KR20100019173A - Method of manufacturing nanofiber web - Google Patents

Method of manufacturing nanofiber web Download PDF

Info

Publication number
KR20100019173A
KR20100019173A KR1020080078064A KR20080078064A KR20100019173A KR 20100019173 A KR20100019173 A KR 20100019173A KR 1020080078064 A KR1020080078064 A KR 1020080078064A KR 20080078064 A KR20080078064 A KR 20080078064A KR 20100019173 A KR20100019173 A KR 20100019173A
Authority
KR
South Korea
Prior art keywords
nozzle
resin
nanofiber web
collector
manufacturing
Prior art date
Application number
KR1020080078064A
Other languages
Korean (ko)
Other versions
KR101118081B1 (en
Inventor
흥 렬 오
Original Assignee
코오롱패션머티리얼 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱패션머티리얼 (주) filed Critical 코오롱패션머티리얼 (주)
Priority to KR1020080078064A priority Critical patent/KR101118081B1/en
Publication of KR20100019173A publication Critical patent/KR20100019173A/en
Application granted granted Critical
Publication of KR101118081B1 publication Critical patent/KR101118081B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/43Acrylonitrile series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4309Polyvinyl alcohol
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4358Polyurethanes

Abstract

PURPOSE: A method of manufacturing nanofiber web is provided to manufacture the nanofiber web, and to conveniently and easily repair and manage a facility while improving productivity and uniformity of the nanofiber web. CONSTITUTION: A method of manufacturing nanofiber web includes a step for supplying a nozzle(3) applied with the high voltage and a step for electrospinning the polymer liquid supplied to the nozzles towards a collector. The nozzle has a hollow part(3b) inside. A plurality of needle bed protrusions are formed on the outer surface of the nozzle. The nozzle has the needle bed protrusions of 2~20.

Description

나노섬유 웹의 제조방법{Method of manufacturing nanofiber web}Method of manufacturing nanofiber web {Method of manufacturing nanofiber web}

본 발명은 전기방사방식을 이용한 나노섬유 웹의 제조방법에 관한 것으로서, 보다 구체적으로는 외표면에 여러개의 침상 돌출부를 갖는 노즐을 사용하여 고분자 용액을 전기방사함으로서 제조비용이 절감되고, 생산성이 높고, 제조 공정의 관리가 용이하고, 설비의 유지 보수도 간편하게 되는 나노섬유 웹의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a nanofiber web using an electrospinning method, more specifically, by using a nozzle having a plurality of needle-like protrusions on the outer surface of the electrospinning of the polymer solution to reduce the manufacturing cost, high productivity The present invention relates to a method for producing a nanofiber web, in which the manufacturing process can be easily managed and the maintenance of equipment can be simplified.

전기방사는 직경이 수십 내지 수백 ㎚인 초극세 섬유(이하"나노섬유"라고 한다.)를 제조할 수 있는 비교적 간단한 방법으로 이미 1930년대에 독일에서 첫 선을 보였다. 그러나, 당시의 기술로는 이를 상품화하는 데에 한계가 있어 관심을 받지 못하다가 1970년대에 이르러서야 연구가 다시 시작되었다가 2000년대 이후에서야 본격적인 연구가 시작되었다.Electrospinning was first introduced in Germany in the 1930s as a relatively simple way to produce ultrafine fibers (hereinafter referred to as "nano fibers") with diameters of tens to hundreds of nm. However, the technology of the time was limited to commercialization of this technology, so it was not received attention, and research began again until the 1970s, and full-scale research began only after the 2000s.

전기방사는 고분자용액에 수천 내지 수만 볼트의 높은 전압을 가하여 고분자 용액으로부터 용매의 표면장력을 넘는 접선벡터의 힘이 가해져서 고분자용액으로부터 미세한 폴리머 제트가 형성되어 고분자용액에 가해진 전하와 반대의 전하를 띠는 물체를 향해 빠른 속도로 진행하게 된다. 분사된 고분자 제트는 이어 수많은 미 세 섬유로 다시 분산되어 뿌려지게 되는데 이때의 미세 섬유의 직경은 수십내지 수백 나노미터의 굵기를 가진다.Electrospinning applied a high voltage of several thousand to tens of thousands of volts to the polymer solution, and the force of the tangential vector exceeding the surface tension of the solvent was applied from the polymer solution to form a fine polymer jet from the polymer solution. The band advances rapidly toward the object. The jets of polymer jets are then dispersed and scattered back into a number of fine fibers, which have a diameter of tens to hundreds of nanometers.

전기방사를 이용하면 고분자용액으로부터 수십 내지 수백 나노미터의 굵기를 가지는 나노섬유로 이루어진 도 4와 같은 나노섬유 웹을 제조할 수 있으며, 이를 이용하여 고기능성 의류, 초정밀 필터, 세포배양용 소재(scaffold) 등의 고성능 제품을 얻을 수 있다.Electrospinning can be used to produce a nanofiber web as shown in Figure 4 consisting of nanofibers having a thickness of several tens to hundreds of nanometers from a polymer solution, using the high-performance clothing, ultra-precision filter, cell culture material (scaffold) High performance products, such as) can be obtained.

도 4는 나노섬유 웹의 전자현미경사진이다.4 is an electron micrograph of a nanofiber web.

상업적으로 나노섬유 웹을 제조하기 위해서 한국등록특허 제0412241호, 한국등록특허 제0422459호 및 한국공개특허 제2005-15610호 고분자 용액을 다수의 노즐을 통해 전기방사하는 방법을 제안하고 있다.In order to commercially manufacture a nanofiber web, Korean Patent No. 0412241, Korean Patent No. 0422459 and Korean Patent Application No. 2005-15610 propose a method of electrospinning a plurality of nozzles through a plurality of nozzles.

구체적으로, 상기의 종래 방법은 도 1에 도시된 바와 같이 고분자 용액을 계량펌프(2)를 통해 고전압이 걸려있는 다수의 노즐(3)에 공급한 다음, 이를 노즐과 반대 전하를 띠는 고전압이 걸려있는 컬렉터(4)상에 위치하는 섬유기재상에 전기방사하여 나노섬유 웹을 제조하였다.Specifically, according to the conventional method, as shown in FIG. 1, a polymer solution is supplied to a plurality of nozzles 3 under high voltage through a metering pump 2, and then a high voltage having a charge opposite to that of the nozzle is applied. Nanofiber web was prepared by electrospinning on a fiber substrate placed on the hanging collector (4).

도 1은 나노섬유 웹을 제조하는 전기방사 공정 개략도이다.1 is a schematic diagram of an electrospinning process for producing a nanofiber web.

상기의 종래방법에서 사용되는 노즐(3)은 단면내부에 중공부(中空部)가 형성된 원형 또는 타원형의 구조로서, 상기 노즐의 중공부를 통해 고분자 용액을 컬렉터로 방사시키기 때문에 나노섬유 제조를 위해서는 노즐의 중공부 직경을 작게해야 되기 때문에 노즐 막힘 현상이 발생되는 문제가 있었다.The nozzle 3 used in the conventional method has a circular or elliptical structure in which a hollow part is formed in a cross section, and a nozzle for manufacturing nanofibers because the polymer solution is radiated to the collector through the hollow part of the nozzle. Since the diameter of the hollow part should be small, there was a problem that the nozzle clogging phenomenon occurs.

한편, 상기의 종래 방법은 하나의 노즐을 사용하는 것에 비하여 생산성이 매우 우수하고 균일성이 우수하여졌다. 그러나, 상기 종래 기술은 다수의 노즐을 사용함에 따라 노즐에서의 막힘 등으로 인한 결점 발생의 가능성이 매우 높고, 노즐을 수시로 탈거하여 일일이 세정하여야하는 번거로움이 따른다. 또, 노즐마다 수천 내지 수만볼트의 고전압을 가하게 되므로 각 노즐에서의 전기장에 의해 노즐에서 발생하는 고분자 제트의 방향에 상호 영향을 미쳐 균일한 나노섬유 웹을 얻기가 어렵다.On the other hand, the conventional method is very excellent in productivity and excellent in uniformity compared to using one nozzle. However, the prior art has a very high possibility of defects due to clogging in the nozzle, and the need for removing the nozzles from time to time causes a hassle. In addition, since a high voltage of thousands to tens of thousands of volts is applied to each nozzle, it is difficult to obtain a uniform nanofiber web because the electric field in each nozzle affects the direction of the polymer jet generated in the nozzle.

게다가 고분자의 종류, 고분자의 분자량, 용매의 점도, 온도 등에 따라서 노즐 끝에서의 고분자 용액 방울의 형성이 모두 상이하므로 고분자 종류 변경, 고분자 용액의 변경, 생산속도의 변경 시 안정적인 방사성을 얻기 위해서 노즐의 규격을 그에 맞도록 변경하여야하는 번거로움이 따른다. 노즐의 규격을 최적화하기 위해서는 별도의 시험을 통해 적합한 노즐의 내경, 길이 등을 조사하고 이에 맞는 노즐을 준비하여 설치해야 하므로 다양한 품종의 나노섬유 웹을 생산하는 데에 있어 준비기간이 매우 길어지게 된다.In addition, the formation of polymer solution droplets at the nozzle tip is different depending on the type of polymer, molecular weight of polymer, viscosity of solvent, temperature, etc. This is a hassle to change the specification to conform. In order to optimize the size of the nozzle, it is necessary to investigate the inner diameter and length of a suitable nozzle through separate tests, and to prepare and install a nozzle suitable for the nozzle. Therefore, the preparation period for producing various kinds of nanofiber webs becomes very long. .

이를 해결하기 위해 실제 상업적 형태의 전기방사 설비에 있어서는 노즐을 기재의 대각선 방향으로 배열하거나 혹은 여러 개의 층으로 나누어 배열하되 서로 교호의 위치가 되도록 배열하는 등의 기술이 적용되고 있으나 다수의 노즐을 일일이 세정해야하며 노즐에서의 전기장에 의한 고분자 제트의 상호 영향의 문제를 근본적으로 해결하기 어렵다.In order to solve this problem, in actual commercial-type electrospinning equipment, a technique of arranging nozzles in a diagonal direction of the substrate or dividing into several layers and arranging them alternately with each other has been applied. It must be cleaned and it is difficult to fundamentally solve the problem of the mutual influence of the polymer jets by the electric field in the nozzle.

또한, 종래방법은 제조비용이 상승되고 설비가 복잡한 문제도 있었다.In addition, the conventional method has a problem that the manufacturing cost is increased and the equipment is complicated.

본 발명의 목적은 이와 같은 종래 문제점을 해결함으로써 나노섬유 웹의 균일성을 크게 향상시키기 위한 것이다.An object of the present invention is to significantly improve the uniformity of the nanofiber web by solving such a conventional problem.

본 발명의 또다른 목적은 나노섬유 웹 제조시 제조원가를 절감하고, 생산성을 높히고, 공정관리가 용이하며 설비의 보수 및 유지도 용이하게 하기 위한 것이다.Still another object of the present invention is to reduce manufacturing costs, increase productivity, facilitate process management, and facilitate maintenance and maintenance of a nanofiber web.

이와 같은 과제를 달성하기 위한 본 발명에 따른 나노섬유 웹의 제조방법은, 고분자 용액을 고전압이 걸려 있는 노즐(3)에 공급한 후 노즐(3)에 공급된 고분자 용액을 노즐(3)과 반대 전하를 띄는 고전압이 걸려 있는 컬렉터(4)를 향해 전기방사하여 나노섬유 웹을 제조할 때 단면 내부에는 중공부가(3b)가 형성되어 있고 단면 외표면에는 다수개의 침상 돌출부(3a)들이 형성된 구조를 갖는 노즐(3)을 사용하는 것을 특징으로 한다.According to the method of manufacturing a nanofiber web according to the present invention for achieving the above object, the polymer solution supplied to the nozzle 3 after supplying the polymer solution to the high voltage is applied to the nozzle 3, as opposed to the nozzle 3. When the nanofiber web is manufactured by electrospinning toward the collector 4, which is charged with a high voltage, a hollow portion 3b is formed inside the cross section and a plurality of needle protrusions 3a are formed on the outer surface of the cross section. It is characterized by using the nozzle (3) having.

이하, 첨부한 도면 등을 통하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

먼저, 본 발명은 도 1에 도시된 바와 같이 고분자 용액 주탱크내(1)에 보관중인 고분자 용액을 고분자 용액 공급 펌프(2)를 통해 노즐의 중공부(3b)로 공급한 다.First, as shown in FIG. 1, the polymer solution stored in the polymer solution main tank 1 is supplied to the hollow part 3b of the nozzle through the polymer solution supply pump 2.

노즐의 중공부(3b)로 공급된 고분자 용액은 노즐(3)과 컬렉터(4)에 의해 발생되는 전기력에 의해 노즐의 침상 돌출부(3a)로 이동된다.The polymer solution supplied to the hollow portion 3b of the nozzle is moved to the needle projecting portion 3a of the nozzle by the electric force generated by the nozzle 3 and the collector 4.

다음으로는, 노즐의 침상 돌출부(3a)에 공급되는 고분자 용액을 컬렉터(4)를 향해 전기방사시켜 나노섬유를 휘산시킨 다음, 휘산되는 나노섬유를 상기 컬렉터(4) 상에 적층하여 나노섬유 웹을 제조한다.Next, the polymer solution supplied to the needle projection 3a of the nozzle is electrospun toward the collector 4 to volatilize the nanofibers, and then the volatilized nanofibers are laminated on the collector 4 to form a nanofiber web. To prepare.

구체적으로, 노즐의 침상 돌출부(3a)에 공급된 고분자 용액은 노즐(3)과 컬렉터(4)에 걸려있는 고전압에 의해 고분자 용액의 표면장력보다 법선벡터 방향으로 응력이 커져서 고분자 제트(Jet)를 형성하게 된다.Specifically, the polymer solution supplied to the needle protrusion 3a of the nozzle has a higher stress in the direction of the normal vector than the surface tension of the polymer solution due to the high voltage applied to the nozzle 3 and the collector 4, thereby producing the polymer jet. To form.

상기 고분자 제트는 반대 전하를 띄는 컬렉터(4)를 향하게 되며, 노즐(3)으로부터 일정구간까지는 제트(Jet) 상태를 유지하다가 그 이후에는 나노섬유로 변하면서 휘산되어 컬렉터(4) 상에 집적된다.The polymer jet is directed toward the collector 4 with the opposite charge, and maintains a jet state from the nozzle 3 to a predetermined period, after which it is volatilized into nanofibers and accumulated on the collector 4. .

상기 노즐(3)과 컬렉터(4) 각각에는 전기방사를 위해 서로 다른 전하를 띄는 고전압이 걸려진다.Each of the nozzle 3 and the collector 4 is subjected to a high voltage with a different charge for electrospinning.

상기 고분자 용액은 폴리아미드 수지, 폴리우레탄 수지, 폴리에스테르 수지, 폴리스티렌 수지, 셀룰로오스, 폴리비닐아세테이트, 폴리비닐클로라이드, 폴리비닐알코올 수지, 폴리설폰 수지, 폴리아크릴로니트릴 수지, 폴리메틸메타 아크릴에이트 수지, 폴리스티렌 수지, 폴리아크릴산 수지, 폴리올레핀 수지, 전방향족폴리아미드 수지 또는 폴리비닐리덴 플루오라이드 수지 등과 같이 용해 가능한 모든 섬유형성능 고분자를 사용할 수 있다.The polymer solution may be polyamide resin, polyurethane resin, polyester resin, polystyrene resin, cellulose, polyvinylacetate, polyvinylchloride, polyvinyl alcohol resin, polysulfone resin, polyacrylonitrile resin, polymethylmethacrylate resin All soluble fiber-forming polymers such as polystyrene resin, polyacrylic acid resin, polyolefin resin, wholly aromatic polyamide resin or polyvinylidene fluoride resin can be used.

또, 고분자 물질을 용해하기 위한 용매의 종류에도 제한이 없다. 용매는 고분자에 따라 한정이 되는 것이며 나노섬유 웹을 제조하는 데에 사용되는 고분자에 따라 용매를 자유로이 할 수 있다. 또, 고분자 용액의 제조방법에 대해서도 제한이 없다. Moreover, there is no restriction | limiting also in the kind of solvent for melt | dissolving a high molecular substance. The solvent is limited depending on the polymer, and the solvent can be freely determined depending on the polymer used to prepare the nanofiber web. Moreover, there is no restriction also about the manufacturing method of a polymer solution.

고분자 용액의 농도는 1% 이하의 낮은 농도부터 50% 이하의 높은 농도에 까지 이른다.The concentration of the polymer solution can range from as low as 1% or less to as high as 50% or less.

또한, 두 종류 이상의 고분자를 동시에 사용할 수 있다. 두 종류 이상의 상이한 고분자를 용매에 녹여 사용하는 것도 가능하며, 동종의 고분자에 있어 분자량 등의 특성이 상이한 고분자를 용매에 녹여 사용하는 것도 가능하다.In addition, two or more kinds of polymers may be used simultaneously. It is also possible to dissolve two or more kinds of different polymers in a solvent, or to dissolve and use polymers having different properties such as molecular weight in solvents.

컬렉터(4) 위에는 섬유기재 또는 필름이 위치할 수도 있다.On the collector 4, a fibrous base or film may be located.

상기 컬렉터(4)는 노즐(3)의 상부면, 하부면 또는 수평면에 위치하고, 일정한 선속도로 운동한다.The collector 4 is located on the top, bottom or horizontal surface of the nozzle 3 and moves at a constant linear velocity.

노즐(3)과 컬렉터(4) 각각의 표면은 금, 은, 텅스텐, 구리, 스테인레스 강 또는 이들의 합금 등이고, 보다 바람직 하기로는 스테인레스 강에 백금이 코팅된 것이 좋다.The surface of each of the nozzle 3 and the collector 4 is gold, silver, tungsten, copper, stainless steel, alloys thereof, or the like, and more preferably, platinum is coated on the stainless steel.

본 발명에서는 종래 전기방사용 노즐과 같이 노즐내 중공부로 공급되는 고분자 용액을 노즐 중공부에서 바로 컬렉터를 향해 전기방사하는 것이 아니라, 노즐내 중공부로 공급되는 고분자 용액을 노즐의 침상 돌출부들로 이동, 공급한 후 상기 노즐의 침상 돌출부들에서 컬렉터를 향해 전기방사하기 때문에 노즐 개수당 나노섬유의 생산량이 향상되며, 노즐의 중공부 직경을 작게하지 않아도 나노섬유 제조가 가능하여 노즐 막힘 현상을 효과적으로 방지할 수 있다.In the present invention, instead of electrospinning the polymer solution supplied to the hollow part in the nozzle to the collector, like the conventional electrospinning nozzle, the polymer solution supplied to the hollow part in the nozzle is moved to the needle protrusions of the nozzle, After supplying the electrospinning from the needle protrusions of the nozzle toward the collector, the production of nanofibers per nozzle number is improved, and the nanofibers can be manufactured without reducing the diameter of the hollow part of the nozzle to effectively prevent nozzle clogging. Can be.

이와 같이 본 발명에서는 종래 노즐을 사용하는 대신에 침상 돌출부를 갖는 노즐을 사용함으로써, 노즐을 일일이 세정하고 관리하여야 하는 번거로움이 없으며 다수의 노즐의 배열에 따라 나노섬유 웹의 균일성이 좌우되는 단점이 없다. 또, 고분자의 종류, 점도 등에 따라 노즐의 내경, 길이 등을 변경하여 설치하여야 하는 번거로움이 없어 품종의 교체 등이 매우 용이하며 노즐을 사용함에 따른 노즐간의 정전기적 반발력으로 인한 나노섬유 웹의 불균일성이 없는 장점이 있다. Thus, in the present invention, by using a nozzle having a needle protrusion instead of using a conventional nozzle, there is no hassle to clean and manage the nozzle one by one, the uniformity of the nanofiber web depends on the arrangement of a plurality of nozzles There is no In addition, there is no hassle to change the inner diameter and length of the nozzle according to the type and viscosity of the polymer, so it is very easy to change the varieties. There is no advantage to this.

본 발명은 제조비용이 저렴하고, 생산성이 높고, 나노섬유 웹의 균일성을 크게 향상시키고 품종 변경 및 공정관리가 용이하다The present invention is low production cost, high productivity, greatly improve the uniformity of the nanofiber web, easy to change varieties and process control

아울러, 본 발명은 설비의 보수 및 유지가 용이하고 설비도 간소화할 수 있다.In addition, the present invention is easy to repair and maintain the equipment and can simplify the equipment.

그 결과 본 발명으로 제조된 나노섬유 웹은 고성능 필터, 광학소재 등으로 유용하다.As a result, the nanofiber web produced by the present invention is useful as a high performance filter, optical material and the like.

이하 실시예 및 비교실시예를 통하여 본 발명을 보다 구체적으로 살펴본다. 그러나 본 발명이 하기 실시예에만 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited only to the following examples.

실시예Example 1 One

폴리아미드를 개미산에 농도가 8%가 되도록 용해하여 25℃의 폴리아미드 용액을 제조하여 고분자 용액으로 사용하였다.Polyamide was dissolved in formic acid at a concentration of 8% to prepare a polyamide solution at 25 ° C. and used as a polymer solution.

도 1에 도시된 공정을 따라 고분자 용액 주탱크(1)내에 저장된 폴리아미드 용액을 펌프(2)를 통해 음극의 고전압이 걸려있으며 도 2와 같은 단면 형태를 갖는 노즐(3)의 중공부(3b)내로 공급하여 상기 노즐의 침상 돌출부(3a)로 폴리아미드 용액을 이동시킨 다음, 노즐의 침상 돌출부(3a)로 이동된 폴리아미드 용액을 노즐의 침상 돌출부(3a)에서 양극의 고전압이 걸려있는 상태로 노즐(3)의 상부에 위치하는 컬렉터(4)를 향해 분사시켜 나노섬유를 휘산시킨 다음, 휘산되는 나노섬유를 컬렉터(4) 위에 적층하여 폴리아미드 웹을 제조하였다.The hollow portion 3b of the nozzle 3 having the polyamide solution stored in the polymer solution main tank 1 in the polymer solution main tank 1 is pumped with a high voltage of the negative electrode and has a cross-sectional shape as shown in FIG. The polyamide solution is transferred to the needle protrusion 3a of the nozzle, and then the polyamide solution moved to the needle protrusion 3a of the nozzle is applied with the high voltage of the anode at the needle protrusion 3a of the nozzle. The nanofibers were volatilized by spraying toward the collector 4 located above the furnace nozzle 3, and the volatilized nanofibers were laminated on the collector 4 to produce a polyamide web.

이때, 노즐(3)과 컬렉터(4)에는 220볼트, 60Hz의 교류전원이 연결된 전압 발생장치(6)를 이용하여 55,000볼트의 전압을 걸었다.At this time, a voltage of 55,000 volts was applied to the nozzle 3 and the collector 4 by using a voltage generator 6 connected to an AC power source of 220 volts and 60 Hz.

상기 노즐(3)과 컬렉터(4) 각각의 표면은 스테인레스 백금이 코팅된 재질로 구성되며, 노즐의 중공부(3b)의 직경은 2㎜로 하였다.The surface of each of the nozzle 3 and the collector 4 was made of a material coated with stainless platinum, and the diameter of the hollow portion 3b of the nozzle was 2 mm.

또한 노즐(3)과 컬렉터(4)의 간격은 30㎝로 설정하였다.In addition, the space | interval of the nozzle 3 and the collector 4 was set to 30 cm.

제조된 나노섬유 웹의 각종 물성을 평가한 결과는 표 3과 같다.The results of evaluating various physical properties of the prepared nanofiber webs are shown in Table 3.

실시예Example 2 ∼  2- 실시예Example 6 6

고분자 용액을 구성하는 고분자 및 용매 종류, 노즐 단면형태, 컬렉터 및 노즐에 가해지는 전압 및 노즐과 컬렉터간의 간격을 표 1과 같이 변경한 것을 제외하고는 실시예 1과 동일한 조건으로 나노섬유 웹을 제조하였다.The nanofiber web was manufactured under the same conditions as in Example 1 except that the polymer and solvent constituting the polymer solution, the nozzle cross-sectional shape, the collector and the voltage applied to the nozzle, and the distance between the nozzle and the collector were changed as shown in Table 1. It was.

제조한 나노섬유 웹의 각종 물성을 평가한 결과는 표 3과 같다.The results of evaluating various physical properties of the prepared nanofiber webs are shown in Table 3.

실시예 1~ 실시예 6의 제조조건Manufacturing conditions of Example 1 to Example 6 구분division 전기방사 장치Electrospinning device 고분자 종류Polymer type 용매menstruum 전압 (볼트)Voltage (volts) 노즐-컬렉터 간격 (㎝)Nozzle-collector spacing (cm) 실시예 1Example 1 도 2의 단면형상을갖는 노즐Nozzle having the cross-sectional shape of FIG. 2 폴리아미드Polyamide 개미산Formic acid 55,00055,000 3030 실시예 2Example 2 도 3의 단면형상을갖는 노즐Nozzle having the cross-sectional shape of FIG. 3 폴리우레탄Polyurethane 디메틸포름아미드Dimethylformamide 35,00035,000 3030 실시예 3Example 3 도 2의 단면형상을갖는 노즐Nozzle having the cross-sectional shape of FIG. 2 폴리아미드Polyamide 개미산Formic acid 70,00070,000 4545 실시예 4Example 4 도 3의 단면형상을갖는 노즐Nozzle having the cross-sectional shape of FIG. 3 폴리우레탄Polyurethane 디메틸포름아미드Dimethylformamide 50,00050,000 4545 실시예 5Example 5 도 2의 단면형상을갖는 노즐Nozzle having the cross-sectional shape of FIG. 2 폴리프로필렌Polypropylene 톨루엔toluene 40,00040,000 3030 실시예 6Example 6 도 3의 단면형상을갖는 노즐Nozzle having the cross-sectional shape of FIG. 3 폴리프로필렌Polypropylene 톨루엔toluene 60,00060,000 4545

비교실시예Comparative Example 1 One

폴리아미드를 개미산에 농도가 8%가 되도록 용해하여 25℃의 폴리아미드 용액을 제조하여 고분자 용액으로 사용하였다.Polyamide was dissolved in formic acid at a concentration of 8% to prepare a polyamide solution at 25 ° C. and used as a polymer solution.

도 1에 도시된 공정에 따라 고분자 용액 주탱크(1)내에 저장된 폴리아미드 용액을 계량펌프(2)를 통해 양극의 고전압이 걸려있는 종래 원형 노즐(3)에 공급한 다음, 이를 음극의 고전압이 걸려 있는 금속판의 컬렉터(4)를 향해 분사시켜 나노섬유를 휘산시킨 다음, 휘산되는 나노섬유를 컬렉터 상에 적층하여 나노섬유 웹을 제조하였다.According to the process shown in FIG. 1, the polyamide solution stored in the polymer solution main tank 1 is supplied to the conventional circular nozzle 3 in which the high voltage of the positive electrode is applied through the metering pump 2, and then the high voltage of the negative electrode is reduced. The nanofibers were volatilized by spraying toward the collector 4 of the hanging metal plate, and then the volatilized nanofibers were laminated on the collector to prepare a nanofiber web.

이때, 원형 노즐(3)과 컬렉터(4)에는 220볼트, 60Hz의 교류전원이 연결된 전압발생기(6)를 이용하여 55,000 볼트의 전압을 걸어 주었고, 노즐 토출량은 0.5ml/분으로 하였다.At this time, a voltage of 55,000 volts was applied to the circular nozzle 3 and the collector 4 by using a voltage generator 6 connected to an AC power source of 220 volts and 60 Hz, and the nozzle discharge amount was 0.5 ml / min.

상기 원형 노즐(3)의 중공부 직경은 0.5㎜로 하였다.The hollow part diameter of the said circular nozzle 3 was 0.5 mm.

또한 노즐(3)과 컬렉터(4)의 간격은 30㎝로 설정하였다.In addition, the space | interval of the nozzle 3 and the collector 4 was set to 30 cm.

제조된 나노섬유 웹의 각종 물성을 평가한 결과는 표 3과 같다.The results of evaluating various physical properties of the prepared nanofiber webs are shown in Table 3.

비교실시예Comparative Example 2 ∼ 2- 비교실시예Comparative Example 6 6

고분자 용액을 구성하는 고분자 및 용매종류, 컬렉터 및 노즐들에 가해지는 전압, 노즐의 토출량 및 노즐과 컬렉터간의 간격을 표 2와 같이 변경한 것을 제외하고는 비교실시예 1과 동일한 조건으로 나노섬유 웹을 제조하였다.Nanofiber web under the same conditions as in Comparative Example 1 except for changing the polymer and solvent constituting the polymer solution, the voltage applied to the collector and the nozzles, the discharge amount of the nozzle and the interval between the nozzle and the collector as shown in Table 2 Was prepared.

제조한 나노섬유 웹의 각종 물성을 평가한 결과는 표 3과 같다.The results of evaluating various physical properties of the prepared nanofiber webs are shown in Table 3.

비교실시예 1 ∼ 비교실시예 6의 제조조건Preparation conditions of Comparative Example 1 to Comparative Example 6 구분division 전기방사 장치Electrospinning device 고분자종류Polymer Type 용매menstruum 전압 (볼트)Voltage (volts) 노즐 토출량 (ml/min)Nozzle Discharge Rate (ml / min) 노즐-컬렉터 간격 (㎝)Nozzle-collector spacing (cm) 비교실시예 1Comparative Example 1 원형노즐Round Nozzle 폴리아미드Polyamide 개미산Formic acid 55,00055,000 0.50.5 3030 비교실시예 2Comparative Example 2 원형노즐Round Nozzle 폴리우레탄Polyurethane 디메틸포름아미드Dimethylformamide 35,00035,000 0.60.6 3030 비교실시예 3Comparative Example 3 원형노즐Round Nozzle 폴리아미드Polyamide 개미산Formic acid 70,00070,000 0.70.7 4545 비교실시예 4Comparative Example 4 원형노즐Round Nozzle 폴리우레탄Polyurethane 디메틸포름아미드Dimethylformamide 50,00050,000 0.80.8 4545 비교실시예 5Comparative Example 5 원형노즐Round Nozzle 폴리프로필렌Polypropylene 톨루엔toluene 40,00040,000 0.50.5 3030 비교실시예 6Comparative Example 6 원형노즐Round Nozzle 폴리프로필렌Polypropylene 톨루엔toluene 60,00060,000 0.80.8 4545

물성평가 결과Property evaluation result 구분division 투습도평균 (g/㎡/day)Moisture permeability average (g / ㎡ / day) 투습도표준편차 (g/㎡/day)Water vapor permeability standard deviation (g / ㎡ / day) 결점 (개)Defects (dog) 실시예1Example 1 14,00014,000 250250 00 실시예2Example 2 15,00015,000 300300 00 실시예3Example 3 17,00017,000 320320 00 실시예4Example 4 16,00016,000 300300 00 실시예5Example 5 14,00014,000 260260 00 실시예6Example 6 17,00017,000 280280 00 비교실시예1Comparative Example 1 18,00018,000 2,5002,500 1111 비교실시예2Comparative Example 2 18,00018,000 1,8001,800 1212 비교실시예3Comparative Example 3 15,00015,000 1,9001,900 66 비교실시예4Comparative Example 4 18,00018,000 1,5001,500 1010 비교실시예5Comparative Example 5 19,00019,000 2,2002,200 1212 비교실시예6Comparative Example 6 20,00020,000 2,0002,000 99

상기의 평가 결과에서 보는 바와 같이 실시예 1 내지 실시예 6으로 제조된 나노섬유 웹의 투습도 표준편차는 500g/㎡/day 이하로 매우 균일하다. 또, 나노 섬유 웹 상의 결점도 없는 매우 우수한 품질의 나노섬유 웹을 얻을 수 있었다.As can be seen from the above evaluation results, the standard deviation of the water vapor transmission rate of the nanofiber webs prepared in Examples 1 to 6 is very uniform, not more than 500 g / m 2 / day. In addition, a very good quality nanofiber web without defects on the nanofiber web was obtained.

그러나, 비교실시예 1 내지 비교실시예 6으로 제조된 나노섬유 웹은 실시예 1 내지 실시예 6과 거의 동일한 투습도를 나타내는 가운데 표준편차가 2,000g/㎡/day 이상으로 매우 높게 나타났다. 또, 결점도 6개 내지 12개 수준으로 실시예 1 내지 실시예 6으로 제조한 나노섬유 웹에 비교하여 매우 많다. 결점은 대부분 노즐에서 떨어진 고분자용액이며 품종 교체에 따른 노즐의 막힘의 영향도 발생하였다.However, the nanofiber webs prepared in Comparative Examples 1 to 6 exhibited almost the same moisture permeability as Examples 1 to 6, but showed a very high standard deviation of 2,000 g / m 2 / day or more. In addition, there are also many defects compared to the nanofiber web prepared in Examples 1 to 6 at the level of 6 to 12. The defects are mostly polymer solutions away from the nozzles, and the clogging of nozzles has also been affected by varieties.

표 3의 물성들은 아래와 같은 방법으로 평가하였다.Properties of Table 3 were evaluated by the following method.

·나노섬유 웹의 Of nanofiber web 투습도Breathable

나노섬유 웹의 투습도를 측정 부위를 달리하여 각 10회 평가하고 그 평균 값과 표준편차를 구하였다. 투습도 평가 방법은 원단에 일정한 압력으로 습기를 가하고 24시간 경과 후 통과한 수분의 g 수를 평가하는 것으로 한국공업규격 KS K 0594를 따른다.The water vapor permeability of the nanofiber web was evaluated 10 times with different measurement sites, and the average value and standard deviation were calculated. The method of evaluating moisture permeability is to evaluate the number of grams of moisture passed after 24 hours of application of moisture to a fabric under a certain pressure, according to Korean Industrial Standard KS K 0594.

·나노섬유 웹의 결점Drawbacks of Nanofiber Web

나노섬유 웹에 대해 폭 45cm, 길이 5m 내에서의 결점의 수를 육안검사를 통해 파악한다. 결점은 고분자 용액이 낙하한 지점의 수와 나노섬유가 도포되지 않은 지점의 수로 평가하였다.The number of defects within 45 cm wide and 5 m long for the nanofiber web is visually determined. The defects were evaluated by the number of points where the polymer solution fell and the number of points where no nanofibers were applied.

도 1은 나노섬유 웹을 제조하는 전기방사 공정 개략도.1 is a schematic diagram of an electrospinning process for producing a nanofiber web.

도 2 내지 도 3은 본 발명에서 사용하는 노즐(3)의 단면도.2 to 3 are cross-sectional views of the nozzle 3 used in the present invention.

도 4는 나노섬유 웹의 전자현미경 사진.4 is an electron micrograph of the nanofiber web.

* 도면 중 주요 부분 설명* Description of the main parts of the drawings

1 : 고분자 용액 주탱크 2 : 고분자 용액 공급펌프1: Polymer solution main tank 2: Polymer solution supply pump

3 : 노즐 4 : 컬렉터3: nozzle 4: collector

5 : 전압전달로드 6 : 전압발생장치5: voltage transfer rod 6: voltage generator

3a : 노즐 몸체 3b : 노즐내 중공부3a: nozzle body 3b: hollow part in nozzle

Claims (8)

고분자 용액을 고전압이 걸려 있는 노즐(30)에 공급한 후 노즐(3)에 공급된 고분자 용액을 노즐(3)과 반대 전하를 띄는 고전압이 걸려 있는 컬렉터(4)를 향해 전기방사하여 나노섬유 웹을 제조함에 있어서, 상기 노즐(3)은 단면 내부에는 중공부가(3b)가 형성되어 있고 단면 외표면에는 다수개의 침상 돌출부(3a)들이 형성된 구조인 것을 특징으로 하는 나노섬유 웹의 제조방법.After supplying the polymer solution to the nozzle 30 under high voltage, the polymer solution supplied to the nozzle 3 is electrospun toward the collector 4 under high voltage having a charge opposite to that of the nozzle 3. In manufacturing the manufacturing method of the nanofiber web, characterized in that the nozzle (3) has a hollow portion (3b) is formed in the cross section inside and a plurality of needle-like protrusions (3a) formed on the outer surface of the cross section. 제1항에 있어서, 상기 노즐의 중공부(3b)를 통해 공급되는 고분자 용액을 노즐의 침상 돌출부(3a)에서 전기방사 하는 것을 특징으로 하는 나노섬유 웹의 제조방법.The method of manufacturing a nanofiber web according to claim 1, wherein the polymer solution supplied through the hollow part (3b) of the nozzle is electrospun from the needle-like protrusion (3a) of the nozzle. 제1항에 있어서, 노즐의 침상 돌출부(3a)는 2~20개인 것을 특징으로 하는 나노섬유 웹의 제조방법.The method of manufacturing a nanofiber web according to claim 1, wherein the needle-like protrusions (3a) of the nozzles are 2 to 20. 제1항에 있어서, 컬렉터(4)는 노즐(3)의 상부에 위치하는 것을 특징으로 하는 나노섬유 웹의 제조방법.2. Method according to claim 1, characterized in that the collector (4) is located on top of the nozzle (3). 제1항에 있어서, 고분자 용액은 폴리아미드 수지, 폴리우레탄 수지, 폴리에스테르 수지, 폴리스티렌 수지, 셀룰로오스, 폴리비닐아세테이트, 폴리비닐클로라 이드, 폴리비닐알코올 수지, 폴리설폰 수지, 폴리아크릴로니트릴 수지, 폴리메틸메타 아크릴에이트 수지, 폴리스티렌 수지, 폴리아크릴산 수지, 폴리올레핀 수지, 전방향족폴리아미드 수지 및 폴리비닐리덴 플루오라이드 수지로 이루어진 그룹 중에서 선택된 1종인 것을 특징으로 하는 나노섬유 웹의 제조방법.The method of claim 1, wherein the polymer solution is polyamide resin, polyurethane resin, polyester resin, polystyrene resin, cellulose, polyvinylacetate, polyvinyl chloride, polyvinyl alcohol resin, polysulfone resin, polyacrylonitrile resin And polymethyl methacrylate resin, polystyrene resin, polyacrylic acid resin, polyolefin resin, wholly aromatic polyamide resin, and polyvinylidene fluoride resin. 1항에 있어서, 컬렉터(4)가 일정한 선속도로 운동하는 것을 특징으로 하는 나노섬유 웹의 제조방법.A method according to claim 1, characterized in that the collector (4) moves at a constant linear velocity. 1항에 있어서, 노즐(3) 및 컬렉터(4) 각각의 표면은 금, 은, 텅스텐, 구리, 스테인레스 강 및 이들의 합금들 중에서 선택된 1종의 재질로 이루어져 있는 것을 특징으로 하는 나노섬유 웹의 제조방법.The nanofiber web according to claim 1, wherein the surfaces of the nozzles 3 and the collectors 4 are each made of one material selected from gold, silver, tungsten, copper, stainless steel and alloys thereof. Manufacturing method. 1항에 있어서, 컬렉터(4)위에 섬유기재 또는 필름이 위치하는 것을 특징으로 하는 나노섬유 웹의 제조방법.The method of manufacturing a nanofiber web according to claim 1, characterized in that a fibrous base or film is placed on the collector (4).
KR1020080078064A 2008-08-08 2008-08-08 Method of manufacturing nanofiber web KR101118081B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080078064A KR101118081B1 (en) 2008-08-08 2008-08-08 Method of manufacturing nanofiber web

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080078064A KR101118081B1 (en) 2008-08-08 2008-08-08 Method of manufacturing nanofiber web

Publications (2)

Publication Number Publication Date
KR20100019173A true KR20100019173A (en) 2010-02-18
KR101118081B1 KR101118081B1 (en) 2012-03-09

Family

ID=42089678

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080078064A KR101118081B1 (en) 2008-08-08 2008-08-08 Method of manufacturing nanofiber web

Country Status (1)

Country Link
KR (1) KR101118081B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094788A1 (en) * 2011-12-21 2013-06-27 전북대학교산학협력단 Electrospinning device comprising polygonal tube
KR101291592B1 (en) * 2012-03-19 2013-08-01 주식회사 우리나노 Electrospinning device comprising conical spinning tube with polygon hollow
WO2015012418A1 (en) * 2013-07-24 2015-01-29 전북대학교산학협력단 Electrospinning device comprising polygonal tube

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102513889B1 (en) 2016-11-30 2023-03-23 코오롱인더스트리 주식회사 Electrospinning device
KR102513890B1 (en) 2016-11-30 2023-03-23 코오롱인더스트리 주식회사 Centrifugal electrospinning device
KR20210100316A (en) 2020-02-06 2021-08-17 (주)아모레퍼시픽 Portable Electrospinning Device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9219636D0 (en) * 1991-10-10 1992-10-28 Ici Plc Spraying of liquids
JP2007303031A (en) * 2006-05-12 2007-11-22 Kato Tech Kk Nozzle for electrospinning and method for producing fine thermoplastic resin fiber using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094788A1 (en) * 2011-12-21 2013-06-27 전북대학교산학협력단 Electrospinning device comprising polygonal tube
KR101291592B1 (en) * 2012-03-19 2013-08-01 주식회사 우리나노 Electrospinning device comprising conical spinning tube with polygon hollow
WO2015012418A1 (en) * 2013-07-24 2015-01-29 전북대학교산학협력단 Electrospinning device comprising polygonal tube

Also Published As

Publication number Publication date
KR101118081B1 (en) 2012-03-09

Similar Documents

Publication Publication Date Title
KR101147726B1 (en) Method of manufacturing nanofiber web
Ding et al. Electrospinning: nanofabrication and applications
Persano et al. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review
Zhou et al. Manufacturing technologies of polymeric nanofibres and nanofibre yarns
KR101118081B1 (en) Method of manufacturing nanofiber web
US20100001438A1 (en) Process for producing microfiber assembly
KR20110026185A (en) Apparatus and method for manufacturing nanofiber web using electro-spinning
KR20100035208A (en) Filter media and method of manufacturing the same
KR20100019169A (en) Method of manufacturing nanofiber web
KR101118079B1 (en) Method of manufacturing nanofiber web
KR101196786B1 (en) Apparatus and method for nano fiber non-woven using rotating nozzles
KR20100019172A (en) Method of manufacturing nanofiber web
CN107974716A (en) The construction method of template assist three-dimensional nanostructured
KR101118080B1 (en) Method of manufacturing nanofiber web
KR100514572B1 (en) A process of preparing for the ultra fine staple fiber
KR20060118033A (en) Filtration media and method of manufacturing the same
KR20100023155A (en) Filter for removing a white corpuscle and method of manufacturing the same
Das et al. Electrospinning: the state of art technique for the production of nanofibers and nanofibrous membranes for advanced engineering applications
KR101406264B1 (en) Hybrid nanofiber filter media
Gou et al. Nanofiber alignment during electrospinning: effects of collector structures and governing parameters
KR101386424B1 (en) Filter for removing a white corpuscle and method of manufacturing the same
KR101043812B1 (en) Centrifugal spinning solutions supply device for electrospinning apparatus
Nayak Production methods of nanofibers for smart textiles
KR20100078811A (en) Electrospinning device
KR20120077244A (en) Nozzle block for electrospinning

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150112

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170113

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180112

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190110

Year of fee payment: 8