KR20100018048A - A structural material part of a high-si mg-containing al alloy and the manufacture method thereof - Google Patents

A structural material part of a high-si mg-containing al alloy and the manufacture method thereof Download PDF

Info

Publication number
KR20100018048A
KR20100018048A KR1020107000263A KR20107000263A KR20100018048A KR 20100018048 A KR20100018048 A KR 20100018048A KR 1020107000263 A KR1020107000263 A KR 1020107000263A KR 20107000263 A KR20107000263 A KR 20107000263A KR 20100018048 A KR20100018048 A KR 20100018048A
Authority
KR
South Korea
Prior art keywords
aluminum alloy
silicon
producing
casting
alloy
Prior art date
Application number
KR1020107000263A
Other languages
Korean (ko)
Inventor
리앙 주오
후시아오 유
강 자오
시앙 자오
용리앙 양
얀 리
Original Assignee
노스이스턴 유니버시티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 노스이스턴 유니버시티 filed Critical 노스이스턴 유니버시티
Publication of KR20100018048A publication Critical patent/KR20100018048A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Continuous Casting (AREA)
  • Extrusion Of Metal (AREA)

Abstract

A structural material part of a high-Si Mg-containing Al alloy, which includes sectional material, bar, sheet and forged part, is characterized in that the structural material part is manufactured by: casting an ingot by semi-casting process, pre-heat-treating to disperse eutectic Si phase particles, thermal-plastic working and heat-treating to obtain eventual shape and microstructure. The structural part comprises 0.2-2.0wt% Mg and 8-18wt% Si, and has homogeneous and fine microstructure which comprises Al matrix of equiaxial crystals with an average grain size of < 6μm and dispersing Si particles and other second-phase particles with anaverage grain size of < 5μm. A structural material part of high-Si Mg-containing wrought Al alloy with good plasticity and high strength can be manufactured by the method at a low cost without adding any modifier during casting.

Description

마그네슘을 함유한 고 규소 알루미늄 합금 및 그 제조방법{A structural material part of a high-Si Mg-containing AL alloy and the manufacture method thereof}A structural material part of a high-Si Mg-containing AL alloy and the manufacture method

본 발명은 알루미늄 합금과 그 제조기술에 관한 것으로, 특히 마그네슘을 함유한 고 규소 알루미늄 합금 및 그 제조방법에 관한 것이다. TECHNICAL FIELD This invention relates to aluminum alloys and its manufacturing technique. Specifically, It is related with the high silicon aluminum alloy containing magnesium, and its manufacturing method.

알루미늄 규소 합금(Aluminium-silicon alloy), 특히 고 규소 함량의 알루미늄 규소합금은 저밀도, 높은 내마모성, 높은 항 부식성과 낮은 열팽창 계수를 가지고 있어 자동차 산업과 항공 산업에서 광범위하게 응용된다. 그러나 보통의 응고방법으로 제작된 알루미늄 규소 합금은 그 초기형태 중에 큰 괴상을 해소하기 힘들기에 먼저 규소(Si) 입자와 판 가닥 모양의 공융(eutectic)조직이 석출함으로 하여 합금의 강도가 떨어지고 취약성이 높아져 가소성 가공을 거쳐 응고조직을 개선하여 각종 단면형태의 고성능재료를 제조하기 힘들뿐만 아니라 응고조직의 개선과 각종 단면모양의 고성능 재료를 가공하기 어렵고 합금의 응용범위를 제한하게 된다. 전통적으로 알루미늄 규소합금은 변형능력이 취약하여 주조 알루미늄 합금에 귀속시킨다. 취약한 변형능력을 개선하기 위해서 쾌속 응고의 방법을 모색해 왔으나 오직 크기가 작은(<10mm)것만 얻게 되고 치수가 큰 부품을 제조하려면 연속공정이 있어야 했다. 대표적인 예를 들면 분말야금의 방법을 통해 제조하는 것인데 그 생산비용이 높으며 프로세스는 매우 복잡하다. Aluminum-silicon alloys, especially aluminum alloys of high silicon content, have low density, high wear resistance, high corrosion resistance and low coefficient of thermal expansion, making them widely used in the automotive and aviation industries. However, the aluminum silicon alloy produced by the normal solidification method is difficult to resolve the large mass in its initial form, so the silicon (Si) particles and the plate-like eutectic structure are precipitated first, so the strength of the alloy decreases and the fragility is weak. It is difficult to manufacture high-performance materials of various cross-sections by improving the solidification structure through plastic processing, and it is difficult to improve the solidification structure and process high-performance materials of various cross-sections and limit the application range of the alloy. Traditionally, aluminum silicon alloys are weakly deformable and are attributed to cast aluminum alloys. Rapid solidification methods have been sought to improve fragile deformation, but only small (<10mm) sizes have been obtained, and manufacturing a large dimension required a continuous process. A typical example is the production of powder metallurgy, which has a high production cost and a very complicated process.

산업용 순 알루미늄과 알루미늄 합금의 생산에서 반연속 주조방법(Direct Chill Casting, 약칭하여 DC주조)은 줄곧 광범위하게 사용되어 왔는데, 주로 어떻게 합금의 성분편차를 감소하는가와 결정입자의 크기를 줄이는 것 그리고 표면품질을 제고하는데 주의를 돌리고 있다. 반연속 주조방법을 이용해 큰 크기의 규격을 가지고 어떠한 개질제(예를 들어 P, Na, Sr 등)도 함유하지 않은 고 규소 알루미늄 합금을 제조하는 기술은 이미 본 발명의 발명자 중의 한 사람이 특허문헌 1로 중국특허를 받았다. In the production of industrial pure aluminum and aluminum alloys, semi-continuous casting (DC casting) has been widely used all the time, mainly how to reduce the constituent deviations of the alloys and to reduce the grain size and surface. Attention has been paid to improving quality. The technique for producing a high silicon aluminum alloy having a large size using a semi-continuous casting method and containing no modifier (for example, P, Na, Sr, etc.) has already been made by one of the inventors of the present invention. Received a Chinese patent.

발명자의 진일보한 연구를 통해 상술한 발명기술을 이용하여 Si의 하한 함량(8%중량)을 증가시키고 Si의 상한함량(18%중량)을 저하시키며, Mg의 함량과 기타 함금원소의 함량을 조정하여 열가소성 공정과 연속 열처리를 통해 양호한 가소성을 구비하고 고강도의 마그네슘을 함유한 고 규소 알루미늄 합금을 제조하게 된다.The inventors have made further research to increase the lower limit content (8% weight) of Si, lower the upper limit content of Si (18% weight), and adjust the content of Mg and other alloying elements by using the above-described invention technology. Through the thermoplastic process and the continuous heat treatment to produce a high silicon aluminum alloy having good plasticity and containing high strength magnesium.

특허문헌1:중국특허출원번호XL200510119550.6Patent Document 1: China Patent Application No.XL200510119550.6

본 발명의 목적은 마그네슘을 함유한 고 규소 알루미늄 합금 및 그 제조방법으로서 주조과정에서 어떠한 개질제(modifier)도 첨가하지 않고, 열가소성 공정과 열처리를 통해 저비용으로 양호한 가소성과 고강도를 가진 마그네슘을 함유한 고 규소 알루미늄 합금을 제조하는데 있다. An object of the present invention is a high silicon aluminum alloy containing magnesium, and a method for producing the same, which does not add any modifier in the casting process, and contains magnesium having good plasticity and high strength at low cost through a thermoplastic process and heat treatment. To produce a silicon aluminum alloy.

본 발명의 마그네슘을 함유한 고 규소 알루미늄 합금의 제조방법은 형재, 봉재, 판재와 단조재를 포함하는 마그네슘을 함유한 고 규소 알루미늄 합금의 잉곳(ingot)을 반연속 주조방법으로 주조하는 제1단계와; 공융 규소입자를 분산하기 위해 예열처리하는 제2단계; 및 상기 알루미늄 합금을 최종형태 및 개질된 마이크로조직(microstructure)으로 만들기 위해 열가소성 공정 및 열처리를 하는 제3단계를 포함하며, 상기 단계에 의해 제조된 알루미늄 합금은 알루미늄 본체의 결정립 미세화 강화, 규소입자의 분산강화, 제2상 입자의 침전강화에 의해 강화되고, 마그네슘 함량은 0.2-2.0wt%이고. 규소 함량은 8-18wt%이고, 균질하고 미세한 마이크로조직을 가지며, 평균 결정립 크기가 <6㎛인 등방성(exquiaxed) 입자이고, 규소(Si)와 제2상 입자는 평균 결정립 크기가 <5㎛로 분산되는 것을 특징으로 한다. The method for producing a high silicon aluminum alloy containing magnesium of the present invention is a first step of casting an ingot of a high silicon aluminum alloy containing magnesium, including a mold, a bar, a plate, and a forging by a semi-continuous casting method. Wow; Preheating to disperse the eutectic silicon particles; And a third step of performing a thermoplastic process and heat treatment to make the aluminum alloy into a final form and a modified microstructure, wherein the aluminum alloy prepared by the step is a reinforcing grain refinement of the aluminum body, Strengthened by dispersion strengthening, precipitation strengthening of the second phase particles, magnesium content is 0.2-2.0wt%. Silicon content is 8-18wt%, homogeneous and fine microstructure, isotropic (exquiaxed) particles with an average grain size of <6 μm, and silicon (Si) and second phase particles with an average grain size of <5 μm It is characterized by being dispersed.

본 발명의 마그네슘을 함유한 고 규소 알루미늄 합금의 제조방법에 있어서, 상기 알루미늄 합금은 적어도 하나의 Cu, Zn, Ni, Ti, Fe 중 적어도 하나를 포함하며, 총 함량은 2wt%와 같거나 2wt%보다 낮은 것을 특징으로 한다. In the method for producing a magnesium-containing high silicon aluminum alloy of the present invention, the aluminum alloy comprises at least one of Cu, Zn, Ni, Ti, Fe, the total content is equal to or 2wt% It is characterized by being lower.

본 발명의 마그네슘을 함유한 고 규소 알루미늄 합금의 제조방법에 있어서, 제1단계의 반연속 주조방법의 주조온도는 알루미늄 합금의 액상선 이상의 150-300℃이고, 주조속도는 100-200㎜/min이고, 알루미늄 합금의 잉곳 주변의 냉각수량은 5-15g/㎜ㆍs이며, 반연속 주조방법에는 개질제가 첨가되지 않으며, 제2단계에서 알루미늄 합금의 잉곳은 가열속도 10-30℃/min, 가열온도 450-520℃, 유지시간 1-3시간에서 공융 규소입자를 분산하기 위해 예열되며, 제3단계에서 알루미늄 합금은 400-520℃에서 고온 변형되고, 이후 자연냉각 또는 강제냉각되며, 열가소성 공정 이후 열처리 되는 것을 특징으로 한다. In the manufacturing method of the high silicon aluminum alloy containing magnesium of the present invention, the casting temperature of the semi-continuous casting method of the first step is 150-300 ℃ above the liquidus line of the aluminum alloy, the casting speed is 100-200 mm / min The amount of cooling water around the ingot of the aluminum alloy is 5-15 g / mm · s, the modifier is not added in the semi-continuous casting method, and in the second step, the ingot of the aluminum alloy is heated at a heating rate of 10-30 ° C./min, and heated. Preheated to disperse eutectic silicon particles at a temperature of 450-520 ° C and a holding time of 1-3 hours, in the third step, the aluminum alloy is deformed at 400-520 ° C at high temperature, after which it is naturally cooled or forced-cooled, and after the thermoplastic process It is characterized in that the heat treatment.

본 발명의 마그네슘을 함유한 고 규소 알루미늄 합금의 제조방법에 있어서,제3단계는 자연냉각으로 열가소성 공정을 거친 후의 알루미늄 합금은 고용처리 단계와 인공시효처리 단계를 포함하는데, 고용처리시의 가열속도는 10-30℃/min이고, 고용처리온도는 500-540℃이고, 고용처리시간은 0.5-3시간이며, 인공시효처리시의 시효온도는 160-200℃이고, 시효시간은 1-10시간인 것을 특징으로 한다. In the method for producing a high silicon aluminum alloy containing magnesium of the present invention, the third step is the aluminum alloy after the thermoplastic process by natural cooling comprises a solid solution treatment step and an artificial aging treatment step, the heating rate during the solid solution treatment Is 10-30 ℃ / min, solid solution treatment temperature is 500-540 ℃, solid solution treatment time is 0.5-3 hours, aging temperature in artificial aging treatment is 160-200 ℃, and aging time is 1-10 hours. It is characterized by that.

본 발명의 마그네슘을 함유한 고 규소 알루미늄 합금의 제조방법에 있어서,제3단계는 열가소성 공정후 알루미늄 합금을 강제냉각하기 위해서 인공시효 또는 자연시효처리 단계를 포함하는데, 인공시효처리시의 시효온도는 160-200℃이고, 시효시간은 1-10시간인 것을 특징으로 한다. In the manufacturing method of the high silicon aluminum alloy containing magnesium of the present invention, the third step includes an artificial aging or natural aging treatment step for forced cooling of the aluminum alloy after the thermoplastic process, the aging temperature during the artificial aging treatment is 160-200 ℃, the aging time is characterized in that 1-10 hours.

본 발명의 마그네슘을 함유한 고 규소 알루미늄 합금의 제조방법에 있어서,제3단계의 열가소성 공정에서 열간압연(hot rolling) 단계를 포함하는데, 열간압연의 총 저감량(total reduction amount)은 40%보다 더 큰 것을 특징으로 한다. In the manufacturing method of the high silicon aluminum alloy containing magnesium of the present invention, it includes a hot rolling step in the thermoplastic process of the third step, the total reduction amount of the hot rolling is more than 40% It is characterized by large.

본 발명의 마그네슘을 함유한 고 규소 알루미늄 합금의 제조방법에 있어서, 제3단계의 열가소성 공정에서 열간압출(hot extrusion) 단계를 포함하는데, 열간압출의 압출비는 15보다 더 큰 것을 특징으로 한다. In the method for producing a magnesium-containing high silicon aluminum alloy of the present invention, the method includes a hot extrusion step in the thermoplastic process of the third step, wherein the extrusion ratio of the hot extrusion is greater than 15.

본 발명의 마그네슘을 함유한 고 규소 알루미늄 합금의 제조방법에 있어서, 제3단계의 열가소성 공정에서 열간단조(hot forging) 단계를 포함하는데, 열간단조의 단조비는 40%보다 더 큰 것을 특징으로 한다. In the method for producing a magnesium-containing high silicon aluminum alloy of the present invention, the method includes a hot forging step in the thermoplastic process of the third step, wherein the forging ratio of the hot forging is greater than 40%. .

본 발명의 마그네슘을 함유한 고 규소 알루미늄 합금 및 그 제조방법은 주조단계에서 어떠한 개질제도 첨가하지 않은 상태에서 반연속 주조방법으로 열가소성 가공과 열처리를 거쳐 저비용으로 양호한 가소성과 비교적 고강도를 가진 구조재로 이용가능한 마그네슘을 함유한 고 규소 알루미늄 합금이 제조된다. The high silicon aluminum alloy containing magnesium of the present invention and its manufacturing method are semi-continuous casting methods without any modification agent in the casting step, and are used as structural materials having good plasticity and relatively high strength at low cost through thermoplastic processing and heat treatment. High silicon aluminum alloys containing as much magnesium as possible are produced.

도 1은 본 발명의 반연속 주조장치의 구조도.
도 2는 본 발명의 실시예 1에 따라 반연속 주조(주조온도는 730℃, 주조속도 180㎜/min, 냉각수량 8g/㎜ㆍs)로 주조된 Al-12.7Si-0.7Mg-0.3Fe 합금(#3)의 마이크로조직.
도 3은 본 발명의 실시예 1에 따라 반연속 주조(주조온도는 730℃, 주조속도 180㎜/min, 냉각수량 8g/㎜ㆍs)로 주조된 Al-12.7Si-0.7Mg-0.3Fe 합금(#3)의 고배율 마이크로조직.
도 4는 본 발명의 실시예 2에 따라 2시간 동안 500℃ 예열처리, 470℃에서 열압출(압출비 15) 후의 Al-12.7Si-0.7Mg-0.3Fe 합금(#3)의 마이크로조직.
도 5는 본 발명의 실시예 3에 따라 2시간 동안 500℃ 예열처리, 470℃에서 열압출(압출비 15) 후의 Al-12.7Si-0.7Mg-0.3Fe 합금(#3)의 T6 상태(1시간 동안 고용온도 540℃, 3시간 동안 인공시효온도 200℃)의 마이크로조직.
도 6은 본 발명의 실시예 1에 따라 반연속 주조(주조온도는 800℃, 주조속도 140㎜/min, 냉각수량 10g/㎜ㆍs)로 주조된 Al-15.5Si-0.7Mg-0.72Fe 합금(#5)의 마이크로조직.
도 7은 본 발명의 실시예 1에 따라 반연속 주조(주조온도는 800℃, 주조속도 140㎜/min, 냉각수량 10g/㎜ㆍs)로 주조된 Al-15.5Si-0.7Mg-0.72Fe 합금(#5)의 고배율 마이크로조직.
도 8은 본 발명의 실시예 2에 따라 2시간 동안 500℃ 예열처리, 470℃에서 열압출(압출비 45) 후의 Al-15.5Si-0.7Mg-0.72Fe 합금(#5)의 마이크로조직.
도 9는 본 발명의 실시예 3에 따라 1시간 동안 500℃ 예열처리, 500℃에서 열압(압출량 60%) 후의 Al-15.5Si-0.7Mg-0.72Fe 합금(#5)의 마이크로조직.
도 10은 본 발명의 실시예 3에 따라 2시간 동안 500℃ 예열처리, 470℃에서 열압출(압출비 45) 후의 Al-15.5Si-0.7Mg-0.27Fe 합금(#5)의 T6 상태(2시간 동안 고용온도 520℃, 4시간 동안 인공시효온도 180℃)의 마이크로조직.
도 11은 본 발명의 실시예 3에 따라 1시간 동안 500℃ 예열처리, 500℃에서 열압(압출량 60%) 후의 Al-15.5Si-0.7Mg-0.27Fe 합금(#5)의 T6 상태(3시간 동안 고용온도 520℃, 4시간 동안 인공시효온도 200℃)의 마이크로조직.
도 12는 본 발명의 실시예 3에 따라 2시간 동안 500℃ 예열처리, 470℃에서 열압출(압출비 45) 후의 Al-15.5Si-0.7Mg-0.27Fe 합금(#5)의 T6 상태(2시간 동안 고용온도 520℃, 4시간 동안 인공시효온도 180℃)의 고배율 마이크로조직.
도 13은 본 발명의 실시예 1에 따라 반연속 주조(주조온도는 850℃, 주조속도 120㎜/min, 냉각수량 10g/㎜ㆍs)로 주조된 Al-17.5Si-0.7Mg-1.0Cu-0.72Fe 합금(#7)의 마이크로조직.
1 is a structural diagram of a semi-continuous casting apparatus of the present invention.
Figure 2 is an Al-12.7Si-0.7Mg-0.3Fe alloy cast in semi-continuous casting (casting temperature is 730 ℃, casting speed 180mm / min, cooling water amount 8g / mm · s) according to Example 1 of the present invention Microstructure of (# 3).
Figure 3 is an Al-12.7Si-0.7Mg-0.3Fe alloy cast in semi-continuous casting (casting temperature is 730 ℃, casting speed 180mm / min, cooling water amount 8g / mm · s) according to Example 1 of the present invention High magnification microstructure of (# 3).
4 is a microstructure of Al-12.7Si-0.7Mg-0.3Fe alloy (# 3) after heat pretreatment at 500 ° C. for 2 hours and heat extrusion at 470 ° C. (extrusion ratio 15) according to Example 2 of the present invention.
5 is a T6 state (1) of Al-12.7Si-0.7Mg-0.3Fe alloy (# 3) after preheating at 500 ° C. for 2 hours and thermal extrusion at 470 ° C. (extrusion ratio 15) according to Example 3 of the present invention. Microstructure of solid solution temperature 540 ℃ for 3 hours, artificial aging temperature 200 ℃ for 3 hours.
6 is an Al-15.5Si-0.7Mg-0.72Fe alloy cast in semi-continuous casting (casting temperature is 800 ° C., casting speed 140 mm / min, cooling water amount 10 g / mm · s) according to Example 1 of the present invention. Microstructure of (# 5).
7 is an Al-15.5Si-0.7Mg-0.72Fe alloy cast in semi-continuous casting (casting temperature is 800 ° C., casting speed 140 mm / min, cooling water amount 10 g / mm · s) according to Example 1 of the present invention. High magnification microstructure of (# 5).
8 is a microstructure of Al-15.5Si-0.7Mg-0.72Fe alloy (# 5) after heat pretreatment at 500 ° C. for 2 hours and heat extrusion (extrusion ratio 45) at 470 ° C. according to Example 2 of the present invention.
FIG. 9 is a microstructure of Al-15.5Si-0.7Mg-0.72Fe alloy (# 5) after 500 ° C preheating for 1 hour and thermal pressure (extrusion amount 60%) at 500 ° C according to Example 3 of the present invention.
10 is a T6 state of Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) after heat pretreatment at 500 ° C. for 2 hours and heat extrusion at 470 ° C. (extrusion ratio 45) according to Example 3 of the present invention. Microstructure of solid solution temperature 520 ℃ for 4 hours, artificial aging temperature 180 ℃ for 4 hours.
11 is a T6 state (3) of Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) after 500 ° C preheating for 1 hour and thermal pressure (extrusion amount 60%) at 500 ° C according to Example 3 of the present invention. Microstructure of solid solution temperature 520 ℃ for 4 hours, artificial aging temperature 200 ℃ for 4 hours.
12 shows the T6 state of Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) after heat pretreatment at 500 ° C. for 2 hours and heat extrusion at 470 ° C. (extrusion ratio 45) according to Example 3 of the present invention. High magnification microstructure of solid solution temperature 520 ℃ for 4 hours, artificial aging temperature 180 ℃ for 4 hours.
FIG. 13 shows Al-17.5Si-0.7Mg-1.0Cu- cast in semi-continuous casting (casting temperature is 850 ° C., casting speed 120 mm / min, cooling water amount 10 g / mm · s) according to Example 1 of the present invention. Microstructure of 0.72Fe Alloy (# 7).

본 발명의 관건은 전통적인 기술의 편견을 극복하고 어떠한 변질제도 첨가하지 않고 전통적인 반연속 주조방법을 이용하여 마그네슘을 함유한 고 규소 알루미늄 합금을 제조하였으며, 열가소성 공정과 열처리를 결합하여 생각지도 못한 기술효과를 가져오게 되였는데, 즉 미세하고 분산된 규소입자와 제2상 입자가 등방성 결정립 알루미늄 본체에 분포하여 양호한 가소성과 고강도의 신형 알루미늄 합금을 얻게 된다. The key point of the present invention is to overcome the bias of the traditional technology and to produce a high-silicon aluminum alloy containing magnesium by using the traditional semi-continuous casting method without adding any alteration agent, the unexpected technical effect by combining the thermoplastic process and heat treatment That is, the fine and dispersed silicon particles and the second phase particles are distributed in the isotropic grain aluminum body to obtain a new aluminum alloy of good plasticity and high strength.

표 1은 본 발명의 알루미늄 합금(Al-8.5Si-1.8Mg-0.2Fe, Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.4Fe, Al-15.5Si-0.7Mg-0.27Fe)과 T5과 T6 상태의 중국국가표준 6063 합금의 기계적 특성을 비교한 것이다. Table 1 shows the aluminum alloy of the present invention (Al-8.5Si-1.8Mg-0.2Fe, Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.4Fe, Al-15.5Si-0.7Mg-0.27Fe ) And mechanical properties of Chinese National Standard 6063 alloy in T5 and T6 state.

Figure pct00001
Figure pct00001

분명하게 Al-8.5Si-1.8Mg-0.2Fe, Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.4Fe와 Al-15.5Si-0.7Mg-0.27Fe 합금은 T6 상태의 항복강도와 인장강도는 모두 T6상태의 중국국가표준 6063 합금보다 높았다. T1 상태의 합금은 특히 연신율에 있어서 T5 상태의 중국국가표준 6063 합금보다 높았다. 6063 합금은 가장 통용되는 압출 형재 합금으로서 국내외에서 대량으로 건축, 차량, 장식 등 영역에서 사용되며 넓은 시장적 수요를 가지고 있다. 본 발명의 마그네슘을 함유한 고 규소 알루미늄 합금이 부분적으로 6063 합금을 대체하게 되면 반드시 거대한 경제적 이익을 가져오게 될 것이다. 게다가 알루미늄 합금에 규소 량을 증가시켜 사용함으로써 알루미늄 자원의 대량절약이 가능하다.
Clearly, Al-8.5Si-1.8Mg-0.2Fe, Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.4Fe and Al-15.5Si-0.7Mg-0.27Fe alloys have yield strength of T6. And tensile strength were both higher than T6 state standard 6063 alloy. The alloy in the T1 state was higher than the Chinese national standard 6063 alloy in the T5 state, especially in elongation. The 6063 alloy is the most commonly used extruded shape alloy, which is used in a large number of domestic and international construction, vehicles, and decoration areas, and has a wide market demand. The replacement of the 6063 alloy by the high silicon aluminum alloy containing magnesium of the present invention will necessarily bring huge economic benefits. In addition, by increasing the amount of silicon used in aluminum alloys, large amounts of aluminum resources can be saved.

<실시예 1> 반연속 주조 Example 1 Semi-Continuous Casting

반연속 주조를 위해 고안된 반연속 주조장치는 도 1과 같다. 도 1에서 1-냉각수 입구, 2-결정화기, 3-잉곳원료, 4-열정(hot top), 5-흑연링, 6-액체금속이다. 알루미늄 합금의 조성성분(wt%)은 표 2와 같고 파라미터는 표3과 같다.Semi-continuous casting device designed for semi-continuous casting is shown in FIG. In FIG. 1 there is a 1-cooled water inlet, 2-crystallizer, 3-ingot raw material, 4-hot top, 5-graphite ring, 6-liquid metal. The composition (wt%) of the aluminum alloy is shown in Table 2 and the parameters are shown in Table 3.

Figure pct00002
Figure pct00002

Figure pct00003
Figure pct00003

<실시예 2> 제2단계의 예열처리 후의 열간압출, 열간압연, 열간단조Example 2 Hot Extrusion, Hot Rolling, Hot Forging After Preheating Treatment of Second Step

제2단계의 예열처리에서 잉곳은 설정한 가열속도로 오븐에서 가열되어 설정온도에 도달한 후 잉곳은 설정시간 동안 유지된다. 이후 열간압출기, 열간압연기와 열간단조기를 사용하여 열가소성 공정을 완료한다.In the preheating process of the second stage, the ingot is heated in the oven at the set heating rate to reach the set temperature, and then the ingot is maintained for the set time. The thermoplastic process is then completed using a hot extruder, a hot mill and a hot forging machine.

표 4는 알루미늄 합금 각각의 예열 및 열간압출의 파라미터를 나타내고, 표 5는 알루미늄 합금 각각의 예열 및 열간압연의 파라미터를 나타내며, 표 6은 알루미늄 합금 각각의 예열 및 열간단조의 파라미터를 나타낸다.Table 4 shows the parameters of preheating and hot extrusion of each of the aluminum alloys, Table 5 shows the parameters of preheating and hot rolling of each of the aluminum alloys, and Table 6 shows the parameters of preheating and hot forging of each of the aluminum alloys.

Figure pct00004
Figure pct00004

Figure pct00005
Figure pct00005

Figure pct00006
Figure pct00006

<실시예 3> 열간압출, 열간압연, 열간단조의 열간변형 이후의 열처리<Example 3> Heat treatment after hot deformation of hot extrusion, hot rolling, hot forging

열간압출, 열간압연, 열간단조 이후 설정온도에서 잉곳이 열처리된다. After hot extrusion, hot rolling and hot forging, the ingot is heat treated at the set temperature.

표 7은 열간압출의 파라미터를 나타내고, 표 8은 열간압연의 파라미터를 나타내며, 표 9는 열간단조의 파라미터를 나타낸다. 표 10은 열처리 이후의 알루미늄 합금의 기계적 특성을 나타낸다. Table 7 shows the parameters of hot extrusion, Table 8 shows the parameters of hot rolling, and Table 9 shows the parameters of hot forging. Table 10 shows the mechanical properties of the aluminum alloy after heat treatment.

Figure pct00007
Figure pct00007

Figure pct00008
Figure pct00008

Figure pct00009
Figure pct00009

Figure pct00010
Figure pct00010

Claims (8)

형재, 봉재, 판재와 단조재를 포함하는 마그네슘을 함유한 고 규소 알루미늄 합금의 잉곳(ingot)을 반연속 주조방법으로 주조하는 제1단계와; 공융 규소입자를 분산하기 위해 예열처리하는 제2단계; 및 상기 알루미늄 합금을 최종형태 및 개질된 마이크로조직(microstructure)으로 만들기 위해 열가소성 공정 및 열처리를 하는 제3단계를 포함하며,
상기 단계에 의해 제조된 알루미늄 합금은 알루미늄 본체의 결정립 미세화 강화, 규소입자의 분산강화, 제2상 입자의 침전강화에 의해 강화되고, 마그네슘 함량은 0.2-2.0wt%이고. 규소 함량은 8-18wt%이고, 균질하고 미세한 마이크로조직을 가지며, 평균 결정립 크기가 <6㎛인 등방성(exquiaxed) 입자이고, 규소(Si)와 제2상 입자는 평균 결정립 크기가 <5㎛로 분산되는 것을 특징으로 하는 마그네슘을 함유한 고 규소 알루미늄 합금의 제조방법.
A first step of casting an ingot of a high silicon aluminum alloy containing magnesium including a mold, a bar, a plate, and a forging by a semi-continuous casting method; Preheating to disperse the eutectic silicon particles; And a third step of performing a thermoplastic process and heat treatment to make the aluminum alloy into a final form and a modified microstructure.
The aluminum alloy prepared by the above step is strengthened by strengthening grain refinement of the aluminum body, strengthening dispersion of silicon particles, and precipitation strengthening of the second phase particles, and magnesium content is 0.2-2.0 wt%. Silicon content is 8-18wt%, homogeneous and fine microstructure, isotropic (exquiaxed) particles with an average grain size of <6 μm, and silicon (Si) and second phase particles with an average grain size of <5 μm A method for producing a high silicon aluminum alloy containing magnesium, characterized in that dispersed.
제1항에 있어서, 상기 알루미늄 합금은 적어도 하나의 Cu, Zn, Ni, Ti, Fe 중 적어도 하나를 포함하며, 총 함량은 2wt%와 같거나 2wt%보다 낮은 것을 특징으로 하는 마그네슘을 함유한 고 규소 알루미늄 합금의 제조방법.The method of claim 1, wherein the aluminum alloy contains at least one of at least one of Cu, Zn, Ni, Ti, Fe, and the total content is magnesium containing, characterized in that less than or equal to 2wt% Method for producing silicon aluminum alloy. 제1항에 있어서, 제1단계의 반연속 주조방법의 주조온도는 알루미늄 합금의 액상선 이상의 150-300℃이고, 주조속도는 100-200㎜/min이고, 알루미늄 합금의 잉곳 주변의 냉각수량은 5-15g/㎜ㆍs이며, 반연속 주조방법에는 개질제가 첨가되지 않으며, 제2단계에서 알루미늄 합금의 잉곳은 가열속도 10-30℃/min, 가열온도 450-520℃, 유지시간 1-3시간에서 공융 규소입자를 분산하기 위해 예열되며, 제3단계에서 알루미늄 합금은 400-520℃에서 고온 변형되고, 이후 자연냉각 또는 강제냉각되며, 열가소성 공정 이후 열처리 되는 것을 특징으로 하는 마그네슘을 함유한 고 규소 알루미늄 합금의 제조방법.According to claim 1, the casting temperature of the semi-continuous casting method of the first step is 150-300 ℃ above the liquidus line of the aluminum alloy, the casting speed is 100-200mm / min, the amount of cooling water around the ingot of the aluminum alloy 5-15 g / mm · s, the modifier is not added in the semi-continuous casting process, and in the second step, the ingot of the aluminum alloy has a heating rate of 10-30 ° C./min, a heating temperature of 450-520 ° C., and a holding time 1-3. Preheated to disperse eutectic silicon particles in time, and in the third step, the aluminum alloy is deformed at 400-520 ° C. at high temperatures, then naturally cooled or forced cooled and heat treated after the thermoplastic process. Method for producing silicon aluminum alloy. 제3항에 있어서, 제3단계는 자연냉각으로 열가소성 공정을 거친 후의 알루미늄 합금은 고용처리 단계와 인공시효처리 단계를 포함하는데, 고용처리시의 가열속도는 10-30℃/min이고, 고용처리온도는 500-540℃이고, 고용처리시간은 0.5-3시간이며, 인공시효처리시의 시효온도는 160-200℃이고, 시효시간은 1-10시간인 것을 특징으로 하는 마그네슘을 함유한 고 규소 알루미늄 합금의 제조방법.The method of claim 3, wherein the third step of the aluminum alloy after the thermoplastic process by natural cooling comprises a solid solution treatment step and an artificial aging treatment step, the heating rate during the solid solution treatment is 10-30 ℃ / min, The temperature is 500-540 ° C., solid solution treatment time is 0.5-3 hours, aging temperature in artificial aging treatment is 160-200 ° C., and aging time is 1-10 hours. Method for producing aluminum alloy. 제3항에 있어서, 제3단계는 열가소성 공정후 알루미늄 합금을 강제냉각하기 위해서 인공시효 또는 자연시효처리 단계를 포함하는데, 인공시효처리시의 시효온도는 160-200℃이고, 시효시간은 1-10시간인 것을 특징으로 하는 마그네슘을 함유한 고 규소 알루미늄 합금의 제조방법.The method of claim 3, wherein the third step includes an artificial aging or natural aging treatment step for forced cooling of the aluminum alloy after the thermoplastic process, wherein the aging temperature during the artificial aging treatment is 160-200 ° C, and the aging time is 1-. A method for producing a high silicon aluminum alloy containing magnesium, characterized in that 10 hours. 제3항에 있어서, 제3단계의 열가소성 공정에서 열간압연(hot rolling) 단계를 포함하는데, 열간압연의 총 저감량(total reduction amount)은 40%보다 더 큰 것을 특징으로 하는 마그네슘을 함유한 고 규소 알루미늄 합금의 제조방법.4. The high silicon content containing magnesium according to claim 3, further comprising a hot rolling step in the thermoplastic process of the third step, wherein the total reduction amount of the hot rolling is greater than 40%. Method for producing aluminum alloy. 제3항에 있어서, 제3단계의 열가소성 공정에서 열간압출(hot extrusion) 단계를 포함하는데, 열간압출의 압출비는 15보다 더 큰 것을 특징으로 하는 마그네슘을 함유한 고 규소 알루미늄 합금의 제조방법.4. The method of producing a high silicon aluminum alloy containing magnesium according to claim 3, further comprising a hot extrusion step in the thermoplastic process of the third step, wherein the extrusion ratio of the hot extrusion is greater than 15. 제3항에 있어서, 제3단계의 열가소성 공정에서 열간단조(hot forging) 단계를 포함하는데, 열간단조의 단조비는 40%보다 더 큰 것을 특징으로 하는 마그네슘을 함유한 고 규소 알루미늄 합금의 제조방법.The method of manufacturing a high silicon aluminum alloy containing magnesium according to claim 3, further comprising a hot forging step in the thermoplastic process of the third step, wherein the forging ratio of the hot forging is greater than 40%. .
KR1020107000263A 2007-06-29 2008-06-30 A structural material part of a high-si mg-containing al alloy and the manufacture method thereof KR20100018048A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710011919 2007-06-29
CN200710011919.0 2007-06-29

Publications (1)

Publication Number Publication Date
KR20100018048A true KR20100018048A (en) 2010-02-16

Family

ID=40196494

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107000263A KR20100018048A (en) 2007-06-29 2008-06-30 A structural material part of a high-si mg-containing al alloy and the manufacture method thereof

Country Status (8)

Country Link
US (1) US20100126639A1 (en)
EP (1) EP2172572B1 (en)
JP (1) JP2010531388A (en)
KR (1) KR20100018048A (en)
CN (1) CN101333614B (en)
CA (1) CA2689332A1 (en)
RU (1) RU2463371C2 (en)
WO (1) WO2009003365A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230114A (en) * 2011-06-29 2011-11-02 北京科技大学 High-silicon aluminum alloy optimized based on Fe-rich phase and preparation method thereof
CN102747256A (en) * 2012-06-19 2012-10-24 东南大学 Aluminum-silicon based aluminum section and preparation technology thereof
RU2525872C1 (en) * 2013-04-23 2014-08-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" FORMATION OF MICROSTRUCTURE OF EUTECTIC Al-Si ALLOY
CN103769551B (en) * 2014-01-17 2016-03-30 新疆众和股份有限公司 The production technology of a kind of aluminium silicon magnesium system Birmasil
JP6439792B2 (en) 2014-03-31 2018-12-19 日立金属株式会社 Al-Si-Mg-based aluminum alloy for casting excellent in specific rigidity, strength and ductility, cast member made thereof and road wheel for automobile
CN104651763A (en) * 2014-05-15 2015-05-27 巩向鹏 Performance optimization method for 6063 aluminum alloy
CN104087880B (en) * 2014-07-08 2016-05-04 江苏佳铝实业股份有限公司 A kind of production technology of high damping alusil alloy sheet material
JP6782169B2 (en) * 2014-12-05 2020-11-11 古河電気工業株式会社 Manufacturing method of aluminum alloy wire, aluminum alloy stranded wire, coated electric wire, wire harness, and aluminum alloy wire
JP6523681B2 (en) * 2014-12-25 2019-06-05 株式会社Uacj Aluminum alloy sheet for case and case
CN105112744A (en) * 2015-10-08 2015-12-02 江苏佳铝实业股份有限公司 Manufacturing process of high-silicon aluminum alloy plate
TWI565808B (en) * 2015-10-13 2017-01-11 財團法人工業技術研究院 Aluminum alloy composition and manufacturing method of aluminum alloy object
FR3044326B1 (en) * 2015-12-01 2017-12-01 Constellium Neuf-Brisach HIGH-RIGIDITY THIN SHEET FOR AUTOMOTIVE BODYWORK
CN105695811A (en) * 2015-12-15 2016-06-22 东北大学 Ti-containing high-silicon aluminum alloy capable of achieving aging strengthening and preparation method for deformation material of Ti-containing high-silicon aluminum alloy
CN105695810B (en) * 2015-12-15 2017-12-05 东北大学 One kind can ageing strengthening silumin and its deformation material preparation method containing Mn
CN106544606B (en) * 2015-12-29 2018-05-01 徐工集团工程机械股份有限公司 A kind of preparation method of wear-resistant aluminum alloy axis pin
CN106929781B (en) * 2015-12-29 2019-01-08 徐工集团工程机械股份有限公司 A kind of preparation method of high-strength aluminum alloy pin shaft
CN105671376B (en) * 2016-01-26 2017-04-26 北京航空航天大学 High-strength and high-plasticity hypoeutectic aluminium-silicon alloy material manufactured through gravity casting and room-temperature cold rolling, and manufacturing method thereof
CN106399765B (en) * 2016-10-11 2019-02-26 湖南理工学院 Al-Si-Mg aluminium alloy and its preparation process
CA3085731C (en) 2017-12-21 2022-12-13 Novelis Inc. Aluminum alloy products exhibiting improved bond durability and/or having phosphorus-containing surfaces and methods of making the same
US11498839B2 (en) * 2019-06-01 2022-11-15 GM Global Technology Operations LLC Systems and methods for producing high-purity fine powders
CN112941433A (en) * 2019-12-11 2021-06-11 中国科学院金属研究所 Aging process for improving 6082 aluminum alloy parking effect
CN113881907A (en) * 2021-08-26 2022-01-04 山东创新金属科技有限公司 Aging treatment process for extrusion casting aluminum alloy
CN113862534B (en) * 2021-10-08 2022-07-29 上海交通大学 Method for regulating and controlling tissue inheritance of aluminum alloy material and method for preparing 7085 aluminum alloy thick plate
CN115305391B (en) * 2022-08-10 2023-06-06 中南大学 Low-energy-consumption aluminum-silicon-magnesium alloy and preparation method thereof

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB582732A (en) * 1944-03-10 1946-11-26 Horace Campbell Hall Aluminium alloy having low coefficient of expansion
US4068645A (en) * 1973-04-16 1978-01-17 Comalco Aluminium (Bell Bay) Limited Aluminum-silicon alloys, cylinder blocks and bores, and method of making same
JPS5320243B2 (en) * 1974-04-20 1978-06-26
JPS5192709A (en) * 1975-02-12 1976-08-14 KAKYOSHOARUMINIUMUUKEISOKEIGOKINNO SHOSHOKEISOBISAIKAHO
JPS52129607A (en) * 1976-04-23 1977-10-31 Hitachi Ltd Production of a1-si alloy having fine structure
JPS5669344A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for forging and its manufacture
JPS6283453A (en) * 1985-10-07 1987-04-16 Sumitomo Alum Smelt Co Ltd Manufacture of aluminum alloy ingot for extrusion
JP2506115B2 (en) * 1987-07-11 1996-06-12 株式会社豊田自動織機製作所 High-strength, wear-resistant aluminum alloy with good shear cutability and its manufacturing method
US5009844A (en) * 1989-12-01 1991-04-23 General Motors Corporation Process for manufacturing spheroidal hypoeutectic aluminum alloy
JP3318966B2 (en) * 1992-05-29 2002-08-26 日本軽金属株式会社 Manufacturing method of aluminum scroll
JPH06279904A (en) * 1993-03-30 1994-10-04 Nippon Light Metal Co Ltd Production of hyper-eutectic al-si alloy for forging and forging stock
JPH0741920A (en) * 1993-07-29 1995-02-10 Nippon Light Metal Co Ltd Heat treatment of hypereutectic al-si alloy for improving wear resistance
JPH07197164A (en) * 1993-12-28 1995-08-01 Furukawa Electric Co Ltd:The Aluminum alloy having high strength and high workability and its production
JPH07224340A (en) * 1994-02-14 1995-08-22 Nippon Light Metal Co Ltd Hypereutectic al-si alloy excellent in machinability and its production
JPH083701A (en) * 1994-06-15 1996-01-09 Mitsubishi Alum Co Ltd Production of wear resistant aluminum alloy extruded material excellent in strength and machinability
JPH083674A (en) * 1994-06-17 1996-01-09 Nissan Motor Co Ltd Hypereutectic aluminum-silicon alloy and hypereutectic aluminum-silicon alloy casting
JPH08176768A (en) * 1994-12-22 1996-07-09 Nissan Motor Co Ltd Wear resistant aluminum member and production thereof
JP3835629B2 (en) * 1996-09-24 2006-10-18 住友軽金属工業株式会社 Wear-resistant aluminum alloy material with excellent machinability and corrosion resistance
JP3261056B2 (en) * 1997-01-14 2002-02-25 住友軽金属工業株式会社 High-strength wear-resistant aluminum alloy extruded material excellent in ease of forming anodized film and uniformity of film thickness and method for producing the same
KR100291560B1 (en) * 1998-12-23 2001-06-01 박호군 Hypo-eutectic al-si wrought alloy having excellent wear-resistance and low thermal expansion coefficient, its production method, and its use
JP2001020047A (en) * 1999-07-05 2001-01-23 Toyota Autom Loom Works Ltd Stock for aluminum alloy forging and its production
EP1413636B9 (en) * 2001-07-25 2009-10-21 Showa Denko K.K. Aluminum alloy excellent in machinability and aluminum alloy material and method for production thereof
US20030143102A1 (en) * 2001-07-25 2003-07-31 Showa Denko K.K. Aluminum alloy excellent in cutting ability, aluminum alloy materials and manufacturing method thereof
JP2002206132A (en) * 2001-11-27 2002-07-26 Kobe Steel Ltd Aluminum alloy extrusion material having excellent machinability and production method therefor
RU2221891C1 (en) * 2002-04-23 2004-01-20 Региональный общественный фонд содействия защите интеллектуальной собственности Aluminum-based alloy, article made from such alloy and method of manufacture of such article
CN1298878C (en) * 2003-12-03 2007-02-07 东华大学 Aluminum silicon alloy series possessing granulated silicon phase and its process
JP4474528B2 (en) * 2004-11-01 2010-06-09 独立行政法人産業技術総合研究所 Hyper-eutectic Al-Si alloy material with high toughness and forge forming
CN100392129C (en) * 2004-11-18 2008-06-04 东北大学 Large-sized hypereutectic high-seleium aluminium alloy billet and preparation method thereof
JP4773796B2 (en) * 2005-10-28 2011-09-14 昭和電工株式会社 Aluminum alloy continuous casting rod, continuous casting rod casting method, continuous casting equipment

Also Published As

Publication number Publication date
EP2172572B1 (en) 2013-05-15
RU2463371C2 (en) 2012-10-10
EP2172572A4 (en) 2010-12-15
CN101333614B (en) 2010-09-01
CA2689332A1 (en) 2009-01-08
WO2009003365A1 (en) 2009-01-08
US20100126639A1 (en) 2010-05-27
EP2172572A1 (en) 2010-04-07
RU2009149092A (en) 2011-08-10
JP2010531388A (en) 2010-09-24
CN101333614A (en) 2008-12-31

Similar Documents

Publication Publication Date Title
KR20100018048A (en) A structural material part of a high-si mg-containing al alloy and the manufacture method thereof
CN111074114B (en) Al-Si-Mg-Li series aluminum alloy and preparation method thereof
Zhao et al. Microstructure and mechanical properties of rheo-diecasted A390 alloy
CN108239712A (en) A kind of aviation 6082 aluminum alloy plate materials and its production technology
CN108251710B (en) High-strength and high-toughness high-silicon aluminum alloy suitable for extrusion casting and preparation process thereof
CN104471090A (en) Aluminium alloy
WO2014075466A1 (en) Magnesium alloy board with low gd content and high ductility and hot rolling manufacturing process therefor
CN111101034A (en) Low-rare-earth high-performance rare earth aluminum alloy and preparation method thereof
CN104745897A (en) High-silicon wrought aluminum alloy material and production method thereof
WO2018072052A1 (en) Deformable zinc alloy capable of being cold headed and application thereof
KR20070009719A (en) Heat treatable al-zn-mg alloy for aerospace and automotive castings
JP6126235B2 (en) Semi-finished product obtained by deforming heat-resistant aluminum base alloy and method for producing the same
CN1233862C (en) Hypereutectic silicon-aluminium alloy material and its production method
JP2016505713A5 (en)
CN113444903A (en) High-gadolinium rare earth magnesium alloy bar and preparation method thereof
JP4803357B2 (en) Heat-resistant magnesium alloy produced by hot working and method for producing the same
KR102589799B1 (en) High-strength aluminum-based alloys and methods for producing articles therefrom
JP6113371B2 (en) Aluminum alloy casting excellent in high-temperature strength and thermal conductivity, manufacturing method thereof, and aluminum alloy piston for internal combustion engine
CN105543525B (en) A kind of preparation method of aluminium alloy
CN105177370B (en) A kind of semisolid pressure casting alusil alloy and semisolid pressure casting product thereof
CN105543584B (en) The method that gravitational casting prepares high-strength high-plastic high-ductility hypoeutectic al-si alloy material with hot-extrudable group technology
JP3829164B2 (en) Semi-melt molding material manufacturing method
JP3676723B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
CN110656268B (en) High-strength anti-fatigue aluminum alloy and preparation method thereof
JP3798676B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application