in Atlas of Protein Sequence and Structure, vol 5, supp 3, 1978)와 같은 스코링 매트릭스를 제공한다. 예를 들어, 백분율 동질성은 다음과 같이 계산할 수 있다. 일치하는 서열(identical matches)의 총 수에 100을 곱한 다음 대응되는 스팬(matched span) 내의 보다 긴 서열의 길이와 두 서열을 정렬하기 위해 보다 긴 서열 내로 도입된 갭(gaps)의 수의 합으로 나눈다.
본 발명에 따른 KRS 단백질은 천연에서 추출하거나 유전공학적 방법에 의해 작제될 수 있다. 예를 들면, 통상적인 방법에 따라 상기 KRS 또는 이의 기능적 동등물을 암호화하는 핵산(예: 서열번호 2(Genbank Accession No. D32053))을 작제한다. 상기 핵산은 적절한 프라이머를 사용하여 PCR 증폭함으로써 작제할 수 있다. 다른 방법으로 당업계에 공지된 표준 방법에 의해, 예컨대, 자동 DNA 합성기(Biosearch 또는 Applied Biosystems 사에서 판매하는 것)을 사용하여 DNA 서열을 합성할 수도 있다. 작제된 핵산은 이에 작동가능하게 연결되어(operatively linked) 핵산의 발현을 조절하는 하나 이상의 발현 조절 서열(expression control sequence)(예: 프로모터, 인핸서 등)을 포함하는 벡터에 삽입시키고, 이로부터 형성된 재조합 발현 벡터로 숙주세포를 형질전환시킨다. 생성된 형질전환체를 상기 핵산이 발현되기에 적절한 배지 및 조건 하에서 배양하여, 배양물로부터 상기 핵산에 의해 발현된, 실질적으로 순수한 폴리펩티드를 회수한다. 상기 회수는 당업계에 공지된 방법(예컨대, 크로마토그래피)을 이용하여 수행할 수 있다. 상기에서 "실질적으로 순수한 폴리펩티드(substantially pure polypeptide)"라 함은 본 발명에 따른 폴리펩티드가 숙주세포로부터 유래된 어떠한 다른 단백질도 실질적으로 포함하지 않는 것을 의미한다. 본 발명의 폴리펩티드 합성을 위한 유전공학적 방법은 다음의 문헌을 참고할 수 있다: Maniatis et al., Molecular Cloning; A laboratory Manual, Cold Spring Harbor laboratory, 1982; Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, N.Y., Second(1998) and Third(2000) Editions Gene Expression Technology, Method in Enzymology, Genetics and Molecular Biology, Method in Enzymology, Guthrie & Fink(eds.), Academic Press, San Diego, Calif, 1991; 및 Hitzeman et al., J. Biol. Chem., 255:12073-12080, 1990.
또한, 본 발명의 폴리펩티드는 당업계에 공지된 화학적 합성(Creighton, Proteins; Structures and Molecular Principles, W. H. Freeman and Co., NY, 1983)에 의해 쉽게 제조될 수 있다. 대표적인 방법으로서 이들로 한정되는 것은 아니지만 액체 또는 고체상 합성, 단편 응축, F-MOC 또는T-BOC 화학법이 포함된다(Chemical Approaches to the Synthesis of Peptides and Proteins, Williams et al., Eds., CRC Press, Boca Raton Florida, 1997; A Practical Approach, Athert on & Sheppard, Eds., IRL Press, Oxford, England, 1989).
발명에서 67 kDa의 라미닌 수용체(67LR)는 원형질막에 포매된(embedded) 비-인테그린형 수용체로서 예를 들어, Genbank Accession No. NM_002295, S37431, AF284768, S37431, AF284768, J03799, XP_370865, XP_001083023.에 기재된 염기서열 또는 아미노산 서열을 가질 수 있다.
본 발명에서 KRS 또는 67LR을 검출하는 방법으로는 당 업계에 공지된 다양한 분석방법을 사용할 수 있다. 바람직하게는, 시료를 각각 KRS 및 67LR 단백질에 특이적으로 결합하는 항체, 즉 항-KRS 항체 또는 항-67LR 항체와 접촉시켜 항원-항체 복합체의 형성여부를 측정한다.
본 발명에서 용어 “항원-항체 복합체”란 생물학적 시료 중의 KRS 또는 67LR 단백질과 이를 특이적으로 인지하는 항체의 결합물을 의미한다.
본 발명에서 “항체”란 항원성 부위에 대해서 지시되는 특이적인 단백질 분자를 의미한다. 본 발명에 사용되는 항체는 단클론 또는 다클론 항체, 면역학적으로 활성인 단편(예를 들어, Fab 또는 (Fab)2 단편), 항체 중쇄, 인간화 항체, 항체 경쇄, 유전자 조작된 단일쇄 Fν 분자, 키메릭 항체 등일 수 있다.
KRS 또는 67LR 단백질은 각각 공지된 단백질이므로 본 발명에 사용되는 항체는 각각의 단백질을 항원으로 하여 면역학 분야에서 널리 알려져 있는 통상의 방법으로 제조할 수 있다. 본 발명에 따른 항체의 항원으로서 사용되는 KRS 또는 67LR 단백질은 천연에서 추출하거나 합성될 수 있으며 DNA 서열을 기초로 하여 재조합 방법에 의해 제조될 수 있다. 유전자 재조합 기술을 이용할 경우 KRS 또는 67LR 단백질을 코딩하는 핵산을 적절한 발현 벡터에 삽입하고, 재조합 발현 벡터로 형질전 환된 형질전환체에서 KRS 또는 67LR 단백질이 발현되도록 숙주 세포를 배양한 후 형질전환체로부터 KRS 또는 67LR 단백질을 회수함으로써 수득될 수 있다.
예를 들어, 다클론 항체는 KRS 또는 67LR 단백질 항원을 동물에 주사하고 동물로부터 채혈하여 항체를 포함하는 혈청을 수득하는 방법에 의해 생산할 수 있다. 이러한 항체는 말, 소, 염소, 양, 개, 닭, 칠면조, 토끼, 마우스 또는 래트와 같은 여러 온혈 동물을 이용하여 제조할 수 있다.
단클론 항체도 공지된 융합방법(fusion method)(Kohler and Milstein, European J. Immnunol. 6:511-519 1976), 재조합 DNA 방법(미국특허 제4816567호) 및 파지 항체 라이브러리(Clackson et al., Nature, 352, 624-628, 1991; Marks et al., J. Mol. Biol. 222, 58:1-597, 1991) 기술을 이용하여 제조할 수 있다.
한편, 본 발명은 항-KRS 항체를 포함하는 암 진단용 키트 또는 항-KRS 항체 및 항-67LR 항체를 포함하는 암 진단용 키트를 제공한다.
본 발명의 키트는 항-KRS 항체 또는 항-67LR 항체이외에 면역학적 분석에 사용되는 당 업계에 공지된 도구 및/또는 시약을 추가로 포함할 수 있다.
상기에서 면역학적 분석은 항원과 항체의 결합을 측정할 수 있는 있는 방법 이라면 모두 포함될 수 있다. 이러한 방법들은 당 분야에 공지되어 있으며 예를 들어, 면역세포화학 및 면역조직화학, 방사선 면역 분석법(radioimmunoassays), 효소결합면역법(ELISA: Enzyme Linked Immunoabsorbent assay), 면역 블롯(immunoblotting), 파아르 분석법(Farr assay), 면역침강, 라텍스 응집, 적혈구 응집, 비탁계법, 면역확산법, 카운터-전류 전기영동법, 단일 라디칼 면역확산법, 단백질 칩 및 면역형광법이 있다.
면역학적 분석에 사용되는 도구 및/또는 시약으로는 적합한 담체 또는 지지체, 검출 가능한 신호를 생성할 수 있는 표지, 용해제, 세정제가 포함된다. 또한, 표지물질이 효소인 경우에는 효소활성을 측정할 수 있는 기질 및 반응 정지제를 포함할 수 있다.
본 발명의 진단용 키트에 포함되는 항체는 바람직하게는 적합한 담체 또는 지지체에 문헌에 개시된 바와 같은 다양한 방법을 이용하여 고정될 수 있으며(Antibodies: A Labotory Manual, Harlow & Lane; Cold SpringHarbor, 1988), 적합한 담체 또는 지지체의 예로는 아가로스, 셀룰로즈, 니트로셀룰로즈, 덱스트란, 세파덱스, 세파로즈, 리포솜, 카복시메틸 셀룰로즈, 폴리아크릴아미드, 폴리스테린, 반려암, 여과지, 이온교환수지, 플라스틱 필름, 플라스틱 튜브, 유리, 폴리아민-메틸 비닐-에테르-말레산 공중합체, 아미노산 공중합체, 에틸렌-말레산 공중합체, 나일론, 컵, 플랫 팩(flat packs) 등이 포함된다. 그 외의 다른 고체 기질로 는 세포 배양 플레이트, ELISA 플레이트, 튜브 및 폴리머성 막이 있다. 상기 지지체는 임의의 가능한 형태, 예를 들어 구형(비드), 원통형(시험관 또는 웰 내면), 평면형(시트, 시험 스트립)을 가질 수 있다.
검출 가능한 신호를 생성할 수 있는 표지는 항원-항체 복합체의 형성을 정성 또는 정량적으로 측정가능하게 하며, 이의 예로는 효소, 형광물질, 리간드, 발광물, 미소입자(microparticle), 레독스 분자 및 방사성 동위원소 등을 사용할 수 있다. 효소로는 β-글루쿠로니다제, β-D-글루코시다제, 우레아제, 퍼옥시다아제, 알칼라인 포스파타아제, 아세틸콜린에스테라아제, 글리코즈 옥시다아제, 헥소키나제, 말레이트 디하이드로게나아제, 글루코스-6-인산디하이드로게나아제, 인버타아제 등을 사용할 수 있다. 형광물로는 플루오레신, 이소티오시아네이트, 로다민, 피코에리테린, 피코시아닌, 알로피코시아닌, 플루오르신이소티옥시아네이트 등을 사용할 수 있다. 리간드로는 바이오틴 유도체 등이 있으며, 발광물로는 아크리디늄 에스테르, 루시페린, 루시퍼라아제 등이 있다. 미소입자로는 콜로이드 금, 착색된 라텍스 등이 있고 레독스 분자로는 페로센, 루테늄 착화합물, 바이올로젠, 퀴논, Ti 이온, Cs 이온, 디이미드, 1,4-벤조퀴논, 하이드로퀴논 등이 있다. 방사성 동위원소로는 3H, 14C, 32P, 35S, 36Cl, 51Cr, 57Co, 58Co, 59Fe, 90Y, 125I, 131I, 186Re 등이 있다. 그러나 상기 예시된 것들 외에 면역학적 분석법에 사용할 수 있은 것이라면 어느 것이라도 사용할 수 있다.
또한, 본 발명은 암 진단에 필요한 정보를 제공하기 위하여, 환자의 시료로부터 항원-항체 반응을 통해 라이실 tRNA 합성효소(KRS) 및 67kDa 라미닌 수용체(67LR)를 검출하는 방법을 제공한다. 이 때, 시료, KRS 단백질, 67LR 단백질 및 항원-항체 반응에 대해서는 상기에서 기재한 바와 같다.
참고로, 상기에서 언급한 뉴클레오티드 및 단백질 작업에는 다음의 문헌을 참조할 수 있다(Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.(1982); Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press(1989); Deutscher, M., Guide to Protein Purification Methods Enzymology, vol. 182. Academic Press. Inc., San Diego, CA(1990)).
본 발명에 기재된 도면에 대해서 다음과 같이 설명한다.
도 1 내지 도 6은 인간 KRS와 라미닌 수용체의 특이적 상호작용을 확인한 것이다. 도 1에서, 전체 길이의 인간 KRS와 37LRP/p40간의 상호작용은 이스트 투 하이브리드 분석을 통하여 수행되었다. 다중-ARS 복합체의 두 구성요소인 AIMP1 및 AIMP2는 각각 양성 및 음성 대조군으로 사용되었다. 양성 상호작용은 x-gal을 함유한 효모배지에서 청색 콜로니의 형성에 의해 표지되었다. 도 2에서, 37LRP는 35S 메티오닌의 존재하에서 in vitro 번역에 의해 합성되었고, 이들을 GST-KRS 또는 GST와 반응하였다(pull-down). GST-KRS와 공침전된(co-precipitated) 37LRP은 자가방사촬영법을 이용하여 측정하였다. 도 3에서, KRS 및 37LRP의 상호작용에 연관된 펩티드 부위는 이스트 투 하이브리드 분석을 통하여 측정되었다. N말단의 세포내 부위(54 내지 113번째 아미노산) 및 C말단의 세포외 부위(137 내지 210번째 아미노산)를 가지고 있는 296개 아미노산을 가진 37LRP는 막간 도메인(113 내지 137번째 아미노산)에 의해 구분되어 진다. 인간 KRS(597개의 아미노산)의 N말단 특이적 확장(약 70개의 아미노산)부위 다음에OB-fold 안티코돈-결합성 도메인(약 70 내지 214 아미노산)과 촉매 도메인(약 220 내지 574 아미노산)이 위치해 있다. 도 4에서, Myc-KRS에 감염된 A549 세포를 용해하여 항-Myc 및 항-라미닌 수용체 항체로 면역블롯을 실시하였다. Myc-KRS를 항-Myc 항체와 면역침전시키고, 67LR 및37LRP로 공침전시켜 면역블롯을 수행하였다. 37LRP 및 67LR의 특이적 블롯을 위해, 다중항체인 H-141 및 F-18(Santacruz)이 각각 사용되었다.(WCL : whole cell lysate) 도 5에서, Myc-KRS로 감염된 A549 세포의 용해물을 지시한 항체로 웨스턴블롯을 시행하였다. 세포는 세포질(C) 및 막 분획(M)으로 분리되어 항-Myc 항체로 면역침전되었고, 37LRP 및 67LR로 공침전된 것은 웨스턴블롯으로 조사하였다. 대조군으로서 IgG를 사용하였다. 도 6에서 라미닌 (10ug/ml, 1h) 처리했을 경우, 67LR 과 KRS 간의 결합이 늘었음을 확인하였다. 이를 보기 위해, 67LR 를 인식하는 antibody(abcam, cat # ab2508)로 면역침전(immunoprecipitation)을 하였고, 왼쪽의 IgG 라벨은 토끼 으로부터 얻은 전체 IgG(total IgG)로서 음성대조군으로 사용 되었다. 10% SDS PAGE를 수행한 다음, PVDF 막 에 옮긴 뒤, KRS와 67LR을 인식하는 항체로 각각 면역블럿을 하였다.
도 7 내지 도 12는 라미닌-유도성 막 전위(translocation) 및 KRS의 인산화에 대해서 확인한 것이다. 도 7에서, A549 세포를 라미닌(10ug/ml)으로 처리하여 웨스턴블롯을 이용하여 67LR, 37LRP 및 KRS의 양(level)을 시간대별로 관찰하였다. Hsp90 및 케드헤린(Cad)을 각각 세포질 및 막의 마커로 사용하였다. 도 8에서, A549 세포를 1시간동안 라미닌으로 처리, 또는 무처리하여 항-67 LR(MLuC5, Santacruz, sc-59732)(적색) 및 KRS 항체(녹색)을 사용하여 면역형광염색을 실시하였다. 도 9에서, A549 세포를 PLC-감마, PKC 및 PI3K를 각각 억제하는 U73122(U), 스타우로스포린(staurosporin, ST) 및 LY294002(LY)로 3시간동안 처리하고 라미닌으로 1시간동안 처리한 후, 이들 인산화효소 억제제가 67LR 및 KRS의 세포질 및 막에 어떠한 영향을 끼치는지를 확인하였다. 도 10에서, A549세포를 Myc-KRS로 감염시켜 24시간동안 배양하였다. 이후, 표시된(indicated) 약물로 처리하고, 상기와 같이 라미닌으로 처리하였다. Myc-KRS으로 면역침전하고, 항-p-Thr, -Ser, 및 -Tyr 항체로 면역블롯을 실시하였다. 도 11에서, A549 세포 세포를 Myc-KRS로 감염시켜 24시간동안 배양하였다. 감염된 세포를 LY294002로 3시간동안 전처리하고, 라미닌으로 1시간동안 처리하였다. Myc-KRS는 면역침전되었고, 67LR의 공침전은 웨스턴블롯으로 조사하였다. 면역침전법의 대조군으로서 IgG를 사용하였다. 도 12에서, 상기한 바와 같이 A549세포를 라미닌 및 LY294002의 존재 또는 부재 하에 배양하였 다. EPRS(glutamyl-prolyl-tRNA synthetase)는 이에 특이적인 항체(AbCam)와면역침전되었고, KRS의 공침전은 웨스턴블롯으로 확인하였다(상). 면역-소진 상층액(immune-depleted supernatant: ID)으로 항-KRS 및 EPRS 항체와 웨스턴블롯을 수행하였다.
도 13 내지 도 17은 KRS는 막-결합성 67LR을 안정화시킨다는 점을 확인한 것이다. 도 13에서, A549 세포를 si-대조군(si-cont) 또는 si-KRS로 감염시키고, 라미닌의 존재 또는 부존재 하에서 배양시켰다. 이후, 세포들을 세포질과 막 분획으로 분리하여 각각의 분획에서의 67LR 및 KRS의 양을 웨스턴블롯으로 확인하였다. 케드헤린(적색) 및hsp90을 각각 세포막 및 세포질의 마커로 사용하였다. 도 14에서, A549 세포에 있어서 막-결합성 67LR의 양은 항-LR 항체(MluC5)를 이용하여 유세포 분석기로 관찰되었다. 공벡터 또는 KRS 플라스미드로 감염된 세포들을 24시간동안 배양하였다.(상) 67LR의 양에 있어서 KRS 억제의 효과를 보기 위하여, 세포를 si-KRS 또는 si-대조군로 감염시키고 48시간동안 배양하였다.(하) 도 15에서, EV(공벡터) 또는 KRS로 감염시킨 A549 세포를 G418로 1주일간 선별하고 항-LR 항체(MluC5)를 이용한 면역형광 염색을 이용하여 67LR의 세포내 분포를 확인하였다. 막에 분포한 LR은 흰색 화살표로 강조하였다. 도 16에서, A549 세포를 시클로헥시미드로 처리하여 새로운(de novo) 단백질 합성을 억제하고 세포막과 세포질 내의 67LR 양에 있어서 KRS 양의 효과를 웨스턴블롯으로 조사하였다. 도 17에서, 67LR의 세포적 안정성에 있어서 KRS의 중요성은 펄스-체이스 실험을 통하여 조사되었다. 293 세포를 si-KRS 또는 si-대조군로 감염시키고 방사성 메티오닌을 1시간동안 반응시켰다. 67LR을 67LR에 특이적으로 반응하는 항체(F-18, Santacruz)와 면역침전 시키고, SDS-PAGE에 의해 분리시킨 후, 자가방사촬영법을 실시하였다. 특이성 siRNA에 의한 KRS의 억제는 웨스턴블롯에 의해 수행되었으며, 로딩 대조군으로서 튜불린을 사용하였다.
도 18 내지 도 22는 KRS는 67LR을 통하여 세포 이동(cell migration) 및 암 전이를 촉진한다는 점을 확인한 것이다. 도 18에서, A549 세포를 표시된(indicated) 플라스미드로 감염시키고 라미닌의 부존재 또는 존재 하에서 배양하였고, 이들의 세포 이동에 대한 효과는 트렌스웰 챔버에서 이동한 세포를 측정하여 확인하였다. 막을 통과한 세포의 수를 계수하여 각 패널에 표시하였다. 실험은 3회 반복하였다. 도 19에서, 상기와 같이 처리한 세포들을 MMP-2의 활성 및 양 측정을 위하여 각각 자이모그래피 및 웨스턴블롯을 실시하는데 사용하였다. 도 20에서, 유방암 세포주인 4T-1 세포를 표시된(indicated) siRNA로 감염시키고, Balb/C 마우스의 등에 피하주사하였다. 21일 경과후, 마우스의 폐를 적출하여 직경 1mm 이상의 종양 결절을 계수하였다. 도 21에서, 외인성 KRS(KRS-1, 및 KRS-2)를 발현하는 2종의 서로 다른 4T-1 세포를 상기와 같이 접종하고 30일 경과후 계수하였다. 공벡터를 감염시킨 세포를 대조군으로 사용하였다. 도 22에서, 폐암(상) 및 유방암(하) 조직에서의 KRS 및 67LR의 발현량을 이들 각각의 항체를 이용한 면역조직화학 염색법을 사용하여 비교하였다. 39개의 폐암 및 40개의 유방암 조직을 이용하여 항-KRS 및 항-67LR 항체로 면역조직화학 염색을 실시하였고, 이들의 발현량은 정상조직의 그것과 비교되었다(각 조직당 9개의 시료). 여기에 보이는 동일 환자의 대표적인 쌍들은 KRS와 67LR의 과발현을 보여준다. KRS와 67LR의 통계학적 상관관계는 표 1에서 보여주고 있다.
도 23에서는 67LR의 막에서의 양은 KRS 발현에 의존한다는 점을 보여 준다. 도 23에서, 표시된(indicated) 플라스미드로 감염된 293 세포를 세포질 및 세포막 분획으로 분리하고, 각각의 분획에서 67LR, 37LRP 및 KRS의 양을 상응하는 항체를 이용한 웨스턴블롯을 수행하여 확인하였다.
도 24 내지 도 27은 세포이동, 단백질 합성 및 세포주기에 있어서 세포내 및 세포외 KRS의 효과를 확인한 것이다. 도 24에서, 라미닌 부존재 하에서 배양된 A549 세포의 이동은 트렌스웰 챔버에서 이동한 세포를 측정하여 확인하였다. 도 25에서, KRS의 화학주성적(chemotactic) 활성을 보고자, 표시된 농도로 KRS를 함유한 무혈청 배지를 트랜스웰 챔버의 아래 챔버에 넣고, A549 세포를 위 챔버에 넣어 배양하였다. 배양 6시간 경과후, 이동한 세포를 계수하였다. 도 26에서, A549 세포에서 KRS의 양은 siRNA와 외인성 KRS의 도입에 의해 하락 조절 또는 상승 조절되었다(도 26 및 도 27의 하단 패널). 감염된 세포는 각각 48시간 및 24시간 배양되고 무-메티오닌 배지에서 1시간동안 배양하여 영양결핍상태를 만든후 방사성 표지가 된 메티오닌으로 2시간동안 표지하였다. 세척후, 세포를 4시간동안 배양하고 0.5% 트리톤 X-100 용해액으로 용해시키고 방사성 활성을 액상 섬광 계수기(liquid scintillation counting)로 측정하였다. 도 27에서, A549 세포를 표시된 바와 같이 감염시키고, 고정시켜 프로피디움 아이오다이드(Propidium iodide)로 염색하여 유세포 분석기에서 분석하였다.
도 28 내지 도 30은 암 전이에 있어서 KRS 억제의 효과를 확인한 것이다. 도 28에서, 표적 단백질의 발현에 있어서 si-KRS 및 si-DRS의 효과는 웨스턴블롯에 의해 조사되었다. 로딩 대조군으로서는 튜불린을 사용하였다. 도 29에서, siRNA가 감염된 세포(1 x 106)을 상기의 방법과 같이 주사하였고, 21일 경과 후 종양의 크기 및 부피를 측정함으로써 1차 종양 증식에 있어서 KRS 및 DRS 억제의 효과를 조사하였다. 각각의 그룹은 5마리의 마우스를 사용하였다. 도 30에서, 상기의 마우스에서 적출된 폐는 10% 포르말린 용액에 고정되었다. 전이성 종양 결절 및 수는 보여지는 바와 같다.
도 31 내지 도 33은 암 전이에 있어서 KRS 과발현의 효과를 확인한 것이다. 도 31에서, KRS-1 및 KRS-2세포주의 과발현은 웨스턴블롯에 의해 관찰되었다. 도 32에서, 1차 종양 증식에 있어서의 KRS 과발현의 효과는 서로 비교되었다. 도 33에서, 종양 전이에 있어서의 KRS 과발현의 효과는 접종후 30일째에 조사되었다. 각각의 그룹은 4마리의 마우스를 사용하였다.
본 발명자들은 KRS가 원형질막으로 전좌(translocation)되어 67LR과 상호작용함으로써 종양(또는 암) 세포의 이동을 촉진하여 암의 전이(metastasis)에 영향을 미친다는 것을 규명하였다. 또한, 마우스를 이용한 in vivo 실험을 통해서 KRS의 과발현 또는 발현 억제가 암의 전이를 조절할 수 있음을 규명하였다. 따라서, 본 발명의 KRS를 이용하여 암 전이 또는 암 세포 이동을 조절할 수 있으며, 나아가 원형질막의 라미닌 수용체(67LR)과 관계된 세포 내 대사를 조절할 수 있다. 본 발명에서 규명한 KRS와 라미닌 수용체의 관계는 이와 관계된 다양한 질환 또는 질병의 치료, 예방 및/또는 진단에 매우 유용하게 사용될 수 있다.
이하, 본 발명을 실시예에 의해 상세히 설명한다.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
<실험 방법>
1. 세포배양 및 재료들
A549 및 HEK293 세포는 ATCC로부터 구입하였다. 마우스 유방암(mammary carcinoma) 4T-1 세포주는 김성진 박사(가천의대)로부터 얻었다. 10% 우태아 혈청(Fetal bovine serum, FBS) 및 1% 항체를 포함하는, RPMI(A549 세포 및 4T-1 세포에 대한) 및 DMEM(Dulbecco's Modified Eagle Medium, 다른 새포에 대한) 배지를 세포 배양에 사용하였다. 37LRP를 암호화하는 pcDNA3.1 벡터는 타치바나 히로푸미 박사(큐슈 대학)로부터 얻었다. Myc이 부착된(Myc-tagged) 인간 KRS 및 DRS는 pcDNA3 벡터의 EcoRI/XhoI 제한효소 부위에 클로닝하였다. 설치류 KRS cDNA는 RT-PCR로 확보하였으며, pcDNA3.1 벡터의 HindIII/XhoI 제한효소 부위에 클로닝하였다. 설치류 및 인간 KRS 및 DRS에 타겟팅(targeting)하는 siRNA는 Invitrogen사로부터 구입하였다. siRNA의 서열은 요청하면 제공될 것이다. 유전자 포터(Gene porter, GTS) 및 리포펙타민 2000(invitrogen)은 형질감염 시약으로 사용되었다. LY294002, U73122 및 스타우로스포린(staurosporin)은 Calbiochem으로부터 구입하였고, 싸이클로헥시마이드(cycloheximide) 및 라미닌(laminin, Engelbreth-Holm-Swarm murine sarcoma)은 Sigma로부터 구입하였다.
2. 면역침강 및 웨스턴 블럿
세포를 150mM NaCl, 0.5% 트리톤 X-100, 0.1% SDS 및 단백질 분해효소 저해제를 포함하는 20mM Tris-HCl 버퍼(pH 7.4, 용해버퍼)로 용해하였다. 단백질 추출물을 정상 IgG 및 단백질 G 아가로스와 2시간동안 배양한 다음(incubation), 비특이적으로 IgG에 결합한 단백질을 제거하기 위해 원심분리하였다. 상등액을 정제도니 67LR 항체(F-18, Santacruz)와 혼합한 다음, 흔들어 주면서 4℃에서 2시간 동안 배양하고, 단백질 A 아가로스를 혼합하였다. 얼음으로 차갑게 냉각한 용해버퍼를 이용하여 3회 세척한 다음, 침전물을 SDS-샘플 버퍼에 녹이고, SDS-PAGE로 분리하였다. 서로 다른 세포 분획에서 KRS 및 LR의 결합을 확인하기 위하여, pcDNA3.1- Myc-KRS로 형질감염을 하고, proteoextract 키트(Calbiochem)를 이용하여 제조사의 지침에 따라 플라스마 멤브레인과 싸이토플라즘 분획을 분리한 다음, 상기와 같이 공동-면역침강을 수행하였다. 단백질 수준을 분석하기 위해, 단백질을 세포에서 추출한 다음 10% SDS-PAGE로 분리하였다. 따로 언급하지 않는 한 항-LR 항체(Abcam, ab2508)을 37LRP 및 67LR의 동시 면역 블롯팅에 사용하였다. hsp90 및 팬-캐드헤린(Pan-cadherin)에 대한 항체는 Santacruz로부터 구입하였다.
3. 유세포 분석(flow cytometry)
세포 싸이클을 address하기 위하여, 배양된 세포를 표시된 벡터 또는 화합물로 형질감염 또는 처리하고, 70% 에탄올로 4℃에서 1시간동안 고정한 다음 얼음으로 냉각한 PBS로 2회 세척하였다. 그런 다음 세포를propidium iodide(50μg/ml), 0.1% sodium citrate, 0.3% NP40 및 RNaseA(50μg/ml)로 40분간 염색한 다음, 플로우 싸이토메트리(FACS Calibur, Beckton-Dickinson)를 수행하였다. 각각의 샘플에 대해서, Cell Quest Pro 소프트웨어를 사용하여20000 세포를 분석하였다. 세포 표면의 67kD LR의 양을 분석하기 위하여, 1 x 106 세포를 IgG 또는 67LR의 세포외 도메인을 인식하는 항-LR 항체(MLuC5, 1ug)와 배양한 다음, FITC 2차 항체와 배양하였다. PBS로 세척한 다음 샘플을 FACS로 스캔하였다.
4. 면역형광염색 또는 면역조직화학염색
9mm 커버 슬립(cover slip)위의 A549 세포를 70% 메틸알콜로 고정한 다음 찬 PBS로 간단히 세척하였다. 1% CAS, 3% BSA 및 0.5% triton X-100을 포함하는 블로킹 버퍼로 30분간 처리한(incubation) 다음, 세포를 KRS에 대한 항체(Abcam), 및 MLuC-5에 대한 항체(Santacruz)로 1시간 동안 배양하였다. 알렉사488 및 568(invitrogen)을 첨가한 다음 실온에서 30분간 처리하였다. 찬 PBS로 30분간 세척한 다음, 표본을 레이저 스캐닝 마이크로스코피로 관찰하였다. 유방암 및 폐암에 대한 조직 배열 슬라이드(tissue array slide)를 Super-Biochip(한국)으로부터 구입하였고, 67LR 및 KRS의 발현 수준을 확인하기 위하여 문헌(Park, S. G. et al. Human lysyl-tRNA synthetase is secreted to trigger pro-inflammatory response, Proc. Natl. Acad. Sci. U S A 102, 6356-6361 (2005))에 언급된 상응하는 항체와 면역조직화학염색을 수행하였다. 67LR 및 KRS의 발현간의 상관관계를 계산하기 위하여 피어슨 χ2 테스트 및 스튜던트 t 테스트를 사용하여 통계적 분석을 수행하였다. P 값이 <0.05이면 의미있는 것으로 간주하였다. 모든 통계적 분석은 SPSS v11.5 소프트웨어(SPSS, Chicago, Ill)를 사용하여 수행되었다.
5. 펄스-체이스 실험(Pulse-chase experiment)
293세포를 리포펙타민 2000을 이용하여 si-KRS 또는 si-대조군(invitrogen)으로 형질감염시켰다. 이를 메티오닌이 들어 있지 않은 배지에서 1시간동안 배양한 다음, [35S] 메티오닌(50μCi/ml)을 철가하고 1시간동안 배양하였다. 신선한 배지로 방사선 메티오닌을 씻어낸 다음, 67LR을 이에 특이적인 항체(Santacruz)로 면역 침강시키고, 12% SDS-PAGE로 분리한 다음, BAS(FLA-3000, Fujifilm)을 이용하여 노출시켰다(autoradiography). 67LR의 양은Multi-gauge 프로그램(V3.0, Fujifilm)을 이용하여 측정하였다.
6. 이스트 투 하이브리드(yeast two hybrid) 분석
인간 KRS의 여러 단편을 암호화하는 cDNA를 상응하는 프라이머를 이용하여 PCR로 얻었다. KRS에 대한 PCR 산물을 EcoRI 및 XhoI으로 절단하고, pEG202 벡터(LexA-융합 단백질의 제조를 위함) 및 pJG4-5 벡터(B42-융합 단백질의 제조를 위함)의 상응하는 위치에 연결하였다. 37LRP 단편을 암호화하는 cDNA는 Barbara J. Ballermann 박사(알버타 대학)로부터 얻었고, 이를 pJG4-5 벡터의 EcoRI 및 XhoI 부위에 삽입하였다. 두 융합 단백질간의 상호작용은 X-gal-함유 효모 배지상에서 파란색 콜로니의 형성여부로 분석하였다.
7. In vitro 결합 분석
GST-KRS 또는 GST를 대장균 로제타(DE3) 스트레인에서 발현시키고, 상기 단백질 추출물을 1% Triton X-100 및 0.5% N-라우릴사코신이 함유된 PBS 버퍼에서 4℃에서 2시간동안 글루타치온-세파로스와 혼합하였다. 인간 37LRP는 TNT Quick coupled Transcription/Translation system(Promega)를 사용하고, pcDNA3-37LRP를 주형으로 사용하며, [35S]메티오닌의 존재하에서 in vitro translation에 의해 합성하였다. 합성된 37LRP는 상기 GST 단백질 혼합물에 첨가하고, 1% Triton X-100, 0.5% N-라우릴사코신, 1mM DTT, 2mM EDTA 및 300μM 페닐메틸설포닐 플루오라이드가 함유된 PBS 버퍼에서 교반을 하면서 4℃에서 4시간 동안 배양한 다음, 0.5% Triton X-100을 함유하는 같은 버퍼로 6회 세척하였다. 그런 다음 세파로스 비드에 결합된 단백질을 SDS 샘플 버퍼로 용출하고, SDS-PAGE로 분리하고, 방사선을 측정하였다(autoradiograph).
8. 세포 이동(cell migration) 분석
세포 이동은 선행 문헌(Park, S. G. et al. Human lysyl-tRNA synthetase is secreted to trigger pro-inflammatory response, Proc. Natl. Acad. Sci. U S A 102, 6356-6361 (2005))에 기재한 바와 같이 폴리카보네이트 막(8.0μm 공극 싸이즈, Costar)를 가진 24-웰 트랜스웰 챔버로 측정하였다. A549 세포를 무혈청(serum-free) RPMI 배지에 현탁한 다음 각 웰당 1 x 105 세포의 농도로 상위 챔버에 넣었다. 표시된 농도의 정제된 인간 KRS, 라미닌(10μg/ml) 또는 젤라틴(10μg/ml)을 하위 웰에 넣고, 세포가 CO2 배양기에서 37℃에서 6시간동안 이동하도록 하였다. 세포는 70% 메틸알콜을 포함하는 PBS로 30분간 고정한 다음 PBS로 3회 세척하였다. 세포를 헤마토실린(Sigma)로 10분간 염색한 다음, 증류수로 세척하였다. 면봉으로 막의 윗 부분에서 이동하지 않은 세포를 제거하였다. 막을 챔버로부터 분 리해 낸 다음 Gel Mount(Biomeda, 미국)에 올려 놓았다(mount). 이동한 세포(막의 하위 면에 부착된 것들)를 현미경 하에서(x20) 4곳을 임의로 선별하여 계측하는 방식으로 측정하였다.
9. 자이모그래피(zymography)
표시된 siRNA 및 재조합 KRS(또는 DRS)를 암호화하는 플라스미드로 형질감염된 A549 세포를 각각 48시간 및 24시간도안 배양한 다음 10% FBS를 함유하는RPMI 배지에 접종하였다(1 x 105 세포/웰). 세포를 무혈청 RPMI 배지에서 2시간 동안 기아처리(starving)한 다음, 라미닌을 첨가하여 10μg/ml로 24시간동안 배양하였다. 20μl의 배양 배지를 5x FOD 버퍼(4% SDS, 20% 글리세롤 및 0.01% 브로모페놀 블루를 함유하는 0.125M Tris-HCl, pH 6.8)와 혼합한 다음, 1mg/ml의 젤라틴을 함유하는 10% SDS-PAGE를 수행하였다. 젤을 2.5% 트리톤 X-100으로 각각 20분씩 2회 세척하고, 증류수로 각각 20분씩 2회 세척한 다음 반응버퍼(10mM CaCl2, 150mM NaCl, 1μM ZnCl2, 1% Triton X-100, 0.002% sodium azide를 함유하는 50mM Tris-HCl, pH 7.5)와 37℃에서 24시간동안 배양하였다. 젤을 증류수로 세척하고, 쿠마시 블루 R250으로 염색한 다음 35% 메탄올로 탈염(destain)하였다.
<실험 결과 및 고찰>
전체 길이의 KRS와 37LRP와의 특이적 상호작용은 이스트 투 하이브리드 분석 에 의하여 확인되었다. LexA-KRS는 KRS의 파트너로 알려진(Kim, J.Y. et al. p38 is essential for the assembly and stability of macromolecular tRNA synthetase complex: Implications for its physiological significance, Proc. Natl. Acad. Sci. USA 99, 7912-7916 (2002)) AIMP2 뿐만 아니라, B42-37LRP와 결합(paired)하여 청색 콜로니를 형성하였으며, AIMP1에 대해서는 그러하지 않았다(도 1). 인비트로 바인딩 어세이에 대해서는, [35S]메티오닌으로 표지된 37LRP를 GST-KRS 또는 GST와 혼합하고, 글루타티온-세파로즈로 침전시킨후, 자가방사선촬영을 하였다. 37LRP는 GST-KRS와 함께 침전하였으나, GST와는 아니었다(도 2). 이스트 투 하이드리드 분석에 의한 소실 지도(deletion mapping)로 인간 KRS의 N말단 연장부위와 LR의 C-말단 세포외 도메인이 그들의 결합에 관여함을 확인하였다(도 3).
세포질내 37LRP는 막-포매성 67LR로 전환되므로, 본 발병자들은 KRS가 37LRP 및 67LR에 서로 다르게 결합하는지를 확인하였다. Myc-KRS를 폐암세포주 A549 세포에 도입하여 항-Myc 항체와 면역침전시켰다. 세포 용해물의 웨스턴블롯 결과, 67LR은 37LRP 보다 적은 양으로 존재하였다(도 4 우측). 하지만, Myc-KRS는 37LRP 보다 67LR에 더 우선적으로 결합하였다(도 4 좌측). 본 발명자들은 이후, A549세포를 세포질과 원형질 막 분획으로 분리하여 Myc-KRS와 37LRP 및 67LR의 상호작용을 확인하였다. 37LRP은 세포질에서 67LR은 원형질 막에서 각각 우세하게 관찰된 반면(도 5 우측), KRS는 세포질에서 더 많은 양이 관찰되었지만, 두 분획 모두에서 존재하 였다. 두 분획 모두를 항-Myc 항체와 면역침전 시켰을 때, 비록 세포질 내 소량의 37LRP도 침전되었지만, 막에 존재하는 67LR가 주로 KRS와 함께 침전되었는데(도 5 좌측), 이는 막에 존재하는 67LR 및 KRS 간의 선호적 상호작용을 시사하였다.
본 발명자들은 이후, KRS의 세포내 분포가 A549 세포의 라미닌 처리에 의해 변화하는지를 세포 분획과 면역형광염색법을 통하여 조사하였다. 라미닌 처리 후, KRS와 67LR의 막내 존재량은 세포질 내의 KRS 및 37LRP 양이나 이들의 발현에는 거의 변화없이 점차적으로 증가하였다(도 7 및 결과 미도시). 면역형광염색에서도 또한 67LR 및 KRS가 라미닌 처리에 의해 막 쪽으로 이동함을 설명해 주었다(도 8, 각각 적색 및 녹색). 발명자들은 이후 KRS의 막 전좌(translocation)가 번역후 변형(post-transcriptional modification)에 관여하는지를 조사하였다. 포스포이노시티드 3-OH 카이네이즈(phosphoinositide 3-OH kinase, PI3K)(Shaw, L. M., Rabinovitz, I., Wang, H. H., Toker, A. & Mericurio. A.M. Activation of phosphoinositide 3-OH kinase by the alpha6beta4 integrin promotes carcinoma invasion. Cell 91, 949-960 (1997)), 단백질 인산화효소 C(Protein kinase C, PKC)(Li, Y. Q. et al. Protein kinase C mediates the signal for interferon-gamma mRNA expression in cytotoxic T cells after their adhesion to laminin. Immunology 93, 455-461 (1998)), 및 포스포리페이즈 C-감마(phospholipase C-gamma, PLC-gamma)(Vossmeyer, D., Hofmann, W., Loster, K., Reutter, W. & Danker, K. Phospholipase C-gamma binds alpha1beta1 integrin and modulates alpha1beta1 integrin-specific adhesion. J. Biol. Chem. 277, 4636-4643 (2002); Kanner, S. B., Grosmaire, L. S., Ledbetter, J. A. & Damle, N. K. Beta 2-integrin LFA-1 signaling through phospholipase C-gamma 1 activation. Proc .Natl. Acad. Sci. USA 90, 7099-7103 (1993))와 같은 몇몇 서로 다른 인산화효소들이 라미닌에 의해 활성화된다고 알려져 있다. 이러한 인산화효소들 중 어떠한 것들이 KRS의 라미닌 의존성 막 전좌에 관여하는 지를 알아보고자, 본 발명자들은 각각의 카이네이즈에 특이적인 억제제로 각각의 인산화효소를 차단하고, 이 처리가 어떻게 KRS의 라미닌 의존성 막 전좌에 영향을 주는지를 확인하였다. 막 분획에서 KRS와 67LR의 라미닌 의존적 증가는 PI3K 억제제인 LY294002의 존재하에서 억제되는데 반해서, U73122 또는 스타우로스포린으로 처리한 세포들은 대조군 세포와 마찬가지로 67LRS의 라미닌 의존적 증가를 보였다(도 9 상 및 결과 미도시). 이들 인산화효소들 중 어떤 것도 세포내 KRS의 양에 영향을 준 것은 없었다(도 9 하). 이들 결과는 PI3K가 KPS의 라미닌 유도성 인산화에 연관된 것임을 암시한다. 사실, 티로신이 아닌 트레오닌과 세린에서 인산화된 KRS는 라미닌 처리에 의해 증가된 반면, LY294002의 존재하에서는 억제되었으며, 스타우로스포린은 어떠한 영향도 주지 못했다(도 10). 본 발명자들은 또한, KRS의 라미닌 유도성 인산화가 67LR과의 상호작용에 필요한지를 조사하였다. LY294002 처리는 KRS와 67LR의 라미닌 유도성 결합을 억제하였다(도 11) 세포질 KRS가 다중-ARS 복합체에 고정되어 있으므로, 본 발명자들은 또한 KRS의 라미닌 의존적 인산화가 KRS와 복합체의 다른 효소 구성성분인 글루타밀-프롤릴-tRNA 합성효소(glutamyl-prolyl-tRNA synthetase, EPRS)와 공- 면역침전함으로써 다중-ARS 복합체와의 결합에 영향을 주는지를 조사하였다. LY 화합물의 부재 하에서, 라미닌 처리는 KRS와 EPRS의 결합을 감소시켰고, 동시에 면역-소진된 용해성 분획(immuno-depleted soluble fraction)의 KRS를 증가시켰다(도 12 상,하 패널의 좌측 레인). 이에 반해, EPRS에 결합한 KRS는 세포가 LY294002로 전처리 되었을 때 라미닌 처리에 영향을 받지 않았는데(도 12 상,하 패널의 우측 레인) 이는 KRS의 인산화가 KRS와 복합체의 라미닌-의존적 결합에 필요함을 시사한다.
본 발명자들은 이후, KRS가 A549 세포에 있어서 67LR의 막 내 존재량에 영향을 주는지 확인하였다. 67LR의 양은 라미닌에 의해 증가되나, 라미닌 효과는 KRS가 이에 대한 특이적 siRNA에 의해 억제될 때에는 사라지는데(도 13 좌측) 이는 67LR의 라미닌 의존적 촉진에 있어서 KRS의 중요성을 시사한다. 본 발명자들은 또한, 유세포 분석기를 통하여 막에 존재하는 67LR을 조사하였다. 막에 존재하는 67LR의 양은 세포를 KRS로 형질감염시키거나, si-KRS로 형질감염시켰을 때, 각각 증가 및 감소하였다(도 14). 라미닌 수용체의 세포내 분포는 공벡터(EV) 또는 KRS에 형질감염된 A549 세포간에서 면역형광염색을 통하여 비교되었다. 라미닌 수용체는 대조군과 비교하여 KRS 과발현 세포의 막 부위에 강하게 염색되었다(도 15). 이후, KRS와 67LR 간의 양성적 상관관계(positive correlation)는 다양한 KRS 양에 따른 막 및 세포질 내의 67LR 존재량을 측정함으로써 확인되었다(도 23).
본 발명자들은, KRS가 어떻게 67LR의 막 내 존재량을 증가시키는지를 조사하였다. KRS는 37LRP로부터 전사 또는 전환(conversion) 을 통하여 67LR을 촉진할 수 있다. 그러나, KRS의 감염은 LR 전사 조절의 잠정적 역할을 제외하고는 LR 전사를 증가시키지 않았다(결과 미도시). 게다가, KRS는 세포질 내에서 37LRP와 잘 결합하지 않으므로(도 4, 도 5), KRS가 37LRP를 67LR로 전환하는 과정을 촉진하는 것 같다. 본 발명자들은 또한, 37LRP의 변형이37LRP가 67LR로 전환되는데 있어서 선행요건으로 알려져 있으므로(Landowski, T. H., Dratz, E.,A. & Starkey, J. R. Studies of the structure of the metastasis-associated 67 kDa laminin binding protein: fatty acid acylation and evidence supporting dimerization of the 32 kDa gene product to form the mature protein. Biochemistry 34, 11276-11287 (1995); Buto, S. et al. Formation of the 67-kDa laminin receptor by acylation of the precursor. J. Cell. Biochem. 69, 244-251 (1998)), KRS가 37LRP의 지방족 아실화(fatty acylation)를 매개하는지를 조사하였다. 본 발명에 있어서, KRS는 37LRP의 지방족 아실화에 전혀 영향을 주지 않았다(결과 미도시). KRS는 막에 존재하는 67LR의 세포내 안정성을 증진시킬 수 있으므로, 본 발명자들은 KRS가 막에 존재하는 67LR의 식세포작용(endocytosis)를 방해할 수 있는지를 조사하였다. 상기 가능성을 확인하고자, 본 발명자들은 시클로헥시미드(cyclohexamide)를 이용하여 근원적으로(de novo) 단백질 합성을 저지하여 KRS가 세포막과 세포질에서의 67LR의 존재량에 영향을 끼치는지를 실험하였다. KRS의 발현이 이에 특이적인 siRNA에 의하여 억제될 때에는 67LR의 막 내 존재량이 감소하면서 동시에 세포질 분획에서의 양은 증가하였다(도 16 좌측). 이와는 반대로, KRS의 과발현은 상기와 같이 막 내 67LR의 존재량을 증가시켰다(도 16 우측). 이러한 결과를 토대로, KRS는 67LR에 세포질 내로 다시 들어가는 것을 억제함으로써 막 내 67LR의 존재량을 증가시키는 것 같다. 본 발명자들은 또한, 펄스-체이스(pulse-chase) 실험을 통하여 67LR의 대사전환(turn over)에 있어서 KRS의 효과를 조사하였다. 초기 단백질 합성은 방사성 메티오닌으로 표지되었고, 이후 시클로헥시미드로 억제되었다. 이후, 67LR의 소멸(disappearance)는 시간적 간격을 두고 자가방사촬영에 의해 관찰되었다. 67LR은 KRS가 siRNA에 의해 억제될 때 급격하게 감소되었으나, 이 수치는 si-대조군에 있어서는 시간 간격에 따라 유지된 것과 대조적이다(도 17). 따라서, 67LR의 분해과정에 대해 추가적인 연구가 필요하지만, KRS는 원형질 막에서 67LR과 결합함으로써 67LR의 반감기를 증가시켜 67LR의 식세포작용을 억제하는 것 같다.
본 연구자들은 이후, KRS의 발현정도가 라미닌-의존적 A549 세포 이동에 영향을 주는지를 트랜스웰 맴브레인 분석을 통하여 조사하였다. 대조군 세포의 이동은 라미닌 처리에 의해 평균 6배 가량 촉진되었다(도 24 및 도 18) 그러나, 라미닌 의존적 세포 이동은 KRS가 si-RNA에 의해 억제되었을 때 감소하였다(도 18, si-대조군 및 si-KRS). 이와는 반대로, KRS 과발현은 라미닌 처리에 의해 촉진된 세포이동을 증가시켰다(도 18, EV 및 KRS). 그러나, 세포 이동에 있어서 KRS의 효과는 라미닌 수용체가 si-RNA에 의해 억제되면 사라진다(도 18, si-LR, 아래 패널). KRS는 몇몇 암세포에서 사이토카인으로 분비되므로(Park, S. G. et al. Human lysyl-tRNA synthetase is secreted to trigger pro-inflammatory response, Proc. Natl. Acad. Sci. U S A 102, 6356-6361 (2005)), 본 발명자들은 세포외인성 KRS가 세포 이동에 영향을 주는지를 조사하였다. A549 세포를 서로 다른 농도의 정제된 KRS로 처리하였을 때, 이 분석에서 KRS의 세포외인성 효과를 제외하면, 세포 이동은 거의 영향을 받지 않았다(도 25). 반면, 세포 단백질의 합성 및 세포 주기는 실험하는 동안 KRS의 억제 및 과발현에 영향을 받지 않았는데, 이는 KRS-의존적 세포 이동이 상기 과정의 효과에 기인하지 않음을 시사한다(도 26 및 도 27). 라미닌 처리가 MMP-2(matrix metllo-proteinase-2)의 활성화를 초래하므로(Givant-Horwitz, V., Davidson, B. & Reich, R. Laminin-induced signaling in tumor cells the role of the M(r) 67,000 laminin receptor. Cancer Res. 64, 3572-3579 (2004)), MMP-2의 라미닌 의존적 활성화에 있어서 KRS의 역할을 in vitro 자이모그래피 분석을 통하여 조사하였다. MMP-2 활성은 라미닌에 의해 활성화 되었고, 이는 si-KRS의 존재 하에서 억제되었다(도 19 우측). MMP-2의 발현량은 KRS에 영향을 받지 않았다(도 19 하).
KRS가 암 전이와 관련된 67LR을 통해 세포 이동을 촉진할 수 있기 때문에, 폐로 전이가 잘되는 마우스 유방암 4T-1 세포를 사용하여 KRS의 발현 수준에 의해 암 전이가 영향을 받을 수 있는지를 조사하였다. 이를 위하여 KRS 또는 다중-ARS 복합체의 다른 구성요소인 DRS(aspartyl-tRNA synthetase)를 그들에 특이적인 siRNA로 발현을 억제하고, 어떻게 KRS 및 DRS의 발현 감소가 암 전이에 영향을 미 치는지 비교하였다. si-KRS 및 si-DRS의 억제 효과를 웨스턴 블럿으로 확인한 다음에(도 28), 이들 세포 각각 및 si-대조군으로 처리한 세포를 Balb/c 마우스의 등 피부에 피하 주사로 주입하였다. 주입된 3종 모두 유사한 질량 및 부피의 종양을 발생시켜(도 29), KRS의 수준이 1차 종양의 성장에는 영향을 미치지 않음을 알려주었다. 폐를 주입 후 21일째 분리하였으며, 전이성 종양 결절(직경 1mm보다 큰 것)의 수를 3 그룹간에 비교하였다. 전이성 결절의 수는 대조군 및 DRS가 억제된 세포에서 얻은 것에 비해 KRS의 억제에 의해 크게 감소하였다(도 20 및 도 30). 역으로, 상기 방법에 따라 KRS의 과발현이 암 전이를 증진하는지를 조사하였다. 우리는 KRS를 암호화하는 플라스미드의 형질감염 및 G418 스크리닝에 의해 KRS를 안정적으로 과발현하는 4T-1 세포 주를 처음으로 구축하였다. 구축된 세포 주에서 KRS 과발현은 웨스턴 블럿으로 확인하였고, 공 벡터로 형질감염된 세포들에 비해서 많은 양으로 KRS를 발현하는 2개의 서로 다른 세포(KRS-1 및 KRS-2)를 선별하였다(도 31). 이들 세포도 유사한 질량과 크기의 1차 종양을 생성하였다(도 32). 이들 세포를 주입한 후 30일 째 폐를 검사하였을 때, KRS-과발현 세포 둘 다 대조군 세포에 비해서 더 많은 결절을 생성하였다(도 21 및 도 33). 이러한 결과는 KRS가 생체 내에서 암 전이를 유도한다는 것을 암시한다.
라미닌 수용체의 암 특이적 과발현은 자주 관찰되므로(Fontanini, G. et al.67-Kilodalton laminin receptor expression correlates with worse prognostic indicators in non-small cell lung carcinomas. Clin. Cancer Res. 3, 227-231 (1997); Viacava, P. et al.The spectrum of 67-kD laminin receptor expression in breast carcinoma progression. J. Pathol. 182, 36-44 (1997)), 67LR의 과발현이 또한 KRS의 과발현과 연관되어 있는지를 폐암 및 유방암을 예로서 67LR 및 KRS의 면역 조직화학 염색에 의해서 분석하였다. 39개의 검사한 폐암 조직 중에서 67LR 과발현은 21 사례(54%)에서 관찰되었으며, 그 가운데, KRS 수준은 19 사례(약 90%)에서 증가되어 있었다(표 1 및 도 22 상위). 마찬가지로, 40 개의 검사한 유방암 환자 중 21 사례에서 67LR 과발현이 관찰되었다. 이들 중 21 사례 모두 KRS의 수준이 증가되었다(표 1 및 도 22 하위). 그들의 동시-발현이 전이에 있어서 실제로 연관되어 있는지는 확인해 보아야 함에도 불구하고, 두 경우 모두 두 단백질의 발현간에 밀접한 연관이 나타났다.
Figure 112008070869440-PAT00001
이 때, 상기 표 1에 대해서는 다음의 기재를 참조할 수 있다: 표 1은 종양조직에 있어서 67LR 과 KRS 발현의 상관관계를 나타낸 것이다. 표 1에서는 67LR의 발현량이 KRS의 발현량과 관계가 있는지를 알아보고자, 폐암 및 유방암 환자의 조직 마이크로 어레이들을 이용하여 각각의 항체에 대한 면역염색을 실시하였고, 상기 두 단백질들의 상대적 발현량을 측정하였다. 67LR의 표지를 위하여 MluC5항체가 사용되었다. 발현량은 시료의 염색농도를 통하여 측정되었고, 4개의 그룹으로 분류되었다(0, 1, 2, 및 3점). 최종평가에서, 시료들은 정상그룹(0점 또는 1점)과 과발현 그룹(2점 또는 3점)로 분류되었다. 67LR 과 KRS 발현의 상관관계를 평가하기 위한 통계학적 분석은 피어슨 χ2 테스트 및 Student t 테스트를 통하여 수행되었다. 이때, P값이 0.05미만이면(P < 0.05) 유효한 수치로 간주하였다. 모든 통계학적 분석은 SPSS v11.5 소프트웨어(SPSS, Chicago, Ill)를 통하여 수행하였다.
리보솜 구성인자를 포함하는 많은 번역 인자들이 다면적이며(Wool, I. G. Extraribosomal functions of ribosomal proteins Trends Biochem. Sci. 21, 164-165 (1996)), 여러 가지 종양 생성과정에 관여되어 있다(Lee, S. W., Kang, Y. S. & Kim, S.Multi-functional proteins in tumorigenesis: Aminoacyl-tRNA synthetases and translational components. Curr. Proteomics 3, 233-247 (2006)). 여기서 우리는 두 개의 번역 인자인 KRS 및 p40/37LRP가 생체 내에서 세포 이동 및 암 전이에 함께 작용한다는 것을 보였다(도 18 내지 도 22). 현 시점에서는 이 두 단백질의 잠재적인 연관이 진화적 우연인지 아니면 이후 밝혀질 필요가 있는 단백질 합성에 있어서 생리학적 이유를 가지고 있는지는 알 수는 없다. 다중 ARS-복합체의 구성요소 가운데, KRS는 가장 안정적인 단백질이며, 다른 구성요소의 안정성을 위하여 필요한데(Han, J. M. et al. Hierarchical Network between the components of the multi-tRNA synthetase complex: Implications for complex formation. J. Biol. Chem. 281, 38663-38667 (2006)), 이는 다른 관계되는 단백질을 안정화시키는 KRS의 잠재 능력을 암시하는 것이다. 여기서, 우리는 KRS 능력이 67LR에서의 세포 안정성으로도 확대됨을 보였다(도 17).
KRS의 67LR과의 연관은 다른 기능적 암시를 가지고 있을 수 있다. 생리적 조건하에서, 세포질 KRS의 일 부분이 인산화되고, 여러 가지 성장 자극이나 생존 신호에 의해 라미닌 신호를 매개하는 67LR과 결합하기 위하여 원형질 막으로 이동된다. 암 세포에서는 과발현 또는 PI3K와 같은 과-활성화된 상위 인산화효소로 인한 결과로 구조적인(constitutive) 막 전이로 인하여 KRS의 막 수준이 비정상적으로 증가된다. 아마도, 이러한 과량의 KRS가 원형질막을 67LR를 모으거나 배출하도록 할 수 있다. 또한, PI3K의 활성화를 감소시키는 것이 자주 종양 성장 및 전이와 연관된다는 점(Wymann, M. P. & Marone, R. Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Curr. Opin. Cell Biol. 17, 141-149 (2005)) 및 라미닌이 PI3K를 통해 암 침윤를 증진한다는 점(Baba, Y. et al.Laminin-332 promotes the invasion of oesophageal squamous cell carcinoma via PI3K activation . Br. J. Cancer 98, 974-980 (2008))을 염두에 둘 가치가 있다. PI3K의 구조적인 활성화는 막으로 이동시키는 KRS의 인산화를 리드할 수 있다. 이러한 조건들의 일부 또는 전부가 원형질막에서의 67LR의 증가에 기여할 수 있고, 암 전이에 대한 라미닌 신호전달을 증폭시킬 수 있다. 암의 전이성 확장을 조절하는 많은 연구가 진행되어 왔다. 이러한 점에서, 암 전이에 있어서 67LR을 통한 KRS의 활성은 암 진단 및 치료를 위한 종전에는 개척되지 않은 새로운 창을 제공해 줄 수 있다.
이상 살펴본 바와 같이, 본 발명자들은 KRS가 원형질막으로 전좌(translocation)되어 67LR과 상호작용함으로써 종양(또는 암) 세포의 이동을 촉 진하여 암의 전이(metastasis)에 영향을 미친다는 것을 규명하였다. 또한, 마우스를 이용한 in vivo 실험을 통해서 KRS의 과발현 또는 발현 억제가 암의 전이를 조절할 수 있음을 규명하였다. 따라서, 본 발명의 KRS를 이용하여 암 전이 또는 암 세포 이동을 조절할 수 있으며, 나아가 원형질막의 라미닌 수용체(67LR)과 관계된 세포 내 대사를 조절할 수 있다. 본 발명에서 규명한 KRS와 라미닌 수용체의 관계는 이와 관계된 다양한 질환 또는 질병의 치료, 예방 및/또는 진단에 매우 유용하게 사용될 수 있다.
도 1은 인간 KRS와 37LRP/p40간의 상호작용을 이스트 투 하이브리드 분석을 통하여 확인한 것이다.
도 2는 인간 KRS와 37LRP의 상호작용을 풀 다운 분석을 통해서 확인한 것이다.
도 3은 인간 KRS와 37LRP의 상호작용 부위를 확인한 것이다.
도 4는 KRS의 67LR 및 37LRP와의 결합을 확인하기 위하여 Myc-KRS에 감염된 A549 세포에 대해서 항-Myc 및 항-라미닌 수용체 항체를 이용하여 면역블롯 분석을 한 결과이다.
도 5는 KRS의 67LR 및 37LRP와의 결합을 확인하기 위하여 Myc-KRS로 감염된 A549 세포의 용해물에 대한 웨스턴블롯 분석을 한 결과이다.
도 6은 라미닌 서리에 따른 KRS 및 67LR의 결합을 면역 침전으로 확인한 것이다.
도 7은 A549 세포에 라미닌 처리시 67LR, 37LRP 및 KRS의 양(level)을 웨스턴블롯으로 확인한 것이다.
도 8은 A549 세포를 라미닌으로 처리 또는 무처리시 67 LR 및 KRS의 발현을 면역형광염색으로 확인한 것이다.
도 9는 인산화효소 억제제가 67LR 및 KRS의 세포질 및 막에서의 발현에 미치는 영향을 확인한 것이다.
도 10은 KRS를 발현하는 A549세포에서 라미닌 및 인산화효소 억제제 처리시 인산화 정도를 p-Thr, -Ser, 및 -Tyr 항체로 면역블롯을 실시하여 확인한 것이다.
도 11은 KRS를 발현하는 A549세포에서 인산화된 KRS의 67LR과의 결합여부를 웨스턴 블럿으로 확인한 것이다.
도 12는 KRS와 EPRS의 결합에 라미닌이 미치는 영향을 웨스턴 블럿으로 확인한 것이다.
도 13은 si-대조군 또는 si-KRS의 형질감염시 67L 및 KRS의 양을 웨스턴 블럿으로 확인한 것이다.
도 14는 A549 세포에 있어서 막-결합성 67LR의 양을 유세포 분석기로 확인한 것이다.
도 15는 EV(공벡터) 또는 KRS로 감염시킨 A549 세포에 대해서 67LR의 세포내 분포를 면역형광 염색으로 확인한 것이다.
도 16은 새로운 단백질 합성이 억제된 A549 세포에서 세포막과 세포질 내의 67LR 양에 있어서 KRS 양의 효과를 웨스턴블롯으로 확인한 것이다.
도 17은 67LR의 세포적 안정성에 KRS이 미치는 영향을 펄스-체이스 실험으로 확인한 것이다.
도 18은 KRS 및/또는 67LR의 발현 억제시 세포 이동에 미치는 영향을 확인한 것이다.
도 19는 KRS 및/또는 67LR의 발현 억제시 MMP-2 활성 및 양을 자이모그래피 및 웨스턴 블럿으로 확인한 것이다.
도 20은 4T-1 세포주가 이식된 마우스에서 KRS발현 억제시 종양 결절의 수를 나타낸 것이다.
도 21은 4T-1 세포주가 이식된 마우스에서 KRS발현 증진시 종양 결절의 수를 나타낸 것이다.
도 22는 폐암 및 유방암 조직에서의 KRS 및 67LR의 발현량을 면역조직화학 염색법으로 확인한 것이다.
도 23은 67LR의 막에서의 양에 KRS 발현이 미치는 영향을 웨스턴 블럿으로 확인한 것이다.
도 24는 라미닌 부존재 하에서 배양된 A549 세포의 이동을 측정한 것이다.
도 25는 세포이동에 대한 KRS의 화학주성적(chemotactic) 활성을 측정한 것이다.
도 26은 A549 세포에서 siRNA와 외인성 KRS의 도입에 따른 KRS의 양 및 세포내 전체 단백질 합성량을 확인한 것이다.
도 27은 A549 세포에서 siRNA와 외인성 KRS의 도입에 따른 KRS의 양 및 세포 주기를 확인한 것이다.
도 28은 표적 단백질의 발현에 있어서 si-KRS 및 si-DRS의 효과를 웨스턴블롯으로 확인한 것이다.
도 29는 종양세포 이식에 따른 1차 종양 증식에 있어서 KRS 및 DRS 억제의 효과를 확인한 것이다.
도 30은 종양세포 이식에 따른 전이성 종양 결절 및 수를 확인한 것이다.
도 31은 KRS-1 및 KRS-2세포주의 KRS의 과발현을 웨스턴블롯으로 확인한 것 이다.
도 32는 종양세포 이식에 따른 1차 종양 증식에 있어서 KRS 과발현의 효과를 확인한 것이다.
도 33은 종양세포 이식에 따른 전이성 종양 결절 및 수를 확인한 것이다.
<110> Seoul national university industry foundation <120> Composition for diagnosing cancer comprising anti-lysyl tRNA synthethase antibody and anti-laminin receptor antibody as an active ingredient <130> NP08-0080 <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 597 <212> PRT <213> Homo sapiens <400> 1 Met Ala Ala Val Gln Ala Ala Glu Val Lys Val Asp Gly Ser Glu Pro 1 5 10 15 Lys Leu Ser Lys Asn Glu Leu Lys Arg Arg Leu Lys Ala Glu Lys Lys 20 25 30 Val Ala Glu Lys Glu Ala Lys Gln Lys Glu Leu Ser Glu Lys Gln Leu 35 40 45 Ser Gln Ala Thr Ala Ala Ala Thr Asn His Thr Thr Asp Asn Gly Val 50 55 60 Gly Pro Glu Glu Glu Ser Val Asp Pro Asn Gln Tyr Tyr Lys Ile Arg 65 70 75 80 Ser Gln Ala Ile His Gln Leu Lys Val Asn Gly Glu Asp Pro Tyr Pro 85 90 95 His Lys Phe His Val Asp Ile Ser Leu Thr Asp Phe Ile Gln Lys Tyr 100 105 110 Ser His Leu Gln Pro Gly Asp His Leu Thr Asp Ile Thr Leu Lys Val 115 120 125 Ala Gly Arg Ile His Ala Lys Arg Ala Ser Gly Gly Lys Leu Ile Phe 130 135 140 Tyr Asp Leu Arg Gly Glu Gly Val Lys Leu Gln Val Met Ala Asn Ser 145 150 155 160 Arg Asn Tyr Lys Ser Glu Glu Glu Phe Ile His Ile Asn Asn Lys Leu 165 170 175 Arg Arg Gly Asp Ile Ile Gly Val Gln Gly Asn Pro Gly Lys Thr Lys 180 185 190 Lys Gly Glu Leu Ser Ile Ile Pro Tyr Glu Ile Thr Leu Leu Ser Pro 195 200 205 Cys Leu His Met Leu Pro His Leu His Phe Gly Leu Lys Asp Lys Glu 210 215 220 Thr Arg Tyr Arg Gln Arg Tyr Leu Asp Leu Ile Leu Asn Asp Phe Val 225 230 235 240 Arg Gln Lys Phe Ile Ile Arg Ser Lys Ile Ile Thr Tyr Ile Arg Ser 245 250 255 Phe Leu Asp Glu Leu Gly Phe Leu Glu Ile Glu Thr Pro Met Met Asn 260 265 270 Ile Ile Pro Gly Gly Ala Val Ala Lys Pro Phe Ile Thr Tyr His Asn 275 280 285 Glu Leu Asp Met Asn Leu Tyr Met Arg Ile Ala Pro Glu Leu Tyr His 290 295 300 Lys Met Leu Val Val Gly Gly Ile Asp Arg Val Tyr Glu Ile Gly Arg 305 310 315 320 Gln Phe Arg Asn Glu Gly Ile Asp Leu Thr His Asn Pro Glu Phe Thr 325 330 335 Thr Cys Glu Phe Tyr Met Ala Tyr Ala Asp Tyr His Asp Leu Met Glu 340 345 350 Ile Thr Glu Lys Met Val Ser Gly Met Val Lys His Ile Thr Gly Ser 355 360 365 Tyr Lys Val Thr Tyr His Pro Asp Gly Pro Glu Gly Gln Ala Tyr Asp 370 375 380 Val Asp Phe Thr Pro Pro Phe Arg Arg Ile Asn Met Val Glu Glu Leu 385 390 395 400 Glu Lys Ala Leu Gly Met Lys Leu Pro Glu Thr Asn Leu Phe Glu Thr 405 410 415 Glu Glu Thr Arg Lys Ile Leu Asp Asp Ile Cys Val Ala Lys Ala Val 420 425 430 Glu Cys Pro Pro Pro Arg Thr Thr Ala Arg Leu Leu Asp Lys Leu Val 435 440 445 Gly Glu Phe Leu Glu Val Thr Cys Ile Asn Pro Thr Phe Ile Cys Asp 450 455 460 His Pro Gln Ile Met Ser Pro Leu Ala Lys Trp His Arg Ser Lys Glu 465 470 475 480 Gly Leu Thr Glu Arg Phe Glu Leu Phe Val Met Lys Lys Glu Ile Cys 485 490 495 Asn Ala Tyr Thr Glu Leu Asn Asp Pro Met Arg Gln Arg Gln Leu Phe 500 505 510 Glu Glu Gln Ala Lys Ala Lys Ala Ala Gly Asp Asp Glu Ala Met Phe 515 520 525 Ile Asp Glu Asn Phe Cys Thr Ala Leu Glu Tyr Gly Leu Pro Pro Thr 530 535 540 Ala Gly Trp Gly Met Gly Ile Asp Arg Val Ala Met Phe Leu Thr Asp 545 550 555 560 Ser Asn Asn Ile Lys Glu Val Leu Leu Phe Pro Ala Met Lys Pro Glu 565 570 575 Asp Lys Lys Glu Asn Val Ala Thr Thr Asp Thr Leu Glu Ser Thr Thr 580 585 590 Val Gly Thr Ser Val 595 <210> 2 <211> 1794 <212> DNA <213> Homo sapiens <400> 2 atggcggccg tgcaggcggc cgaggtgaaa gtggatggca gcgagccgaa actgagcaag 60 aatgagctga agagacgcct gaaagctgag aagaaagtag cagagaagga ggccaaacag 120 aaagagctca gtgagaaaca gctaagccaa gccactgctg ctgccaccaa ccacaccact 180 gataatggtg tgggtcctga ggaagagagc gtggacccaa atcaatacta caaaatccgc 240 agtcaagcaa ttcatcagct gaaggtcaat ggggaagacc catacccaca caagttccat 300 gtagacatct cactcactga cttcatccaa aaatatagtc acctgcagcc tggggatcac 360 ctgactgaca tcaccttaaa ggtggcaggt aggatccatg ccaaaagagc ttctggggga 420 aagctcatct tctatgatct tcgaggagag ggggtgaagt tgcaagtcat ggccaattcc 480 agaaattata aatcagaaga agaatttatt catattaata acaaactgcg tcggggagac 540 ataattggag ttcaggggaa tcctggtaaa accaagaagg gtgagctgag catcattccg 600 tatgagatca cactgctgtc tccctgtttg catatgttac ctcatcttca ctttgggctc 660 aaagacaagg aaacaaggta tcgccagaga tacttggact tgatcctgaa tgactttgtg 720 aggcagaaat ttatcatccg ctctaagatc atcacatata taagaagttt cttagatgag 780 ctgggattcc tagagattga aactcccatg atgaacatca tcccaggggg agccgtggcc 840 aagcctttca tcacttatca caacgagctg gacatgaact tatatatgag aattgctcca 900 gaactctatc ataagatgct tgtggttggt ggcatcgacc gggtttatga aattggacgc 960 cagttccgga atgaggggat tgatttgacg cacaatcctg agttcaccac ctgtgagttc 1020 tacatggcct atgcagacta tcacgatctc atggaaatca cggagaagat ggtttcaggg 1080 atggtgaagc atattacagg cagttacaag gtcacctacc acccagatgg cccagagggc 1140 caagcctacg atgttgactt caccccaccc ttccggcgaa tcaacatggt agaagagctt 1200 gagaaagccc tggggatgaa gctgccagaa acgaacctct ttgaaactga agaaactcgc 1260 aaaattcttg atgatatctg tgtggcaaaa gctgttgaat gccctccacc tcggaccaca 1320 gccaggctcc ttgacaagct tgttggggag ttcctggaag tgacttgcat caatcctaca 1380 ttcatctgtg atcacccaca gataatgagc cctttggcta aatggcaccg ctctaaagag 1440 ggtctgactg agcgctttga gctgtttgtc atgaagaaag agatatgcaa tgcgtatact 1500 gagctgaatg atcccatgcg gcagcggcag ctttttgaag aacaggccaa ggccaaggct 1560 gcaggtgatg atgaggccat gttcatagat gaaaacttct gtactgccct ggaatatggg 1620 ctgcccccca cagctggctg gggcatgggc attgatcgag tcgccatgtt tctcacggac 1680 tccaacaaca tcaaggaagt acttctgttt cctgccatga aacccgaaga caagaaggag 1740 aatgtagcaa ccactgatac actggaaagc acaacagttg gcacttctgt ctag 1794

Claims (7)

  1. 항-KRS 항체를 유효성분으로 포함하는 암 진단용 조성물.
  2. 항-KRS 항체 및 항-67LR 항체를 유효성분으로 포함하는 암 진단용 조성물.
  3. 제1항 또는 제2항에 있어서, 상기 암은 대장암, 폐암, 간암, 위암, 식도암, 췌장암, 담낭암, 신장암, 방광암, 전립선암, 고환암, 자궁경부암, 자궁내막암, 융모암, 난소암, 유방암, 갑상선암, 뇌암, 두경부암, 악성흑색종, 림프종, 재생불량성 빈혈로 이루어진 군에서 선택된 것임을 특징으로 하는 조성물.
  4. 제1항 또는 제2항에 있어서, 상기 암 진단은 암 전이 진단인 것을 특징으로 하는 조성물.
  5. 항-KRS 항체를 포함하는 암 전이 진단키트.
  6. 항-KRS 항체 및 항-67LR 항체를 포함하는 암 전이 진단키트.
  7. 암 진단에 필요한 정보를 제공하기 위하여, 환자의 시료로부터 항원-항체 반응을 통해 라이실 tRNA 합성효소(KRS) 및 67kDa 라미닌 수용체(67LR)를 검출하는 방법.
KR1020080099783A 2008-10-10 2008-10-10 항-라이실 티알엔에이 합성효소 항체 및 항-라미닌 수용체 항체를 유효성분으로 포함하는 암 진단용 조성물 KR101009501B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080099783A KR101009501B1 (ko) 2008-10-10 2008-10-10 항-라이실 티알엔에이 합성효소 항체 및 항-라미닌 수용체 항체를 유효성분으로 포함하는 암 진단용 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080099783A KR101009501B1 (ko) 2008-10-10 2008-10-10 항-라이실 티알엔에이 합성효소 항체 및 항-라미닌 수용체 항체를 유효성분으로 포함하는 암 진단용 조성물

Publications (2)

Publication Number Publication Date
KR20100040583A true KR20100040583A (ko) 2010-04-20
KR101009501B1 KR101009501B1 (ko) 2011-01-18

Family

ID=42216646

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080099783A KR101009501B1 (ko) 2008-10-10 2008-10-10 항-라이실 티알엔에이 합성효소 항체 및 항-라미닌 수용체 항체를 유효성분으로 포함하는 암 진단용 조성물

Country Status (1)

Country Link
KR (1) KR101009501B1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150079476A (ko) * 2013-12-30 2015-07-08 재단법인 의약바이오컨버젼스연구단 항 krs 모노클로날 항체 및 이의 용도
WO2017146529A1 (ko) * 2016-02-25 2017-08-31 재단법인 의약바이오컨버젼스연구단 대장암 진단용 조성물과 진단 마커 검출 방법
KR20180004674A (ko) * 2016-07-01 2018-01-12 재단법인 의약바이오컨버젼스연구단 아미노아실 티알엔에이 중합효소 관련 단백질 발현 수준을 이용한 갑상선 여포암 진단용 조성물과 진단 마커 검출 방법
KR20190031189A (ko) * 2017-09-15 2019-03-25 재단법인 의약바이오컨버젼스연구단 라이실 tRNA 합성효소 N-말단에 특이적으로 결합하는 항체를 유효성분으로 포함하는 면역세포 이동 관련 질환의 예방 또는 치료용 약학적 조성물
WO2020060156A1 (ko) * 2018-09-17 2020-03-26 재단법인 의약바이오컨버젼스연구단 세포 외막에 노출되는 라이실-tRNA 합성효소 N-말단 영역에 특이적으로 결합하는 항체
JP2020515263A (ja) * 2017-03-27 2020-05-28 メディシナル バイオコンバージェンス リサーチ センター 細胞外膜に露出されるリシル−tRNA合成酵素N−末端領域に特異的に結合する抗体

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150079476A (ko) * 2013-12-30 2015-07-08 재단법인 의약바이오컨버젼스연구단 항 krs 모노클로날 항체 및 이의 용도
WO2015102341A1 (ko) * 2013-12-30 2015-07-09 재단법인 의약바이오컨버젼스연구단 항 krs 모노클로날 항체 및 이의 용도
JP2017502672A (ja) * 2013-12-30 2017-01-26 メディシナル バイオコンバージェンス リサーチ センター 抗krsモノクロナル抗体及びこれの用途
WO2017146529A1 (ko) * 2016-02-25 2017-08-31 재단법인 의약바이오컨버젼스연구단 대장암 진단용 조성물과 진단 마커 검출 방법
US11360093B2 (en) 2016-02-25 2022-06-14 Medicinal Bioconvergence Research Center Colorectal cancer diagnostic composition, and method for detecting diagnostic marker
KR20180004674A (ko) * 2016-07-01 2018-01-12 재단법인 의약바이오컨버젼스연구단 아미노아실 티알엔에이 중합효소 관련 단백질 발현 수준을 이용한 갑상선 여포암 진단용 조성물과 진단 마커 검출 방법
JP2020515263A (ja) * 2017-03-27 2020-05-28 メディシナル バイオコンバージェンス リサーチ センター 細胞外膜に露出されるリシル−tRNA合成酵素N−末端領域に特異的に結合する抗体
US11685791B2 (en) 2017-03-27 2023-06-27 Zymedi Co., Ltd. Antibody binding specifically to N-terminal region of lysyl-tRNA synthetase exposed on cell membrane
KR20190031189A (ko) * 2017-09-15 2019-03-25 재단법인 의약바이오컨버젼스연구단 라이실 tRNA 합성효소 N-말단에 특이적으로 결합하는 항체를 유효성분으로 포함하는 면역세포 이동 관련 질환의 예방 또는 치료용 약학적 조성물
WO2020060156A1 (ko) * 2018-09-17 2020-03-26 재단법인 의약바이오컨버젼스연구단 세포 외막에 노출되는 라이실-tRNA 합성효소 N-말단 영역에 특이적으로 결합하는 항체

Also Published As

Publication number Publication date
KR101009501B1 (ko) 2011-01-18

Similar Documents

Publication Publication Date Title
US10139394B2 (en) Method for controlling cancer metastasis or cancer cell migration by modulating the cellular level of lysyl tRNA synthetase
KR100501550B1 (ko) Lar 포스파타제 서브유닛에 대한 항체
Tanaka et al. Specific peptide ligand for Grb7 signal transduction protein and pancreatic cancer metastasis
KR101009501B1 (ko) 항-라이실 티알엔에이 합성효소 항체 및 항-라미닌 수용체 항체를 유효성분으로 포함하는 암 진단용 조성물
US7744882B2 (en) Soluble ErbB3 methods of detection and antibodies
Yu et al. Inhibitory short peptides targeting EPS8/ABI1/SOS1 tri-complex suppress invasion and metastasis of ovarian cancer cells
CN107249636B (zh) 以ckap4作为靶分子的抗肿瘤剂
JP4532273B2 (ja) 癌に関係するタンパク質
JP2006501153A (ja) 診断及び治療用標的としての低分子量タンパク質チロシンホスファターゼ(lmw−ptp)
RU2465330C1 (ru) СПОСОБ ИНГИБИРОВАНИЯ МЕТАСТАЗИРОВАНИЯ ЗЛОКАЧЕСТВЕННОЙ ОПУХОЛИ ИЛИ МИГРАЦИИ ЗЛОКАЧЕСТВЕННЫХ КЛЕТОК ПОСРЕДСТВОМ СНИЖЕНИЯ КЛЕТОЧНОГО УРОВНЯ ЛИЗИЛ-тРНК-СИНТЕТАЗЫ (ВАРИАНТЫ), КОМПОЗИЦИЯ И ПРИМЕНЕНИЕ ВЕКТОРА ЭКСПРЕССИИ ИЛИ АНТИТЕЛА ПРОТИВ KRS ДЛЯ ИНГИБИРОВАНИЯ МЕТАСТАЗИРОВАНИЯ ЗЛОКАЧЕСТВЕННОЙ ОПУХОЛИ ИЛИ МИГРАЦИИ ЗЛОКАЧЕСТВЕННЫХ КЛЕТОК
WO2009157919A1 (en) SOLUBLE ErbB3 DETECTION, REGULATION AND TREATMENT OF CANCER
US7745398B2 (en) Soluble ErbB3 and treatment of cancer
US20130196314A1 (en) Genes Differentially Expressed in Breast Cancer
US20120195916A1 (en) Method of treating cancer by inhibiting trim59 expression or activity
US9267119B2 (en) Phosphatidylinositol phosphate kinase type 1 gamma splice variants as biomarkers and drug targets for epithelial cancers
US20230357430A1 (en) Rnf167 and castor1 as novel mtor targets
Peng et al. Phosphorylation of TOPK at Y272 by FYN enhances proliferation and metastasis of gastric cancer
WO2012133994A1 (ko) Pauf 및 그의 결합 파트너를 상호작용을 이용한 암 치료제의 스크리닝 방법
JP2024052068A (ja) がんの治療に用いるための組成物
WO2002046466A2 (en) Complexes of brca and stat polypeptides and methods of use in the detection and treatment of cancer
Neel Regulation of CXC chemokine receptor function through intracellular trafficking and novel receptor-interacting proteins
WO2001051515A2 (en) Genes differentially expressed in breast cancer
Avraham Effects of Csk Homologous Kinase Overexpression on HER2/Neu-Mediated Signal Transduction Pathways in Breast Cancer Cells
Zagozdzon et al. Effects of CSK Homologous Kinase Overexpression on HER2/Neu-Mediated Signal Transduction Pathways in Breast Cancer Cells
US20100286243A1 (en) Mig-7 as a specific anticancer target

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131231

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151224

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20161227

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20171221

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 10