KR20100012590A - Nano coaxially shielded cable prepared and process thereof - Google Patents

Nano coaxially shielded cable prepared and process thereof Download PDF

Info

Publication number
KR20100012590A
KR20100012590A KR1020080074073A KR20080074073A KR20100012590A KR 20100012590 A KR20100012590 A KR 20100012590A KR 1020080074073 A KR1020080074073 A KR 1020080074073A KR 20080074073 A KR20080074073 A KR 20080074073A KR 20100012590 A KR20100012590 A KR 20100012590A
Authority
KR
South Korea
Prior art keywords
shielded cable
core
nanocoaxial
cable according
nanotube
Prior art date
Application number
KR1020080074073A
Other languages
Korean (ko)
Inventor
최용성
이경섭
Original Assignee
동신대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동신대학교산학협력단 filed Critical 동신대학교산학협력단
Priority to KR1020080074073A priority Critical patent/KR20100012590A/en
Publication of KR20100012590A publication Critical patent/KR20100012590A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1808Construction of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/016Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing co-axial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

PURPOSE: A nano coaxially shielded cable prepared and a process thereof are provided to improve the electron transport ability by using a conductive layer, a coaxial shield cable, and a conductive nanotube. CONSTITUTION: A nano coaxial shield cable(10) comprises a insulated conductor(3), a core, and a nanotube(1). The insulated conductor is formed by the conductive layer or the semiconductor layer. The core is formed by laminating the insulating layer(2) on the outside of the insulated conductor. The nanotube surrounds the core. A component of a first kind of core has a crystalline structure. The component of the first kind of core has a non-crystalline structure. Each component of core has a coaxial structure. The nanotube and the core have the coaxial structure.

Description

나노동축차폐케이블 및 그의 제조방법{NANO COAXIALLY SHIELDED CABLE PREPARED AND PROCESS THEREOF}Nano coaxial shielded cable and its manufacturing method {NANO COAXIALLY SHIELDED CABLE PREPARED AND PROCESS THEREOF}

본 발명은 도체층 또는 반도체층으로 이루어진 심선 및 이를 감싸는 절연층으로 구성된 코어부와, 그 코어부의 외형을 구성하는 나노튜브로 이루어진, 굵기가 수십 nm 이하의 나노동축차폐케이블 및 그의 제조방법에 관한 것이다.The present invention relates to a nano-coaxial shielded cable having a thickness of several tens of nm or less, comprising a core part composed of a core wire made of a conductor layer or a semiconductor layer and an insulating layer surrounding the core part, and nanotubes constituting an outer shape of the core part, and a method of manufacturing the same. will be.

종래에 나노튜브 내에 코아로서 나노튜브와 다른 물질을 피복한 헤테로 구조의 동축케이블이 실현된 바 있다. 예를 들면, 모세관 현상을 이용하여 금속 또는 그 화합물을 나노튜브 내에 주입하는 기술이 발표되었다(Ajayan, P. M. and Iijima, S, Nature 361, 333 (1993); Tsang, S. C., Chen, Y. K., Harris, P.J. F., and Green, M. L. H., Nature 372, 159 (1994); Ugarte,D., Chatelain,A., and de Heer, W. A., Science 274, 1897 (1996) 참조).Background Art Conventionally, coaxial cables having heterostructures coated with nanotubes and other materials as cores in nanotubes have been realized. For example, techniques for injecting metals or compounds into nanotubes using capillary action have been published (Ajayan, PM and Iijima, S, Nature 361, 333 (1993); Tsang, SC, Chen, YK, Harris, PJF, and Green, MLH, Nature 372, 159 (1994); Ugarte, D., Chatelain, A., and de Heer, WA, Science 274, 1897 (1996)).

또한, 직접 아크방전을 이용하여 증기로부터 금속 또는 그 화합물을 내포하는 카본나노튜브가 합성된 바 있다(Seraphin,S., Zhou, D., Jiao, J., Withers, J. C., and Loutfy, R., Nature 362, 503 (1993); Loiseau, A. and Pascard,H., Chem. Phys. Lett. 256, 246 (1996); Terrones, M., et al., Appl.Phys. A66, 307 (1998) 참조).In addition, carbon nanotubes containing metals or their compounds from steam have been synthesized using direct arc discharge (Seraphin, S., Zhou, D., Jiao, J., Withers, JC, and Loutfy, R.). , Nature 362, 503 (1993); Loiseau, A. and Pascard, H., Chem. Phys. Lett. 256, 246 (1996); Terrones, M., et al., Appl. Phys. A66, 307 (1998 ) Reference).

이와 같은 카본나노튜브(CNT)에서 탄화물과의 접합은 특히 주목받는 기술이다. 왜냐하면, 일반적으로 탄화물은 탄소전구체로서 생성되며, 그 자체가 반도체로서 금속적, 초전도체적, 또는 절연체적으로 행동하는 매우 흥미있는 전기적 특성을 갖고 있기 때문이다. 이런 카본나노튜브의 특성과 직경이나 나선상태에 따라 반도체 또는 금속의 성질을 나타내는 단층 카본나노튜브 특유의 전기적 특성(Dresselhaus, M. S.,Dresselhaukss, G., and Eklund, P., Science ofFullerenes and Carbon Nanotubes (New York, Academic Press, 1996) 참조)이 결부된다면 다양한 기능 소자의 실현을 기대할 수 있을 것이다. 예를 들면, 외측의 튜브를 절연성, 내측의 코아부를 도전성으로 한 미세한 케이블을 제조할 수 있을 것이다. 그러나, 상기와 같은 카본나노튜브를 이용한 제품은 실현된 바 없다.Bonding with carbides in such carbon nanotubes (CNTs) is a particularly noteworthy technique. Because, in general, carbides are produced as carbon precursors, which themselves have very interesting electrical properties that act as metals, superconductors, or insulators as semiconductors. The electrical characteristics peculiar to single-walled carbon nanotubes exhibiting the properties of semiconductors or metals depending on the properties of carbon nanotubes and their diameters or spirals (Dresselhaus, MS, Drewsselhaukss, G., and Eklund, P., Science of Fullerenes and Carbon Nanotubes ( New York, Academic Press, 1996), one can expect to realize various functional devices. For example, a fine cable may be manufactured in which the outer tube is insulated and the inner core is conductive. However, a product using such carbon nanotubes has not been realized.

동축케이블 구조를 실현하는 데에는 2층의 도체층과 층간의 절연층이 필요하기 때문에, 종래의 헤테로 구조로는 동축케이블을 형성할 수 없었다. 이에 본 발명자들은 오랜 연구 결과, 종래에는 실현이 불가능하였던, 동축 구조를 가지며, 나노튜브를 이용하는 나노동축차폐케이블 및 그 제조 방법을 발견하기에 이르렀다.Since the coaxial cable structure requires two conductor layers and an insulating layer between the layers, the coaxial cable cannot be formed by the conventional heterostructure. Accordingly, the present inventors have found a nanocoaxial shielded cable having a coaxial structure and using a nanotube, and a method of manufacturing the same, which has not been realized in the past.

본 발명은 도체층 또는 반도체층으로 이루어진 심선과 그 외측에 절연층으로 이루어진 코아부, 및 그 코아부를 감싸는 나노튜브로 이루어진 것을 특징으로 하는 나노동축차폐케이블을 제공한다.The present invention provides a nano-coaxial shielding cable comprising a core wire made of a conductor layer or a semiconductor layer, a core part made of an insulating layer on the outside thereof, and a nanotube surrounding the core part.

하기에서는 도면을 참조하여 본 발명을 구체적으로 설명한다.Hereinafter, with reference to the drawings will be described the present invention in detail.

본 발명의 나노동축차폐케이블의 기본 구조를 모식적으로 나타낸 단면경사도인 도 1를 보면, 본원의 나노동축차폐케이블 (10)은 코아부와 외피로 이루어져 있고, 코아부는 심선 (3)과 그 주위를 피복하는 절연체 (2)로 이루어져 있으며, 외피는 코아부의 주위를 피복하는 나노튜브 (1)로 이루어져 있다. Referring to FIG. 1, which is a cross-sectional gradient diagram schematically showing the basic structure of the nanocoaxial shielding cable of the present invention, the nanocoaxial shielding cable 10 of the present application is composed of a core portion and an outer shell, and the core portion of the core portion 3 and its surroundings. It consists of an insulator (2) covering the outer shell, and the outer shell consists of nanotubes (1) covering the core part.

본원의 나노동축차폐케이블은 코아부의 중심이 도체로 만들어지고, 그 외측에 절연층이 피복되어 만들어진다. 예를 들어, 반도체-절연체-반도체 (또는 반도체-절연체-도체)의 방사방향으로 이질(헤테로) 접합을 구성할 수 있다. The nanocoaxial shielded cable of the present application is made by the core of the core part being made of a conductor, and having an insulating layer coated on the outside thereof. For example, it is possible to construct a heterogeneous (hetero) junction in the radial direction of a semiconductor-insulator-semiconductor (or semiconductor-insulator-conductor).

나노동축차폐케이블의 성장은 2단계로 나눌 수 있다. The growth of nano coaxial shielded cable can be divided into two stages.

제1단계는 C(고체 또는 증기) + 2SiO (가스) → SiC (고체) + SiO2 (고체)의 반응에 의한 SiC-SiO2 나노와이어의 형성이다. 제2단계는 붕소, 질소 및 탄소의 나노튜브 영역으로의 분리에 의한 BCN 쉬스(sheath)의 피복이다.The first step is the formation of SiC-SiO 2 nanowires by the reaction of C (solid or vapor) + 2SiO (gas) → SiC (solid) + SiO 2 (solid). The second step is the coating of BCN sheath by separation of boron, nitrogen and carbon into nanotube regions.

나노동축차폐케이블의 내부에서 리튬은 검출되지 않았으나, 그라파이트상 (graphitic 또는 graphoto-like) 쉬스의 형성에 있어서 리튬은 중대한 역할을 하는 것을 발견하였다.Lithium was not detected inside the nanocoaxial shield cable, but lithium was found to play a significant role in the formation of graphite (graphitic or graphoto-like) sheaths.

출발 물질에 Li3N이 없으면, 그라파이트상 쉬스가 없는 SiC-SiO2 와이어만이 형성된다. 나노튜브의 BN층은 그라파이트 템플레이트 없이는 그 형성이 곤란하지만, C는 실험온도(1,200℃)에서 SiO와 용이하게 반응하기 때문이다.Without Li 3 N in the starting material, only SiC-SiO 2 wire without graphite sheath is formed. The BN layer of the nanotubes is difficult to form without a graphite template, but C easily reacts with SiO at an experimental temperature (1,200 ° C).

한편, 리튬이 출발 물질에 존재하면, SiO에 대한 리튬의 높은 반응성에 의해 외측의 C층이 SiO와의 반응을 피하고, 템플레이트의 역할을 하게 된다. 게다가, 리튬은 그라파이트상 BN층의 생성을 촉진할 수 있다. 그 결과, 나노튜브 내에 도체층과 그것을 피복하는 동축구조의 절연층이 만들어지며, 외피인 나노튜브가 도전성 물질로 만들어져 본원의 나노동축차폐케이블의 실현이 가능하다.On the other hand, if lithium is present in the starting material, the outer C layer avoids the reaction with SiO due to the high reactivity of lithium to SiO, and serves as a template. In addition, lithium can promote the production of graphite-like BN layers. As a result, a conductor layer and an insulating layer having a coaxial structure covering the same are made in the nanotube, and the outer nanotube is made of a conductive material, thereby realizing the nanocoaxial shielded cable of the present application.

본 발명은 코아부의 심선이 1종의 성분으로 이루어질 경우에 그 성분이 결정구조를 갖는 것이어도, 비결정구조를 가지는 것이어도 좋다. In the present invention, when the core portion of the core portion is composed of one component, the component may have a crystal structure or may have an amorphous structure.

또한, 본 발명은 코아부의 심선이 2종류 이상의 성분으로 이루어질 경우에는 성분마다 서로 동축 구조를 형성할 수 있으며, 특히 나노튜브와 코아부가 서로 동축 구조를 형성할 수 있다.In addition, in the present invention, when the core portion of the core portion is formed of two or more kinds of components, the components may form coaxial structures with each other, and in particular, the nanotubes and the core portions may form coaxial structures with each other.

또한, 코아부의 중심인 심선은 도체 또는 반도체 물질을 이용할 수 있는데, 예를 들어 탄화실리콘이 있으며, 심선을 피복하는 절연층으로는 실리콘산화층 또는 이산화실리콘을 이용할 수 있다. In addition, the core of the core portion may use a conductor or a semiconductor material. For example, silicon carbide may be used, and a silicon oxide layer or silicon dioxide may be used as the insulating layer covering the core.

또한, 본 발명에서 외피를 구성하는 나노튜브는 단층 구조이어도 다층 구조이어도 좋다.In addition, in this invention, the nanotube which comprises an outer shell may be single layer structure or a multilayered structure.

또한, 본 발명은 나노튜브가 붕소, 질소 및 탄소로 이루어진 군으로부터 하나 이상 선택된 원소들로 구성될 수 있다.In addition, the present invention may be composed of one or more elements selected from the group consisting of boron, nitrogen and carbon nanotubes.

또한, 본원은 나노동축차폐케이블의 제조 방법을 제공하는데, 구체적으로 레이져빔 타겟에 질화붕소, 탄소, 탄화실리콘 및 질화리튬 (Li3N)을 포함하는 레이져애브레이션법에 의해 나노튜브를 제조하는 공정을 포함할 수 있으며, 또한 여기에 산화실리콘증기를 흘리는 공정을 포함할 수 있다.In addition, the present application provides a method for producing a nano-coaxial shielded cable, specifically for producing a nanotube by a laser ablation method comprising a boron nitride, carbon, silicon carbide and lithium nitride (Li 3 N) in the laser beam target. It may include a step, and may also include a step of flowing a silicon oxide vapor thereto.

본 발명에 의하면 코아부의 중심영역과 외측의 나노 튜브 부분이 두 층의 도체층이 되고, 절연층이 중간층이 되므로, 종래는 실현이 불가능하였던 나노동축차폐케이블과 그 제조 방법을 제공할 수 있게 되었다. According to the present invention, since the core region of the core portion and the outer nanotube portion form a two-layered conductor layer, and the insulating layer becomes an intermediate layer, it is possible to provide a nanocoaxial shielded cable and a method for manufacturing the same, which have not been realized in the past. .

이로써, 전자 수송 능력이 탁월하여 여러 통신, 전력 케이블로서 본연의 기능을 잘 수행하면서, 그 직경이 고르면서 수십 nm 이하이어서 나노 장치에 적용하기에 우수하다는 장점이 있다.As a result, it has an excellent electron transporting ability to perform its inherent functions as various communication and power cables, while having an even diameter of several tens of nm or less, which is excellent for applying to nano devices.

이하 본 발명을 다음 실시예에 의거하여 더욱 상세히 설명하겠는바, 본 발명이 다음 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.

실시예Example

(1) 레이저애블레이션장치를 이용한 나노동축차폐케이블 제조방법(1) Manufacturing method of nano coaxial shielded cable using laser ablation device

레이저애블레이션장치는 T.Guo et al(Chem.Phys.Lett.243 (1955)49)의 장치를 원형으로 한 것이며, 레이저로서 Nd:YAG 펄스레이저의 2차고조파 (파장 532nm)를 사용하였다. 펄스레이트는 10Hz, 펄스폭은 6~7ns이었다.The laser ablation apparatus was a prototype of T. Guo et al (Chem. Phys. Lett. 243 (1955) 49), and a second harmonic (wavelength 532 nm) of an Nd: YAG pulsed laser was used as a laser. The pulse rate was 10 Hz and the pulse width was 6-7 ns.

타겟으로서 질화붕소, 탄소, 산화실리콘, 및 질화리튬 (Li3N)을 혼합압축하였다. 타겟상에서의 에너지 밀도는 약 3J/㎠이었다. 타겟은 전기로 중에서 1,200℃로 가열한 석영반응관의 중앙에 장치하였다. 유량 300sccm의 질소가스를 도입하고, 전체 압력을 500torr로 조정하였다. 생성물을 전기로의 하류에서 수집하였다.Boron nitride, carbon, silicon oxide, and lithium nitride (Li 3 N) were mixed and compressed as targets. The energy density on the target was about 3 J / cm 2. The target was placed in the center of a quartz reaction tube heated to 1,200 ° C. in an electric furnace. Nitrogen gas with a flow rate of 300 sccm was introduced, and the total pressure was adjusted to 500 torr. The product was collected downstream of the electric furnace.

한편, 산화실리콘을 흘리고 질화붕소, 탄소, 및 질화리튬(Li3N)과 고온하에서 반응시키는 것을 제외하고 상기와 같은 방법으로 같은 생성물을 수득하였다. On the other hand, the same product was obtained in the same manner as above except for flowing silicon oxide and reacting with boron nitride, carbon, and lithium nitride (Li 3 N) at a high temperature.

얻어진 생성물을 투과전자현미경(TEM) 관찰에 의하여 나노동축차폐케이블이 형성된 것을 확인하였다.It was confirmed by the transmission electron microscope (TEM) observation that the obtained product formed the nano coaxial shield cable.

(2)결과(2) results

상기 방법으로 만들어진 나노동축차폐케이블의 결정구조를 도 2에서 보여주고 있다. 도 2에서 망상의 상은 시료의 지지막이며, 본원의 나노동축차폐케이블은 수십㎛ 이하의 길이와 수십 nm의 직경을 갖는 고 애스팩트(aspect)비를 가지며, 또한 직경이 비교적 균일하였다. The crystal structure of the nanocoaxial shield cable made by the above method is shown in FIG. 2. In FIG. 2, the network image is a support membrane of a sample, and the nanocoaxial shielded cable of the present application has a high aspect ratio having a length of several tens of micrometers or less and a diameter of several tens of nm, and the diameter is relatively uniform.

또한, 도 3은 본 발명의 실시 형태에 의한 나노동축차폐케이블 말단의 결정구조와 그 코아부분인 탄화실리콘의 전자회절상을 나타낸 전자현미경 사진인데, 여기서 왼쪽 위의 확대상이 외측의 쉬스인 나노튜브 부분의 구조를, 오른쪽 아래의 확대상이 코어 부분인 탄화실리콘 결정구조를 보여주고 있다.3 is an electron micrograph showing an electron diffraction image of a silicon carbide, which is a core portion thereof, and a crystal structure of a nanocoaxial shielded cable terminal according to an embodiment of the present invention, wherein the enlarged image on the upper left is the outer sheath of the nanotube portion The structure at the bottom right shows the crystal structure of silicon carbide, the core part.

도 3의 확대상에서는 나노동축나노동케이블이 결정구조의 코아 부분과 이것을 피복한 비결정 구조 층을 갖는 것을 볼 수 있다. 도 3에 삽입한 회절 패턴은 결정구조의 코아 부분이 β상 SiC이며, 전자선에 평행한 <110>축을 갖는 것을 나타내고 있다. (111)면에서의 회절 스팟(spot)은 (*)가 붙여졌고, 이것은 쌍정면을 나타내고 있다. 적층 결함의 존재는 SiC 코아 부분이 C와 SiC의 고체-기체 반응에 의하여 형성된 것을 의미한다.In the enlarged image of FIG. 3, it can be seen that the nanocoaxial nano-labor cable has a core portion of the crystal structure and an amorphous structure layer coated thereon. The diffraction pattern inserted in FIG. 3 shows that the core portion of the crystal structure is β-phase SiC and has a <110> axis parallel to the electron beam. Diffraction spots on the (111) plane are denoted by (*), indicating a twin plane. The presence of stacking defects means that the SiC core portion is formed by the solid-gas reaction of C and SiC.

한편, 도 4는 나노동축차폐케이블의 상세한 다층구조의 조직을 나타낸 고분해능상의 전자현미경 사진으로서, 비결정구조의 쉬스 외측에 다른 그라파이트양의 쉬스를 볼 수 있다. 쉬스로부터의 격자의 끝(도 4의 왼쪽 위에 삽입)은 층간 거리가 약 0.35nm이며, BN 또는 C의 터보스프래이틱 그래파이트(turbostratic graphitic)층의 (002)층격에 가까운 것을 나타내고 있다. 결정구조인 SiC 코아부분 (도 3의 오른쪽 아래 부분에 삽입)으로부터 약 0.25nm인 (111)면 간격을 갖는 전형적인 면심 다방상인 <110> 프로젝션을 볼 수 있다. 여기에 나타낸 구조는 신호전손에 사용되고 있는 통상의 동축케이블과 같다.On the other hand, Figure 4 is a high resolution electron micrograph showing the structure of the multi-layered structure of the nano-coaxial shielded cable, it is possible to see other graphite-like sheath outside the sheath of the amorphous structure. The tip of the lattice from the sheath (inserted in the upper left of FIG. 4) shows that the interlayer distance is about 0.35 nm, close to the (002) lattice of the turbostratic graphitic layer of BN or C. From the SiC core portion of the crystal structure (inserted in the lower right part of FIG. 3), a typical face-centered multi-phase projection with (111) plane spacing of about 0.25 nm can be seen. The structure shown here is the same as a conventional coaxial cable used for signal loss.

도 1은 나노동축차폐케이블의 기본 구조를 나타내는 단면경사도이다.1 is a cross-sectional inclination diagram showing a basic structure of a nano coaxial shielded cable.

도 2는 나노동축차폐케이블의 결정구조를 나타낸 저배율 전자현미경 사진이다.2 is a low magnification electron micrograph showing a crystal structure of a nanocoaxial shielded cable.

도 3은 본 발명의 실시 형태에 의한 나노동축차폐케이블 말단의 결정구조와 그 코아부분인 탄화실리콘의 전자회절상을 나타낸 전자현미경 사진이다.Figure 3 is an electron micrograph showing the electron diffraction image of the silicon carbide of the core portion and the crystal structure of the nano-coaxial shield cable terminal according to an embodiment of the present invention.

도 4는 상세한 다층구조의 조직을 나타낸 고분해능상의 전자현미경 사진이다.4 is a high resolution electron micrograph showing a detailed multi-layered structure.

Claims (11)

도체층 또는 반도체층으로 이루어진 심선과 그 외측에 절연층으로 이루어진 코아부, 및 그 코아부를 감싸는 나노튜브로 이루어진 것을 특징으로 하는 나노동축차폐케이블.A core wire made of a conductor layer or a semiconductor layer, and a core part made of an insulating layer on an outer side thereof, and a nanotube surrounding the core part. 제1항에 있어서, 코아부의 1종의 성분이 결정구조를 갖는 것을 특징으로 하는 나노동축차폐케이블.The nanocoaxial shielded cable according to claim 1, wherein one component of the core portion has a crystal structure. 제1항에 있어서, 코아부의 1종의 성분이 비결정구조를 갖는 것을 특징으로 하는 나노동축차폐케이블.The nanocoaxial shielded cable according to claim 1, wherein one component of the core portion has an amorphous structure. 제1항 내지 제3항 중 어느 한 항에 있어서, 코아부의 각 성분들이 서로 동축 구조를 갖는 것을 특징으로 하는 나노동축차폐케이블.The nanocoaxial shielded cable according to any one of claims 1 to 3, wherein each component of the core portion has a coaxial structure with each other. 제4항에 있어서, 나노튜브와 코아부가 서로 동축 구조를 갖는 것을 특징으로 하는 나노동축차폐케이블.The nanocoaxial shielded cable according to claim 4, wherein the nanotube and the core portion have a coaxial structure with each other. 제1항 내지 제3항 중 어느 한 항에 있어서, 코아부의 중심인 심선이 탄화실리콘인 것을 특징으로 하는 나노동축차폐케이블.The nanocoaxial shielded cable according to any one of claims 1 to 3, wherein the core wire, which is the center of the core portion, is silicon carbide. 제1항 내지 제3항 중 어느 한 항에 있어서, 코아부의 심선을 피복하는 절연층이 실리콘산화층 또는 이산화실리콘인 것을 특징으로 하는 나노동축차폐케이블.The nano-coaxial shielded cable according to any one of claims 1 to 3, wherein the insulating layer covering the core of the core portion is a silicon oxide layer or silicon dioxide. 제1항 내지 제3항 중 어느 한 항에 있어서, 나노튜브가 단층 또는 다층 구조인 것을 특징으로 하는 나노동축차폐케이블.The nanocoaxial shielded cable according to any one of claims 1 to 3, wherein the nanotubes have a single layer or a multilayer structure. 제1항 내지 제3항 중 어느 한 항에 있어서, 나노튜브가 붕소, 질소 및 탄소로 이루어진 군으로부터 하나 이상 선택된 원소들로 구성된 것을 특징으로 하는 나노동축차폐케이블.The nanocoaxial shielded cable according to any one of claims 1 to 3, wherein the nanotubes are composed of one or more elements selected from the group consisting of boron, nitrogen, and carbon. 레이져빔 타겟에 질화붕소, 탄소, 탄화실리콘 및 질화리튬(Li3N)을 포함하는 레이져애브레이션법에 의해 나노튜브를 제조하는 것을 특징으로 하는 나노동축차폐케이블의 제조 방법.A method for producing a nanocoaxial shielded cable, comprising manufacturing a nanotube by a laser ablation method comprising boron nitride, carbon, silicon carbide, and lithium nitride (Li 3 N) in a laser beam target. 제11항에 있어서, 산화실리콘증기를 흘리는 공정을 포함하는 것을 특징으로 하는 나노동축차폐케이블의 제조 방법.The method of manufacturing a nanocoaxial shielded cable according to claim 11, comprising the step of flowing silicon oxide vapor.
KR1020080074073A 2008-07-29 2008-07-29 Nano coaxially shielded cable prepared and process thereof KR20100012590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080074073A KR20100012590A (en) 2008-07-29 2008-07-29 Nano coaxially shielded cable prepared and process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080074073A KR20100012590A (en) 2008-07-29 2008-07-29 Nano coaxially shielded cable prepared and process thereof

Publications (1)

Publication Number Publication Date
KR20100012590A true KR20100012590A (en) 2010-02-08

Family

ID=42086800

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080074073A KR20100012590A (en) 2008-07-29 2008-07-29 Nano coaxially shielded cable prepared and process thereof

Country Status (1)

Country Link
KR (1) KR20100012590A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101315386B1 (en) * 2012-05-03 2013-10-08 안행수 A coil and a rotary machine which has it
KR20160112245A (en) * 2015-03-18 2016-09-28 성균관대학교산학협력단 Stacked structure of nano carbon material and hexagonal boron nitride for leading wire and interconnection of semiconductors
KR20190106359A (en) 2018-03-09 2019-09-18 블루메탈(주) Copper-ferrous alloy cable having magnetic high shield and method thereof
KR20200129759A (en) 2019-05-10 2020-11-18 블루메탈(주) Manufacturing method of audio cable having magnetic high shield and high insulating property, and audio cable manufactured by the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101315386B1 (en) * 2012-05-03 2013-10-08 안행수 A coil and a rotary machine which has it
KR20160112245A (en) * 2015-03-18 2016-09-28 성균관대학교산학협력단 Stacked structure of nano carbon material and hexagonal boron nitride for leading wire and interconnection of semiconductors
KR20190106359A (en) 2018-03-09 2019-09-18 블루메탈(주) Copper-ferrous alloy cable having magnetic high shield and method thereof
KR20200129759A (en) 2019-05-10 2020-11-18 블루메탈(주) Manufacturing method of audio cable having magnetic high shield and high insulating property, and audio cable manufactured by the same

Similar Documents

Publication Publication Date Title
JP5312813B2 (en) Highly conductive carbon fiber manufacturing method, power transmission filament manufacturing method, and power transmission cable manufacturing method
TW201938484A (en) Structured composite materials
US20060228477A1 (en) Method for selective chemical vapor deposition of nanotubes
WO2007110899A1 (en) Device structure of carbon fiber and process for producing the same
KR101062240B1 (en) Electronic device and manufacturing method thereof
JP2009221623A (en) Fiber aggregate and fabricating method of the same
US9305777B2 (en) Catalyst free synthesis of vertically aligned CNTs on SiNW arrays
JP3769405B2 (en) Nano cable and manufacturing method thereof
US20120031644A1 (en) Ultraconducting articles
KR20100012590A (en) Nano coaxially shielded cable prepared and process thereof
Shen et al. Direct Chirality Recognition of Single‐Crystalline and Single‐Walled Transition Metal Oxide Nanotubes on Carbon Nanotube Templates
Zhou et al. Laser-assisted nanofabrication of carbon nanostructures
Farazmand et al. Synthesis of carbon nanotube and zinc oxide (CNT–ZnO) nanocomposite
US11673806B2 (en) Carbon nanotube composite assembled wire, heat-treated body of carbon nanotube composite assembled wire, method for manufacturing carbon nanotube composite assembled wire, and method for manufacturing heat-treated body of carbon nanotube composite assembled wire
CN111094179B (en) Method for manufacturing cable made of aligned carbon nanotubes
Chen et al. Preparation and characterization of carbon nanotubes encapsulated GaN nanowires
US11511996B2 (en) Carbon nanotube composite, method for manufacturing the same, and method for manufacturing refined carbon nanotube
Yong et al. Synthesis of short multi-walled carbon nanotubes by molecular self-assembly
Sharma et al. Investigations on the transformation of vertically aligned CNTs to intramolecular junctions by atmospheric pressure PECVD
Liu et al. Synthesis of well-aligned carbon nanotubes with open tips
JP2004241572A (en) Semiconductor device and method of manufacturing the same
KR101124958B1 (en) A method of fabricating semiconducting device by using microwave irradiation and thus-prepared semiconducting device
JP4701451B2 (en) Zinc sulfide nanocable coated with silicon carbide film and method for producing the same
Salar Elahi et al. RETRACTED ARTICLE: Increase of the Surface Mobility of Carbon Molecular Crystals (CMCs) Using the PECVD Technique
Farazmand et al. Retracted article: Morphological and field emission properties of ZnO deposited MWCNT by RF sputtering and PECVD

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application