KR20100033625A - Manufacturing process of high conductive glass fibers by ni electroless plating - Google Patents

Manufacturing process of high conductive glass fibers by ni electroless plating Download PDF

Info

Publication number
KR20100033625A
KR20100033625A KR1020080092585A KR20080092585A KR20100033625A KR 20100033625 A KR20100033625 A KR 20100033625A KR 1020080092585 A KR1020080092585 A KR 1020080092585A KR 20080092585 A KR20080092585 A KR 20080092585A KR 20100033625 A KR20100033625 A KR 20100033625A
Authority
KR
South Korea
Prior art keywords
nickel
glass fiber
electroless plating
plating
nickel electroless
Prior art date
Application number
KR1020080092585A
Other languages
Korean (ko)
Inventor
박수진
김병주
최웅기
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020080092585A priority Critical patent/KR20100033625A/en
Publication of KR20100033625A publication Critical patent/KR20100033625A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/42Coatings containing inorganic materials
    • C03C25/46Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

PURPOSE: A manufacturing method of a high-conductive glass fiber by a nickel electroplating is provided to obtain the glass fiber with high conductivity by inserting a metal with uniform and constant thickness on the surface of the glass fiber. CONSTITUTION: A manufacturing method of a high-conductive glass fiber by a nickel electroplating comprises the following steps: nickel plating a glass fiber by a chemical reduction method using an electroless plating solution containing nickel salt, a phosphoric acid reducing agent, and a complexing agent; inserting a nano-sized nickel-phosphor alloy on the surface of the glass fiber to form a nickel film; and improving electric conductance. The electroless plating solution is consisted with the nickel salt NiCl_2x6H_2O, the phosphoric acid reducing agent NaH_2PO_2xH_2O, and the complexing agent NaC_6H_5O_7x2H_2O in a pH range of 3~10.

Description

니켈 무전해 도금에 의한 고전도성 유리섬유의 제조방법{Manufacturing process of high conductive glass fibers by Ni electroless plating}Manufacturing process of high conductive glass fibers by Ni electroless plating

본 발명은 니켈 무전해 도금에 의한 고전도성 유리섬유의 제조방법에 관한 것으로, 더욱 상세하게는 니켈염, 인산계 환원제 및 착화제를 포함하는 무전해 도금 용액에 유리섬유를 침지시켜 화학적 환원반응을 통해 높은 전기전도성을 갖는 유리섬유를 제조하는 방법에 관한 것이다. The present invention relates to a method for producing a highly conductive glass fiber by nickel electroless plating, and more particularly, chemical reduction reaction by immersing the glass fiber in an electroless plating solution containing a nickel salt, a phosphate-based reducing agent and a complexing agent. It relates to a method for producing a glass fiber having a high electrical conductivity through.

최근, 사회 · 경제 활동 및 정보화의 눈부신 발달로 전파 이용분야에서 수요가 높아지고 있으며, 전파를 통신 매체로 이용하는 무선통신은 시간과 거리를 극복하여 즉시 정보를 전달할 수 있다는 전파의 특성을 최대한 살려 현대 사회에서 중요한 생활 · 산업 기반의 하나로 자리 잡고 있다.In recent years, due to the remarkable development of social and economic activities and informatization, demand in the field of radio wave use is increasing, and the modern society that makes use of the characteristics of radio wave which can transmit information immediately by overcoming time and distance has been maximized. As one of the important living and industrial infrastructure in

그러나, 이런 전자파 환경에서 전기 · 전자기기들이 그 환경에 내성을 갖추지 못하면 오동작이나 고장을 일으킬 수 있고, 또한 생체가 강한 전자계에 노출됐을 경우에는 전자계 에너지에 의한 심부 체온의 상승, 또는 전류 쇼크에 의한 신경 · 근육의 흥분 등 생체 작용이 발생하는 것이 확인되었다.However, in the electromagnetic environment, if electrical and electronic devices are not resistant to the environment, malfunction or failure may occur, and when the living body is exposed to a strong electromagnetic field, an increase in core body temperature due to electromagnetic energy or a current shock may occur. It has been confirmed that biological actions such as excitement of nerves and muscles occur.

전자기파 차폐 재료로 사용되는 고전도성 유리섬유의 우수한 전도성은 면상 발열체 및 전자파차폐(electromagnetic interference shielding)의 소재로써 차폐층의 매변 또는 신호발생지로의 수신신호를 최소화하여, 전자기파의 유용한 사용과 더불어 인체에 위해한 전자파로부터의 차단이라는 상업적인 목적뿐만 아니라 레이더 탐지회피 등의 군사적 목적으로 중요한 소재로 이용되고 있다.The excellent conductivity of the high-conductivity glass fiber used as the electromagnetic shielding material is a surface heating element and electromagnetic interference shielding material, minimizing the reception signal of the shielding layer to the signal generator or the signal source, and it is useful for the human body. It is used as an important material for military purposes such as avoiding radar detection as well as commercial purposes such as blocking from harmful electromagnetic waves.

한편, 금속염 용액으로부터 금속 이온을 피도금물 위에 환원 석출시켜 금속막을 형성하여 고전도성 탄소섬유를 제조하는 방법에는 외부전력에 의해 전해 석출시키는 전해도금법, 용액 중의 금속 이온을 화학약품에 의한 환원 석출시키는 화학 환원도금법, 용액 중의 금속이온을 피도금물에 의해 치환 석출시키는 치환도금법이 있다. Meanwhile, a method of producing a highly conductive carbon fiber by reducing and depositing metal ions from a metal salt solution onto a plated object to form a metal film includes an electroplating method in which electroprecipitation is performed by external power, and metal ions in the solution are reduced and precipitated by chemicals. There is a chemical reduction plating method and a substitution plating method in which metal ions in a solution are substituted and precipitated by a plated object.

이 중에서 전해도금법은 기지층이 전도체이어야 하며, 전류밀도의 영향으로 기지층 표면 현상에 두께가 불균일하고, 복잡한 형상에 균일한 도금이 어렵다는 단점이 있다. Among them, the electroplating method has a disadvantage that the base layer should be a conductor, the thickness is uneven in the surface phenomenon of the base layer due to the influence of the current density, and it is difficult to uniformly plate the complex shape.

또한, 기존에 사용하던 섬유의 경우, 유리섬유에 비해 가격 경쟁력이 떨어진다.In addition, in the case of the existing fiber, the price is less competitive than glass fiber.

이에 본 발명자들은 화학적 환원반응을 이용하여 부도체인 유리섬유 표면을 니켈 무전해 도금하고 유리섬유의 표면에 금속(니켈) 도금 두께를 일정하게 증가시켜 고전도성의 유리섬유를 제조함으로써 본 발명을 성공적으로 완성하였다. Accordingly, the present inventors have successfully made the present invention by manufacturing a highly conductive glass fiber by electroless plating the surface of the glass fiber, which is a non-conductor, by using a chemical reduction reaction, and increasing the metal (nickel) plating thickness on the surface of the glass fiber. Completed.

결국, 본 발명은 니켈 무전해 도금에 의한 고전도성 유리섬유의 제조방법 및 상기 방법으로 제조된 니켈 무전해 도금 고전도성 유리섬유를 제공하는데 그 주된 목적이 있다.After all, the present invention has a main object to provide a method for producing a highly conductive glass fiber by nickel electroless plating and a nickel electroless plated high conductive glass fiber prepared by the above method.

상기 목적을 달성하기 위하여, 본 발명은 니켈 무전해 도금에 의한 고전도성 유리섬유 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing a highly conductive glass fiber by nickel electroless plating.

구체적으로, 본 발명은 유리섬유를 니켈 무전해 도금하되, 니켈염과 인산계 환원제 및 착화제가 공존하는 무전해 도금 용액으로 유리섬유를 화학환원방법에 의해 니켈 도금 처리하고, 유리섬유 표면에 나노크기의 니켈-인 합금을 도입하여 일정한 두께의 금속(니켈)피막을 형성함과 동시에 전기전도성을 향상시킨 니켈 무전해 도금 고전도성 유리섬유 제조방법을 제공한다. Specifically, the present invention is nickel electroless plating the glass fiber, nickel plating treatment of the glass fiber by the chemical reduction method with an electroless plating solution in which the nickel salt, phosphate-based reducing agent and complexing agent coexist, and nano-sized on the surface of the glass fiber The present invention provides a method for producing a nickel electroless plated high-conductivity glass fiber having a nickel-phosphorus alloy of which forms a metal (nickel) film having a constant thickness and improves electrical conductivity.

본 발명에 있어서, 상기 무전해 도금액의 니켈염은 NiCl2·6H2O가 바람직하며, 인산계 환원제는 NaH2PO2·H2O가 바람직하고, 착화제는 NaC6H5O7·2H2O가 바람직하다. In the present invention, the nickel salt of the electroless plating solution is preferably NiCl 2 · 6H 2 O, the phosphoric acid reducing agent is preferably NaH 2 PO 2 · H 2 O, the complexing agent is NaC 6 H 5 O 7 · 2H 2 O is preferred.

또한, 상기 무전해 도금액은 pH 3 ~ 10의 범위에서 사용하는 것이 바람직하다. pH가 10을 초과할 경우에는 도금액이 자체분해를 일으켜 도금이 잘 되지 않으며, pH가 3 미만일 경우에는 도금층의 질이 저하된다.In addition, the electroless plating solution is preferably used in the range of pH 3-10. If the pH is more than 10, the plating solution causes self-decomposition and plating is difficult. If the pH is less than 3, the quality of the plating layer is degraded.

또한, 본 발명에 있어서, 유리섬유의 도금욕 노출시간은 1 내지 150분이 바람직한데, 1분 미만에서는 자가 촉매 반응시간이 너무 짧은 관계로 섬유 표면에 생성되는 니켈-인 피막의 양이 적어 부적합하고, 150분을 초과하면 피막의 양이 급격히 상승하여 유리섬유 간의 합사가 발생하기 때문에 부적합하다.In addition, in the present invention, the exposure time of the plating bath of the glass fiber is preferably 1 to 150 minutes, but in less than 1 minute, the amount of nickel-phosphorus film formed on the surface of the fiber is not suitable because the reaction time is too short. If it exceeds 150 minutes, the amount of the film rises sharply and is unsuitable because pulverization between glass fibers occurs.

또한, 본 발명에 있어서, 도금 두께는 0.1 ~ 4.0 ㎛인 것이 바람직하다. 도금 두께가 0.1 ㎛ 미만에서는 금속막이 너무 얇게 형성되어 전기전도성을 측정하기에 적합하지 못하며, 4.0 ㎛를 초과할 경우에는 금속막이 너무 두꺼워져 섬유간의 합사 및 가공성이 떨어질 수 있어 부적합하다.Moreover, in this invention, it is preferable that plating thickness is 0.1-4.0 micrometers. If the plating thickness is less than 0.1 μm, the metal film is too thin to be suitable for measuring electrical conductivity. If the plating thickness is more than 4.0 μm, the metal film is too thick, so that weaving and workability between fibers may be inadequate.

또한, 본 발명에 있어서, 도금된 섬유 표면의 인의 함량은 1 ~ 5%가 바람직하다. 인의 경우, 전기전도도와 밀접한 관계를 가지고 있기 때문에, 상기 범위를 벗어나면 전기전도도가 저하될 우려가 있다.Further, in the present invention, the content of phosphorus on the plated fiber surface is preferably 1 to 5%. Since phosphorus has a close relationship with the electrical conductivity, there is a fear that the electrical conductivity is lowered outside the above range.

또한, 본 발명은 상기 방법에 의해 제조된 니켈 무전해 도금 고전도성 유리섬유를 제공한다. The present invention also provides a nickel electroless plated high conductive glass fiber produced by the above method.

본 발명에 있어서, 상기 니켈 무전해 도금액은 NiCl2·6H2O, NaC6H5O7·2H2O 및 NaH2PO2·H2O로 구성되는 것이 바람직하며, 유리섬유 표면에 도금되는 금속막의 두께는 0.1 ~ 4.0 ㎛인 것이 바람직하다.In the present invention, the nickel electroless plating solution is preferably composed of NiCl 2 · 6H 2 O, NaC 6 H 5 O 7 · 2H 2 O and NaH 2 PO 2 · H 2 O, and is plated on the glass fiber surface It is preferable that the thickness of a metal film is 0.1-4.0 micrometers.

상술한 바와 같이, 본 발명은 니켈 무전해 도금에 의한 고전도성 유리섬유의 제조방법 및 상기 방법으로 제조된 니켈 무전해 도금 고전도성 유리섬유를 제공하는 효과가 있다.As described above, the present invention has the effect of providing a method for producing a highly conductive glass fiber by nickel electroless plating and a nickel electroless plating highly conductive glass fiber prepared by the method.

본 발명에 따른 니켈 무전해 도금에 의한 고전도성 유리섬유의 제조방법은 연속공정과 안정적인 처리가 가능함과 동시에 유리섬유 표면에 두께가 일정하고 균일한 금속(니켈)을 도입시킴으로써 높은 전도성을 가질 수 있다. The method for producing a highly conductive glass fiber by nickel electroless plating according to the present invention can have a high conductivity by introducing a metal (nickel) with a uniform thickness on the surface of the glass fiber while being able to perform a continuous process and a stable treatment. .

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다. However, the following examples are illustrative of the present invention, and the contents of the present invention are not limited by the following examples.

실험예 1. 니켈 무전해 도금 유리섬유의 전기전도도 측정Experimental Example 1. Measurement of electrical conductivity of nickel electroless plated glass fiber

하기의 실시예에서 제조된 니켈 무전해 도금 유리섬유의 전기전도도 측정을 위하여, 4-probe volume resistivity tester(Mitsubishi Chemical Co., MCP-T610)를 이용하여 저항(V/I)을 측정한 후 시편의 치수(WㅧT: 섬유 측면의 단면적; L: 전압 접촉부 사이의 거리)와의 관계를 이용하여 전기전도도(σ)를 계산하였다.In order to measure the electrical conductivity of the nickel electroless plated glass fiber prepared in the following examples, the specimen after measuring the resistance (V / I) using a 4-probe volume resistivity tester (Mitsubishi Chemical Co., MCP-T610) The electrical conductivity σ was calculated using the relationship with the dimension (W ㅧ T: cross-sectional area of the fiber side; L: distance between voltage contacts).

실험예 2. 니켈 무전해 도금 유리섬유의 표면구조, 두께변화 및 특성 확인Experimental Example 2 Surface Structure, Thickness Change and Characterization of Nickel Electroless Plating Glass Fiber

하기의 실시예에서 제조된 니켈 무전해 도금 유리섬유의 표면의 미세구조, 두께변화 및 특성을 관찰하기 위하여 주사전자현미경(Scanning electron microscope, SEM JEOL JSM0840A)과 X선 회절(X-ray diffraction) 분석을 실시하였으며, 발생원으로는 CuKα를 장착한 Rigaku Model D/MAX-Ⅲ를 사용하였다.Scanning electron microscope (SEM JEOL JSM0840A) and X-ray diffraction (X-ray diffraction) analysis to observe the microstructure, thickness change and characteristics of the surface of the nickel electroless plated glass fiber prepared in the following examples As a generation source, Rigaku Model D / MAX-III equipped with CuK α was used.

실시예 1. 니켈 무전해 도금 유리섬유의 제조 Ⅰ Example 1 Preparation of Nickel Electroless Plating Glass Fibers I

본 발명에서 사용된 유리섬유는 현대 화이바(주)에서 생산한 미리 열처리된 HD324-01(23×23 count/inch, 중량 248 g/㎡)로, 아세톤으로 2시간 동안 desizing 처리된 장섬유를 금속 도금 전 표면의 불순물 제거를 위해 0.1 M HNO3로 30분 동안 전처리한 다음 사용하였다.The glass fiber used in the present invention is a pre-heated HD324-01 (23 × 23 count / inch, weight 248 g / m 2) produced by Hyundai Fiber Co., Ltd. It was used after pretreatment with 0.1 M HNO 3 for 30 minutes to remove impurities on the surface before plating.

유리섬유의 니켈 도금은 연속공정을 이용한 무전해 도금 방법을 사용하였으며, SnCl2 용액에서 10분 동안 활성화 시킨 후 증류수로 세척하고, 다시 PdCl2를 이용하여 10분 동안 활성화시켜 증류수에 세척하였다. 상기 과정에서 유리섬유 표면에 Sn/Pd 핵이 생성되었으며, 상기 유리섬유 표면에 형성된 Sn/Pd 핵은 금속 증착(deposition)을 촉매화 시킨다.Nickel plating of the glass fiber was performed using an electroless plating method using a continuous process, activated in SnCl 2 solution for 10 minutes, washed with distilled water, and then activated with PdCl 2 for 10 minutes and washed in distilled water. In the above process, Sn / Pd nuclei were generated on the glass fiber surface, and the Sn / Pd nucleus formed on the glass fiber surface catalyzes metal deposition.

NiCl2·6H2O 28.5 g/ℓ, NaC6H5O7·2H2O 24 g/ℓ, 및 NaH2PO2·H2O 10.5 g/ℓ의 조성을 가지는 pH 6.2의 니켈 무전해 도금용액에 상기 유리섬유를 넣고 1분 동안 55℃의 온도로 1%인 인을 함유하는 욕조액에서 처리한 후 완전하게 건조시켜 니켈 무전해 도금 유리섬유를 제조하였다. Nickel electroless plating solution of pH 6.2 having a composition of 28.5 g / L of NiCl 2 · 6H 2 O, 24 g / L of NaC 6 H 5 O 7 · 2H 2 O, and 10.5 g / L of NaH 2 PO 2 · H 2 O The glass fiber was added thereto, and then treated in a bath solution containing 1% phosphorus at a temperature of 55 ° C. for 1 minute and completely dried to prepare nickel electroless plated glass fibers.

하기 표 1에는 무전해 도금 시간, 인 함량, pH에 따라 제조된 유리섬유의 도 금막 두께 및 비저항을 측정하고 그 결과를 나타내었다. Table 1 below shows the plating film thickness and specific resistance of the glass fibers prepared according to the electroless plating time, phosphorus content, and pH, and the results are shown.

실시예 2. 니켈 무전해 도금 유리섬유의 제조Example 2 Preparation of Nickel Electroless Plating Glass Fiber

상기 실시예 1과 동일한 공정으로 니켈 무전해 도금을 수행하되, 60분간 도금하였다. Nickel electroless plating was performed in the same process as Example 1, but plated for 60 minutes.

상기와 같이 제조된 니켈 무전해 도금 유리섬유에서 도금막 두께 및 비저항을 측정하고 그 결과는 표 1에 나타내었다.The plating film thickness and specific resistance of the nickel electroless plated glass fibers prepared as described above were measured and the results are shown in Table 1.

실시예 3. 니켈 무전해 도금 유리섬유의 제조Example 3 Preparation of Nickel Electroless Plating Glass Fiber

상기 실시예 1과 동일한 공정으로 니켈 무전해 도금을 수행하되, 5%의 인을 함유하고 pH가 8.5인 도금용액에서 30분간 도금하였다.Nickel electroless plating was performed by the same process as in Example 1, but was plated in a plating solution containing 5% phosphorus and having a pH of 8.5 for 30 minutes.

상기와 같이 제조된 니켈 무전해 도금 유리섬유에서 도금막 두께 및 비저항을 측정하고 그 결과는 표 1에 나타내었다.The plating film thickness and specific resistance of the nickel electroless plated glass fibers prepared as described above were measured and the results are shown in Table 1.

실시예 4. 니켈 무전해 도금 유리섬유의 제조Example 4 Preparation of Nickel Electroless Plating Glass Fibers

상기 실시예 1과 동일한 공정으로 니켈 무전해 도금을 수행하되, 5%의 인을 함유하고 pH가 3인 도금용액에서 30분간 도금하였다.Nickel electroless plating was performed by the same process as in Example 1, but was plated in a plating solution containing 5% phosphorus and having a pH of 3 for 30 minutes.

상기와 같이 제조된 니켈 무전해 도금 유리섬유에서 도금막 두께 및 비저항을 측정하고 그 결과는 표 1에 나타내었다.The plating film thickness and specific resistance of the nickel electroless plated glass fibers prepared as described above were measured and the results are shown in Table 1.

실시예 5. 니켈 무전해 도금 유리섬유의 제조Example 5 Preparation of Nickel Electroless Plating Glass Fibers

상기 실시예 1과 동일한 공정으로 니켈 무전해 도금을 수행하되, 1%의 인을 함유하고, pH가 10인 도금용액에서 150분간 도금하였다. Nickel electroless plating was performed by the same process as in Example 1, but was plated for 150 minutes in a plating solution containing 1% phosphorus and having a pH of 10.

상기와 같이 제조된 니켈 무전해 도금 유리섬유에서 도금막 두께 및 비저항을 측정하고 그 결과는 표 1에 나타내었다.The plating film thickness and specific resistance of the nickel electroless plated glass fibers prepared as described above were measured and the results are shown in Table 1.

실시예 6. 니켈 무전해 도금 유리섬유의 제조Example 6 Preparation of Nickel Electroless Plating Glass Fibers

상기 실시예 1과 동일한 공정으로 니켈 무전해 도금을 수행하되, 5%의 인을 함유하고, pH가 10인 도금용액에서 150분간 도금하였다. Nickel electroless plating was performed by the same process as in Example 1, but was plated for 150 minutes in a plating solution containing 5% phosphorus and having a pH of 10.

상기와 같이 제조된 니켈 무전해 도금 유리섬유에서 도금막 두께 및 비저항을 측정하고 그 결과는 표 1에 나타내었다.The plating film thickness and specific resistance of the nickel electroless plated glass fibers prepared as described above were measured and the results are shown in Table 1.

실시예 7. 니켈 무전해 도금 유리섬유의 제조Example 7 Preparation of Nickel Electroless Plating Glass Fibers

상기 실시예 1과 동일한 공정으로 니켈 무전해 도금을 수행하되, 2%의 인을 함유하고, pH가 5인 도금용액에서 10분간 도금하였다. Nickel electroless plating was performed by the same process as Example 1, but was plated for 10 minutes in a plating solution containing 2% phosphorus and having a pH of 5.

상기와 같이 제조된 니켈 무전해 도금 유리섬유에서 도금막 두께 및 비저항을 측정하고 그 결과는 표 1에 나타내었다.The plating film thickness and specific resistance of the nickel electroless plated glass fibers prepared as described above were measured and the results are shown in Table 1.

실시예 8. 니켈 무전해 도금 유리섬유의 제조Example 8 Preparation of Nickel Electroless Plating Glass Fibers

상기 실시예 1과 동일한 공정으로 니켈 무전해 도금을 수행하되, 3%의 인을 함유하고, pH가 3인 도금용액에서 10분간 도금하였다. Nickel electroless plating was performed by the same process as in Example 1, but was plated for 10 minutes in a plating solution containing 3% phosphorus and having a pH of 3.

상기와 같이 제조된 니켈 무전해 도금 유리섬유에서 도금막 두께 및 비저항을 측정하고 그 결과는 표 1에 나타내었다.The plating film thickness and specific resistance of the nickel electroless plated glass fibers prepared as described above were measured and the results are shown in Table 1.

비교예 1. Comparative Example 1.

상기 실시예 1과 동일한 공정으로 니켈 무전해 도금을 수행하되, 7%의 인을 함유하고, pH가 11인 도금용액에서 300분간 도금하였다. Nickel electroless plating was performed by the same process as Example 1, but was plated for 300 minutes in a plating solution containing 7% phosphorus and having a pH of 11.

상기와 같이 제조된 니켈 무전해 도금 유리섬유에서 도금막 두께 및 비저항을 측정하고 그 결과는 표 1에 나타내었다.The plating film thickness and specific resistance of the nickel electroless plated glass fibers prepared as described above were measured and the results are shown in Table 1.

비교예 2. Comparative Example 2.

상기 실시예 1과 동일한 공정으로 니켈 무전해 도금을 수행하되, 0.1%의 인을 함유하고, pH가 1인 도금용액에서 30초간 도금하였다. Nickel electroless plating was carried out in the same process as in Example 1, but was plated for 30 seconds in a plating solution containing 0.1% phosphorus and having a pH of 1.

상기와 같이 제조된 니켈 무전해 도금 유리섬유에서 도금막 두께 및 비저항을 측정하고 그 결과는 표 1에 나타내었다.The plating film thickness and specific resistance of the nickel electroless plated glass fibers prepared as described above were measured and the results are shown in Table 1.

본 발명에 따른 니켈 무전해 도금된 유리섬유의 도금막 두께 및 비저항Plated film thickness and resistivity of nickel electroless plated glass fibers according to the present invention 구분division 두께 (㎛)Thickness (㎛) 비저항 (Ω㎝)Resistivity (Ω㎝) 무전해도금Electroless Plating pHpH 인함량(중량%)Phosphorus content (% by weight) 시간(분)Minutes 실시예1Example 1 0.980.98 0.85×10-4 0.85 × 10 -4 6.26.2 1One 1One 실시예2Example 2 2.992.99 0.14×10-5 0.14 × 10 -5 6.26.2 1One 6060 실시예3Example 3 2.122.12 5.49×10-5 5.49 × 10 -5 8.58.5 55 3030 실시예4Example 4 2.412.41 4.87×10-5 4.87 × 10 -5 33 55 3030 실시예5Example 5 3.463.46 3.08×10-6 3.08 × 10 -6 1010 1One 150150 실시예6Example 6 3.653.65 2.14×10-6 2.14 × 10 -6 1010 55 150150 실시예7Example 7 1.891.89 3.45×10-5 3.45 × 10 -5 55 22 1010 실시예8Example 8 1.621.62 4.89×10-5 4.89 × 10 -5 33 33 1010 비교예1Comparative Example 1 -- 1.56×10-7 1.56 × 10 -7 1111 77 300300 비교예2Comparative Example 2 -- 5.32×10-3 5.32 × 10 -3 1One 0.10.1 0.50.5

상기에서 비교예 1은 폭발적인 도금으로 섬유간의 합사가 발생하였으며, 비교에 2는 반대로 너무 적은 양의 금속막이 형성되었다.In Comparative Example 1, splicing between fibers occurred due to the explosive plating, and in comparison, 2, too little metal film was formed.

도 1은 본 발명에 따른 니켈 무전해 도금에 의한 고전도성 유리섬유의 표면처리 장치이다. 1 is a surface treatment apparatus of a highly conductive glass fiber by nickel electroless plating according to the present invention.

도 2는 본 발명의 일실시예에 따라 제조된 니켈 무전해 도금 유리섬유의 측면 SEM 사진이다.Figure 2 is a side SEM photograph of the nickel electroless plated glass fiber prepared according to one embodiment of the present invention.

도 3은 본 발명의 다른 일실시예에 따라 제조된 니켈 무전해 도금 유리섬유의 측면 SEM 사진이다.Figure 3 is a side SEM photograph of the nickel electroless plated glass fiber prepared according to another embodiment of the present invention.

도 4는 본 발명의 다른 일실시예에 따라 제조된 니켈 무전해 도금 유리섬유의 단면 SEM 사진이다. Figure 4 is a cross-sectional SEM photograph of the nickel electroless plated glass fiber prepared according to another embodiment of the present invention.

** 도면의 주요 부분에 대한 부호의 설명 **** Description of symbols for the main parts of the drawing **

1. 탄소섬유 2. 1차 활성조1. Carbon fiber 2. Primary activation tank

3. 세척조 4. 2차 활성조3. Wash Tank 4. Secondary Activated Bath

5. 니켈 무전해 도금조 6. 핫플레이트(hot plate)5. Nickel electroless plating bath 6. Hot plate

7. 세척조 8. 건조기7. Wash bath 8. Dryer

9. 권취(take-up) 모터9. Take-up Motor

Claims (8)

유리섬유를 니켈 무전해 도금함에 있어서,In nickel electroless plating of glass fiber, 니켈염과 인산계 환원제 및 착화제가 공존하는 무전해 도금 용액으로 유리섬유를 화학환원방법에 의해 니켈 도금하고, 유리섬유 표면에 나노크기의 니켈-인 합금을 도입하여 니켈 피막을 형성함과 동시에 전기전도성을 향상시킨 니켈 무전해 도금 고전도성 유리섬유의 제조방법. Electroless plating solution where nickel salt, phosphate-based reducing agent and complexing agent coexist. Nickel-plated glass fiber by chemical reduction method, and nano size nickel-phosphorus alloy is introduced on the surface of glass fiber to form nickel film and Method for producing nickel electroless plating high conductive glass fiber with improved conductivity. 제 1항에 있어서,The method of claim 1, 상기 무전해 도금액은 니켈염 NiCl2·6H2O, 인산계 환원제 NaH2PO2·H2O 및 착화제 NaC6H5O7·2H2O로 구성되는 것을 특징으로 하는 제조방법. The electroless plating solution is a nickel salt NiCl 2 · 6H 2 O, phosphate-based reducing agent NaH 2 PO 2 · H 2 O and a complexing agent NaC 6 H 5 O 7 · 2H 2 O characterized in that the production method. 제 1항에 있어서,The method of claim 1, 상기 무전해 도금액은 pH 3 ~ 10의 범위인 것을 특징으로 하는 제조방법.The electroless plating solution is characterized in that the pH 3 ~ 10 range. 제 1항에 있어서,The method of claim 1, 상기 유리섬유의 도금욕 노출시간은 1 내지 150분인 것을 특징으로 하는 제조방법.Plating bath exposure time of the glass fiber is characterized in that 1 to 150 minutes. 제 1항에 있어서,The method of claim 1, 상기 도금 두께는 0.1 ~ 4.0 ㎛인 것을 특징으로 하는 제조방법.The plating thickness is 0.1 ~ 4.0 ㎛ manufacturing method characterized in that. 제 1항에 있어서,The method of claim 1, 상기 니켈 무전해 도금 고전도성 유리섬유 표면의 인의 함량은 1 ~ 5%인 것을 특징으로 하는 제조방법.Phosphorus content of the surface of the nickel electroless plating high conductivity glass fiber is characterized in that 1 to 5%. 제 1항의 방법에 의해 제조된 니켈 무전해 도금 고전도성 유리섬유.Nickel electroless plating highly conductive glass fibers prepared by the method of claim 1. 제 7항에 있어서, The method of claim 7, wherein 니켈 무전해 도금액은 NiCl2·6H2O, NaC6H5O7·2H2O 및 NaH2PO2·H2O로 구성되고, 유리섬유 표면에 도금되는 금속막의 두께는 0.1 ~ 4.0 ㎛인 것을 특징으로 하 는 니켈 무전해 도금 고전도성 유리섬유.The nickel electroless plating solution is composed of NiCl 2 · 6H 2 O, NaC 6 H 5 O 7 · 2H 2 O, and NaH 2 PO 2 · H 2 O, and the thickness of the metal film plated on the glass fiber surface is 0.1 to 4.0 μm. Nickel electroless plating high conductivity glass fibers.
KR1020080092585A 2008-09-22 2008-09-22 Manufacturing process of high conductive glass fibers by ni electroless plating KR20100033625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080092585A KR20100033625A (en) 2008-09-22 2008-09-22 Manufacturing process of high conductive glass fibers by ni electroless plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080092585A KR20100033625A (en) 2008-09-22 2008-09-22 Manufacturing process of high conductive glass fibers by ni electroless plating

Publications (1)

Publication Number Publication Date
KR20100033625A true KR20100033625A (en) 2010-03-31

Family

ID=42182429

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080092585A KR20100033625A (en) 2008-09-22 2008-09-22 Manufacturing process of high conductive glass fibers by ni electroless plating

Country Status (1)

Country Link
KR (1) KR20100033625A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101210137B1 (en) * 2010-09-28 2012-12-07 권만천 apparatus for manufacturing electroconductive fiber
KR20190072242A (en) 2017-12-15 2019-06-25 주식회사 비에스엠신소재 Method for manufacturing highly conductive fiber with improved magnetic susceptibility using electroless-electrolytic plating method
CN114751659A (en) * 2022-04-19 2022-07-15 安徽中纤新材料有限公司 Conductive glass fiber and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101210137B1 (en) * 2010-09-28 2012-12-07 권만천 apparatus for manufacturing electroconductive fiber
KR20190072242A (en) 2017-12-15 2019-06-25 주식회사 비에스엠신소재 Method for manufacturing highly conductive fiber with improved magnetic susceptibility using electroless-electrolytic plating method
CN114751659A (en) * 2022-04-19 2022-07-15 安徽中纤新材料有限公司 Conductive glass fiber and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3741688B2 (en) Method of plating metal film on polymer surface
JPS6133077B2 (en)
KR101096531B1 (en) Manufacturing process of high conductive carbon fibers by metal electroplating method
KR20140015890A (en) A fabricating method of metal thin film using electroless deposition and a thin film device fabricated thereby
CN105339528A (en) Metal porous body, method for manufacturing metal porous body, and fuel cell
CN111020542A (en) Method for preparing aluminum alloy silver coating by utilizing dopamine
CN106134299A (en) Printed substrate substrate, printed substrate and the method manufacturing printed substrate substrate
CN103757617B (en) A kind of Ni-Cu-La-B quaternary alloy plating solution and the method for the plating of glass fibre chemistry
KR101423169B1 (en) A Method for Manufacturing of Shield Sheet for Preventing Electromagnetic Wave
Hui et al. Electromagnetic shielding wood-based composite from electroless plating corrosion-resistant Ni–Cu–P coatings on Fraxinus mandshurica veneer
KR101197723B1 (en) Manufacturing process of nickel-plated carbon fibers by non-electroplating method
KR20100033625A (en) Manufacturing process of high conductive glass fibers by ni electroless plating
CN106884195B (en) A kind of plated film magnesium and its alloy and preparation method thereof
Cissé et al. Corrosion resistance of electroless Ni-Cu-P ternary alloy coatings in acidic and neutral corrosive mediums
KR20180006523A (en) Manufacturing method of Nickel-plated and high-conductivity carbon fibers by non-electroplating process
CN109207971A (en) A kind of chemistry quickly reduction gold plating liquid and its application
KR101199305B1 (en) Manufacturing Method of Highly Electro-conductive Carbon Fibers Using Cobalt Based Reducing Agent
CN109104851B (en) Preparation method of electromagnetic shielding film
CN114105494B (en) Coupling agent compounded ionic nickel palladium-free activation solution and method for preparing conductive basalt fiber
KR101093608B1 (en) Manufacturing method of high conductivity carbon fiber using hydrazine and carbon fiber manufactured by the same
KR101069581B1 (en) Nickel alloy galvanizing solution for electronic parts and manufacturing method of the same
KR20110132894A (en) Manufacturing method of highly electro-conductive carbon fibers using boron based reducing agent
Tzaneva et al. Uniformity of Electrochemical Deposition on Thin Copper Layers
KR101003317B1 (en) Emi shielding conductive thin film using dry-wet plating and method for preparing the same
JP2013209708A (en) Product coated with black film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application